1
|
Li J, Song S, Zhang J. Repeated Evolution of Transcript Dosage Compensation of Independently Formed Nematode Neo-X Chromosomes. Genome Biol Evol 2025; 17:evaf061. [PMID: 40171700 PMCID: PMC11981892 DOI: 10.1093/gbe/evaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025] Open
Abstract
Ohno proposed that, during the origin of X/Y sex chromosomes from a pair of autosomes, X-linked genes must double their per-allele expressions to compensate for the degeneration of their Y homologs. Whether Ohno's hypothesis holds in the nematode Caenorhabditis elegans remains unresolved despite that C. elegans is a model for studying between-sex X chromosome dosage compensation. Genome sequencing revealed independent fusions of an ancestrally autosomal linkage group to the X chromosome in C. elegans and Brugia malayi, two species belonging to different suborders of the order Rhabditida, allowing testing Ohno's hypothesis in repeated origins of neo-X chromosomes from the same autosomal linkage group. For each C. elegans X-linked gene and its autosomal ortholog in Pristionchus pacificus, we computed the X:AA ratio in transcript level and observed a median of ∼1. The same is true for B. malayi X-linked genes when compared with their autosomal orthologs in Dirofilaria immitis. We find a significant enrichment of presumably dosage-sensitive transcription factor genes among the autosomal genes of P. pacificus (or D. immitis) that become X-linked in C. elegans (or B. malayi), but the results are mixed for other groups of presumably dosage-sensitive genes, providing a partial support to the hypothesis that X upregulation depends on the prevalence of dosage-sensitive genes in the proto-X. We conclude that, unlike the virtual absence of X upregulation at the transcript level in eutherian mammals, Ohno's hypothesis is strongly supported in both nematode lineages investigated.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siliang Song
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Teterina AA, Willis JH, Baer CF, Phillips PC. Pervasive Conservation of Intron Number and Other Genetic Elements Revealed by a Chromosome-level Genome Assembly of the Hyper-polymorphic Nematode Caenorhabditis brenneri. Genome Biol Evol 2025; 17:evaf037. [PMID: 40037811 PMCID: PMC11925023 DOI: 10.1093/gbe/evaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
With within-species genetic diversity estimates that span the gamut of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and, notably, across Metazoa. Here, we present a high-quality, gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat-rich arms. A comparison of C. brenneri with other nematodes from the "Elegans" group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation of orthogroup size, indicative of high rates of gene turnover, consistent with previous studies. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. A comparison of gene structures revealed a strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
3
|
Yoshida K, Witte H, Hatashima R, Sun S, Kikuchi T, Röseler W, Sommer RJ. Rapid chromosome evolution and acquisition of thermosensitive stochastic sex determination in nematode androdioecious hermaphrodites. Nat Commun 2024; 15:9649. [PMID: 39511185 PMCID: PMC11544036 DOI: 10.1038/s41467-024-53854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
The factors contributing to evolution of androdioecy, the coexistence of hermaphrodites and males such as in Caenorhabditis elegans, remains poorly known. However, nematodes exhibit androdioecy in at last 13 genera with the predatory genus Pristionchus having seven independent transitions towards androdioecy. Nonetheless, associated genomic architecture and sex determination mechanisms are largely known from Caenorhabditis. Here, studying 47 Pristionchus species, we observed repeated chromosome evolution which abolished the ancestral XX/XO sex chromosome system. Two phylogenetically unrelated androdioecious Pristionchus species have no genomic differences between sexes and mating hermaphrodites with males resulted in hermaphroditic offspring only. We demonstrate that stochastic sex determination is influenced by temperature in P. mayeri and P. entomophagus, and CRISPR engineering indicated a conserved role of the transcription factor TRA-1 in P. mayeri. Chromosome-level genome assemblies and subsequent genomic analysis of related Pristionchus species revealed stochastic sex determination to be derived from XY sex chromosome systems through sex chromosome-autosome fusions. Thus, rapid karyotype evolution, sex chromosome evolution and evolvable sex determination mechanisms are general features of this genus, and represent a dynamic background against which androdioecy has evolved recurrently. Future studies might indicate that stochastic sex determination is more common than currently appreciated.
Collapse
Affiliation(s)
- Kohta Yoshida
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan.
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ryo Hatashima
- School of Life Science and Technology, Institute of Science Tokyo, Meguro-ku, Tokyo, Japan
| | - Simo Sun
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Golinelli L, Geens E, Irvine A, McCoy CJ, Vandewyer E, Atkinson LE, Mousley A, Temmerman L, Beets I. Global analysis of neuropeptide receptor conservation across phylum Nematoda. BMC Biol 2024; 22:223. [PMID: 39379997 PMCID: PMC11462694 DOI: 10.1186/s12915-024-02017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The phylum Nematoda is incredibly diverse and includes many parasites of humans, livestock, and plants. Peptide-activated G protein-coupled receptors (GPCRs) are central to the regulation of physiology and numerous behaviors, and they represent appealing pharmacological targets for parasite control. Efforts are ongoing to characterize the functions and define the ligands of nematode GPCRs, with already most peptide GPCRs known or predicted in Caenorhabditis elegans. However, comparative analyses of peptide GPCR conservation between C. elegans and other nematode species are limited, and many nematode GPCRs remain orphan. A phylum-wide perspective on peptide GPCR profiles will benefit functional and applied studies of nematode peptide GPCRs. RESULTS We constructed a pan-phylum resource of C. elegans peptide GPCR orthologs in 125 nematode species using a semi-automated pipeline for analysis of predicted proteome datasets. The peptide GPCR profile varies between nematode species of different phylogenetic clades and multiple C. elegans peptide GPCRs have orthologs across the phylum Nematoda. We identified peptide ligands for two highly conserved orphan receptors, NPR-9 and NPR-16, that belong to the bilaterian galanin/allatostatin A (Gal/AstA) and somatostatin/allatostatin C (SST/AstC) receptor families. The AstA-like NLP-1 peptides activate NPR-9 in cultured cells and are cognate ligands of this receptor in vivo. In addition, we discovered an AstC-type peptide, NLP-99, that activates the AstC-type receptor NPR-16. In our pan-phylum resource, the phylum-wide representation of NPR-9 and NPR-16 resembles that of their cognate ligands more than those of allatostatin-like peptides that do not activate these receptors. CONCLUSIONS The repertoire of C. elegans peptide GPCR orthologs varies across phylogenetic clades and several peptide GPCRs show broad conservation in the phylum Nematoda. Our work functionally characterizes the conserved receptors NPR-9 and NPR-16 as the respective GPCRs for the AstA-like NLP-1 peptides and the AstC-related peptide NLP-99. NLP-1 and NLP-99 are widely conserved in nematodes and their representation matches that of their receptor in most species. These findings demonstrate the conservation of a functional Gal/AstA and SST/AstC signaling system in nematodes. Our dataset of C. elegans peptide GPCR orthologs also lays a foundation for further functional studies of peptide GPCRs in the widely diverse nematode phylum.
Collapse
Affiliation(s)
- Luca Golinelli
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Ellen Geens
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Allister Irvine
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Ciaran J McCoy
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Elke Vandewyer
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Louise E Atkinson
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Angela Mousley
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium.
| | - Isabel Beets
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium.
| |
Collapse
|
5
|
Estrem B, Davis R, Wang J. End resection and telomere healing of DNA double-strand breaks during nematode programmed DNA elimination. Nucleic Acids Res 2024; 52:8913-8929. [PMID: 38953168 PMCID: PMC11347171 DOI: 10.1093/nar/gkae579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Most DNA double-strand breaks (DSBs) are harmful to genome integrity. However, some forms of DSBs are essential to biological processes, such as meiotic recombination and V(D)J recombination. DSBs are also required for programmed DNA elimination (PDE) in ciliates and nematodes. In nematodes, the DSBs are healed with telomere addition. While telomere addition sites have been well characterized, little is known regarding the DSBs that fragment nematode chromosomes. Here, we used embryos from the human and pig parasitic nematode Ascaris to characterize the DSBs. Using END-seq, we demonstrate that DSBs are introduced before mitosis, followed by extensive end resection. The resection profile is unique for each break site, and the resection generates 3'-overhangs before the addition of neotelomeres. Interestingly, telomere healing occurs much more frequently on retained DSB ends than on eliminated ends. This biased repair of the DSB ends may be due to the sequestration of the eliminated DNA into micronuclei, preventing neotelomere formation at their ends. Additional DNA breaks occur within the eliminated DNA in both Ascaris and Parascaris, ensuring chromosomal breakage and providing a fail-safe mechanism for PDE. Overall, our data indicate that telomere healing of DSBs is specific to the break sites responsible for nematode PDE.
Collapse
Affiliation(s)
- Brandon Estrem
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
6
|
Teterina AA, Willis JH, Baer CF, Phillips PC. Pervasive conservation of intron number and other genetic elements revealed by a chromosome-level genomic assembly of the hyper-polymorphic nematode Caenorhabditis brenneri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600681. [PMID: 38979286 PMCID: PMC11230420 DOI: 10.1101/2024.06.25.600681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
With within-species genetic diversity estimates that span the gambit of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and metazoan phyla. Here, we present a high-quality gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat rich peripheral parts. Comparison of C. brenneri with other nematodes from the 'Elegans' group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation iof orthogroup sizes, indicative of high rates of gene turnover. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. Comparison of gene structures revealed strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
7
|
Sonawala U, Beasley H, Thorpe P, Varypatakis K, Senatori B, Jones JT, Derevnina L, Eves-van den Akker S. A gene with a thousand alleles: The hyper-variable effectors of plant-parasitic nematodes. CELL GENOMICS 2024; 4:100580. [PMID: 38815588 PMCID: PMC11228951 DOI: 10.1016/j.xgen.2024.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Pathogens are engaged in a fierce evolutionary arms race with their host. The genes at the forefront of the engagement between kingdoms are often part of diverse and highly mutable gene families. Even in this context, we discovered unprecedented variation in the hyper-variable (HYP) effectors of plant-parasitic nematodes. HYP effectors are single-gene loci that potentially harbor thousands of alleles. Alleles vary in the organization, as well as the number, of motifs within a central hyper-variable domain (HVD). We dramatically expand the HYP repertoire of two plant-parasitic nematodes and define distinct species-specific "rules" underlying the apparently flawless genetic rearrangements. Finally, by analyzing the HYPs in 68 individual nematodes, we unexpectedly found that despite the huge number of alleles, most individuals are germline homozygous. These data support a mechanism of programmed genetic variation, termed HVD editing, where alterations are locus specific, strictly governed by rules, and theoretically produce thousands of variants without errors.
Collapse
Affiliation(s)
- Unnati Sonawala
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Helen Beasley
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Peter Thorpe
- The Data Analysis Group, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Kyriakos Varypatakis
- Cell & Molecular Sciences Department, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Beatrice Senatori
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - John T Jones
- Cell & Molecular Sciences Department, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Lida Derevnina
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | |
Collapse
|
8
|
Nagao K, Mochizuki K. Genome organization: Raison d'être of ancestral linkage groups. Curr Biol 2024; 34:R544-R546. [PMID: 38834029 DOI: 10.1016/j.cub.2024.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The genomes of extant organisms contain conserved blocks of regions that can be traced back to ancient ancestors, yet the evolutionary pressures that maintained such genomic segments remain unclear. New research on a curious organism with two different genomes sheds light on why our genomes are organized as they are.
Collapse
Affiliation(s)
- Kohei Nagao
- Institute of Human Genetics (IGH), CNRS and University of Montpellier, Montpellier, France
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS and University of Montpellier, Montpellier, France.
| |
Collapse
|
9
|
Brand CL, Oliver GT, Farkas IZ, Buszczak M, Levine MT. Recurrent Duplication and Diversification of a Vital DNA Repair Gene Family Across Drosophila. Mol Biol Evol 2024; 41:msae113. [PMID: 38865490 PMCID: PMC11210505 DOI: 10.1093/molbev/msae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Maintaining genome integrity is vital for organismal survival and reproduction. Essential, broadly conserved DNA repair pathways actively preserve genome integrity. However, many DNA repair proteins evolve adaptively. Ecological forces like UV exposure are classically cited drivers of DNA repair evolution. Intrinsic forces like repetitive DNA, which also imperil genome integrity, have received less attention. We recently reported that a Drosophila melanogaster-specific DNA satellite array triggered species-specific, adaptive evolution of a DNA repair protein called Spartan/MH. The Spartan family of proteases cleave hazardous, covalent crosslinks that form between DNA and proteins ("DNA-protein crosslink repair"). Appreciating that DNA satellites are both ubiquitous and universally fast-evolving, we hypothesized that satellite DNA turnover spurs adaptive evolution of DNA-protein crosslink repair beyond a single gene and beyond the D. melanogaster lineage. This hypothesis predicts pervasive Spartan gene family diversification across Drosophila species. To study the evolutionary history of the Drosophila Spartan gene family, we conducted population genetic, molecular evolution, phylogenomic, and tissue-specific expression analyses. We uncovered widespread signals of positive selection across multiple Spartan family genes and across multiple evolutionary timescales. We also detected recurrent Spartan family gene duplication, divergence, and gene loss. Finally, we found that ovary-enriched parent genes consistently birthed functionally diverged, testis-enriched daughter genes. To account for Spartan family diversification, we introduce a novel mechanistic model of antagonistic coevolution that links DNA satellite evolution and adaptive regulation of Spartan protease activity. This framework promises to accelerate our understanding of how DNA repeats drive recurrent evolutionary innovation to preserve genome integrity.
Collapse
Affiliation(s)
- Cara L Brand
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Genevieve T Oliver
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Isabella Z Farkas
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Buszczak
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Kieninger M, Stevens L, Collins JC, Blaxter M. The genome sequence of the nematode Caenorhabditis drosophilae (Rhabditida, Rhabditidae) (Kiontke, 1997). Wellcome Open Res 2024; 9:292. [PMID: 39114493 PMCID: PMC11303941 DOI: 10.12688/wellcomeopenres.22416.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 08/10/2024] Open
Abstract
We present a genome assembly of the free-living nematode Caenorhabditis drosophilae (Nematoda; Chromadorea; Rhabditida; Rhabditidae). The genome sequence is 51.3 megabases in span. Most of the assembly is scaffolded into six chromosomal pseudomolecules, including the X sex chromosome. The mitochondrial genome has also been assembled and is 15.15 kilobases in length.
Collapse
Affiliation(s)
| | - Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | | | | | | | | | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| |
Collapse
|
11
|
Aharonoff A, Kim J, Washington A, Ercan S. SMC-mediated dosage compensation in C. elegans evolved in the presence of an ancestral nematode mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595224. [PMID: 38826443 PMCID: PMC11142195 DOI: 10.1101/2024.05.21.595224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Mechanisms of X chromosome dosage compensation have been studied extensively in a few model species representing clades of shared sex chromosome ancestry. However, the diversity within each clade as a function of sex chromosome evolution is largely unknown. Here, we anchor ourselves to the nematode Caenorhabditis elegans, for which a well-studied mechanism of dosage compensation occurs through a specialized structural maintenance of chromosomes (SMC) complex, and explore the diversity of dosage compensation in the surrounding phylogeny of nematodes. Through phylogenetic analysis of the C. elegans dosage compensation complex and a survey of its epigenetic signatures, including X-specific topologically associating domains (TADs) and X-enrichment of H4K20me1, we found that the condensin-mediated mechanism evolved recently in the lineage leading to Caenorhabditis through an SMC-4 duplication. Intriguingly, an independent duplication of SMC-4 and the presence of X-specific TADs in Pristionchus pacificus suggest that condensin-mediated dosage compensation arose more than once. mRNA-seq analyses of gene expression in several nematode species indicate that dosage compensation itself is ancestral, as expected from the ancient XO sex determination system. Indicative of the ancestral mechanism, H4K20me1 is enriched on the X chromosomes in Oscheius tipulae, which does not contain X-specific TADs or SMC-4 paralogs. Together, our results indicate that the dosage compensation system in C. elegans is surprisingly new, and condensin may have been co-opted repeatedly in nematodes, suggesting that the process of evolving a chromosome-wide gene regulatory mechanism for dosage compensation is constrained. Significance statement X chromosome dosage compensation mechanisms evolved in response to Y chromosome degeneration during sex chromosome evolution. However, establishment of dosage compensation is not an endpoint. As sex chromosomes change, dosage compensation strategies may have also changed. In this study, we performed phylogenetic and epigenomic analyses surrounding Caenorhabditis elegans and found that the condensin-mediated dosage compensation mechanism in C. elegans is surprisingly new, and has evolved in the presence of an ancestral mechanism. Intriguingly, condensin-based dosage compensation may have evolved more than once in the nematode lineage, the other time in Pristionchus. Together, our work highlights a previously unappreciated diversity of dosage compensation mechanisms within a clade, and suggests constraints in evolving new mechanisms in the presence of an existing one.
Collapse
Affiliation(s)
- Avrami Aharonoff
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Aaliyah Washington
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| |
Collapse
|
12
|
Simmons JR, Estrem B, Zagoskin MV, Oldridge R, Zadegan SB, Wang J. Chromosome fusion and programmed DNA elimination shape karyotypes of nematodes. Curr Biol 2024; 34:2147-2161.e5. [PMID: 38688284 PMCID: PMC11111355 DOI: 10.1016/j.cub.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/21/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
An increasing number of metazoans undergo programmed DNA elimination (PDE), where a significant amount of DNA is selectively lost from the somatic genome during development. In some nematodes, PDE leads to the removal and remodeling of the ends of all germline chromosomes. In several species, PDE also generates internal breaks that lead to sequence loss and increased numbers of somatic chromosomes. The biological significance of these karyotype changes associated with PDE and the origin and evolution of nematode PDE remain largely unknown. Here, we assembled the single germline chromosome of the nematode Parascaris univalens and compared the karyotypes, chromosomal gene organization, and PDE features among other nematodes. We show that PDE in Parascaris converts an XX/XY sex-determination system in the germline into an XX/XO system in the somatic cells. Comparisons of Ascaris, Parascaris, and Baylisascaris ascarid chromosomes suggest that PDE existed in the ancestor of these nematodes, and their current distinct germline karyotypes were derived from fusion events of smaller ancestral chromosomes. The DNA breaks involved in PDE resolve these fused germline chromosomes into their pre-fusion karyotypes. These karyotype changes may lead to alterations in genome architecture and gene expression in the somatic cells. Cytological and genomic analyses further suggest that satellite DNA and the heterochromatic chromosome arms are dynamic and may play a role during meiosis. Overall, our results show that chromosome fusion and PDE have been harnessed in these ascarids to sculpt their karyotypes, altering the genome organization and serving specific functions in the germline and somatic cells.
Collapse
Affiliation(s)
- James R Simmons
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brandon Estrem
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Maxim V Zagoskin
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Ryan Oldridge
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sobhan Bahrami Zadegan
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
13
|
Al-Yazeedi T, Adams S, Tandonnet S, Turner A, Kim J, Lee J, Pires-daSilva A. The contribution of an X chromosome QTL to non-Mendelian inheritance and unequal chromosomal segregation in Auanema freiburgense. Genetics 2024; 227:iyae032. [PMID: 38431281 PMCID: PMC11075566 DOI: 10.1093/genetics/iyae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Auanema freiburgense is a nematode with males, females, and selfing hermaphrodites. When XO males mate with XX females, they typically produce a low proportion of XO offspring because they eliminate nullo-X spermatids. This process ensures that most sperm carry an X chromosome, increasing the likelihood of X chromosome transmission compared to random segregation. This occurs because of an unequal distribution of essential cellular organelles during sperm formation, likely dependent on the X chromosome. Some sperm components are selectively segregated into the X chromosome's daughter cell, while others are discarded with the nullo-X daughter cell. Intriguingly, the interbreeding of 2 A. freiburgense strains results in hybrid males capable of producing viable nullo-X sperm. Consequently, when these hybrid males mate with females, they yield a high percentage of male offspring. To uncover the genetic basis of nullo-spermatid elimination and X chromosome drive, we generated a genome assembly for A. freiburgense and genotyped the intercrossed lines. This analysis identified a quantitative trait locus spanning several X chromosome genes linked to the non-Mendelian inheritance patterns observed in A. freiburgense. This finding provides valuable clues to the underlying factors involved in asymmetric organelle partitioning during male meiotic division and thus non-Mendelian transmission of the X chromosome and sex ratios.
Collapse
Affiliation(s)
- Talal Al-Yazeedi
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sally Adams
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sophie Tandonnet
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Anisa Turner
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Jun Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Junho Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | | |
Collapse
|
14
|
Wright CJ, Stevens L, Mackintosh A, Lawniczak M, Blaxter M. Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. Nat Ecol Evol 2024; 8:777-790. [PMID: 38383850 PMCID: PMC11009112 DOI: 10.1038/s41559-024-02329-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024]
Abstract
Chromosomes are a central unit of genome organization. One-tenth of all described species on Earth are butterflies and moths, the Lepidoptera, which generally possess 31 chromosomes. However, some species display dramatic variation in chromosome number. Here we analyse 210 chromosomally complete lepidopteran genomes and show that the chromosomes of extant lepidopterans are derived from 32 ancestral linkage groups, which we term Merian elements. Merian elements have remained largely intact through 250 million years of evolution and diversification. Against this stable background, eight lineages have undergone extensive reorganization either through numerous fissions or a combination of fusion and fission events. Outside these lineages, fusions are rare and fissions are rarer still. Fusions often involve small, repeat-rich Merian elements and the sex-linked element. Our results reveal the constraints on genome architecture in Lepidoptera and provide a deeper understanding of chromosomal rearrangements in eukaryotic genome evolution.
Collapse
Affiliation(s)
| | - Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | | | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
15
|
Estrem B, Davis RE, Wang J. End resection and telomere healing of DNA double-strand breaks during nematode programmed DNA elimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585292. [PMID: 38559121 PMCID: PMC10980081 DOI: 10.1101/2024.03.15.585292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Most DNA double-strand breaks (DSBs) are harmful to genome integrity. However, some forms of DSBs are essential to biological processes, such as meiotic recombination and V(D)J recombination. DSBs are also required for programmed DNA elimination (PDE) in ciliates and nematodes. In nematodes, the DSBs are healed with telomere addition. While telomere addition sites have been well-characterized, little is known regarding the DSBs that fragment nematode chromosomes. Here, we used embryos from the nematode Ascaris to study the timing of PDE breaks and examine the DSBs and their end processing. Using END-seq, we characterize the DSB ends and demonstrate that DNA breaks are introduced before mitosis, followed by extensive end resection. The resection profile is unique for each break site, and the resection generates 3' overhangs before the addition of telomeres. Interestingly, telomere healing occurs much more frequently on retained DSB ends than on eliminated ends. This biased repair of the DSB ends in Ascaris may be due to the sequestration of the eliminated DNA into micronuclei, preventing their ends from telomere healing. Additional DNA breaks occur within the eliminated DNA in both Ascaris and Parascaris, ensuring chromosomal breakage and providing a fail-safe mechanism for nematode PDE.
Collapse
Affiliation(s)
- Brandon Estrem
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Richard E. Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
16
|
Tintori SC, Çağlar D, Ortiz P, Chyzhevskyi I, Mousseau TA, Rockman MV. Environmental radiation exposure at Chornobyl has not systematically affected the genomes or chemical mutagen tolerance phenotypes of local worms. Proc Natl Acad Sci U S A 2024; 121:e2314793121. [PMID: 38442158 PMCID: PMC10945782 DOI: 10.1073/pnas.2314793121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024] Open
Abstract
The 1986 disaster at the Chornobyl Nuclear Power Plant transformed the surrounding region into the most radioactive landscape known on the planet. Whether or not this sudden environmental shift selected for species, or even individuals within a species, that are naturally more resistant to mutagen exposure remains an open question. In this study, we collected, cultured, and cryopreserved 298 wild nematode isolates from areas varying in radioactivity within the Chornobyl Exclusion Zone. We sequenced and assembled genomes de novo for 20 Oscheius tipulae strains, analyzed their genomes for evidence of recent mutation acquisition in the field, and observed no evidence of an association between mutation and radioactivity at the sites of collection. Multigenerational exposure of each of these strains to several chemical mutagens in the lab revealed that strains vary heritably in tolerance to each mutagen, but mutagen tolerance cannot be predicted based on the radiation levels at collection sites, and Chornobyl isolates were not systematically more resistant than strains from undisturbed habitats. In sum, the absence of mutational signatures does not reflect unique capacity for tolerating DNA damage.
Collapse
Affiliation(s)
- Sophia C. Tintori
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY10003
| | - Derin Çağlar
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY10003
| | - Patrick Ortiz
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY10003
| | - Ihor Chyzhevskyi
- Department of Coordination of International Projects of the State Specialized Enterprise “Ecocentre”, Kyiv01133, Ukraine
| | - Timothy A. Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC29208
| | - Matthew V. Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY10003
| |
Collapse
|
17
|
Blaxter ML, Leech C, Lunt DH. A catalogue of chromosome counts for Phylum Nematoda. Wellcome Open Res 2024; 9:55. [PMID: 39534537 PMCID: PMC11555361 DOI: 10.12688/wellcomeopenres.20550.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 11/16/2024] Open
Abstract
Nematodes are important biological models in genetics and genomics, with research driven by basic biological as well as applied questions. The presence of holocentric chromosomes, clades with frequent polyploidy and the phenomenon of programmed DNA elimination make nematode karyotypic diversity of particular interest. Here we present a catalogue of published karyotypes of nematode species, rationalising and normalising descriptions from the previous 135 years. Karyotypes of 257 species are presented in taxonomic context. Nuclear chromosome counts range from 2 to 60. Tylenchina is identified as particularly diverse in karyotype. We highlight that Rhabditida and especially parasitic Rhabditina are well-represented, but there is a paucity of data from Enoplea, Dorylaimia, and from free-living marine groups in Chromadorea. The data have been uploaded to the Genomes on a Tree (GoaT) datasystem ( https://goat.genomehubs.org/) for integration with ongoing, large-scale genome sequencing efforts.
Collapse
Affiliation(s)
- Mark L. Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Chloe Leech
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - David H Lunt
- Biological Sciences, School of Natural Sciences, University of Hull, Hull, England, UK
| |
Collapse
|
18
|
Gandasegui J, Power RI, Curry E, Lau DCW, O'Neill CM, Wolstenholme A, Prichard R, Šlapeta J, Doyle SR. Genome structure and population genomics of the canine heartworm Dirofilaria immitis. Int J Parasitol 2024; 54:89-98. [PMID: 37652224 DOI: 10.1016/j.ijpara.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
The heartworm, Dirofilaria immitis, is a filarial parasitic nematode responsible for significant morbidity and mortality in wild and domesticated canids. Resistance to macrocyclic lactone drug prevention represents a significant threat to parasite control and has prompted investigations to understand the genetic determinants of resistance. This study aimed to improve the genomic resources of D. immitis to enable a more precise understanding of how genetic variation is distributed within and between parasite populations worldwide, which will inform the likelihood and rate by which parasites, and in turn, resistant alleles, might spread. We have guided the scaffolding of a recently published genome assembly for D. immitis (ICBAS_JMDir_1.0) using the chromosomal-scale reference genomes of Brugia malayi and Onchocerca volvulus, resulting in an 89.5 Mb assembly composed of four autosomal- and one sex-linked chromosomal-scale scaffolds representing 99.7% of the genome. Publicly available and new whole-genome sequencing data from 32 D. immitis samples from Australia, Italy and the USA were assessed using principal component analysis, nucleotide diversity (Pi) and absolute genetic divergence (Dxy) to characterise the global genetic structure and measure within- and between-population diversity. These population genetic analyses revealed broad-scale genetic structure among globally diverse samples and differences in genetic diversity between populations; however, fine-scale subpopulation analysis was limited and biased by differences between sample types. Finally, we mapped single nucleotide polymorphisms previously associated with macrocyclic lactone resistance in the new genome assembly, revealing the physical linkage of high-priority variants on chromosome 3, and determined their frequency in the studied populations. This new chromosomal assembly for D. immitis now allows for a more precise investigation of selection on genome-wide genetic variation and will enhance our understanding of parasite transmission and the spread of genetic variants responsible for resistance to treatment.
Collapse
Affiliation(s)
- Javier Gandasegui
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, Spain.
| | - Rosemonde I Power
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia.
| | - Emily Curry
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, QC, Canada.
| | - Daisy Ching-Wai Lau
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia.
| | - Connor M O'Neill
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Adrian Wolstenholme
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Roger Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, QC, Canada.
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia.
| | - Stephen R Doyle
- Wellcome Sanger Institute, Cambridgeshire CB10 1SA, United Kingdom.
| |
Collapse
|
19
|
Kounosu A, Sun S, Maeda Y, Dayi M, Yoshida A, Maruyama H, Hunt V, Sugimoto A, Kikuchi T. Syntenic relationship of chromosomes in Strongyloides species and Rhabditophanes diutinus based on the chromosome-level genome assemblies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220446. [PMID: 38008120 PMCID: PMC10676810 DOI: 10.1098/rstb.2022.0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 11/28/2023] Open
Abstract
The Strongyloides clade, to which the parasitic nematode genus Strongyloides belongs, contains taxa with diverse lifestyles, ranging from free-living to obligate vertebrate parasites. Reproductive strategies are also diverse in this group of nematodes, employing not only sexual reproduction but also parthenogenesis, making it an attractive group to study genome adaptation to specific conditions. An in-depth understanding of genome evolution, however, has been hampered by fragmented genome assemblies. In this study, we generated chromosome-level genome assemblies for two Strongyloides species and the outgroup species Rhabditophanes diutinus using long-read sequencing and high-throughput chromosome conformation capture (Hi-C). Our synteny analyses revealed a clearer picture of chromosome evolution in this group, suggesting that a functional sex chromosome has been maintained throughout the group. We further investigated sex chromosome dynamics in the lifecycle of Strongyloides ratti and found that bivalent formation in oocytes appears to be important for male production in the mitotic parthenogenesis. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Asuka Kounosu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Miyazaki 889-1692, Japan
| | - Simo Sun
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Yasunobu Maeda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Miyazaki 889-1692, Japan
| | - Mehmet Dayi
- Forestry Vocational School, Duzce University, 81620 Duzce, Türkiye
| | - Akemi Yoshida
- Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Haruhiko Maruyama
- Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Miyazaki 889-1692, Japan
| | - Vicky Hunt
- Department of Biology and Biochemistry, University of Bath, Bath BA27AY, UK
| | - Asako Sugimoto
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
20
|
Rödelsperger C. Comparative Genomics of Sex, Chromosomes, and Sex Chromosomes in Caenorhabditis elegans and Other Nematodes. Methods Mol Biol 2024; 2802:455-472. [PMID: 38819568 DOI: 10.1007/978-1-0716-3838-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The nematode phylum has evolved a remarkable diversity of reproductive modes, including the repeated emergence of asexuality and hermaphroditism across divergent clades. The species-richness and small genome size of nematodes make them ideal systems for investigating the genome-wide causes and consequences of such major transitions. The availability of functional annotations for most Caenorhabditis elegans genes further allows the linking of patterns of gene content evolution with biological processes. Such gene-centric studies were recently complemented by investigations of chromosome evolution that made use of the first chromosome-scale genome assemblies outside the Caenorhabditis genus. This review highlights recent comparative genomic studies of reproductive mode evolution addressing the hybrid origin of asexuality and the parallel gene loss following the emergence of hermaphroditism. It further summarizes ongoing efforts to characterize ancient linkage blocks called Nigon elements, which form central units of chromosome evolution. Fusions between Nigon elements have been demonstrated to impact recombination and speciation. Finally, multiple recent fusions between autosomal and the sex-linked Nigon element reveal insights into the dynamic evolution of sex chromosomes across various timescales.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
21
|
Simmons JR, Estrem B, Zagoskin MV, Oldridge R, Zadegan SB, Wang J. Chromosome fusion and programmed DNA elimination shape karyotypes of parasitic nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572835. [PMID: 38187595 PMCID: PMC10769430 DOI: 10.1101/2023.12.21.572835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A growing list of metazoans undergo programmed DNA elimination (PDE), where a significant amount of DNA is selectively lost from the somatic genome during development. In some nematodes, PDE leads to the removal and remodeling of the ends of all germline chromosomes. In several species, PDE also generates internal breaks that lead to sequence loss and an increased number of somatic chromosomes. The biological significance of these karyotype changes associated with PDE and the origin and evolution of nematode PDE remain largely unknown. Here, we assembled the single germline chromosome of the horse parasite Parascaris univalens and compared the karyotypes, chromosomal gene organization, and PDE features among ascarid nematodes. We show that PDE in Parascaris converts an XX/XY sex-determination system in the germline into an XX/XO system in the somatic cells. Comparisons of Ascaris, Parascaris, and Baylisascaris ascarid chromosomes suggest that PDE existed in the ancestor of these parasites, and their current distinct germline karyotypes were derived from fusion events of smaller ancestral chromosomes. The DNA breaks involved in PDE resolve these fused germline chromosomes into their pre-fusion karyotypes, leading to alterations in genome architecture and gene expression in the somatic cells. Cytological and genomic analyses further suggest that satellite DNA and the heterochromatic chromosome arms play a dynamic role in the Parascaris germline chromosome during meiosis. Overall, our results show that chromosome fusion and PDE have been harnessed in these ascarids to sculpt their karyotypes, altering the genome organization and serving specific functions in the germline and somatic cells.
Collapse
Affiliation(s)
- James R. Simmons
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Brandon Estrem
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Maxim V. Zagoskin
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Ryan Oldridge
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Sobhan Bahrami Zadegan
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, 37996, USA
- Lead Contact
| |
Collapse
|
22
|
Stevens L, Martínez-Ugalde I, King E, Wagah M, Absolon D, Bancroft R, Gonzalez de la Rosa P, Hall JL, Kieninger M, Kloch A, Pelan S, Robertson E, Pedersen AB, Abreu-Goodger C, Buck AH, Blaxter M. Ancient diversity in host-parasite interaction genes in a model parasitic nematode. Nat Commun 2023; 14:7776. [PMID: 38012132 PMCID: PMC10682056 DOI: 10.1038/s41467-023-43556-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Host-parasite interactions exert strong selection pressures on the genomes of both host and parasite. These interactions can lead to negative frequency-dependent selection, a form of balancing selection that is hypothesised to explain the high levels of polymorphism seen in many host immune and parasite antigen loci. Here, we sequence the genomes of several individuals of Heligmosomoides bakeri, a model parasite of house mice, and Heligmosomoides polygyrus, a closely related parasite of wood mice. Although H. bakeri is commonly referred to as H. polygyrus in the literature, their genomes show levels of divergence that are consistent with at least a million years of independent evolution. The genomes of both species contain hyper-divergent haplotypes that are enriched for proteins that interact with the host immune response. Many of these haplotypes originated prior to the divergence between H. bakeri and H. polygyrus, suggesting that they have been maintained by long-term balancing selection. Together, our results suggest that the selection pressures exerted by the host immune response have played a key role in shaping patterns of genetic diversity in the genomes of parasitic nematodes.
Collapse
Affiliation(s)
- Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| | - Isaac Martínez-Ugalde
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Erna King
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Martin Wagah
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | | | - Rowan Bancroft
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Jessica L Hall
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Elaine Robertson
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy B Pedersen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy H Buck
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
23
|
Rey C, Launay C, Wenger E, Delattre M. Programmed DNA elimination in Mesorhabditis nematodes. Curr Biol 2023; 33:3711-3721.e5. [PMID: 37607549 DOI: 10.1016/j.cub.2023.07.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Some species undergo programmed DNA elimination (PDE), whereby portions of the genome are systematically destroyed in somatic cells. PDE has emerged independently in several phyla, but its function is unknown. Although the mechanisms are partially solved in ciliates, PDE remains mysterious in metazoans because the study species were not yet amenable to functional approaches. We fortuitously discovered massive PDE in the free-living nematode genus Mesorhabditis, from the same family as C. elegans. As such, these species offer many experimental advantages to start elucidating the PDE mechanisms in an animal. Here, we used cytology to describe the dynamics of chromosome fragmentation and destruction in early embryos. Elimination occurs once in development, at the third embryonic cell division in the somatic blastomeres. Chromosomes are first fragmented during S phase. Next, some of the fragments fail to align on the mitotic spindle and remain outside the re-assembled nuclei after mitosis. These fragments are gradually lost after a few cell cycles. The retained fragments form new mini chromosomes, which are properly segregated in the subsequent cell divisions. With genomic approaches, we found that Mesorhabditis mainly eliminate repeated regions and also about a hundred genes. Importantly, none of the eliminated protein-coding genes are shared between closely related Mesorhabditis species. Our results strongly suggest PDE has not been selected for regulating genes with important biological functions in Mesorhabditis but rather mainly to irreversibly remove repeated sequences in the soma. We propose that PDE may target genes, provided their elimination in the soma is invisible to selection.
Collapse
Affiliation(s)
- Carine Rey
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Superieure de Lyon, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - Caroline Launay
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Superieure de Lyon, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - Eva Wenger
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Superieure de Lyon, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Superieure de Lyon, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
24
|
Nagao K, Tanaka Y, Kajitani R, Toyoda A, Itoh T, Kubota S, Goto Y. Bioinformatic and fine-scale chromosomal mapping reveal the nature and evolution of eliminated chromosomes in the Japanese hagfish, Eptatretus burgeri, through analysis of repetitive DNA families. PLoS One 2023; 18:e0286941. [PMID: 37639389 PMCID: PMC10461843 DOI: 10.1371/journal.pone.0286941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
In the Japanese hagfish, Eptatretus burgeri, approximately 21% of the genomic DNA in germ cells (2n = 52) consists of 16 chromosomes (eliminated [E]-chromosomes) that are eliminated from presumptive somatic cells (2n = 36). To uncover the eliminated genome (E-genome), we have identified 16 eliminated repetitive DNA families from eight hagfish species, with 11 of these repeats being selectively amplified in the germline genome of E. burgeri. Furthermore, we have demonstrated that six of these sequences, namely EEEb1-6, are exclusively localized on all 16 E-chromosomes. This has led to the hypothesis that the eight pairs of E-chromosomes are derived from one pair of ancestral chromosomes via multiple duplication events over a prolonged evolutionary period. NGS analysis has recently facilitated the re-assembly of two distinct draft genomes of E. burgeri, derived from the testis and liver. This advancement allows for the prediction of not only nonrepetitive eliminated sequences but also over 100 repetitive and eliminated sequences, accomplished through K-mer-based analysis. In this study, we report four novel eliminated repetitive DNA sequences (designated as EEEb7-10) and confirm the relative chromosomal localization of all eliminated repeats (EEEb1-10) by fluorescence in situ hybridization (FISH). With the exception of EEEb10, all sequences were exclusively detected on EEEb1-positive chromosomes. Surprisingly, EEEb10 was detected as an intense signal on EEEb1-positive chromosomes and as a scattered signal on other chromosomes in germ cells. The study further divided the eight pairs of E-chromosomes into six groups based on the signal distribution of each DNA family, and fiber-FISH experiments showed that the EEEb2-10 family was dispersed in the EEEb1-positive extended chromatin fiber. These findings provide new insights into the mechanisms underlying chromosome elimination and the evolution of E-chromosomes, supporting our previous hypothesis.
Collapse
Affiliation(s)
- Kohei Nagao
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Yoshiki Tanaka
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Rei Kajitani
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takehiko Itoh
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Souichirou Kubota
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Yuji Goto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
25
|
Moya ND, Stevens L, Miller IR, Sokol CE, Galindo JL, Bardas AD, Koh ESH, Rozenich J, Yeo C, Xu M, Andersen EC. Novel and improved Caenorhabditis briggsae gene models generated by community curation. BMC Genomics 2023; 24:486. [PMID: 37626289 PMCID: PMC10463891 DOI: 10.1186/s12864-023-09582-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The nematode Caenorhabditis briggsae has been used as a model in comparative genomics studies with Caenorhabditis elegans because of their striking morphological and behavioral similarities. However, the potential of C. briggsae for comparative studies is limited by the quality of its genome resources. The genome resources for the C. briggsae laboratory strain AF16 have not been developed to the same extent as C. elegans. The recent publication of a new chromosome-level reference genome for QX1410, a C. briggsae wild strain closely related to AF16, has provided the first step to bridge the gap between C. elegans and C. briggsae genome resources. Currently, the QX1410 gene models consist of software-derived gene predictions that contain numerous errors in their structure and coding sequences. In this study, a team of researchers manually inspected over 21,000 gene models and underlying transcriptomic data to repair software-derived errors. RESULTS We designed a detailed workflow to train a team of nine students to manually curate gene models using RNA read alignments. We manually inspected the gene models, proposed corrections to the coding sequences of over 8,000 genes, and modeled thousands of putative isoforms and untranslated regions. We exploited the conservation of protein sequence length between C. briggsae and C. elegans to quantify the improvement in protein-coding gene model quality and showed that manual curation led to substantial improvements in the protein sequence length accuracy of QX1410 genes. Additionally, collinear alignment analysis between the QX1410 and AF16 genomes revealed over 1,800 genes affected by spurious duplications and inversions in the AF16 genome that are now resolved in the QX1410 genome. CONCLUSIONS Community-based, manual curation using transcriptome data is an effective approach to improve the quality of software-derived protein-coding genes. The detailed protocols provided in this work can be useful for future large-scale manual curation projects in other species. Our manual curation efforts have brought the QX1410 gene models to a comparable level of quality as the extensively curated AF16 gene models. The improved genome resources for C. briggsae provide reliable tools for the study of Caenorhabditis biology and other related nematodes.
Collapse
Affiliation(s)
- Nicolas D Moya
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Isabella R Miller
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Chloe E Sokol
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Joseph L Galindo
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Alexandra D Bardas
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Edward S H Koh
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Justine Rozenich
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Cassia Yeo
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Maryanne Xu
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA.
| |
Collapse
|
26
|
Pazhenkova EA, Lukhtanov VA. Chromosomal conservatism vs chromosomal megaevolution: enigma of karyotypic evolution in Lepidoptera. Chromosome Res 2023; 31:16. [PMID: 37300756 DOI: 10.1007/s10577-023-09725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
In the evolution of many organisms, periods of slow genome reorganization (= chromosomal conservatism) are interrupted by bursts of numerous chromosomal changes (= chromosomal megaevolution). Using comparative analysis of chromosome-level genome assemblies, we investigated these processes in blue butterflies (Lycaenidae). We demonstrate that the phase of chromosome number conservatism is characterized by the stability of most autosomes and dynamic evolution of the sex chromosome Z, resulting in multiple variants of NeoZ chromosomes due to autosome-sex chromosome fusions. In contrast during the phase of rapid chromosomal evolution, the explosive increase in chromosome number occurs mainly through simple chromosomal fissions. We show that chromosomal megaevolution is a highly non-random canalized process, and in two phylogenetically independent Lysandra lineages, the drastic parallel increase in number of fragmented chromosomes was achieved, at least partially, through reuse of the same ancestral chromosomal breakpoints. In species showing chromosome number doubling, we found no blocks of duplicated sequences or duplicated chromosomes, thus refuting the hypothesis of polyploidy. In the studied taxa, long blocks of interstitial telomere sequences (ITSs) consist of (TTAGG)n arrays interspersed with telomere-specific retrotransposons. ITSs are sporadically present in rapidly evolving Lysandra karyotypes, but not in the species with ancestral chromosome number. Therefore, we hypothesize that the transposition of telomeric sequences may be triggers of the rapid chromosome number increase. Finally, we discuss the hypothetical genomic and population mechanisms of chromosomal megaevolution and argue that the disproportionally high evolutionary role of the Z sex chromosome can be additionally reinforced by sex chromosome-autosome fusions and Z-chromosome inversions.
Collapse
Affiliation(s)
- Elena A Pazhenkova
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, 1000, Ljubljana, Slovenia.
| | - Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya Nab. 1, 199034, St. Petersburg, Russia.
| |
Collapse
|
27
|
Tintori SC, Çağlar D, Ortiz P, Chyzhevskyi I, Mousseau TA, Rockman MV. Environmental radiation exposure at Chornobyl has not systematically affected the genomes or mutagen tolerance phenotypes of local worms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542665. [PMID: 37398032 PMCID: PMC10312484 DOI: 10.1101/2023.05.28.542665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The 1986 disaster at the Chornobyl Nuclear Power Plant transformed the surrounding region into the most radioactive landscape known on the planet. Questions remain regarding whether this sudden environmental shift selected for species, or even individuals within a species, that are naturally more resistant to radiation exposure. We collected, cultured, and cryopreserved 298 wild nematodes isolates from areas varying in radioactivity within the Chornobyl Exclusion Zone. We sequenced and assembled genomes de novo for 20 Oschieus tipulae strains, analyzed their genomes for evidence of recent mutation acquisition in the field and saw no evidence of an association between mutation and radiation level at the sites of collection. Multigenerational exposure of each of these strains to several mutagens in the lab revealed that strains vary heritably in tolerance to each mutagen, but mutagen tolerance cannot be predicted based on the radiation levels at collection sites.
Collapse
Affiliation(s)
- Sophia C Tintori
- Department of Biology and Center for Genomics & Systems Biology, New York University, NY, NY 10003
| | - Derin Çağlar
- Department of Biology and Center for Genomics & Systems Biology, New York University, NY, NY 10003
| | - Patrick Ortiz
- Department of Biology and Center for Genomics & Systems Biology, New York University, NY, NY 10003
| | - Ihor Chyzhevskyi
- Department of Coordination of International Projects of the State Specialized Enterprise "Ecocentre", Kyiv, Ukraine
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, NY, NY 10003
| |
Collapse
|
28
|
Moya ND, Stevens L, Miller IR, Sokol CE, Galindo JL, Bardas AD, Koh ESH, Rozenich J, Yeo C, Xu M, Andersen EC. Novel and improved Caenorhabditis briggsae gene models generated by community curation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541014. [PMID: 37292880 PMCID: PMC10245686 DOI: 10.1101/2023.05.16.541014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background The nematode Caenorhabditis briggsae has been used as a model for genomics studies compared to Caenorhabditis elegans because of its striking morphological and behavioral similarities. These studies yielded numerous findings that have expanded our understanding of nematode development and evolution. However, the potential of C. briggsae to study nematode biology is limited by the quality of its genome resources. The reference genome and gene models for the C. briggsae laboratory strain AF16 have not been developed to the same extent as C. elegans . The recent publication of a new chromosome-level reference genome for QX1410, a C. briggsae wild strain closely related to AF16, has provided the first step to bridge the gap between C. elegans and C. briggsae genome resources. Currently, the QX1410 gene models consist of protein-coding gene predictions generated from short- and long-read transcriptomic data. Because of the limitations of gene prediction software, the existing gene models for QX1410 contain numerous errors in their structure and coding sequences. In this study, a team of researchers manually inspected over 21,000 software-derived gene models and underlying transcriptomic data to improve the protein-coding gene models of the C. briggsae QX1410 genome. Results We designed a detailed workflow to train a team of nine students to manually curate genes using RNA read alignments and predicted gene models. We manually inspected the gene models using the genome annotation editor, Apollo, and proposed corrections to the coding sequences of over 8,000 genes. Additionally, we modeled thousands of putative isoforms and untranslated regions. We exploited the conservation of protein sequence length between C. briggsae and C. elegans to quantify the improvement in protein-coding gene model quality before and after curation. Manual curation led to a substantial improvement in the protein sequence length accuracy of QX1410 genes. We also compared the curated QX1410 gene models against the existing AF16 gene models. The manual curation efforts yielded QX1410 gene models that are similar in quality to the extensively curated AF16 gene models in terms of protein-length accuracy and biological completeness scores. Collinear alignment analysis between the QX1410 and AF16 genomes revealed over 1,800 genes affected by spurious duplications and inversions in the AF16 genome that are now resolved in the QX1410 genome. Conclusions Community-based, manual curation using transcriptome data is an effective approach to improve the quality of software-derived protein-coding genes. Comparative genomic analysis using a related species with high-quality reference genome(s) and gene models can be used to quantify improvements in gene model quality in a newly sequenced genome. The detailed protocols provided in this work can be useful for future large-scale manual curation projects in other species. The chromosome-level reference genome for the C. briggsae strain QX1410 far surpasses the quality of the genome of the laboratory strain AF16, and our manual curation efforts have brought the QX1410 gene models to a comparable level of quality to the previous reference, AF16. The improved genome resources for C. briggsae provide reliable tools for the study of Caenorhabditis biology and other related nematodes.
Collapse
Affiliation(s)
- Nicolas D. Moya
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Isabella R. Miller
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Chloe E. Sokol
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Joseph L. Galindo
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Alexandra D. Bardas
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Edward S. H. Koh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Justine Rozenich
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Cassia Yeo
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Maryanne Xu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
29
|
Yoshida K, Rödelsperger C, Röseler W, Riebesell M, Sun S, Kikuchi T, Sommer RJ. Chromosome fusions repatterned recombination rate and facilitated reproductive isolation during Pristionchus nematode speciation. Nat Ecol Evol 2023; 7:424-439. [PMID: 36717742 PMCID: PMC9998273 DOI: 10.1038/s41559-022-01980-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023]
Abstract
Large-scale genome-structural evolution is common in various organisms. Recent developments in speciation genomics revealed the importance of inversions, whereas the role of other genome-structural rearrangements, including chromosome fusions, have not been well characterized. We study genomic divergence and reproductive isolation of closely related nematodes: the androdioecious (hermaphroditic) model Pristionchus pacificus and its dioecious sister species Pristionchus exspectatus. A chromosome-level genome assembly of P. exspectatus using single-molecule and Hi-C sequencing revealed a chromosome-wide rearrangement relative to P. pacificus. Strikingly, genomic characterization and cytogenetic studies including outgroup species Pristionchus occultus indicated two independent fusions involving the same chromosome, ChrIR, between these related species. Genetic linkage analysis indicated that these fusions altered the chromosome-wide pattern of recombination, resulting in large low-recombination regions that probably facilitated the coevolution between some of the ~14.8% of genes across the entire genomes. Quantitative trait locus analyses for hybrid sterility in all three sexes revealed that major quantitative trait loci mapped to the fused chromosome ChrIR. While abnormal chromosome segregations of the fused chromosome partially explain hybrid female sterility, hybrid-specific recombination that breaks linkage of genes in the low-recombination region was associated with hybrid male sterility. Thus, recent chromosome fusions repatterned recombination rate and drove reproductive isolation during Pristionchus speciation.
Collapse
Affiliation(s)
- Kohta Yoshida
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Metta Riebesell
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Simo Sun
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Taisei Kikuchi
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
30
|
Abstract
In most organisms, the whole genome is maintained throughout the life span. However, exceptions occur in some species where the genome is reduced during development through a process known as programmed DNA elimination (PDE). In the human and pig parasite Ascaris, PDE occurs during the 4 to 16 cell stages of embryogenesis, when germline chromosomes are fragmented and specific DNA sequences are reproducibly lost in all somatic cells. PDE was identified in Ascaris over 120 years ago, but little was known about its molecular details until recently. Genome sequencing revealed that approximately 1,000 germline-expressed genes are eliminated in Ascaris, suggesting PDE is a gene silencing mechanism. All germline chromosome ends are removed and remodeled during PDE. In addition, PDE increases the number of chromosomes in the somatic genome by splitting many germline chromosomes. Comparative genomics indicates that these germline chromosomes arose from fusion events. PDE separates these chromosomes at the fusion sites. These observations indicate that PDE plays a role in chromosome karyotype and evolution. Furthermore, comparative analysis of PDE in other parasitic and free-living nematodes illustrates conserved features of PDE, suggesting it has important biological significance. We summarize what is known about PDE in Ascaris and its relatives. We also discuss other potential functions, mechanisms, and the evolution of PDE in these parasites of humans and animals of veterinary importance.
Collapse
|
31
|
Lai CK, Lee YC, Ke HM, Lu MR, Liu WA, Lee HH, Liu YC, Yoshiga T, Kikuchi T, Chen PJ, Tsai IJ. The Aphelenchoides genomes reveal substantial horizontal gene transfers in the last common ancestor of free-living and major plant-parasitic nematodes. Mol Ecol Resour 2023; 23:905-919. [PMID: 36597348 DOI: 10.1111/1755-0998.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Aphelenchoides besseyi is a plant-parasitic nematode (PPN) in the family Aphelenchoididae capable of infecting more than 200 plant species. A. besseyi is also a species complex with strains exhibiting varying pathogenicity to plants. We present the genome and annotations of six Aphelenchoides species, four of which belonged to the A. besseyi species complex. Most Aphelenchoides genomes have a size of 44.7-47.4 Mb and are among the smallest in clade IV, with the exception of A. fujianensis, which has a size of 143.8 Mb and is one of the largest. Phylogenomic analysis successfully delimited the species complex into A. oryzae and A. pseudobesseyi and revealed a reduction of transposon elements in the last common ancestor of Aphelenchoides. Synteny analyses between reference genomes indicated that three chromosomes in A. besseyi were derived from fission and fusion events. A systematic identification of horizontal gene transfer (HGT) genes across 27 representative nematodes allowed us to identify two major episodes of acquisition corresponding to the last common ancestor of clade IV or major PPNs, respectively. These genes were mostly lost and differentially retained between clades or strains. Most HGT events were acquired from bacteria, followed by fungi, and also from plants; plant HGT was especially prevalent in Bursaphelenchus mucronatus. Our results comprehensively improve the understanding of HGT in nematodes.
Collapse
Affiliation(s)
- Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Yi-Chien Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Huei-Mien Ke
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Min R Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-An Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Peichen J Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
32
|
Dockendorff TC, Estrem B, Reed J, Simmons JR, Zadegan SB, Zagoskin MV, Terta V, Villalobos E, Seaberry EM, Wang J. The nematode Oscheius tipulae as a genetic model for programmed DNA elimination. Curr Biol 2022; 32:5083-5098.e6. [PMID: 36379215 PMCID: PMC9729473 DOI: 10.1016/j.cub.2022.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Programmed DNA elimination (PDE) is a notable exception to the paradigm of genome integrity. In metazoa, PDE often occurs coincident with germline to somatic cell differentiation. During PDE, portions of genomic DNA are lost, resulting in reduced somatic genomes. Prior studies have described the sequences lost, as well as chromosome behavior, during metazoan PDE. However, a system for studying the mechanisms and consequences of PDE in metazoa is lacking. Here, we present a functional and genetic model for PDE in the free-living Rhabditidae nematode Oscheius tipulae, a family that also includes Caenorhabditis elegans. O. tipulae was recently suggested to eliminate DNA. Using staged embryos and DNA FISH, we showed that O. tipulae PDE occurs during embryogenesis at the 8-16 cell stages. We identified a conserved motif, named Sequence For Elimination (SFE), for all 12 break sites on the six chromosomes at the junctions of retained and eliminated DNA. SFE mutants exhibited a "fail-to-eliminate" phenotype only at the modified sites. END-seq revealed that breaks can occur at multiple positions within the SFE, with extensive end resection followed by telomere addition to both retained and eliminated ends. We identified many functional SFEs at the chromosome ends through END-seq in the wild-type embryos, genome sequencing of SFE mutants, and comparative genomics of 23 wild isolates. We suggest that these alternative SFEs provide flexibility in the sequences eliminated and a fail-safe mechanism for PDE. These studies establish O. tipulae as a new, attractive model for studying the mechanisms and consequences of PDE in a metazoan.
Collapse
Affiliation(s)
- Thomas C Dockendorff
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brandon Estrem
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jordan Reed
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - James R Simmons
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sobhan Bahrami Zadegan
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Maxim V Zagoskin
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Vincent Terta
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eduardo Villalobos
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Erin M Seaberry
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
33
|
Wighard SS, Athanasouli M, Witte H, Rödelsperger C, Sommer RJ. A New Hope: A Hermaphroditic Nematode Enables Analysis of a Recent Whole Genome Duplication Event. Genome Biol Evol 2022; 14:6868937. [PMID: 36461901 PMCID: PMC9763058 DOI: 10.1093/gbe/evac169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Whole genome duplication (WGD) is often considered a major driver of evolution that leads to phenotypic novelties. However, the importance of WGD for evolution is still controversial because most documented WGD events occurred anciently and few experimental systems amenable to genetic analysis are available. Here, we report a recent WGD event in the hermaphroditic nematode Allodiplogaster sudhausi and present a comparison with a gonochoristic (male/female) sister species that did not undergo WGD. Self-fertilizing reproduction of A. sudhausi makes it amenable to functional analysis and an ideal system to study WGD events. We document WGD in A. sudhausi through karyotype analysis and whole genome sequencing, the latter of which allowed us to 1) identify functional bias in retention of protein domains and metabolic pathways, 2) show most duplicate genes are under evolutionary constraint, 3) show a link between sequence and expression divergence, and 4) characterize differentially expressed duplicates. We additionally show WGD is associated with increased body size and an abundance of repeat elements (36% of the genome), including a recent expansion of the DNA-hAT/Ac transposon family. Finally, we demonstrate the use of CRISPR/Cas9 to generate mutant knockouts, whereby two WGD-derived duplicate genes display functional redundancy in that they both need to be knocked out to generate a phenotype. Together, we present a novel experimental system that is convenient for examining and characterizing WGD-derived genes both computationally and functionally.
Collapse
Affiliation(s)
- Sara S Wighard
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Ring 9, 72076 Tübingen, Germany
| | - Marina Athanasouli
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Ring 9, 72076 Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Ring 9, 72076 Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Ring 9, 72076 Tübingen, Germany
| | | |
Collapse
|
34
|
Doyle SR. Improving helminth genome resources in the post-genomic era. Trends Parasitol 2022; 38:831-840. [PMID: 35810065 DOI: 10.1016/j.pt.2022.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 01/02/2023]
Abstract
Rapid advancement in high-throughput sequencing and analytical approaches has seen a steady increase in the generation of genomic resources for helminth parasites. Now, helminth genomes and their annotations are a cornerstone of numerous efforts to compare genetic and transcriptomic variation, from single cells to populations of globally distributed parasites, to genome modifications to understand gene function. Our understanding of helminths is increasingly reliant on these genomic resources, which are primarily static once published and vary widely in quality and completeness between species. This article seeks to highlight the cause and effect of this variation and argues for the continued improvement of these genomic resources - even after their publication - which is necessary to provide a more accurate and complete understanding of the biology of these important pathogens.
Collapse
Affiliation(s)
- Stephen R Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
35
|
Evolution of sexual systems, sex chromosomes and sex-linked gene transcription in flatworms and roundworms. Nat Commun 2022; 13:3239. [PMID: 35688815 PMCID: PMC9187692 DOI: 10.1038/s41467-022-30578-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Many species with separate male and female individuals (termed ‘gonochorism’ in animals) have sex-linked genome regions. Here, we investigate evolutionary changes when genome regions become completely sex-linked, by analyses of multiple species of flatworms (Platyhelminthes; among which schistosomes recently evolved gonochorism from ancestral hermaphroditism), and roundworms (Nematoda) which have undergone independent translocations of different autosomes. Although neither the evolution of gonochorism nor translocations fusing ancestrally autosomal regions to sex chromosomes causes inevitable loss of recombination, we document that formerly recombining regions show genomic signatures of recombination suppression in both taxa, and become strongly genetically degenerated, with a loss of most genes. Comparisons with hermaphroditic flatworm transcriptomes show masculinisation and some defeminisation in schistosome gonad gene expression. We also find evidence that evolution of sex-linkage in nematodes is accompanied by transcriptional changes and dosage compensation. Our analyses also identify sex-linked genes that could assist future research aimed at controlling some of these important parasites. Transitions between hermaphroditic and separate sexes are relatively understudied in animals compared to pants. Here, Wang et al. reconstruct the evolution of separate sexes in the flatworms and complex changes of sex chromosomes in the roundworms.
Collapse
|
36
|
Stevens L, Moya ND, Tanny RE, Gibson SB, Tracey A, Na H, Chitrakar R, Dekker J, Walhout AJ, Baugh LR, Andersen EC. Chromosome-level reference genomes for two strains of Caenorhabditis briggsae: an improved platform for comparative genomics. Genome Biol Evol 2022; 14:6554914. [PMID: 35348662 PMCID: PMC9011032 DOI: 10.1093/gbe/evac042] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The publication of the Caenorhabditis briggsae reference genome in 2003 enabled the first comparative genomics studies between C. elegans and C. briggsae, shedding light on the evolution of genome content and structure in the Caenorhabditis genus. However, despite being widely used, the currently available C. briggsae reference genome is substantially less complete and structurally accurate than the C. elegans reference genome. Here, we used high-coverage Oxford Nanopore long-read and chromosome conformation capture data to generate chromosome-level reference genomes for two C. briggsae strains: QX1410, a new reference strain closely related to the laboratory AF16 strain, and VX34, a highly divergent strain isolated in China. We also sequenced 99 recombinant inbred lines (RILs) generated from reciprocal crosses between QX1410 and VX34 to create a recombination map and identify chromosomal domains. Additionally, we used both short- and long-read RNA sequencing (RNA-seq) data to generate high-quality gene annotations. By comparing these new reference genomes to the current reference, we reveal that hyper-divergent haplotypes cover large portions of the C. briggsae genome, similar to recent reports in C. elegans and C. tropicalis. We also show that the genomes of selfing Caenorhabditis species have undergone more rearrangement than their outcrossing relatives, which has biased previous estimates of rearrangement rate in Caenorhabditis. These new genomes provide a substantially improved platform for comparative genomics in Caenorhabditis and narrow the gap between the quality of genomic resources available for C. elegans and C. briggsae.
Collapse
Affiliation(s)
- Lewis Stevens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Nicolas D. Moya
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Robyn E. Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sophia B. Gibson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Huimin Na
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Albertha J.M. Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
37
|
Abstract
The nematode Caenorhabditis elegans has shed light on many aspects of eukaryotic biology, including genetics, development, cell biology, and genomics. A major factor in the success of C. elegans as a model organism has been the availability, since the late 1990s, of an essentially gap-free and well-annotated nuclear genome sequence, divided among 6 chromosomes. In this review, we discuss the structure, function, and biology of C. elegans chromosomes and then provide a general perspective on chromosome biology in other diverse nematode species. We highlight malleable chromosome features including centromeres, telomeres, and repetitive elements, as well as the remarkable process of programmed DNA elimination (historically described as chromatin diminution) that induces loss of portions of the genome in somatic cells of a handful of nematode species. An exciting future prospect is that nematode species may enable experimental approaches to study chromosome features and to test models of chromosome evolution. In the long term, fundamental insights regarding how speciation is integrated with chromosome biology may be revealed.
Collapse
Affiliation(s)
- Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, CO 80045, USA.,RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
38
|
Kloc M, Kubiak JZ, Ghobrial RM. Natural genetic engineering: A programmed chromosome/DNA elimination. Dev Biol 2022; 486:15-25. [DOI: 10.1016/j.ydbio.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
|
39
|
Tandonnet S, Haq M, Turner A, Grana T, Paganopoulou P, Adams S, Dhawan S, Kanzaki N, Nuez I, Félix MA, Pires-daSilva A. De Novo Genome Assembly of Auanema Melissensis, a Trioecious Free-Living Nematode. J Nematol 2022; 54:20220059. [PMID: 36879950 PMCID: PMC9984802 DOI: 10.2478/jofnem-2022-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Indexed: 02/09/2023] Open
Abstract
Nematodes of the genus Auanema are interesting models for studying sex determination mechanisms because their populations consist of three sexual morphs (males, females, and hermaphrodites) and produce skewed sex ratios. Here, we introduce a new undescribed species of this genus, Auanema melissensis n. sp., together with its draft nuclear genome. This species is also trioecious and does not cross with the other described species A. rhodensis or A. freiburgensis. Similar to A. freiburgensis, A. melissensis' maternal environment influences the hermaphrodite versus female sex determination of the offspring. The genome of A. melissensis is ~60 Mb, containing 11,040 protein-coding genes and 8.07% of repeat sequences. Using the estimated ancestral chromosomal gene content (Nigon elements), it was possible to identify putative X chromosome scaffolds.
Collapse
Affiliation(s)
- Sophie Tandonnet
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Maairah Haq
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Anisa Turner
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Theresa Grana
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA 22401UK
| | | | - Sally Adams
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sandhya Dhawan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute, Fushimi, Kyoto 612-0855, Japan
| | - Isabelle Nuez
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013Paris, France
| | - Marie-Anne Félix
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013Paris, France
| | | |
Collapse
|
40
|
Programmed DNA elimination: silencing genes and repetitive sequences in somatic cells. Biochem Soc Trans 2021; 49:1891-1903. [PMID: 34665225 DOI: 10.1042/bst20190951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
In a multicellular organism, the genomes of all cells are in general the same. Programmed DNA elimination is a notable exception to this genome constancy rule. DNA elimination removes genes and repetitive elements in the germline genome to form a reduced somatic genome in various organisms. The process of DNA elimination within an organism is highly accurate and reproducible; it typically occurs during early embryogenesis, coincident with germline-soma differentiation. DNA elimination provides a mechanism to silence selected genes and repeats in somatic cells. Recent studies in nematodes suggest that DNA elimination removes all chromosome ends, resolves sex chromosome fusions, and may also promote the birth of novel genes. Programmed DNA elimination processes are diverse among species, suggesting DNA elimination likely has evolved multiple times in different taxa. The growing list of organisms that undergo DNA elimination indicates that DNA elimination may be more widespread than previously appreciated. These various organisms will serve as complementary and comparative models to study the function, mechanism, and evolution of programmed DNA elimination in metazoans.
Collapse
|
41
|
Mattick J, Libro S, Bromley R, Chaicumpa W, Chung M, Cook D, Khan MB, Kumar N, Lau YL, Misra-Bhattacharya S, Rao R, Sadzewicz L, Saeung A, Shahab M, Sparklin BC, Steven A, Turner JD, Tallon LJ, Taylor MJ, Moorhead AR, Michalski M, Foster JM, Dunning Hotopp JC. X-treme loss of sequence diversity linked to neo-X chromosomes in filarial nematodes. PLoS Negl Trop Dis 2021; 15:e0009838. [PMID: 34705823 PMCID: PMC8575316 DOI: 10.1371/journal.pntd.0009838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 11/08/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
The sequence diversity of natural and laboratory populations of Brugia pahangi and Brugia malayi was assessed with Illumina resequencing followed by mapping in order to identify single nucleotide variants and insertions/deletions. In natural and laboratory Brugia populations, there is a lack of sequence diversity on chromosome X relative to the autosomes (πX/πA = 0.2), which is lower than the expected (πX/πA = 0.75). A reduction in diversity is also observed in other filarial nematodes with neo-X chromosome fusions in the genera Onchocerca and Wuchereria, but not those without neo-X chromosome fusions in the genera Loa and Dirofilaria. In the species with neo-X chromosome fusions, chromosome X is abnormally large, containing a third of the genetic material such that a sizable portion of the genome is lacking sequence diversity. Such profound differences in genetic diversity can be consequential, having been associated with drug resistance and adaptability, with the potential to affect filarial eradication.
Collapse
Affiliation(s)
- John Mattick
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Silvia Libro
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Robin Bromley
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Matthew Chung
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Darren Cook
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Mohammad Behram Khan
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nikhil Kumar
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Ramakrishna Rao
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Lisa Sadzewicz
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Atiporn Saeung
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Mohd Shahab
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Benjamin C. Sparklin
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Andrew Steven
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joseph D. Turner
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Luke J. Tallon
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Mark J. Taylor
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrew R. Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Michelle Michalski
- University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States of America
| | - Jeremy M. Foster
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Julie C. Dunning Hotopp
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
- Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
42
|
Rillo-Bohn R, Adilardi R, Mitros T, Avşaroğlu B, Stevens L, Köhler S, Bayes J, Wang C, Lin S, Baskevitch KA, Rokhsar DS, Dernburg AF. Analysis of meiosis in Pristionchus pacificus reveals plasticity in homolog pairing and synapsis in the nematode lineage. eLife 2021; 10:70990. [PMID: 34427184 PMCID: PMC8455136 DOI: 10.7554/elife.70990] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
Meiosis is conserved across eukaryotes yet varies in the details of its execution. Here we describe a new comparative model system for molecular analysis of meiosis, the nematode Pristionchus pacificus, a distant relative of the widely studied model organism Caenorhabditis elegans. P. pacificus shares many anatomical and other features that facilitate analysis of meiosis in C. elegans. However, while C. elegans has lost the meiosis-specific recombinase Dmc1 and evolved a recombination-independent mechanism to synapse its chromosomes, P. pacificus expresses both DMC-1 and RAD-51. We find that SPO-11 and DMC-1 are required for stable homolog pairing, synapsis, and crossover formation, while RAD-51 is dispensable for these key meiotic processes. RAD-51 and DMC-1 localize sequentially to chromosomes during meiotic prophase and show nonoverlapping functions. We also present a new genetic map for P. pacificus that reveals a crossover landscape very similar to that of C. elegans, despite marked divergence in the regulation of synapsis and crossing-over between these lineages.
Collapse
Affiliation(s)
- Regina Rillo-Bohn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Renzo Adilardi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Therese Mitros
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Barış Avşaroğlu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Lewis Stevens
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Darwin Tree of Life Project, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Simone Köhler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Joshua Bayes
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Clara Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Sabrina Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - K Alienor Baskevitch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Energy Joint Genome Institute, Berkeley, United States.,Okinawa Institute of Science and Technology Graduate University, Onna, Japan.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,California Institute for Quantitative Biosciences, Berkeley, United States
| |
Collapse
|
43
|
Wang J. Genomics of the Parasitic Nematode Ascaris and Its Relatives. Genes (Basel) 2021; 12:493. [PMID: 33800545 PMCID: PMC8065839 DOI: 10.3390/genes12040493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Nematodes of the genus Ascaris are important parasites of humans and swine, and the phylogenetically related genera (Parascaris, Toxocara, and Baylisascaris) infect mammals of veterinary interest. Over the last decade, considerable genomic resources have been established for Ascaris, including complete germline and somatic genomes, comprehensive mRNA and small RNA transcriptomes, as well as genome-wide histone and chromatin data. These datasets provide a major resource for studies on the basic biology of these parasites and the host-parasite relationship. Ascaris and its relatives undergo programmed DNA elimination, a highly regulated process where chromosomes are fragmented and portions of the genome are lost in embryonic cells destined to adopt a somatic fate, whereas the genome remains intact in germ cells. Unlike many model organisms, Ascaris transcription drives early development beginning prior to pronuclear fusion. Studies on Ascaris demonstrated a complex small RNA network even in the absence of a piRNA pathway. Comparative genomics of these ascarids has provided perspectives on nematode sex chromosome evolution, programmed DNA elimination, and host-parasite coevolution. The genomic resources enable comparison of proteins across diverse species, revealing many new potential drug targets that could be used to control these parasitic nematodes.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
- UT-Oak Ridge National Laboratory Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|