1
|
Rivera Antonio AM, Padilla Martínez II, Torres-Ramos MA, Rosales-Hernández MC. Myeloperoxidase as a therapeutic target for oxidative damage in Alzheimer's disease. J Enzyme Inhib Med Chem 2025; 40:2456282. [PMID: 39950933 DOI: 10.1080/14756366.2025.2456282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/14/2024] [Accepted: 01/14/2025] [Indexed: 05/09/2025] Open
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disorder more common in older adults. One of the leading AD hypotheses involves the amyloid beta (A) production, it is associated to oxidative stress, neuroinflammation, and neurovascular damage. The interaction of A with the blood vessel wall contributes to the disruption of the blood-brain barrier (BBB), allowing neutrophil infiltration containing the myeloperoxidase enzyme (MPO), which produces hypochlorous acid (HOCl) a potent oxidant. Also, MPO could be released from the microglia cells and interact with the amyloid beta plaques. This review aims to study the role of MPO in the progression of AD, in particular its contribution to oxidative stress and neuroinflammation. Furthermore, to explore the MPO-potential as AD-biomarker to evaluate the therapeutic potential of its inhibitors to mitigate the neurotoxicity. Finally, revise MPO inhibitors that could act as dual inhibitors acting on MPO and acetylcholinesterase and or another target involved in AD.
Collapse
Affiliation(s)
- Astrid Mayleth Rivera Antonio
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, MéxicoCiudad de México, México
| | - Itzia Irene Padilla Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, MéxicoCiudad de México, México
| | - Mónica A Torres-Ramos
- Dirección de investigación del Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Av, Ciudad de México. C.P, México
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, MéxicoCiudad de México, México
| |
Collapse
|
2
|
Peng W, Jiang Q, Wu Y, He L, Li B, Bei W, Yang X. The role of glutathione for oxidative stress and pathogenicity of Streptococcus suis. Virulence 2025; 16:2474866. [PMID: 40048653 PMCID: PMC11901377 DOI: 10.1080/21505594.2025.2474866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Streptococcus suis is an important zoonotic pathogen that threatens human and pig health. During infection, the host can impose oxidative stress to resist pathogen invasion. Resistance to oxidative toxicity is an important factor for pathogens. Glutathione synthesis contributes to reactive oxygen species (ROS) detoxification in bacterial cells. Little is known about the roles of glutathione synthesis and transport in S. suis. In this study, we demonstrated that glutathione treatment increased oxidative stress tolerance in S. suis. GshAB and GshT were found in S. suis glutathione synthesis and import by bioinformatics. In vitro, inactivation of gshAB and gshT led to increased sensitivity to oxidative stress. Inactivation of gshT led to growth defects in the medium. The intracellular glutathione content of gshAB or gshT deletion mutants was lower than that of wild type (WT) strain. The phagocytic resistance of gshAB and gshT mutants was lower than that of the WT strain. Moreover, the virulence of gshAB and gshT deletion mutants was significantly lower than that of the WT strain in mouse survival and tissue loading experiments. In conclusion, these results revealed the functions of GshAB and GshT in the pathogenesis of S. suis. These findings enhance our understanding of bacterial virulence mechanisms and may provide a new avenue for therapeutic intervention aimed at curbing S. suis infections.
Collapse
Affiliation(s)
- Wei Peng
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qinggen Jiang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yuting Wu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Li He
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bei Li
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
| | - Weicheng Bei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xia Yang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
3
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
4
|
Li K, Ran X, Han J, Ding H, Wang X, Li Y, Guo W, Li X, Guo W, Fu S, Bi J. Astragalus polysaccharide alleviates mastitis disrupted by Staphylococcus aureus infection by regulating gut microbiota and SCFAs metabolism. Int J Biol Macromol 2025; 286:138422. [PMID: 39647752 DOI: 10.1016/j.ijbiomac.2024.138422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Polysaccharides, key bioactive compounds derived from Chinese herbs, are increasingly recognized for their therapeutic potential in modulating gut microbiota to treat various diseases. However, their efficacy in alleviating mammary inflammation and oxidative stress and protecting the blood-milk barrier (BMB) compromised by Staphylococcus aureus (S. au) infection remains uncertain. As evidence for the gut-mammary axis grows, identifying natural prebiotic components that affect this axis is crucial. This study reveals that Astragalus polysaccharide (APS), the primary active constituent of Astragalus, effectively mitigates S. au infection in murine mammary glands, suppresses inflammatory responses, reduces oxidative stress, and restores BMB integrity. The involvement of APS in modulating gut microbiota was substantiated through gut microbial depletion experiments and fecal microbiota transplantation (FMT). Notably, APS uniquely enriched Ruminococcus bromii (R. bromii) in the gut, facilitating the metabolism of short-chain fatty acids (SCFAs), particularly acetate and butyrate, which are pivotal to APS's protective effects. Collectively, these results propose a novel therapeutic approach for the treatment and prevention of S. au-induced mastitis, leveraging APS and R. bromii as prebiotics and probiotics, respectively.
Collapse
Affiliation(s)
- Kefei Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xin Ran
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiaxi Han
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Huiping Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoxuan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yutao Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Weiwei Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinyi Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| |
Collapse
|
5
|
Semchyshyn H. Fructose-mediated AGE-RAGE axis: approaches for mild modulation. Front Nutr 2024; 11:1500375. [PMID: 39698244 PMCID: PMC11652219 DOI: 10.3389/fnut.2024.1500375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Fructose is a valuable and healthy nutrient when consumed at normal levels (≤50 g/day). However, long-term consumption of excessive fructose and elevated endogenous production can have detrimental health impacts. Fructose-initiated nonenzymatic glycation (fructation) is considered as one of the most likely mechanisms leading to the generation of reactive species and the propagation of nonenzymatic processes. In the later stages of glycation, poorly degraded advanced glycation products (AGEs) are irreversibly produced and accumulated in the organism in an age- and disease-dependent manner. Fructose, along with various glycation products-especially AGEs-are present in relatively high concentrations in our daily diet. Both endogenous and exogenous AGEs exhibit a wide range of biological effects, mechanisms of which can be associated with following: (1) AGEs are efficient sources of reactive species in vivo, and therefore can propagate nonenzymatic vicious cycles and amplify glycation; and (2) AGEs contribute to upregulation of the specific receptor for AGEs (RAGE), amplifying RAGE-mediated signaling related to inflammation, metabolic disorders, chronic diseases, and aging. Therefore, downregulation of the AGE-RAGE axis appears to be a promising approach for attenuating disease conditions associated with RAGE-mediated inflammation. Importantly, RAGE is not specific only to AGEs; it can bind multiple ligands, initiating a complex RAGE signaling network that is not fully understood. Maintaining an appropriate balance between various RAGE isoforms with different functions is also crucial. In this context, mild approaches related to lifestyle-such as diet optimization, consuming functional foods, intake of probiotics, and regular moderate physical activity-are valuable due to their beneficial effects and their ability to mildly modulate the fructose-mediated AGE-RAGE axis.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
6
|
Chiang CC, Cheng WJ, Dela Cruz JRMS, Raviraj T, Wu NL, Korinek M, Hwang TL. Neutrophils in Atopic Dermatitis. Clin Rev Allergy Immunol 2024; 67:21-39. [PMID: 39294505 PMCID: PMC11638293 DOI: 10.1007/s12016-024-09004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/20/2024]
Abstract
Neutrophils have a critical role in inflammation. Recent studies have identified their distinctive presence in certain types of atopic dermatitis (AD), yet their exact function remains unclear. This review aims to compile studies elucidating the role of neutrophils in AD pathophysiology. Proteins released by neutrophils, including myeloperoxidase, elastase, and lipocalin, contribute to pruritus progression in AD. Neutrophilic oxidative stress and the formation of neutrophil extracellular traps may further worsen AD. Elevated neutrophil elastase and high-mobility group box 1 protein expression in AD patients' skin exacerbates epidermal barrier defects. Neutrophil-mast cell interactions in allergic inflammation steer the immunological response toward Th2 imbalance and activate the Th17 pathway, particularly in response to allergens or infections linked to AD. Notably, drugs alleviating pruritic symptoms in AD inhibit neutrophilic inflammation. In conclusion, these findings underscore that neutrophils may be therapeutic targets for AD symptoms, emphasizing their inclusion in AD treatment strategies.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Department of Nutrition and Health Sciences, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Wei-Jen Cheng
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Joseph Renz Marion Santiago Dela Cruz
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Thiyagarajan Raviraj
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.
- Institute of Biomedical Sciences and Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| |
Collapse
|
7
|
Ukleja M, Kricks L, Torrens G, Peschiera I, Rodrigues-Lopes I, Krupka M, García-Fernández J, Melero R, Del Campo R, Eulalio A, Mateus A, López-Bravo M, Rico AI, Cava F, Lopez D. Flotillin-mediated stabilization of unfolded proteins in bacterial membrane microdomains. Nat Commun 2024; 15:5583. [PMID: 38961085 PMCID: PMC11222466 DOI: 10.1038/s41467-024-49951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
The function of many bacterial processes depends on the formation of functional membrane microdomains (FMMs), which resemble the lipid rafts of eukaryotic cells. However, the mechanism and the biological function of these membrane microdomains remain unclear. Here, we show that FMMs in the pathogen methicillin-resistant Staphylococcus aureus (MRSA) are dedicated to confining and stabilizing proteins unfolded due to cellular stress. The FMM scaffold protein flotillin forms a clamp-shaped oligomer that holds unfolded proteins, stabilizing them and favoring their correct folding. This process does not impose a direct energy cost on the cell and is crucial to survival of ATP-depleted bacteria, and thus to pathogenesis. Consequently, FMM disassembling causes the accumulation of unfolded proteins, which compromise MRSA viability during infection and cause penicillin re-sensitization due to PBP2a unfolding. Thus, our results indicate that FMMs mediate ATP-independent stabilization of unfolded proteins, which is essential for bacterial viability during infection.
Collapse
Affiliation(s)
- Marta Ukleja
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Lara Kricks
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Gabriel Torrens
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS). Umeå Center for Microbial Research (UCMR). Science for Life Laboratory (SciLifeLab), Umeå, SE-901 87, Sweden
| | - Ilaria Peschiera
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Ines Rodrigues-Lopes
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
| | - Marcin Krupka
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Julia García-Fernández
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Roberto Melero
- Department of Structural Biology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Rosa Del Campo
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ramón y Cajal Hospital, 28034, Madrid, Spain
| | - Ana Eulalio
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Center for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, United Kingdom
| | - André Mateus
- The Laboratory for Molecular Infection Medicine Sweden (MIMS). Umeå Center for Microbial Research (UCMR). Science for Life Laboratory (SciLifeLab), Umeå, SE-901 87, Sweden
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| | - María López-Bravo
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Ana I Rico
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS). Umeå Center for Microbial Research (UCMR). Science for Life Laboratory (SciLifeLab), Umeå, SE-901 87, Sweden
| | - Daniel Lopez
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain.
| |
Collapse
|
8
|
Li Y, Sun J, Wang Q, Su C, Chen X, Ma C, Yang X, Feng C, Shi C. Lysis-Free Isolation and Direct Amplification of Pathogenic Bacterial DNA Using Diatom Frustules. Anal Chem 2024; 96:9113-9121. [PMID: 38771353 DOI: 10.1021/acs.analchem.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
DNA has been implicated as an important biomarker for the diagnosis of bacterial infections. Herein, we developed a streamlined methodology that uses diatom frustules (DFs) to liberate and capture bacterial DNA and allows direct downstream amplification tests without any lysis, washing, or elution steps. Unlike most conventional DNA isolation methods that rely on cell lysis to release bacterial DNA, DFs can trigger the oxidative stress response of bacterial cells to promote bacterial membrane vesicle formation and DNA release by generating reactive oxygen species in aqueous solutions. Due to the hierarchical porous structure, DFs provided high DNA capture efficiency exceeding 80% over a wide range of DNA amounts from 10 pg to 10 ng, making only 10 μg DFs sufficient for each test. Since laborious liquid handling steps are not required, the entire DNA sample preparation process using DFs can be completed within 3 min. The diagnostic use of this DF-based methodology was illustrated, which showed that the DNA of the pathogenic bacteria in serum samples was isolated by DFs and directly detected using polymerase chain reaction (PCR) at concentrations as low as 102 CFU/mL, outperforming the most used approaches based on solid-phase DNA extraction. Furthermore, most of the bacterial cells were still alive after DNA isolation using DFs, providing the possibility of recycling samples for storage and further diagnosis. The proposed DF-based methodology is anticipated to simplify bacterial infection diagnosis and be broadly applied to various medical diagnoses and biological research.
Collapse
Affiliation(s)
- Yang Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Jiachen Sun
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Qing Wang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Chang Su
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, P. R. China
| | - Xiguang Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, P. R. China
- Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya 572025, P. R. China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xuecheng Yang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Chao Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, P. R. China
- Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya 572025, P. R. China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
- Qingdao JianMa Gene Technology Co., Ltd., Qingdao 266114, P. R. China
| |
Collapse
|
9
|
Gulati M, Thomas JM, Ennis CL, Hernday AD, Rawat M, Nobile CJ. The bacillithiol pathway is required for biofilm formation in Staphylococcus aureus. Microb Pathog 2024; 191:106657. [PMID: 38649100 DOI: 10.1016/j.micpath.2024.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Staphylococcus aureus is a major human pathogen that can cause infections that range from superficial skin and mucosal infections to life threatening disseminated infections. S. aureus can attach to medical devices and host tissues and form biofilms that allow the bacteria to evade the host immune system and provide protection from antimicrobial agents. To counter host-generated oxidative and nitrosative stress mechanisms that are part of the normal host responses to invading pathogens, S. aureus utilizes low molecular weight (LMW) thiols, such as bacillithiol (BSH). Additionally, S. aureus synthesizes its own nitric oxide (NO), which combined with its downstream metabolites may also protect the bacteria against specific host responses. We have previously shown that LMW thiols are required for biofilm formation in Mycobacterium smegmatis and Pseudomonas aeruginosa. Here, we show that the S. aureus bshC mutant strain, which is defective in the last step of the BSH pathway and lacks BSH, is impaired in biofilm formation. We also identify a possible S-nitrosobacillithiol reductase (BSNOR), similar in sequence to an S-nitrosomycothiol reductase found in M. smegmatis and show that the putative S. aureus bsnoR mutant strain has reduced levels of BSH and decreased biofilm formation. Our studies also show that NO plays an important role in biofilm formation and that acidified sodium nitrite severely reduces biofilm thickness. These studies provide insight into the roles of oxidative and nitrosative stress mechanisms on biofilm formation and indicate that BSH and NO are key players in normal biofilm formation in S. aureus.
Collapse
Affiliation(s)
- Megha Gulati
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA
| | - Jason M Thomas
- Department of Biology, California State University-Fresno, Fresno, CA, USA
| | - Craig L Ennis
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA; Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Aaron D Hernday
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA
| | - Mamta Rawat
- Department of Biology, California State University-Fresno, Fresno, CA, USA.
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA.
| |
Collapse
|
10
|
Oh D, Khan F, Park SK, Jo DM, Kim NG, Jung WK, Kim YM. Antimicrobial, antibiofilm, and antivirulence properties of Eisenia bicyclis-extracts and Eisenia bicyclis-gold nanoparticles towards microbial pathogens. Microb Pathog 2024; 188:106546. [PMID: 38278457 DOI: 10.1016/j.micpath.2024.106546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Nanomaterials derived from seaweed have developed as an alternative option for fighting infections caused by biofilm-forming microbial pathogens. This research aimed to discover potential seaweed-derived nanomaterials with antimicrobial and antibiofilm action against bacterial and fungal pathogens. Among seven algal species, the extract from Eisenia bicyclis inhibited biofilms of Klebsiella pneumoniae, Staphylococcus aureus, and Listeria monocytogenes most effectively at sub-MIC levels. As a result, in the present study, E. bicyclis was chosen as a prospective seaweed for producing E. bicyclis-gold nanoparticles (EB-AuNPs). Furthermore, the mass spectra of E. bicyclis reveal the presence of a number of potentially beneficial chemicals. The polyhedral shape of the synthesized EB-AuNP with a size value of 154.74 ± 33.46 nm was extensively described. The lowest inhibitory concentration of EB-AuNPs against bacterial pathogens (e.g., L.monocytogenes, S. aureus, Pseudomonas aeruginosa, and K. pneumoniae) and fungal pathogens (Candida albicans) ranges from 512 to >2048 μg/mL. Sub-MIC of EB-AuNPs reduces biofilm formation in P. aeruginosa, K. pneumoniae, L. monocytogenes, and S. aureus by 57.22 %, 58.60 %, 33.80 %, and 91.13 %, respectively. EB-AuNPs eliminate the mature biofilm of K. pneumoniae at > MIC, MIC, and sub-MIC concentrations. Furthermore, EB-AuNPs at the sub-MIC level suppress key virulence factors generated by P. aeruginosa, including motility, protease activity, pyoverdine, and pyocyanin, whereas it also suppresses the production of staphyloxanthin virulence factor from S. aureus. The current research reveals that seaweed extracts and a biocompatible seaweed-AuNP have substantial antibacterial, antibiofilm, and antivirulence actions against bacterial and fungal pathogens.
Collapse
Affiliation(s)
- DoKyung Oh
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Institute of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seul-Ki Park
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nam-Gyun Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
11
|
Savin A, Anderson EE, Dyzenhaus S, Podkowik M, Shopsin B, Pironti A, Torres VJ. Staphylococcus aureus senses human neutrophils via PerR to coordinate the expression of the toxin LukAB. Infect Immun 2024; 92:e0052623. [PMID: 38235972 PMCID: PMC10863418 DOI: 10.1128/iai.00526-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024] Open
Abstract
Staphylococcus aureus is a gram-positive pathogen that poses a major health concern, in part due to its large array of virulence factors that allow infection and evasion of the immune system. One of these virulence factors is the bicomponent pore-forming leukocidin LukAB. The regulation of lukAB expression is not completely understood, especially in the presence of immune cells such as human polymorphonuclear neutrophils (hPMNs). Here, we screened for transcriptional regulators of lukAB during the infection of primary hPMNs. We uncovered that PerR, a peroxide sensor, is vital for hPMN-mediated induction of lukAB and that PerR upregulates cytotoxicity during the infection of hPMNs. Exposure of S. aureus to hydrogen peroxide (H2O2) alone also results in increased lukAB promoter activity, a phenotype dependent on PerR. Collectively, our data suggest that S. aureus uses PerR to sense the H2O2 produced by hPMNs to stimulate the expression of lukAB, allowing the bacteria to withstand these critical innate immune cells.IMPORTANCEStaphylococcus aureus utilizes a diverse set of virulence factors, such as leukocidins, to subvert human neutrophils, but how these toxins are regulated is incompletely defined. Here, we identified the peroxide-sensitive repressor, PerR, as a required protein involved in the induction of lukAB in the presence of primary human neutrophils, a phenotype directly linked to the ability of PerR to sense H2O2. Thus, we show that S. aureus coordinates sensing and resistance to oxidative stress with toxin production to promote pathogen survival.
Collapse
Affiliation(s)
- Avital Savin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Biology, New York University, New York, New York, USA
| | - Exene E. Anderson
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sophie Dyzenhaus
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Magdalena Podkowik
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
12
|
Campbell AE, McCready-Vangi AR, Uberoi A, Murga-Garrido SM, Lovins VM, White EK, Pan JTC, Knight SAB, Morgenstern AR, Bianco C, Planet PJ, Gardner SE, Grice EA. Variable staphyloxanthin production by Staphylococcus aureus drives strain-dependent effects on diabetic wound-healing outcomes. Cell Rep 2023; 42:113281. [PMID: 37858460 PMCID: PMC10680119 DOI: 10.1016/j.celrep.2023.113281] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 08/24/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Strain-level variation in Staphylococcus aureus is a factor that contributes to disease burden and clinical outcomes in skin disorders and chronic wounds. However, the microbial mechanisms that drive these variable host responses are poorly understood. To identify mechanisms underlying strain-specific outcomes, we perform high-throughput phenotyping screens on S. aureus isolates cultured from diabetic foot ulcers. Isolates from non-healing wounds produce more staphyloxanthin, a cell membrane pigment. In murine diabetic wounds, staphyloxanthin-producing isolates delay wound closure significantly compared with staphyloxanthin-deficient isolates. Staphyloxanthin promotes resistance to oxidative stress and enhances bacterial survival in neutrophils. Comparative genomic and transcriptomic analysis of genetically similar clinical isolates with disparate staphyloxanthin phenotypes reveals a mutation in the sigma B operon, resulting in marked differences in stress response gene expression. Our work illustrates a framework to identify traits that underlie strain-level variation in disease burden and suggests more precise targets for therapeutic intervention in S. aureus-positive wounds.
Collapse
Affiliation(s)
- Amy E Campbell
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amelia R McCready-Vangi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aayushi Uberoi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sofía M Murga-Garrido
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victoria M Lovins
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen K White
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie Ting-Chun Pan
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon A B Knight
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexis R Morgenstern
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Colleen Bianco
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul J Planet
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Pediatrics and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sue E Gardner
- College of Nursing, University of Iowa, Iowa City, IA 52242, USA
| | - Elizabeth A Grice
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Acosta IC, Alonzo F. The Intersection between Bacterial Metabolism and Innate Immunity. J Innate Immun 2023; 15:782-803. [PMID: 37899025 PMCID: PMC10663042 DOI: 10.1159/000534872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND The innate immune system is the first line of defense against microbial pathogens and is essential for maintaining good health. If pathogens breach innate barriers, the likelihood of infection is significantly increased. Many bacterial pathogens pose a threat to human health on account of their ability to evade innate immunity and survive in growth-restricted environments. These pathogens have evolved sophisticated strategies to obtain nutrients as well as manipulate innate immune responses, resulting in disease or chronic infection. SUMMARY The relationship between bacterial metabolism and innate immunity is complex. Although aspects of bacterial metabolism can be beneficial to the host, particularly those related to the microbiota and barrier integrity, others can be harmful. Several bacterial pathogens harness metabolism to evade immune responses and persist during infection. The study of these adaptive traits provides insight into the roles of microbial metabolism in pathogenesis that extend beyond energy balance. This review considers recent studies on bacterial metabolic pathways that promote infection by circumventing several facets of the innate immune system. We also discuss relationships between innate immunity and antibiotics and highlight future directions for research in this field. KEY MESSAGES Pathogenic bacteria have a remarkable capacity to harness metabolism to manipulate immune responses and promote pathogenesis. While we are beginning to understand the multifaceted and complex metabolic adaptations that occur during infection, there is still much to uncover with future research.
Collapse
Affiliation(s)
- Ivan C Acosta
- Department of Microbiology and Immunology, University of Illinois at Chicago - College of Medicine, Chicago, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago - College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
14
|
Scieszka D, Bolt AM, McCormick MA, Brigman JL, Campen MJ. Aging, longevity, and the role of environmental stressors: a focus on wildfire smoke and air quality. FRONTIERS IN TOXICOLOGY 2023; 5:1267667. [PMID: 37900096 PMCID: PMC10600394 DOI: 10.3389/ftox.2023.1267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a complex biological process involving multiple interacting mechanisms and is being increasingly linked to environmental exposures such as wildfire smoke. In this review, we detail the hallmarks of aging, emphasizing the role of telomere attrition, cellular senescence, epigenetic alterations, proteostasis, genomic instability, and mitochondrial dysfunction, while also exploring integrative hallmarks - altered intercellular communication and stem cell exhaustion. Within each hallmark of aging, our review explores how environmental disasters like wildfires, and their resultant inhaled toxicants, interact with these aging mechanisms. The intersection between aging and environmental exposures, especially high-concentration insults from wildfires, remains under-studied. Preliminary evidence, from our group and others, suggests that inhaled wildfire smoke can accelerate markers of neurological aging and reduce learning capabilities. This is likely mediated by the augmentation of circulatory factors that compromise vascular and blood-brain barrier integrity, induce chronic neuroinflammation, and promote age-associated proteinopathy-related outcomes. Moreover, wildfire smoke may induce a reduced metabolic, senescent cellular phenotype. Future interventions could potentially leverage combined anti-inflammatory and NAD + boosting compounds to counter these effects. This review underscores the critical need to study the intricate interplay between environmental factors and the biological mechanisms of aging to pave the way for effective interventions.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
15
|
Oneissi M, Cruz MR, Ramírez-Zavala B, Lindemann-Perez E, Morschhäuser J, Garsin DA, Perez JC. Host-derived reactive oxygen species trigger activation of the Candida albicans transcription regulator Rtg1/3. PLoS Pathog 2023; 19:e1011692. [PMID: 37769015 PMCID: PMC10564244 DOI: 10.1371/journal.ppat.1011692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
The signals that denote mammalian host environments and dictate the activation of signaling pathways in human-associated microorganisms are often unknown. The transcription regulator Rtg1/3 in the human fungal pathogen Candida albicans is a crucial determinant of host colonization and pathogenicity. Rtg1/3's activity is controlled, in part, by shuttling the regulator between the cytoplasm and nucleus of the fungus. The host signal(s) that Rtg1/3 respond(s) to, however, have remained unclear. Here we report that neutrophil-derived reactive oxygen species (ROS) direct the subcellular localization of this C. albicans transcription regulator. Upon engulfment of Candida cells by human or mouse neutrophils, the regulator shuttles to the fungal nucleus. Using genetic and chemical approaches to disrupt the neutrophils' oxidative burst, we establish that the oxidants produced by the NOX2 complex-but not the oxidants generated by myeloperoxidase-trigger Rtg1/3's migration to the nucleus. Furthermore, screening a collection of C. albicans kinase deletion mutants, we implicate the MKC1 signaling pathway in the ROS-dependent regulation of Rtg1/3 in this fungus. Finally, we show that Rtg1/3 contributes to C. albicans virulence in the nematode Caenorhabditis elegans in an ROS-dependent manner as the rtg1 and rtg3 mutants display virulence defects in wild-type but not in ROS deficient worms. Our findings establish NOX2-derived ROS as a key signal that directs the activity of the pleiotropic fungal regulator Rtg1/3.
Collapse
Affiliation(s)
- Mazen Oneissi
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Melissa R. Cruz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States of America
| | | | - Elena Lindemann-Perez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Danielle A. Garsin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - J. Christian Perez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States of America
| |
Collapse
|
16
|
Pei H, Zhu C, Shu F, Lu Z, Wang H, Ma K, Wang J, Lan R, Shang F, Xue T. CodY: An Essential Transcriptional Regulator Involved in Environmental Stress Tolerance in Foodborne Staphylococcus aureus RMSA24. Foods 2023; 12:3166. [PMID: 37685098 PMCID: PMC10486358 DOI: 10.3390/foods12173166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus), as the main pathogen in milk and dairy products, usually causes intoxication with vomiting and various kinds of inflammation after entering the human body. CodY, an important transcriptional regulator in S. aureus, plays an important role in regulating metabolism, growth, and virulence. However, little is known about the role of CodY on environmental stress tolerance. In this research, we revealed the role of CodY in environmental stress tolerance in foodborne S. aureus RMSA24. codY mutation significantly reduced the tolerance of S. aureus to desiccation and oxidative, salt, and high-temperature stresses. However, S. aureus was more tolerant to low temperature stress due to mutation of codY. We found that the expressions of two important heat shock proteins-GroEL and DanJ-were significantly down-regulated in the mutant codY. This suggests that CodY may indirectly regulate the high- and low-temperature tolerance of S. aureus by regulating the expressions of groEL and danJ. This study reveals a new mechanism of environmental stress tolerance in S. aureus and provides new insights into controlling the contamination and harm caused by S. aureus in the food industry.
Collapse
Affiliation(s)
- Hao Pei
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Chengfeng Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Fang Shu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Zhengfei Lu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Kai Ma
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Jun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Ranxiang Lan
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
- Food Procession Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
- Food Procession Research Institute, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
17
|
Cavalcante JS, de Almeida DEG, Santos-Filho NA, Sartim MA, de Almeida Baldo A, Brasileiro L, Albuquerque PL, Oliveira SS, Sachett JAG, Monteiro WM, Ferreira RS. Crosstalk of Inflammation and Coagulation in Bothrops Snakebite Envenoming: Endogenous Signaling Pathways and Pathophysiology. Int J Mol Sci 2023; 24:11508. [PMID: 37511277 PMCID: PMC10380640 DOI: 10.3390/ijms241411508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 07/30/2023] Open
Abstract
Snakebite envenoming represents a major health problem in tropical and subtropical countries. Considering the elevated number of accidents and high morbidity and mortality rates, the World Health Organization reclassified this disease to category A of neglected diseases. In Latin America, Bothrops genus snakes are mainly responsible for snakebites in humans, whose pathophysiology is characterized by local and systemic inflammatory and degradative processes, triggering prothrombotic and hemorrhagic events, which lead to various complications, organ damage, tissue loss, amputations, and death. The activation of the multicellular blood system, hemostatic alterations, and activation of the inflammatory response are all well-documented in Bothrops envenomings. However, the interface between inflammation and coagulation is still a neglected issue in the toxinology field. Thromboinflammatory pathways can play a significant role in some of the major complications of snakebite envenoming, such as stroke, venous thromboembolism, and acute kidney injury. In addition to exacerbating inflammation and cell interactions that trigger vaso-occlusion, ischemia-reperfusion processes, and, eventually, organic damage and necrosis. In this review, we discuss the role of inflammatory pathways in modulating coagulation and inducing platelet and leukocyte activation, as well as the inflammatory production mediators and induction of innate immune responses, among other mechanisms that are altered by Bothrops venoms.
Collapse
Affiliation(s)
- Joeliton S Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Denis Emanuel Garcia de Almeida
- Department of Bioprocess and Biotechnology, School of Agriculture, Agronomic Sciences School, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Norival A Santos-Filho
- Institute of Chemistry, São Paulo State University (UNESP-Univ Estadual Paulista), Araraquara 14800-900, São Paulo, Brazil
| | - Marco Aurélio Sartim
- Laboratory of Bioprospection, University Nilton Lins, Manaus 69058-030, Amazonas, Brazil
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Amanda de Almeida Baldo
- Institute of Biosciences, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Lisele Brasileiro
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Polianna L Albuquerque
- Toxicological Information and Assistance Center, Instituto Doutor Jose Frota Hospital, Fortaleza 60025-061, Ceará, Brazil
- Faculty of Medicine, University of Fortaleza, Fortaleza 60430-140, Ceará, Brazil
| | - Sâmella S Oliveira
- Research Management, Hospital Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-001, Amazonas, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Wuelton Marcelo Monteiro
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP-UNESP, Botucatu 18610-307, São Paulo, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18610-307, São Paulo, Brazil
| |
Collapse
|
18
|
Shumba P, Sura T, Moll K, Chakrakodi B, Tölken LA, Hoßmann J, Hoff KJ, Hyldegaard O, Nekludov M, Svensson M, Arnell P, Skrede S, Norrby-Teglund A, Siemens N. Neutrophil-derived reactive agents induce a transient SpeB negative phenotype in Streptococcus pyogenes. J Biomed Sci 2023; 30:52. [PMID: 37430325 DOI: 10.1186/s12929-023-00947-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Streptococcus pyogenes (group A streptococci; GAS) is the main causative pathogen of monomicrobial necrotizing soft tissue infections (NSTIs). To resist immuno-clearance, GAS adapt their genetic information and/or phenotype to the surrounding environment. Hyper-virulent streptococcal pyrogenic exotoxin B (SpeB) negative variants caused by covRS mutations are enriched during infection. A key driving force for this process is the bacterial Sda1 DNase. METHODS Bacterial infiltration, immune cell influx, tissue necrosis and inflammation in patient´s biopsies were determined using immunohistochemistry. SpeB secretion and activity by GAS post infections or challenges with reactive agents were determined via Western blot or casein agar and proteolytic activity assays, respectively. Proteome of GAS single colonies and neutrophil secretome were profiled, using mass spectrometry. RESULTS Here, we identify another strategy resulting in SpeB-negative variants, namely reversible abrogation of SpeB secretion triggered by neutrophil effector molecules. Analysis of NSTI patient tissue biopsies revealed that tissue inflammation, neutrophil influx, and degranulation positively correlate with increasing frequency of SpeB-negative GAS clones. Using single colony proteomics, we show that GAS isolated directly from tissue express but do not secrete SpeB. Once the tissue pressure is lifted, GAS regain SpeB secreting function. Neutrophils were identified as the main immune cells responsible for the observed phenotype. Subsequent analyses identified hydrogen peroxide and hypochlorous acid as reactive agents driving this phenotypic GAS adaptation to the tissue environment. SpeB-negative GAS show improved survival within neutrophils and induce increased degranulation. CONCLUSIONS Our findings provide new information about GAS fitness and heterogeneity in the soft tissue milieu and provide new potential targets for therapeutic intervention in NSTIs.
Collapse
Affiliation(s)
- Patience Shumba
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Thomas Sura
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Kirsten Moll
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Bhavya Chakrakodi
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Lea A Tölken
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Jörn Hoßmann
- Helmholtz Center for Infection Research, Brunswick, Germany
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany
| | - Ole Hyldegaard
- Department of Anaesthesia, Head and Orthopedic Center, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nekludov
- Department of Anaesthesia, Surgical Services and Intensive Care, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Per Arnell
- Department of Anaesthesiology and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
19
|
Merghni A, Belmamoun AR, Urcan AC, Bobiş O, Lassoued MA. 1,8-Cineol (Eucalyptol) Disrupts Membrane Integrity and Induces Oxidative Stress in Methicillin-Resistant Staphylococcus aureus. Antioxidants (Basel) 2023; 12:1388. [PMID: 37507929 PMCID: PMC10376866 DOI: 10.3390/antiox12071388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Due to the increased emergence of drug-resistant bacteria, the declining efficiency of traditional antimicrobials has generated severe concerns in recent years. Subsequently, more interest in other antimicrobial agents from natural resources draws more attention as an alternative to conventional medications. This study investigated the bactericidal mechanism of monoterpene 1,8-cineol (eucalyptol), a major compound of various essential oils, against methicillin-resistant Staphylococcus aureus (MRSA). The antibacterial activity of 1,8-cineol was assessed by an MTT assay against clinical and reference MRSA strains. A cell membrane integrity test, followed by zeta potential (ZP) measurements, was performed to evaluate the disruption of the bacterial membrane integrity. Additionally, the cytotoxic effect of this molecule on MRSA bacteria was investigated by monitoring reactive oxygen species (ROS) generation, lipid peroxidation (MDA), and antioxidant enzyme activities (CAT and SOD). Regarding the anti-staphylococcal effect, the obtained results revealed the antibacterial efficacy of 1,8-cineol wherein the minimum inhibitory concentrations were equal to 7.23 mg/mL. Furthermore, it enhanced membrane permeability, with a 5.36-fold increase in nucleic acid and protein leakage as compared with untreated strains, along with the alteration of surface charge (ZP) in MRSA cells. The tested compound caused an increase in ROS generation reaching 17,462 FU and MDA production, reaching 9.56 μM/mg protein, in treated bacterial cells, along with a decrease in oxidative stress enzymes activities. Our findings suggest that 1,8-cineol has the ability to damage the membrane integrity and induce ROS-mediated oxidative stress in MRSA cells, leading to its antagonistic effect against this pathogen and consequently aiding in the reversal of antibiotic resistance.
Collapse
Affiliation(s)
- Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
| | - Ahmed Reda Belmamoun
- Department of Agricultural Sciences, Faculty of Nature and Life Sciences, Djillali Liabes University, Sidi-Bel-Abbes 22000, Algeria
| | - Adriana Cristina Urcan
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Otilia Bobiş
- Department of Beekeeping and Sericulture, Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Mohamed Ali Lassoued
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Phamacy, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
20
|
Yang X, Ma Y, Chen X, Zhu J, Xue W, Ning K. Mechanisms of neutrophil extracellular trap in chronic inflammation of endothelium in atherosclerosis. Life Sci 2023:121867. [PMID: 37348812 DOI: 10.1016/j.lfs.2023.121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Cardiovascular diseases are a primary cause of morbidity and mortality around the world. In addition, atherosclerosis (AS)-caused cardiovascular disease is the primary cause of death in human diseases, and almost two billion people suffer from carotid AS worldwide. AS is caused by chronic inflammation of the arterial vessel and is initiated by dysfunction of vascular endothelial cells. Neutrophils protect against pathogen invasion because they function as a component of the innate immune system. However, the contribution of neutrophils to cardiovascular disease has not yet been clarified. Neutrophil extracellular traps (NETs) represent an immune defense mechanism that is different from direct pathogen phagocytosis. NETs are extracellular web-like structures activated by neutrophils, and they play important roles in promoting endothelial inflammation via direct or indirect pathways. NETs consist of DNA, histones, myeloperoxidase, matrix metalloproteinases, proteinase 3, etc. Most of the components of NETs have no direct toxic effect on endothelial cells, such as DNA, but they can damage endothelial cells indirectly. In addition, NETs play a critical role in the process of AS; therefore, it is important to clarify the mechanisms of NETs in AS because NETs are a new potential therapeutic target AS. This review summarizes the possible mechanisms of NETs in AS.
Collapse
Affiliation(s)
- Xiaofan Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yupeng Ma
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Xin Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Jingjing Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Wenlong Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China.
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
21
|
Guo F, Wang M, Huang M, Jiang Y, Gao Q, Zhu D, Wang M, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Tian B, Ou X, Mao S, Sun D, Cheng A, Liu M. Manganese Efflux Achieved by MetA and MetB Affects Oxidative Stress Resistance and Iron Homeostasis in Riemerella anatipestifer. Appl Environ Microbiol 2023; 89:e0183522. [PMID: 36815770 PMCID: PMC10057955 DOI: 10.1128/aem.01835-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/29/2023] [Indexed: 02/24/2023] Open
Abstract
In bacteria, manganese homeostasis is controlled by import, regulation, and efflux. Here, we identified 2 Mn exporters, MetA and MetB (manganese efflux transporters A and B), in Riemerella anatipestifer CH-1, encoding a putative cation diffusion facilitator (CDF) protein and putative resistance-nodulation-division (RND) efflux pump, respectively. Compared with the wild type (WT), ΔmetA, ΔmetB, and ΔmetAΔmetB exhibited sensitivity to manganese, since they accumulated more intracellular Mn2+ than the WT under excess manganese conditions, while the amount of iron in the mutants was decreased. Moreover, ΔmetA, ΔmetB, and ΔmetAΔmetB were more sensitive to the oxidant NaOCl than the WT. Further study showed that supplementation with iron sources could alleviate manganese toxicity and that excess manganese inhibited bacterial cell division. RNA-Seq showed that manganese stress resulted in the perturbation of iron metabolism genes, further demonstrating that manganese efflux is critical for iron homeostasis. metA transcription was upregulated under excess manganese but was not activated by MetR, a DtxR family protein, although MetR was also involved in manganese detoxification, while metB transcription was downregulated under iron depletion conditions and in fur mutants. Finally, homologues of MetA and MetB were found to be mainly distributed in members of Flavobacteriaceae. Specifically, MetB represents a novel manganese exporter in Gram-negative bacteria. IMPORTANCE Manganese is required for the function of many proteins in bacteria, but in excess, manganese can mediate toxicity. Therefore, the intracellular levels of manganese must be tightly controlled. Manganese efflux transporters have been characterized in some other bacteria; however, their homologues could not be found in the genome of Riemerella anatipestifer through sequence comparison. This indicated that other types of manganese efflux transporters likely exist. In this study, we characterized 2 transporters, MetA and MetB, that mediate manganese efflux in R. anatipestifer in response to manganese overload. MetA encodes a putative cation diffusion facilitator (CDF) protein, which has been characterized as a manganese transporter in other bacteria, while this is the first observation of a putative resistance-nodulation-division (RND) transporter contributing to manganese export in Gram-negative bacteria. In addition, the mechanism of manganese toxicity was studied by observing morphological changes and by transcriptome sequencing. Taken together, these results are important for expanding our understanding of manganese transporters and revealing the mechanism of manganese toxicity.
Collapse
Affiliation(s)
- Fang Guo
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Mengying Wang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Mi Huang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Yin Jiang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
22
|
Maeng J, Lee K. Inhibitors of dimerized translationally controlled tumor protein, a histamine releasing factor, may serve as anti-allergic drug candidates. Biochimie 2023; 211:141-152. [PMID: 36963558 DOI: 10.1016/j.biochi.2023.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
It has been established that translationally controlled tumor protein (TCTP), also called histamine releasing factor (HRF), exhibits cytokine-like activities associated with initiation of allergic responses only after forming dimers (dTCTP). Agents that inhibit dTCTP by preventing its dimerization or otherwise block its function, also block development of allergic reactions, thereby serving as potential drugs to treat allergic diseases. Several lines of evidence have proven that peptides and antibodies that specifically inhibit the interactions between dTCTP and either its putative receptor or immunoglobulins exhibit significant in vivo efficacy as potential anti-inflammatory agents in murine models of allergic inflammatory diseases. This review highlights the development of several inhibitors targeting dTCTP and discusses how they affect the pathophysiologic processes of allergic and inflammatory diseases in several animal models and offers new perspectives on anti-allergic drug discovery.
Collapse
Affiliation(s)
- Jeehye Maeng
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Tan Z, Fan J, He S, Zhang Z, Chu H. sRNA21, a novel small RNA, protects Mycobacterium abscessus against oxidative stress. J Gene Med 2023:e3492. [PMID: 36862004 DOI: 10.1002/jgm.3492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/04/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND During infection, Mycobacterium abscessus encounters numerous environmental changes and adapts to them using a variety of complex mechanisms. Non-coding small RNAs (sRNAs) have been shown in other bacteria to be involved in post-transcriptional regulatory pathways, including environmental stress adaptation. However, the potential role of sRNAs in the resistance to oxidative stress in M. abscessus was not clearly described. METHODS In the present study, we analyzed putative sRNAs identified by RNA-sequencing (RNA-seq) experiments in M. abscessus ATCC_19977 under oxidative stress, and the transcription profiles of sRNAs with differential expression were verified by quantitative reverse transcription-PCR (qRT-PCR). Six sRNA overexpression strains were constructed, and the differences in growth curves between these strains and the control strain were verified. An upregulated sRNA under oxidative stress was selected and named sRNA21. The survival ability of the sRNA21 overexpression strain was assessed, and computer-based approaches were used to predict the targets and pathways regulated by sRNA21. The total ATP production and NAD+ /NADH ratio of the sRNA21 overexpression strain were measured. The expression level of antioxidase-related genes and the activity of antioxidase were tested to confirm the interaction of sRNA21 with the predicted target genes in silico. RESULTS In total, 14 putative sRNAs were identified under oxidative stress, and the qRT-PCR analysis of six sRNAs showed comparable results to RNA-seq assays. Overexpression of sRNA21 in M. abscessus increased cell growth rate and intracellular ATP level before and after peroxide exposure. The expression of genes encoding alkyl hydroperoxidase and superoxide dismutase was significantly increased, and superoxide dismutase activity was enhanced in the sRNA21 overexpression strain. Meanwhile, after sRNA21 overexpression, the intracellular NAD+ /NADH ratio decreased, indicating changes in redox homeostasis. CONCLUSIONS Our findings show that sRNA21 is an oxidative stress-induced sRNA that increases M. abscessus survival and promotes the expression of antioxidant enzymes under oxidative stress. These findings may provide new insights into the adaptive transcriptional response of M. abscessus to oxidative stress.
Collapse
Affiliation(s)
- Zhili Tan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Junsheng Fan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Siyuan He
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Zhemin Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Bramer LM, Hontz RD, Eisfeld AJ, Sims AC, Kim YM, Stratton KG, Nicora CD, Gritsenko MA, Schepmoes AA, Akasaka O, Koga M, Tsutsumi T, Nakamura M, Nakachi I, Baba R, Tateno H, Suzuki S, Nakajima H, Kato H, Ishida K, Ishii M, Uwamino Y, Mitamura K, Paurus VL, Nakayasu ES, Attah IK, Letizia AG, Waters KM, Metz TO, Corson K, Kawaoka Y, Gerbasi VR, Yotsuyanagi H, Iwatsuki-Horimoto K. Multi-omics of NET formation and correlations with CNDP1, PSPB, and L-cystine levels in severe and mild COVID-19 infections. Heliyon 2023; 9:e13795. [PMID: 36915486 PMCID: PMC9988701 DOI: 10.1016/j.heliyon.2023.e13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
The detailed mechanisms of COVID-19 infection pathology remain poorly understood. To improve our understanding of SARS-CoV-2 pathology, we performed a multi-omics and correlative analysis of an immunologically naïve SARS-CoV-2 clinical cohort from blood plasma of uninfected controls, mild, and severe infections. Consistent with previous observations, severe patient populations showed an elevation of pulmonary surfactant levels. Intriguingly, mild patients showed a statistically significant elevation in the carnosine dipeptidase modifying enzyme (CNDP1). Mild and severe patient populations showed a strong elevation in the metabolite L-cystine (oxidized form of the amino acid cysteine) and enzymes with roles in glutathione metabolism. Neutrophil extracellular traps (NETs) were observed in both mild and severe populations, and NET formation was higher in severe vs. mild samples. Our correlative analysis suggests a potential protective role for CNDP1 in suppressing PSPB release from the pulmonary space whereas NET formation correlates with increased PSPB levels and disease severity. In our discussion we put forward a possible model where NET formation drives pulmonary occlusions and CNDP1 promotes antioxidation, pleiotropic immune responses, and vasodilation by accelerating histamine synthesis.
Collapse
Affiliation(s)
- Lisa M Bramer
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert D Hontz
- U.S. Naval Medical Research Unit No. TWO (NAMRU-2), Singapore, Singapore
| | - Amie J Eisfeld
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy C Sims
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Young-Mo Kim
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | | | | | - Osamu Akasaka
- Emergency Medical Center, Fujisawa City Hospital 2-6-1 Fujisawa, Fujisawa, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Morio Nakamura
- Department of Pulmonary Medicine, Tokyo Saiseikai Central, Tokyo, Japan
| | - Ichiro Nakachi
- Pulmonary Division, Department of Internal Medicine, Utsunomiya Hospital, Utsunomiya, Japan
| | - Rie Baba
- Pulmonary Division, Department of Internal Medicine, Utsunomiya Hospital, Utsunomiya, Japan
| | - Hiroki Tateno
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Shoji Suzuki
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Hideaki Nakajima
- Department of Hematology and Clinical Immunology, University School of Medicine, Yokohama, Japan
| | - Hideaki Kato
- Department of Hematology and Clinical Immunology, University School of Medicine, Yokohama, Japan
| | | | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Uwamino
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Mitamura
- Division of Infection Control, Eiju General Hospital, Tokyo, Japan
| | | | | | - Isaac K Attah
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Andrew G Letizia
- U.S. Naval Medical Research Unit No. TWO (NAMRU-2), Singapore, Singapore
| | | | - Thomas O Metz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karen Corson
- U.S. Naval Medical Research Unit No. TWO (NAMRU-2), Singapore, Singapore
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Department of Microbiology and Immunology, Japan.,International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo
| | | |
Collapse
|
25
|
Fritsch VN, Linzner N, Busche T, Said N, Weise C, Kalinowski J, Wahl MC, Antelmann H. The MerR-family regulator NmlR is involved in the defense against oxidative stress in Streptococcus pneumoniae. Mol Microbiol 2023; 119:191-207. [PMID: 36349475 DOI: 10.1111/mmi.14999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Streptococcus pneumoniae has to cope with the strong oxidant hypochlorous acid (HOCl), during host-pathogen interactions. Thus, we analyzed the global gene expression profile of S. pneumoniae D39 towards HOCl stress. In the RNA-seq transcriptome, the NmlR, SifR, CtsR, HrcA, SczA and CopY regulons and the etrx1-ccdA1-msrAB2 operon were most strongly induced under HOCl stress, which participate in the oxidative, electrophile and metal stress response in S. pneumoniae. The MerR-family regulator NmlR harbors a conserved Cys52 and controls the alcohol dehydrogenase-encoding adhC gene under carbonyl and NO stress. We demonstrated that NmlR senses also HOCl stress to activate transcription of the nmlR-adhC operon. HOCl-induced transcription of adhC required Cys52 of NmlR in vivo. Using mass spectrometry, NmlR was shown to be oxidized to intersubunit disulfides or S-glutathionylated under oxidative stress in vitro. A broccoli-FLAP-based assay further showed that both NmlR disulfides significantly increased transcription initiation at the nmlR promoter by RNAP in vitro, which depends on Cys52. Phenotype analyses revealed that NmlR functions in the defense against oxidative stress and promotes survival of S. pneumoniae during macrophage infections. In conclusion, NmlR was characterized as HOCl-sensing transcriptional regulator, which activates transcription of adhC under oxidative stress by thiol switches in S. pneumoniae.
Collapse
Affiliation(s)
| | - Nico Linzner
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Tobias Busche
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany.,NGS Core Facility, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Nelly Said
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany.,Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
26
|
Li K, Chen Y, Lin Y, Zhang G, Su J, Wu X, Cheng C, Wang Y, Yu B, Zhang X. PD-1/PD-L1 blockade is a potent adjuvant in treatment of Staphylococcus aureus osteomyelitis in mice. Mol Ther 2023; 31:174-192. [PMID: 36104974 PMCID: PMC9840119 DOI: 10.1016/j.ymthe.2022.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/26/2023] Open
Abstract
There is no effective therapy for implant-associated Staphylococcus aureus osteomyelitis, a devastating complication after orthopedic surgery. An immune-suppressive profile with up-regulated programmed cell death 1/programmed death ligand 1 (PD-1/PD-L1) was identified based on our transcriptional data (GEO: GSE166522) from a mouse model of S. aureus osteomyelitis. PD-1/PD-L1 expression was up-regulated mainly in F4/80+ macrophages surrounding the abscess in S. aureus-infected bone. Mechanistically, PD-1/PD-L1 activated mitophagy to suppress production of mitochondrial reactive oxygen species (ROS), suppressing the bactericidal function of macrophages. Using neutralizing antibodies for PD-L1 or PD-1, or knockout of PD-L1 adjuvant to gentamicin markedly reduced mitophagy in bone marrow F4/80+ cells, enhanced bacterial clearance in bone tissue and implants, and reduced bone destruction in mice. PD-1/PD-L1 expression was also increased in the bone marrow from individuals with S. aureus osteomyelitis. These findings uncover a so far unknown function of PD-1/PD-L1-mediated mitophagy in suppressing the bactericidal function of bone marrow macrophages.
Collapse
Affiliation(s)
- Kaiqun Li
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China
| | - Yuhui Chen
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China
| | - Yihuang Lin
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China
| | - Guangyan Zhang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China
| | - Jianwen Su
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China
| | - Xiaohu Wu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China
| | - Caiyu Cheng
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China
| | - Yutian Wang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China
| | - Bin Yu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China.
| | - Xianrong Zhang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
27
|
Walesch S, Birkelbach J, Jézéquel G, Haeckl FPJ, Hegemann JD, Hesterkamp T, Hirsch AKH, Hammann P, Müller R. Fighting antibiotic resistance-strategies and (pre)clinical developments to find new antibacterials. EMBO Rep 2022; 24:e56033. [PMID: 36533629 PMCID: PMC9827564 DOI: 10.15252/embr.202256033] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Antibacterial resistance is one of the greatest threats to human health. The development of new therapeutics against bacterial pathogens has slowed drastically since the approvals of the first antibiotics in the early and mid-20th century. Most of the currently investigated drug leads are modifications of approved antibacterials, many of which are derived from natural products. In this review, we highlight the challenges, advancements and current standing of the clinical and preclinical antibacterial research pipeline. Additionally, we present novel strategies for rejuvenating the discovery process and advocate for renewed and enthusiastic investment in the antibacterial discovery pipeline.
Collapse
Affiliation(s)
- Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Thomas Hesterkamp
- Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| | - Peter Hammann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| |
Collapse
|
28
|
Taher H, Sabra MS, Salah El-Din AED, Sayed AEDH. Hemato-biochemical indices alteration, oxidative stress, and immune suppression in the African catfish (Clarias gariepinus) exposed to metformin. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2022; 14:361-369. [DOI: 10.1007/s13530-022-00150-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 12/09/2024]
|
29
|
Abdelghafar A, Yousef N, Askoura M. Zinc oxide nanoparticles reduce biofilm formation, synergize antibiotics action and attenuate Staphylococcus aureus virulence in host; an important message to clinicians. BMC Microbiol 2022; 22:244. [PMID: 36221053 PMCID: PMC9552502 DOI: 10.1186/s12866-022-02658-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biofilm-related infections are difficult to be treated because of higher resistance to antimicrobial agents. Current study aims to characterize the influence of zinc oxide nanoparticles (ZnO-NPs) on both S. aureus susceptibility to antibiotics and pathogenesis. METHODS The influence of ZnO-NPs on biofilm formation by S. aureus was characterized by the crystal violet and tube assay. The synergistic effect of ZnO-NPs in combination with antibiotics on S. aureus was characterized using the checkerboard method. The effect of ZnO-NPs on S. aureus cell surface hydrophobicity and blood hemolysis was investigated. RT-qPCR was used to investigate the effect of ZnO-NPs on the expression of biofilm related genes (icaA, icaR and sarA), katA and sigB. The impact of ZnO-NPs on S. aureus pathogenesis was evaluated using mice infection model. RESULTS ZnO-NPs exhibited a good antibiofilm activity against S. aureus. The findings indicate a synergistic antibiofilm effect of combination between ZnO-NPs and tested antibiotics. ZnO-NPs were capable of decreasing S. aureus cell surface hydrophobicity which could account for observed decrease in bacterial biofilm forming capacity. Moreover, ZnO-NPs-treated bacteria exhibited a significant decrease in blood hemolysis relative to control untreated S. aureus. The expression of biofilm related genes was significantly repressed in ZnO-NPs treated bacteria as compared to untreated cells. Finally, the effect of ZnO-NPs on S. aureus pathogenesis was investigated using mice infection model where ZnO-NPs accelerated healing of wounds in mice as compared to control untreated mice. CONCLUSIONS Present data support the efficiency of ZnO-NPs as antibiofilm agent in treatment of S. aureus infections. This study recommends the incorporation of ZnO-NPs as adjuvant with other antibiotics targeting S. aureus based on the promising findings obtained herein in order to control infection with this pathogen.
Collapse
Affiliation(s)
- Aliaa Abdelghafar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Nehal Yousef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
30
|
Kim Y, Shin M, Kang J, Kang D. Effect of sub‐lethal treatment of carvacrol and thymol on virulence potential and resistance to several bactericidal treatments of
Staphylococcus aureus
. J Food Saf 2022. [DOI: 10.1111/jfs.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu‐Min Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
| | - Minjung Shin
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
| | - Jun‐Won Kang
- Department of Food Science and Biotechnology Dongguk University‐Seoul Goyang‐si Gyeonggi‐do Republic of Korea
| | - Dong‐Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
- Institutes of Green Bio Science & Technology Seoul National University Pyeongchang‐gun Gangwon‐do Republic of Korea
| |
Collapse
|
31
|
Experimental Bothrops atrox Envenomation: Blood Plasma Proteome Effects after Local Tissue Damage and Perspectives on Thromboinflammation. Toxins (Basel) 2022; 14:toxins14090613. [PMID: 36136550 PMCID: PMC9503785 DOI: 10.3390/toxins14090613] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 02/07/2023] Open
Abstract
The clinical manifestations of Bothrops atrox envenoming involve local and systemic changes, among which edema requires substantial attention due to its ability to progress to compartmental syndromes and sometimes cause tissue loss and amputations. However, the impact of edema on the poisoned body’s system has not been explored. Thus, the present study aimed to explore the systemic pathological and inflammatory events that are altered by intraplantar injection of B. atrox venom in a mouse model through hematologic, lipidic, and shotgun proteomics analysis. Plasma samples collected showed a greater abundance of proteins related to complement, coagulation, lipid system, platelet and neutrophil degranulation, and pathways related to cell death and ischemic tolerance. Interestingly, some proteins, in particular, Prdx2 (peroxiredoxin 2), Hba (hemoglobin subunit alpha), and F9 (Factor IX), increased according to the amount of venom injected. Our findings support that B. atrox venom activates multiple blood systems that are involved in thromboinflammation, an observation that may have implications for the pathophysiological progression of envenomations. Furthermore, we report for the first time a potential role of Prdx2, Hba, and F9 as potential markers of the severity of edema/inflammation in mice caused by B. atrox.
Collapse
|
32
|
Nascimento RO, Prado FM, de Medeiros MHG, Ronsein GE, Di Mascio P. Singlet Molecular Oxygen Generation in the Reaction of Biological Haloamines of Amino Acids and Polyamines with Hydrogen Peroxide. Photochem Photobiol 2022; 99:661-671. [PMID: 36047912 DOI: 10.1111/php.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Leucocytes generate hypohalous acids (HOCl and HOBr) to defend against pathogens. In cells, hypohalous acids react with amine-containing molecules, such as amino acids and polyamines, producing chloramines and bromamines, reservoirs of oxidizing power that can potentially damage host tissues at sites of inflammation. Hypohalous acids also react with H2 O2 to produce stoichiometric amounts of singlet molecular oxygen (1 O2 ), but its generation in leucocytes is still under debate. Additionally, it is unclear if haloamines generate 1 O2 following a reaction with H2 O2 . Herein, we provide evidence of the generation of 1 O2 in the reactions between amino acid-derived (taurine, N-α-acetyl-Lysine, and glycine) and polyamine-derived (spermine and spermidine) haloamines and H2 O2 in an aqueous solution. The unequivocal formation of 1 O2 was detected by monitoring its characteristic monomol light emission at 1270 nm in the near-infrared region. For amino acid-derived haloamines, the presence of 1 O2 was further confirmed by chemical trapping with anthracene-9,10-divinylsulfonate and HPLC-MS/MS detection. Altogether, photoemission and chemical trapping studies demonstrated that chloramines were less effective at producing 1 O2 than bromamines of amino acids and polyamines. Thus, 1 O2 formation via bromamines and H2 O2 may be a potential source of 1 O2 in non-illuminated biological systems.
Collapse
Affiliation(s)
| | - Fernanda Manso Prado
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | | | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
33
|
Cao Z, Zhao M, Sun H, Hu L, Chen Y, Fan Z. Roles of mitochondria in neutrophils. Front Immunol 2022; 13:934444. [PMID: 36081497 PMCID: PMC9447286 DOI: 10.3389/fimmu.2022.934444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in human blood. They are critical for fighting infections and are involved in inflammatory diseases. Mitochondria are indispensable for eukaryotic cells, as they control the biochemical processes of respiration and energy production. Mitochondria in neutrophils have been underestimated since glycolysis is a major metabolic pathway for fuel production in neutrophils. However, several studies have shown that mitochondria are greatly involved in multiple neutrophil functions as well as neutrophil-related diseases. In this review, we focus on how mitochondrial components, metabolism, and related genes regulate neutrophil functions and relevant diseases.
Collapse
Affiliation(s)
- Ziming Cao
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, United States
| | - Meng Zhao
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States,Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Hao Sun
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology and Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, United States,*Correspondence: Zhichao Fan,
| |
Collapse
|
34
|
Regulation of Staphylococcal Capsule by SarZ is SigA-Dependent. J Bacteriol 2022; 204:e0015222. [PMID: 35862799 PMCID: PMC9380528 DOI: 10.1128/jb.00152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Production of capsular polysaccharides in Staphylococcus aureus is transcriptionally regulated by a control region of the cap operon that consists of SigA- and SigB-dependent promoters. A large number of regulators have been shown to affect cap gene expression. However, regulation of capsule is only partially understood. Here we found that SarZ was another regulator that activated the cap genes through the SigA-dependent promoter. Gel electrophoresis mobility shift experiments revealed that SarZ is bound to a broad region of the cap promoter including the SigA-dependent promoter but mainly the downstream region. We demonstrated that activation of cap expression by SarZ was independent of MgrA, which also activated capsule through the SigA-dependent promoter. Our results further showed that oxidative stress with hydrogen peroxide (H2O2) treatments enhanced SarZ activation of cap expression, indicating that SarZ is able to sense oxidative stress to regulate capsule production. IMPORTANCE Expression of virulence genes in Staphylococcus aureus is affected by environmental cues and is regulated by a surprisingly large number of regulators. Much is still unknown about how virulence factors are regulated by environment cues at the molecular level. Capsule is an antiphagocytic virulence factor that is highly regulated. In this study, we found SarZ was an activator of capsule and that the regulation of capsule by SarZ was affected by oxidative stress. These results provide an example of how a virulence factor could be regulated in response to an environmental cue. As the host oxidative defense system plays an important role against S. aureus, this study contributes to a better understanding of virulence gene regulation and staphylococcal pathogenesis.
Collapse
|
35
|
Vitexin Mitigates Staphylococcus aureus-Induced Mastitis via Regulation of ROS/ER Stress/NF- κB/MAPK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7977433. [PMID: 35795861 PMCID: PMC9252844 DOI: 10.1155/2022/7977433] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Mastitis, caused by a variety of pathogenic microorganisms, seriously threatens the safety and economic benefits of the dairy industry. Vitexin, a flavone glucoside found in many plant species, has been widely reported to have antioxidant, anti-inflammatory, antiviral, anticancer, neuroprotective, and cardioprotective effects. However, few studies have explored the effect of vitexin on mastitis. This study is aimed at exploring whether the antioxidant and anti-inflammatory functions of vitexin can improve Staphylococcus aureus-induced mastitis and its possible molecular mechanism. The expression profiles of S. aureus-infected bovine mammary epithelial cells and gland tissues from the GEO data set (GSE94056 and GSE139612) were analyzed and found that DEGs were mainly involved in immune signaling pathways, apoptosis, and ER stress through GO and KEGG enrichment. Vitexin blocked the production of ROS and increased the activity of antioxidant enzymes (SOD, GSH-PX, and CAT) via activation of PPARγ in vivo and in vitro. In addition, vitexin reduced the production of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and inhibited apoptosis in MAC-T cells and mouse mammary tissues infected with Staphylococcus aureus. Moreover, vitexin decreased the expression of PDI, Ero1-Lα, p-IRE1α, PERK, p-eIF2α, and CHOP protein but increased BiP in both mammary gland cells and tissues challenged by S. aureus. Western blot results also found that the phosphorylation levels of JNK, ERK, p38, and p65 were reduced in vitexin-treated tissues and cells. Vitexin inhibited the production of ROS through promoting PPARγ, increased the activity of antioxidant enzymes, and reduced inflammatory cytokines and apoptosis by alleviating ER stress and inactivation MAPKs and NF-κB signaling pathway. Vitexin maybe have great potential to be a preventive and therapeutic agent for mastitis.
Collapse
|
36
|
Dong PT, Jusuf S, Hui J, Zhan Y, Zhu Y, Liu GY, Cheng JX. Photoinactivation of catalase sensitizes wide-ranging bacteria to ROS-producing agents and immune cells. JCI Insight 2022; 7:153079. [PMID: 35446788 PMCID: PMC9220836 DOI: 10.1172/jci.insight.153079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Bacteria have evolved to cope with the detrimental effects of ROS using their essential molecular components. Catalase, a heme-containing tetramer protein expressed universally in most aerobic bacteria, plays an indispensable role in scavenging excess hydrogen peroxide (H2O2). Here, through use of wild-type and catalase-deficient mutants, we identified catalase as an endogenous therapeutic target of 400–420 nm blue light. Catalase residing inside bacteria could be effectively inactivated by blue light, subsequently rendering the pathogens extremely vulnerable to H2O2 and H2O2-producing agents. As a result, photoinactivation of catalase and H2O2 synergistically eliminated a wide range of catalase-positive planktonic bacteria and P. aeruginosa inside biofilms. In addition, photoinactivation of catalase was shown to facilitate macrophage defense against intracellular pathogens. The antimicrobial efficacy of catalase photoinactivation was validated using a Pseudomonas aeruginosa–induced mouse abrasion model. Taken together, our findings offer a catalase-targeting phototherapy approach against multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Pu-Ting Dong
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Sebastian Jusuf
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Jie Hui
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Yifan Zhu
- Department of Chemistry, Boston University, Boston, United States of America
| | - George Y Liu
- Department of Pediatrics, University of California, San Diego, San Diego, United States of America
| | - Ji-Xin Cheng
- Boston University, Boston, United States of America
| |
Collapse
|
37
|
Cordero M, García-Fernández J, Acosta IC, Yepes A, Avendano-Ortiz J, Lisowski C, Oesterreicht B, Ohlsen K, Lopez-Collazo E, Förstner KU, Eulalio A, Lopez D. The induction of natural competence adapts staphylococcal metabolism to infection. Nat Commun 2022; 13:1525. [PMID: 35314690 PMCID: PMC8938553 DOI: 10.1038/s41467-022-29206-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/03/2022] [Indexed: 11/26/2022] Open
Abstract
A central question concerning natural competence is why orthologs of competence genes are conserved in non-competent bacterial species, suggesting they have a role other than in transformation. Here we show that competence induction in the human pathogen Staphylococcus aureus occurs in response to ROS and host defenses that compromise bacterial respiration during infection. Bacteria cope with reduced respiration by obtaining energy through fermentation instead. Since fermentation is energetically less efficient than respiration, the energy supply must be assured by increasing the glycolytic flux. The induction of natural competence increases the rate of glycolysis in bacteria that are unable to respire via upregulation of DNA- and glucose-uptake systems. A competent-defective mutant showed no such increase in glycolysis, which negatively affects its survival in both mouse and Galleria infection models. Natural competence foster genetic variability and provides S. aureus with additional nutritional and metabolic possibilities, allowing it to proliferate during infection.
Collapse
Affiliation(s)
- Mar Cordero
- National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049, Madrid, Spain
| | - Julia García-Fernández
- National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049, Madrid, Spain
| | - Ivan C Acosta
- National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049, Madrid, Spain
| | - Ana Yepes
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany
| | - Jose Avendano-Ortiz
- The Innate Immune Response and Tumor Immunology Group, IdiPaz La Paz University Hospital, 28046, Madrid, Spain
| | - Clivia Lisowski
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany
| | - Babett Oesterreicht
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany
| | - Knut Ohlsen
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany
| | - Eduardo Lopez-Collazo
- The Innate Immune Response and Tumor Immunology Group, IdiPaz La Paz University Hospital, 28046, Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Konrad U Förstner
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany
- Information Centre for Life Science (ZBMED), 50931, Cologne, Germany
- TH Köln - University of Applied Sciences, 50578, Cologne, Germany
| | - Ana Eulalio
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniel Lopez
- National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049, Madrid, Spain.
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany.
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
38
|
Nicchi S, Giusti F, Carello S, Utrio Lanfaloni S, Tavarini S, Frigimelica E, Ferlenghi I, Rossi Paccani S, Merola M, Delany I, Scarlato V, Maione D, Brettoni C. Moraxella catarrhalis evades neutrophil oxidative stress responses providing a safer niche for nontypeable Haemophilus influenzae. iScience 2022; 25:103931. [PMID: 35265810 PMCID: PMC8899411 DOI: 10.1016/j.isci.2022.103931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Moraxella catarrhalis and nontypeable Haemophilus influenzae (NTHi) are pathogenic bacteria frequently associated with exacerbation of chronic obstructive pulmonary disease (COPD), whose hallmark is inflammatory oxidative stress. Neutrophils produce reactive oxygen species (ROS) which can boost antimicrobial response by promoting neutrophil extracellular traps (NET) and autophagy. Here, we showed that M. catarrhalis induces less ROS and NET production in differentiated HL-60 cells compared to NTHi. It is also able to actively interfere with these responses in chemically activated cells in a phagocytosis and opsonin-independent and contact-dependent manner, possibly by engaging host immunosuppressive receptors. M. catarrhalis subverts the autophagic pathway of the phagocytic cells and survives intracellularly. It also promotes the survival of NTHi which is otherwise susceptible to the host antimicrobial arsenal. In-depth understanding of the immune evasion strategies exploited by these two human pathogens could suggest medical interventions to tackle COPD and potentially other diseases in which they co-exist. Mcat induces ROS and NET production to a lesser extent than NTHi in dHL-60 cells Mcat interferes with ROS-related responses in chemically-activated cells Mcat subverts the autophagic pathway surviving intracellularly while NTHi does not Intracellular survival of NTHi is enhanced by the co-infecting bacterium Mcat
Collapse
Affiliation(s)
- Sonia Nicchi
- GSK, Siena, 53100, Italy.,University of Bologna, Bologna, 40141, Italy
| | | | - Stefano Carello
- GSK, Siena, 53100, Italy.,University of Turin, Turin, 10100, Italy
| | | | | | | | | | | | - Marcello Merola
- GSK, Siena, 53100, Italy.,University of Naples Federico II, Naples, 80133, Italy
| | | | | | | | | |
Collapse
|
39
|
Elmesseri RA, Saleh SE, Elsherif HM, Yahia IS, Aboshanab KM. Staphyloxanthin as a Potential Novel Target for Deciphering Promising Anti- Staphylococcus aureus Agents. Antibiotics (Basel) 2022; 11:298. [PMID: 35326762 PMCID: PMC8944557 DOI: 10.3390/antibiotics11030298] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 01/16/2023] Open
Abstract
Staphylococcus aureus is a fatal Gram-positive pathogen threatening numerous cases of hospital-admitted patients worldwide. The emerging resistance of the pathogen to several antimicrobial agents has pressurized research to propose new strategies for combating antimicrobial resistance. Novel strategies include targeting the virulence factors of S. aureus. One of the most prominent virulence factors of S. aureus is its eponymous antioxidant pigment staphyloxanthin (STX), which is an auspicious target for anti-virulence therapy. This review provides an updated outline on STX and multiple strategies to attenuate this virulence factor. The approaches discussed in this article focus on bioprospective and chemically synthesized inhibitors of STX, inter-species communication and genetic manipulation. Various inhibitor molecules were found to exhibit appreciable inhibitory effect against STX and hence would be able to serve as potential anti-virulence agents for clinical use.
Collapse
Affiliation(s)
- Rana A. Elmesseri
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (R.A.E.); (H.M.E.)
| | - Sarra E. Saleh
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University (ASU), Cairo 11566, Egypt;
| | - Heba M. Elsherif
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (R.A.E.); (H.M.E.)
| | - Ibrahim S. Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61441, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Semiconductor Laboratory, Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University (ASU), Cairo 11566, Egypt;
| |
Collapse
|
40
|
Cavalcante JDS, de Almeida CAS, Clasen MA, da Silva EL, de Barros LC, Marinho AD, Rossini BC, Marino CL, Carvalho PC, Jorge RJB, Dos Santos LD. A fingerprint of plasma proteome alteration after local tissue damage induced by Bothrops leucurus snake venom in mice. J Proteomics 2022; 253:104464. [PMID: 34954398 DOI: 10.1016/j.jprot.2021.104464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 12/21/2022]
Abstract
Bothrops spp. is responsible for about 70% of snakebites in Brazil, causing a diverse and complex pathophysiological condition. Bothrops leucurus is the main species of medical relevance found in the Atlantic coast in the Brazilian Northeast region. The pathophysiological effects involved B. leucurus snakebite as well as the organism's reaction in response to this envenoming, it has not been explored yet. Thus, edema was induced in mice paw using 1.2, 2.5, and 5.0 μg of B. leucurus venom, the percentage of edema was measured 30 min after injection and the blood plasma was collected and analyzed by shotgun proteomic strategy. We identified 80 common plasma proteins with differential abundance among the experimental groups and we can understand the early aspects of this snake envenomation, regardless of the suggestive severity of an ophidian accident. The results showed B. leucurus venom triggers a thromboinflammation scenario where family's proteins of the Serpins, Apolipoproteins, Complement factors and Component subunits, Cathepsins, Kinases, Oxidoreductases, Proteases inhibitors, Proteases, Collagens, Growth factors are related to inflammation, complement and coagulation systems, modulators platelets and neutrophils, lipid and retinoid metabolism, oxidative stress and tissue repair. Our findings set precedents for future studies in the area of early diagnosis and/or treatment of snakebites. SIGNIFICANCE: The physiopathological effects that the snake venoms can cause have been investigated through classical and reductionist tools, which allowed, so far, the identification of action mechanisms of individual components associated with specific tissue damage. The currently incomplete limitations of this knowledge must be expanded through new approaches, such as proteomics, which may represent a big leap in understanding the venom-modulated pathological process. The exploration of the complete protein set that suffer modifications by the simultaneous action of multiple toxins, provides a map of the establishment of physiopathological phenotypes, which favors the identification of multiple toxin targets, that may or may not act in synergy, as well as favoring the discovery of biomarkers and therapeutic targets for manifestations that are not neutralized by the antivenom.
Collapse
Affiliation(s)
- Joeliton Dos Santos Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Milan Avila Clasen
- Laboratory for Structural and Computational Proteomics, ICC, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, PR, Brazil
| | - Emerson Lucena da Silva
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Luciana Curtolo de Barros
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Aline Diogo Marinho
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Bruno Cesar Rossini
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil; Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Celso Luís Marino
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil; Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Paulo Costa Carvalho
- Laboratory for Structural and Computational Proteomics, ICC, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, PR, Brazil
| | - Roberta Jeane Bezerra Jorge
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Lucilene Delazari Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil; Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
41
|
Yanda L, Tatsimo SJN, Tamokou JDD, Matsuete-Takongmo G, Meffo-Dongmo SC, Meli Lannang A, Sewald N. Antibacterial and Antioxidant Activities of Isolated Compounds from Prosopis africana Leaves. Int J Anal Chem 2022; 2022:4205823. [PMID: 35222646 PMCID: PMC8872693 DOI: 10.1155/2022/4205823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Prosopis africana (G. &Perr.) Taub (Mimosaceae) is a large tree native to dry tropical Africa and characteristic of dry leguminous forests. Different parts of this plant are used to treat wounds, skin infection, and to fight against cancer. Literature review indicated various pharmacological properties. Despite these medicinal properties, the chemical composition studies remain limited. This study aims to isolate and characterize secondary metabolites from P. africana leaves and evaluate their antibacterial and antioxidant properties. Air-dried powdered leaves of P. africana were macerated in methanol at room temperature and partitioned with ethyl acetate. The EtOAc extract was subjected successively to flash and column chromatographies in order to isolate compounds. The structure of the isolates was determined with help of spectroscopic data including 1D and 2D NMR experiments and comparison with literature data. The antibacterial activities were evaluated via determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The antioxidant activities were evaluated via gallic acid equivalent antioxidant capacity (GEAC) and diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assays. The chemical investigation of the EtOAc extract led to the isolation of seven compounds: (2E, 6E) farnesylamine (1), myricetin-3-O-rhamnoside (2), bis(2-ethylhexyl) benzene-1,2-dicarboxylate (3), lupeol (4), ß-sitosterol (5), stigmasterol glycoside (6), and a mixture of bis(2-ethylhexyl) benzene-1,2-dicarboxylate (3) and bis(2-ethylhexyl) benzene-1,4-dicarboxylate (7) in ratio 1 : 2. Compound 1 is described here for the first time as a natural product with complete 1H and 13C assignments. Compounds 3 and 7 were identified as artefacts from dichloromethane. Sesquiterpene amine (1) is reported in Prosopis genus for the first time. Antibacterial and antioxidant activities of isolated compounds were investigated. Among the tested samples, the EtOAc extract and compound 2 exhibited the highest antioxidant (EC50 = 5.67-77.56 μg/mL; GEAC = 36.58-89.28 μg/mL) and antibacterial (MIC = 8-64 μg/mL) activities against gram-negative and gram-positive bacteria. The EtOAc extract and compound 2 from P. africana exhibited antibacterial activity through bacteriolytic effects and reduction of the antioxidant defenses in the bacterial cells. Furthermore, the chemotaxonomic significance of isolated compounds was discussed. The antibacterial and antioxidant activities of ethyl acetate extract and compound 2 can justify the traditional uses of P. africana leaves for the treatment of diseases related to bacterial infections. The presence of compounds 1, 2, and 4 in this plant should also be considered as valuable chemotaxonomic features.
Collapse
Affiliation(s)
- Lambert Yanda
- Department of Chemistry, Faculty of Sciences, The University of Maroua, Maroua, Cameroon
- Natural Product and Environmental Chemistry Group (NAPEC), Department of Chemistry, Higher Teachers' Training College, University of Maroua, Box 55, Maroua, Cameroon
| | - Simplice J. N. Tatsimo
- Natural Product and Environmental Chemistry Group (NAPEC), Department of Chemistry, Higher Teachers' Training College, University of Maroua, Box 55, Maroua, Cameroon
| | - Jean-De-Dieu Tamokou
- Research Unit of Microbiology and Antimicrobial Substances, Faculty of Sciences, University of Dschang, Dschang, P. O Box 67, Cameroon
| | - Germaine Matsuete-Takongmo
- Research Unit of Microbiology and Antimicrobial Substances, Faculty of Sciences, University of Dschang, Dschang, P. O Box 67, Cameroon
| | - Sylvie Carolle Meffo-Dongmo
- Research Unit of Microbiology and Antimicrobial Substances, Faculty of Sciences, University of Dschang, Dschang, P. O Box 67, Cameroon
| | - Alain Meli Lannang
- Natural Product and Environmental Chemistry Group (NAPEC), Department of Chemistry, Higher Teachers' Training College, University of Maroua, Box 55, Maroua, Cameroon
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
42
|
Lakshmi SA, Prasath KG, Tamilmuhilan K, Srivathsan A, Shafreen RMB, Kasthuri T, Pandian SK. Suppression of Thiol-Dependent Antioxidant System and Stress Response in Methicillin-Resistant Staphylococcus aureus by Docosanol: Explication Through Proteome Investigation. Mol Biotechnol 2022; 64:575-589. [PMID: 35018617 DOI: 10.1007/s12033-021-00434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
The present study was aimed to investigate the effect of docosanol on the protein expression profile of methicillin-resistant Staphylococcus aureus (MRSA). Thus, two-dimensional gel electrophoresis coupled with MALDI-TOF MS technique was utilized to identify the differentially regulated proteins in the presence of docosanol. A total of 947 protein spots were identified from the intracellular proteome of both control and docosanol treated samples among which 40 spots were differentially regulated with a fold change greater than 1.0. Prominently, the thiol-dependent antioxidant system and stress response proteins are downregulated in MRSA, which are critical for survival during oxidative stress. In particular, docosanol downregulated the expression of Tpx, AhpC, BshC, BrxA, and YceI with a fold change of 1.4 (p = 0.02), 1.4 (p = 0.01), 1.6 (p = 0.002), 4.9 (p = 0.02), and 1.4 (p = 0.02), respectively. In addition, docosanol reduced the expression of proteins involved in purine metabolic pathways, biofilm growth cycle, and virulence factor production. Altogether, these findings suggest that docosanol could efficiently target the antioxidant pathway by reducing the expression of bacillithiol and stress-associated proteins.
Collapse
Affiliation(s)
- Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Krishnan Ganesh Prasath
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, Tamil Nadu, 602117, India
| | - Kannapiran Tamilmuhilan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Adimoolam Srivathsan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Raja Mohamed Beema Shafreen
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Alagappapuram, Karaikudi, Tamil Nadu, 630003, India
| | - Thirupathi Kasthuri
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | | |
Collapse
|
43
|
Metal sequestration by S100 proteins in chemically diverse environments. Trends Microbiol 2022; 30:654-664. [DOI: 10.1016/j.tim.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
|
44
|
Fallon M, Conway J, Kennedy S, Kumar S, Daniels S, Humphreys H. The effect of cold plasma operating parameters on the production of reactive oxygen and nitrogen species and the resulting antibacterial and antibiofilm efficiency. PLASMA MEDICINE 2022. [DOI: 10.1615/plasmamed.2022043043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Antimicrobial and Antioxidant Secondary Metabolites from Trifolium baccarinii Chiov. (Fabaceae) and Their Mechanisms of Antibacterial Action. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3099428. [PMID: 34722760 PMCID: PMC8556085 DOI: 10.1155/2021/3099428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
The treatment of infectious diseases with antimicrobial agents continues to present problems in modern-day medicine with many studies showing significant increase in the incidence of bacterial resistance to several antibiotics. The screening of antimicrobial activity of plant extracts and natural products has shown that medicinal plants are made up of a potential source of new anti-infective agents. The aim of this study was to evaluate the antimicrobial and antioxidant activities of extracts and compounds from the whole plant Trifolium baccarinii Chiov. and to determine their modes of antibacterial action. The plant extracts were prepared by maceration in organic solvents. The antimicrobial activities were evaluated using the broth microdilution method. The antioxidant activity was evaluated using the 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) assays. The mechanisms of antibacterial action were determined by lysis, salt tolerance assays, and antioxidant enzyme activities. The cytotoxic effect on the erythrocytes was determined by a spectrophotometric method. Biochanin A, formononetin, luteolin, luteolin-4'-O-β-D-glucopyranoside, 4,7,2'-trihydroxy-4'-methoxyisoflavanol, sissotrin, 1-methyl-β-D-glucopyranoside, ononin, D-mannitol, and 3-O-β-D-glucuronopyranosylsoyasapogenol B were isolated from Trifolium baccarinii. The MeOH, EtOAc, and n-BuOH extracts as well as biochanin A, formononetin, luteolin, luteolin-4'-O-β-D-glucopyranoside, 4,7,2'-trihydroxy-4'-methoxyisoflavanol, and sissotrin from Trifolium baccarinii displayed the highest antimicrobial and antioxidant activities. The MeOH extract and 4,7,2'-trihydroxy-4'-methoxyisoflavanol exhibited antibacterial activity through the bacteriolytic effect and reduction of the antioxidant defenses in the bacterial cells. The present study portrays Trifolium baccarinii as a potential natural source of antibacterial, antifungal, and antioxidant agents.
Collapse
|
46
|
Muniz IPR, Galantini MPL, Ribeiro IS, Gonçalves CV, Dos Santos DP, Moura TC, Silva ES, Silva NR, Cipriano BP, Correia TML, de Jesus Soares T, de Freitas LM, Costa DJ, da Silva RAA. Antimicrobial photodynamic therapy (aPDT) with curcumin controls intradermal infection by Staphylococcus aureus in mice with type 1 diabetes mellitus: a pilot study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 224:112325. [PMID: 34598018 DOI: 10.1016/j.jphotobiol.2021.112325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the main pathogens that cause infections in diabetic individuals. In this paper, we report the outcomes of our investigation on the intradermal application of antimicrobial photodynamic therapy (PDT) with curcumin in an infection induced by MRSA ATCC 43300 strain in the ear of mice with Type 1 Diabetes Mellitus (T1DM). A solution containing 100 μg of curcumin was photoactivated ex vivo with a LED light (450 nm) delivering a fluency of 13.5 J/cm3. This solution was administered in the ear intradermally, at the same inoculum site as the MRSA ATCC 43300 strain (PDT Group). This study also included the use of two control groups (both infected): One was treated with saline and the other was treated with non-photoactivated curcumin. The animals were euthanized 24 h after these treatments and samples of draining lymph node and treated ear were collected for examination. The PDT group showed lower bacterial load in the draining lymph node when compared to the saline and curcumin groups (p-value <0.05) 24 h after treatment. In addition to bacterial load, the PDT group presented a higher concentration of nitrates and nitrites in the draining lymph node when compared to the saline and curcumin groups (p-value <0.001). Examining the infectious site, despite apparently having similar inflammatory cell recruitment compared with the control groups, the PDT group showed a profile with less intense activity in the myeloperoxidase expression when compared to the saline group (p-value <0.001). Additionally, the detected concentration of cytokines such as IL-1β, IL-12, and IL-10 was significantly lower in the PDT group when compared to the saline group (p-value <0.01; p-value <0.05; p-value <0.05, respectively), thus presenting a less intense inflammatory response during infection resolution. Our pilot study showed for the first time the therapeutic potential of PDT using curcumin when administered intradermally in the treatment of infections caused by S. aureus in mice with T1DM.
Collapse
Affiliation(s)
- Igor Pereira Ribeiro Muniz
- Universidade Federal da Bahia, Campus Anísio Teixeira - Instituto Multidisciplinar em Saúde, Rua Rio de Contas, 58, Bairro Candeias, CEP: 45.029-094 Vitória da Conquista, Bahia, Brasil
| | - Maria Poliana Leite Galantini
- Universidade Federal da Bahia, Campus Anísio Teixeira - Instituto Multidisciplinar em Saúde, Rua Rio de Contas, 58, Bairro Candeias, CEP: 45.029-094 Vitória da Conquista, Bahia, Brasil
| | - Israel Souza Ribeiro
- Universidade Federal da Bahia, Campus Anísio Teixeira - Instituto Multidisciplinar em Saúde, Rua Rio de Contas, 58, Bairro Candeias, CEP: 45.029-094 Vitória da Conquista, Bahia, Brasil; Universidade Federal do Sul da Bahia, Campus Paulo Freire, 250 Praça Joana Angélica, Bairro São José, 45.988-058, Teixeira de Freitas, Bahia, Brazil
| | - Caroline Vieira Gonçalves
- Universidade Federal da Bahia, Campus Anísio Teixeira - Instituto Multidisciplinar em Saúde, Rua Rio de Contas, 58, Bairro Candeias, CEP: 45.029-094 Vitória da Conquista, Bahia, Brasil
| | - Denisar Palmito Dos Santos
- Universidade Federal da Bahia, Campus Anísio Teixeira - Instituto Multidisciplinar em Saúde, Rua Rio de Contas, 58, Bairro Candeias, CEP: 45.029-094 Vitória da Conquista, Bahia, Brasil
| | - Tatyana Chagas Moura
- Universidade Federal da Bahia, Campus Anísio Teixeira - Instituto Multidisciplinar em Saúde, Rua Rio de Contas, 58, Bairro Candeias, CEP: 45.029-094 Vitória da Conquista, Bahia, Brasil
| | - Emely Soares Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira - Instituto Multidisciplinar em Saúde, Rua Rio de Contas, 58, Bairro Candeias, CEP: 45.029-094 Vitória da Conquista, Bahia, Brasil
| | - Nathalia Rosa Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira - Instituto Multidisciplinar em Saúde, Rua Rio de Contas, 58, Bairro Candeias, CEP: 45.029-094 Vitória da Conquista, Bahia, Brasil
| | - Barbara Porto Cipriano
- Universidade Federal da Bahia, Campus Anísio Teixeira - Instituto Multidisciplinar em Saúde, Rua Rio de Contas, 58, Bairro Candeias, CEP: 45.029-094 Vitória da Conquista, Bahia, Brasil
| | - Thiago Macêdo Lopes Correia
- Universidade Federal da Bahia, Campus Anísio Teixeira - Instituto Multidisciplinar em Saúde, Rua Rio de Contas, 58, Bairro Candeias, CEP: 45.029-094 Vitória da Conquista, Bahia, Brasil
| | - Telma de Jesus Soares
- Universidade Federal da Bahia, Campus Anísio Teixeira - Instituto Multidisciplinar em Saúde, Rua Rio de Contas, 58, Bairro Candeias, CEP: 45.029-094 Vitória da Conquista, Bahia, Brasil
| | - Leandro Martins de Freitas
- Universidade Federal da Bahia, Campus Anísio Teixeira - Instituto Multidisciplinar em Saúde, Rua Rio de Contas, 58, Bairro Candeias, CEP: 45.029-094 Vitória da Conquista, Bahia, Brasil
| | - Dirceu Joaquim Costa
- Universidade Estadual do Sudoeste da Bahia, Campus Vitória da Conquista, Av. Edmundo Silveira Flores, 27-43 - Lot, Alto da Boa Vista, CEP: 45029-066 Vitória da Conquista, Bahia, Brasil
| | - Robson Amaro Augusto da Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira - Instituto Multidisciplinar em Saúde, Rua Rio de Contas, 58, Bairro Candeias, CEP: 45.029-094 Vitória da Conquista, Bahia, Brasil.
| |
Collapse
|
47
|
Kretschmer D, Breitmeyer R, Gekeler C, Lebtig M, Schlatterer K, Nega M, Stahl M, Stapels D, Rooijakkers S, Peschel A. Staphylococcus aureus Depends on Eap Proteins for Preventing Degradation of Its Phenol-Soluble Modulin Toxins by Neutrophil Serine Proteases. Front Immunol 2021; 12:701093. [PMID: 34552584 PMCID: PMC8451722 DOI: 10.3389/fimmu.2021.701093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophil granulocytes act as a first line of defense against pathogenic staphylococci. However, Staphylococcus aureus has a remarkable capacity to survive neutrophil killing, which distinguishes it from the less-pathogenic Staphylococcus epidermidis. Both species release phenol-soluble modulin (PSM) toxins, which activate the neutrophil formyl-peptide receptor 2 (FPR2) to promote neutrophil influx and phagocytosis, and which disrupt neutrophils or their phagosomal membranes at high concentrations. We show here that the neutrophil serine proteases (NSPs) neutrophil elastase, cathepsin G and proteinase 3, which are released into the extracellular space or the phagosome upon neutrophil FPR2 stimulation, effectively degrade PSMs thereby preventing their capacity to activate and destroy neutrophils. Notably, S. aureus, but not S. epidermidis, secretes potent NSP-inhibitory proteins, Eap, EapH1, EapH2, which prevented the degradation of PSMs by NSPs. Accordingly, a S. aureus mutant lacking all three NSP inhibitory proteins was less effective in activating and destroying neutrophils and it survived less well in the presence of neutrophils than the parental strain. We show that Eap proteins promote pathology via PSM-mediated FPR2 activation since murine intraperitoneal infection with the S. aureus parental but not with the NSP inhibitors mutant strain, led to a significantly higher bacterial load in the peritoneum and kidneys of mFpr2-/- compared to wild-type mice. These data demonstrate that NSPs can very effectively detoxify some of the most potent staphylococcal toxins and that the prominent human pathogen S. aureus has developed efficient inhibitors to preserve PSM functions. Preventing PSM degradation during infection represents an important survival strategy to ensure FPR2 activation.
Collapse
Affiliation(s)
- Dorothee Kretschmer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Ricarda Breitmeyer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Cordula Gekeler
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Marco Lebtig
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Katja Schlatterer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Mulugeta Nega
- Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany.,Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Mark Stahl
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Daphne Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Suzan Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Andreas Peschel
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| |
Collapse
|
48
|
Dixon RV, Skaria E, Lau WM, Manning P, Birch-Machin MA, Moghimi SM, Ng KW. Microneedle-based devices for point-of-care infectious disease diagnostics. Acta Pharm Sin B 2021; 11:2344-2361. [PMID: 34150486 PMCID: PMC8206489 DOI: 10.1016/j.apsb.2021.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
Recent infectious disease outbreaks, such as COVID-19 and Ebola, have highlighted the need for rapid and accurate diagnosis to initiate treatment and curb transmission. Successful diagnostic strategies critically depend on the efficiency of biological sampling and timely analysis. However, current diagnostic techniques are invasive/intrusive and present a severe bottleneck by requiring specialist equipment and trained personnel. Moreover, centralised test facilities are poorly accessible and the requirement to travel may increase disease transmission. Self-administrable, point-of-care (PoC) microneedle diagnostic devices could provide a viable solution to these problems. These miniature needle arrays can detect biomarkers in/from the skin in a minimally invasive manner to provide (near-) real-time diagnosis. Few microneedle devices have been developed specifically for infectious disease diagnosis, though similar technologies are well established in other fields and generally adaptable for infectious disease diagnosis. These include microneedles for biofluid extraction, microneedle sensors and analyte-capturing microneedles, or combinations thereof. Analyte sampling/detection from both blood and dermal interstitial fluid is possible. These technologies are in their early stages of development for infectious disease diagnostics, and there is a vast scope for further development. In this review, we discuss the utility and future outlook of these microneedle technologies in infectious disease diagnosis.
Collapse
Key Words
- AC, alternating current
- APCs, antigen-presenting cells
- ASSURED, affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end-users
- Biomarker detection
- Biosensor
- CMOS, complementary metal-oxide semiconductor
- COVID, coronavirus disease
- COVID-19
- CSF, cerebrospinal fluid
- CT, computerised tomography
- CV, cyclic voltammetry
- DC, direct current
- DNA, deoxyribonucleic acid
- DPV, differential pulse voltammetry
- EBV, Epstein–Barr virus
- EDC/NHS, 1-ethyl-3-(3-dimethylaminoproply) carbodiimide/N-hydroxysuccinimide
- ELISA, enzyme-linked immunosorbent assay
- GOx, glucose oxidase
- HIV, human immunodeficiency virus
- HPLC, high performance liquid chromatography
- HRP, horseradish peroxidase
- IP, iontophoresis
- ISF, interstitial fluid
- IgG, immunoglobulin G
- Infectious disease
- JEV, Japanese encephalitis virus
- MN, microneedle
- Microneedle
- NA, nucleic acid
- OBMT, one-touch-activated blood multidiagnostic tool
- OPD, o-phenylenediamine
- PCB, printed circuit board
- PCR, polymerase chain reaction
- PDMS, polydimethylsiloxane
- PEDOT, poly(3,4-ethylenedioxythiophene)
- PNA, peptide nucleic acid
- PP, polyphenol
- PPD, poly(o-phenylenediamine)
- PoC, point-of-care
- Point-of-care diagnostics (PoC)
- SALT, skin-associated lymphoid tissue
- SAM, self-assembled monolayer
- SEM, scanning electron microscope
- SERS, surface-enhanced Raman spectroscopy
- SWV, square wave voltammetry
- Skin
- TB, tuberculosis
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- WHO, World Health Organisation
- cfDNA, cell-free deoxyribonucleic acid
Collapse
Affiliation(s)
- Rachael V. Dixon
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Eldhose Skaria
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Wing Man Lau
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Philip Manning
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Mark A. Birch-Machin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - S. Moein Moghimi
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Keng Wooi Ng
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
49
|
Beavers WN, DuMont AL, Monteith AJ, Maloney KN, Tallman KA, Weiss A, Christian AH, Toste FD, Chang CJ, Porter NA, Torres VJ, Skaar EP. Staphylococcus aureus Peptide Methionine Sulfoxide Reductases Protect from Human Whole-Blood Killing. Infect Immun 2021; 89:e0014621. [PMID: 34001560 PMCID: PMC8281210 DOI: 10.1128/iai.00146-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
The generation of oxidative stress is a host strategy used to control Staphylococcus aureus infections. Sulfur-containing amino acids, cysteine and methionine, are particularly susceptible to oxidation because of the inherent reactivity of sulfur. Due to the constant threat of protein oxidation, many systems evolved to protect S. aureus from protein oxidation or to repair protein oxidation after it occurs. The S. aureus peptide methionine sulfoxide reductase (Msr) system reduces methionine sulfoxide to methionine. Staphylococci have four Msr enzymes, which all perform this reaction. Deleting all four msr genes in USA300 LAC (Δmsr) sensitizes S. aureus to hypochlorous acid (HOCl) killing; however, the Δmsr strain does not exhibit increased sensitivity to H2O2 stress or superoxide anion stress generated by paraquat or pyocyanin. Consistent with increased susceptibility to HOCl killing, the Δmsr strain is slower to recover following coculture with both murine and human neutrophils than USA300 wild type. The Δmsr strain is attenuated for dissemination to the spleen following murine intraperitoneal infection and exhibits reduced bacterial burdens in a murine skin infection model. Notably, no differences in bacterial burdens were observed in any organ following murine intravenous infection. Consistent with these observations, USA300 wild-type and Δmsr strains have similar survival phenotypes when incubated with murine whole blood. However, the Δmsr strain is killed more efficiently by human whole blood. These findings indicate that species-specific immune cell composition of the blood may influence the importance of Msr enzymes during S. aureus infection of the human host.
Collapse
Affiliation(s)
- William N. Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ashley L. DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Andrew J. Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - K. Nichole Maloney
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keri A. Tallman
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Andy Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alec H. Christian
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
50
|
Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model. mBio 2021; 12:e0027621. [PMID: 34126772 PMCID: PMC8262968 DOI: 10.1128/mbio.00276-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antibiotic-resistant Staphylococcus aureus strains constitute a major public health concern worldwide and are responsible for both health care- and community-associated infections. Here, we establish a robust and easy-to-implement model of oral S. aureus infection using Drosophila melanogaster larvae that allowed us to follow the fate of S. aureus at the whole-organism level as well as the host immune responses. Our study demonstrates that S. aureus infection triggers H2O2 production by the host via the Duox enzyme, thereby promoting antimicrobial peptide production through activation of the Toll pathway. Staphylococcal catalase mediates H2O2 neutralization, which not only promotes S. aureus survival but also minimizes the host antimicrobial response, hence reducing bacterial clearance in vivo. We show that while catalase expression is regulated in vitro by the accessory gene regulatory system (Agr) and the general stress response regulator sigma B (SigB), it no longer depends on these two master regulators in vivo. Finally, we confirm the versatility of this model by demonstrating the colonization and host stimulation capabilities of S. aureus strains belonging to different sequence types (CC8 and CC5) as well as of two other bacterial pathogens, Salmonella enterica serovar Typhimurium and Shigella flexneri. Thus, the Drosophila larva can be a general model to follow in vivo the innate host immune responses triggered during infection by human pathogens.
Collapse
|