1
|
Durán-Fuentes JA, Maronna MM, Palacios-Gimenez OM, Castillo ER, Ryan JF, Daly M, Stampar SN. Repeatome diversity in sea anemone genomics (Cnidaria: Actiniaria) based on the Actiniaria-REPlib library. BMC Genomics 2025; 26:473. [PMID: 40361000 PMCID: PMC12070523 DOI: 10.1186/s12864-025-11591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Genomic repetitive DNA sequences (Repeatomes, REPs) are widespread in eukaryotes, influencing biological form and function. In Cnidaria, an early-diverging animal lineage, these sequences remain largely uncharacterized. This study investigates sea anemone REPs (Cnidaria: Actiniaria) in a phylogenetic context. We sequenced and assembled de novo the genome of Actinostella flosculifera and analyzed a total of 38 nuclear genomes to create the first ActiniariaREP library (Actiniaria-REPlib). We compared Actiniaria-REPlib with Repbase and RepeatModeler2 libraries, and used dnaPipeTE to annotate REPs from genomic short-read datasets of 36 species for divergence landscapes. RESULTS Our study assembled and annotated the mitochondrial genomes, including 27 newly assembled ones. We re-annotated ~92% of the unknown sequences from the initial nuclear genome library, finding that 6.4-30.6% were DNA transposons, 2.1-11.6% retrotransposons, 1-28.4% tandem repeat sequences, and 1.2-7% unclassifiable sequences. Actiniaria-REPlib recovered 9.4x more REP sequences from actiniarian genomes than Dfam and 10.4x more than Repbase. It yielded 79,903 annotated TE consensus sequences (74,643 known, 5,260 unknown), compared to Dfam with 7,697 (3,742 known, 3,944 unknown) and Repbae (763 known). CONCLUSIONS Our study significantly enhances the characterization of sea anemone repetitive DNA, assembling mitochondrial genomes, re-annotating nuclear sequences, and identifying diverse repeat elements. Actiniaria-REPlib vastly outperforms existing databases, recovering significantly more REP sequences and providing a comprehensive resource for future genomic and evolutionary studies in Actiniaria.
Collapse
Affiliation(s)
- Jeferson A Durán-Fuentes
- Laboratory of Evolution and Aquatic Diversity (LEDALab), São Paulo State University (UNESP), São Paulo, Bauru, Brazil.
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA.
| | - Maximiliano M Maronna
- Laboratory of Evolution and Aquatic Diversity (LEDALab), São Paulo State University (UNESP), São Paulo, Bauru, Brazil.
- Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Rio Grande Do Sul, Brazil.
| | - Octavio M Palacios-Gimenez
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, E07743, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-75236, Sweden
| | - Elio R Castillo
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, E07743, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Instituto de Biología Subtropical (IBS) CONICET-UNaM, Universidad Nacional de Misiones LQH, Posadas, Misiones, Argentina
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience and the Department of Biology, University of Florida, Florida, USA
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Sérgio N Stampar
- Laboratory of Evolution and Aquatic Diversity (LEDALab), São Paulo State University (UNESP), São Paulo, Bauru, Brazil
| |
Collapse
|
2
|
Vignati ZBM, Teixeira GA, Cunha MS, Pereira JA, Lopes DM. Cytogenomics of Frieseomelitta varia (Hymenoptera: Apidae) and the Sharing of a Satellite DNA Family in Several Neotropical Meliponini Genera. Genes (Basel) 2025; 16:86. [PMID: 39858633 PMCID: PMC11764717 DOI: 10.3390/genes16010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES A striking feature of the karyotypes of stingless bees is the large amount of heterochromatin present in most species. Cytogenomic studies performed in some Meliponini species have suggested that evolutionary events related to the diversification and amplification of satellite DNA families in the heterochromatin may reflect the structuring of phylogenetic clades in this tribe. In this study, we performed a genomic analysis in Frieseomelitta varia to characterize different satDNA families in its genome. We also investigated the presence of the most abundant satDNA family of F. varia in its own chromosomes, in two other Frieseomelitta species, and in other Meliponini genera encompassing the three main clades of Neotropical Meliponini, according to the available molecular phylogeny. METHODS Genomic analyses were performed using RepeatExplorer2 on the Galaxy platform, and chromosomal investigations were conducted using fluorescent in situ hybridization. RESULTS Seven satDNA families were recovered, which together totaled an abundance of 11.223% of the analyzed F. varia genomic fraction. The most abundant satDNA family, FvarSat01-306, predominates in the analyzed repetitive fraction (representing around 89%) and was recently amplified and homogenized in almost all the heterochromatin of F. varia. In addition, the data revealed an unprecedented sharing of this satDNA family in the centromeric/pericentromeric heterochromatin among different Meliponini genera, with independent amplifications and loss of this sequence in some taxa. CONCLUSIONS One family of satellite DNA makes up most of the heterochromatin in this species and is shared with other Meliponini.
Collapse
Affiliation(s)
- Zulemara B. M. Vignati
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa 36570-900, Minas Gerais, Brazil; (Z.B.M.V.); (G.A.T.); (M.S.C.); (J.A.P.)
| | - Gisele A. Teixeira
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa 36570-900, Minas Gerais, Brazil; (Z.B.M.V.); (G.A.T.); (M.S.C.); (J.A.P.)
| | - Marina S. Cunha
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa 36570-900, Minas Gerais, Brazil; (Z.B.M.V.); (G.A.T.); (M.S.C.); (J.A.P.)
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Campus Seropédica, Seropédica 23891-970, Rio de Janeiro, Brazil
| | - Jaqueline A. Pereira
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa 36570-900, Minas Gerais, Brazil; (Z.B.M.V.); (G.A.T.); (M.S.C.); (J.A.P.)
| | - Denilce M. Lopes
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa 36570-900, Minas Gerais, Brazil; (Z.B.M.V.); (G.A.T.); (M.S.C.); (J.A.P.)
| |
Collapse
|
3
|
Nascimento RR, Ribeiro T. In silico analysis of Apostasia wallichii (Apostasioideae) and Ludisia discolor (Orchidoideae) orchids reveals different repeats composition despite the same genome size. AN ACAD BRAS CIENC 2024; 96:e20240172. [PMID: 39319837 DOI: 10.1590/0001-3765202420240172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/25/2024] [Indexed: 09/26/2024] Open
Abstract
Repetitive sequences can lead to variation in DNA quantity and composition among species. The Orchidaceae, the largest angiosperm family, is divided into five subfamilies, with Apostasioideae as the basal group and Orchidoideae and Epidendroideae showing high diversification rates. Despite their different evolutionary paths, some species in these groups have similar nuclear DNA content. This study focuses on one example to understand the dynamics of major repetitive DNAs in the nucleus. We used Next-Generation Sequencing (NGS) data from Apostasia wallichii (Apostasioideae) and Ludisia discolor (Orchidoideae) to identify and quantify the most abundant repeats. The repetitive fraction varied in abundance (27.5% in L. discolor and 60.6% in A. wallichii) and composition, with LTR retrotransposons of different lineages being the most abundant repeats in each species. Satellite DNAs showed varying organization and abundance. Despite the unbalanced ratio between single-copy and repetitive DNA sequences, the two species had the same genome size, possibly due to the elimination of non-essential genes. This phenomenon has been observed in other Apostasia and likely led to the proliferation of transposable elements in A. wallichii. Deep genome information in the future will aid in understanding the contraction/expansion of gene families and the evolution of sequences in these genomes.
Collapse
Affiliation(s)
- Rodolfo R Nascimento
- Universidade Federal de Mato Grosso, Departamento de Botânica e Ecologia, Instituto de Biociências, Laboratório de Estudos Integrados de Plantas, Av. Fernando Correa da Costa, 2375, 78060-900 Cuiabá, MT, Brazil
| | - Tiago Ribeiro
- Universidade Federal de Mato Grosso, Departamento de Botânica e Ecologia, Instituto de Biociências, Laboratório de Estudos Integrados de Plantas, Av. Fernando Correa da Costa, 2375, 78060-900 Cuiabá, MT, Brazil
| |
Collapse
|
4
|
Toma GA, Sember A, Goes CAG, Kretschmer R, Porto-Foresti F, Bertollo LAC, Liehr T, Utsunomia R, de Bello Cioffi M. Satellite DNAs and the evolution of the multiple X 1X 2Y sex chromosomes in the wolf fish Hoplias malabaricus (Teleostei; Characiformes). Sci Rep 2024; 14:20402. [PMID: 39223262 PMCID: PMC11369246 DOI: 10.1038/s41598-024-70920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Multiple sex chromosomes usually arise from chromosomal rearrangements which involve ancestral sex chromosomes. There is a fundamental condition to be met for their long-term fixation: the meiosis must function, leading to the stability of the emerged system, mainly concerning the segregation of the sex multivalent. Here, we sought to analyze the degree of differentiation and meiotic pairing properties in the selected fish multiple sex chromosome system present in the wolf-fish Hoplias malabaricus (HMA). This species complex encompasses seven known karyotype forms (karyomorphs) where the karyomorph C (HMA-C) exhibits a nascent XY sex chromosomes from which the multiple X1X2Y system evolved in karyomorph HMA-D via a Y-autosome fusion. We combined genomic and cytogenetic approaches to analyze the satellite DNA (satDNA) content in the genome of HMA-D karyomorph and to investigate its potential contribution to X1X2Y sex chromosome differentiation. We revealed 56 satDNA monomers of which the majority was AT-rich and with repeat units longer than 100 bp. Seven out of 18 satDNA families chosen for chromosomal mapping by fluorescence in situ hybridization (FISH) formed detectable accumulation in at least one of the three sex chromosomes (X1, X2 and neo-Y). Nine satDNA monomers showed only two hybridization signals limited to HMA-D autosomes, and the two remaining ones provided no visible FISH signals. Out of seven satDNAs located on the HMA-D sex chromosomes, five mapped also to XY chromosomes of HMA-C. We showed that after the autosome-Y fusion event, the neo-Y chromosome has not substantially accumulated or eliminated satDNA sequences except for minor changes in the centromere-proximal region. Finally, based on the obtained FISHpatterns, we speculate on the possible contribution of satDNA to sex trivalent pairing and segregation.
Collapse
Affiliation(s)
- Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21, Liběchov, Czech Republic
| | | | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-610, Brazil
| | | | | | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, 07747, Jena, Germany.
| | | | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
5
|
Nie Y, Liu X, Zhao L, Huang Y. Repetitive element expansions contribute to genome size gigantism in Pamphagidae: A comparative study (Orthoptera, Acridoidea). Genomics 2024; 116:110896. [PMID: 39025318 DOI: 10.1016/j.ygeno.2024.110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Pamphagidae is a family of Acridoidea that inhabits the desert steppes of Eurasia and Africa. This study employed flow cytometry to estimate the genome size of eight species in the Pamphagidae. The results indicate that the genome size of the eight species ranged from 13.88 pg to 14.66 pg, with an average of 14.26 pg. This is the largest average genome size recorded for the Orthoptera families, as well as for the entire Insecta. Furthermore, the study explored the role of repetitive sequences in the genome, including their evolutionary dynamics and activity, using low-coverage next-generation sequencing data. The genome is composed of 14 different types of repetitive sequences, which collectively make up between 59.9% and 68.17% of the total genome. The Pamphagidae family displays high levels of transposable element (TE) activity, with the number of TEs increasing and accumulating since the family's emergence. The study found that the types of repetitive sequences contributing to the TE outburst events are similar across species. Additionally, the study identified unique repetitive elements for each species. The differences in repetitive sequences among the eight Pamphagidae species correspond to their phylogenetic relationships. The study sheds new light on genome gigantism in the Pamphagidae and provides insight into the correlation between genome size and repetitive sequences within the family.
Collapse
Affiliation(s)
- Yimeng Nie
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xuanzeng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lina Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
6
|
Majid M, Khan H, Liu X, Shaheer M, Huang Y. Evolutionary Dynamics of Satellite DNA Repeats across the Tettigoniidae Family: Insights from Genomic Analysis. Biomolecules 2024; 14:915. [PMID: 39199303 PMCID: PMC11352069 DOI: 10.3390/biom14080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Satellite DNA repeats are repetitive DNA sequences found in eukaryotic genomes, typically consisting of short DNA motifs repeated in tandem arrays. Despite the vast body of literature on satellite DNA repeats in other taxa, investigations specifically targeting Tettigoniidae remain conspicuously absent. Our study aims to fill a critical gap in our understanding of satellitome evolutionary processes shaping Tettigoniidae genomes. Repeatome analysis revealed that the Meconema thalassinum genome comprises 92%, and Phryganogryllacris superangulata had the lowest value of 34%, with an average of 67% in other Tettigoniidae species. The analysis reveals significant variation in the number of satellite DNA repeats across species of the Tettigoniidae family, with M. thalassinum exhibiting the highest count, 246, reported in insects to date and the lowest count, 10, in Pholidoptera griseoptera. Ruspolia dubia and Ruspolia yunnana, which are congeneric species, showcase distinct counts of 104 and 84 families, respectively. Satellite DNA repeats in R. dubia exhibit the highest abundance, constituting 17.2% of the total genome, while the lowest abundance was reported in P. griseoptera, at 5.65%. The genome size correlates weakly with the satellite DNA family count (rs = 0.42, p = 0.29), but a strong correlation exists between satellite abundance and family number (rs = 0.73, p = 0.03). Moreover, the analysis of satellite DNA gain and loss patterns provides insights into the amplification and homogenization of satellite DNA families within the genome, with species-specific repeats exhibiting a positive trend toward amplification. The chromosomal distribution in M. thalassinum displayed that the highest accumulation was observed on Chr12, Chr01, and Chr04, constituting 17.79%, 17.4%, and 17.22% of the total chromosome size, respectively. The chromosome-specific propagation of satellite DNA families was evident, with MthSat01 solely on chromosome 1 and MthSat170 on chromosome 2, sharing 1.64% and 2.33%. The observed conservation and variations in satellite DNA number and abundances, along with distinct patterns of gain and loss, indicate the influence of potentially diverse evolutionary processes shaping the genomic landscape of these insects, which requires further investigation. Furthermore, the differential accumulation of satellite DNA on specific chromosomes implies that potential chromosome-specific functions or structural features influence the retention and proliferation of satellite sequences.
Collapse
Affiliation(s)
- Muhammad Majid
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.M.)
| | - Hashim Khan
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.M.)
| | - Xuanzeng Liu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.M.)
| | - Muhammad Shaheer
- Department of Entomology, MNS Agriculture University, Multan 66000, Pakistan
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.M.)
| |
Collapse
|
7
|
da Silva MJ, Destro RF, Gazoni T, Parise-Maltempi PP. Interspecific cytogenomic comparison reveals a potential chromosomal centromeric marker in Proceratophrys frog species. Chromosoma 2024; 133:195-202. [PMID: 38546866 DOI: 10.1007/s00412-024-00819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 07/25/2024]
Abstract
Among the repetitive elements, satellite DNA (SatDNA) emerges as extensive arrays of highly similar tandemly repeated units, spanning megabases in length. Given that the satDNA PboSat01-176, previously characterized in P. boiei, prompted our interest for having a high abundance in P. boiei and potential for centromeric satellite, here, we employed various approaches, including low coverage genome sequencing, followed by computational analysis and chromosomal localization techniques in four Proceratophrys species and, investigating the genomic presence and sharing, as well as its potential for chromosomal centromere marker in Proceratophrys frog species. Our findings demonstrate that PboSat01-176 exhibits high abundance across all four Proceratophrys species, displaying distinct characteristics that establish it as the predominant repetitive DNA element in these species. The satellite DNA is prominently clustered in the peri/centromeric region of the chromosomes, particularly in the heterochromatic regions. The widespread presence of PboSat01-176 in closely related Proceratophrys species reinforces the validity of the library hypothesis for repetitive sequences. Thus, this study highlighted the utility of the satDNA family PboSat01-176 as a reliable centromeric marker in Proceratophrys species, with potential to be applied in other species of anuran amphibians. The observed sharing and maintenance of this sequence within the genus suggest possibilities for future research, particularly through expanded sampling to elucidate parameters that underlie the library hypothesis and the evolutionary dynamics of satDNA sequences.
Collapse
Affiliation(s)
- Marcelo João da Silva
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | - Raquel Fogarin Destro
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | - Thiago Gazoni
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | - Patricia Pasquali Parise-Maltempi
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil.
| |
Collapse
|
8
|
Cabral-de-Mello DC, Mora P, Rico-Porras JM, Ferretti ABSM, Palomeque T, Lorite P. The spread of satellite DNAs in euchromatin and insights into the multiple sex chromosome evolution in Hemiptera revealed by repeatome analysis of the bug Oxycarenus hyalinipennis. INSECT MOLECULAR BIOLOGY 2023; 32:725-737. [PMID: 37615351 DOI: 10.1111/imb.12868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Satellite DNAs (satDNAs) are highly repeated tandem sequences primarily located in heterochromatin, although their occurrence in euchromatin has been reported. Here, our aim was to advance the understanding of satDNA and multiple sex chromosome evolution in heteropterans. We combined cytogenetic and genomic approaches to study, for the first time, the satDNA composition of the genome in an Oxycarenidae bug, Oxycarenus hyalinipennis. The species exhibits a male karyotype of 2n = 19 (14A + 2 m + X1 X2 Y), with a highly differentiated Y chromosome, as demonstrated by C-banding and comparative genomic hybridization, revealing an enrichment of repeats from the male genome. Additionally, comparative analysis between males and females revealed that the 26 identified satDNA families are significantly biased towards male genome, accumulating in discrete regions in the Y chromosome. Exceptionally, the OhyaSat04-125 family was found to be distributed virtually throughout the entire extension of the Y chromosome. This suggests an important role of satDNA in Y chromosome differentiation, in comparison of other repeats, which collectively shows similar abundance between sexes, about 50%. Furthermore, chromosomal mapping of all satDNA families revealed an unexpected high spread in euchromatic regions, covering the entire extension, irrespective of their abundance. Only discrete regions of heterochromatin on the Y chromosome and of the m-chromosomes (peculiar chromosomes commonly observed in heteropterans) were enriched with satDNAs. The putative causes of the intense enrichment of satDNAs in euchromatin are discussed, including the possible existence of burst cycles similar to transposable elements and as a result of holocentricity. These data challenge the classical notion that euchromatin is not enriched with satDNAs.
Collapse
Affiliation(s)
- Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP-Universidade Estadual Paulista, Rio Claro, Brazil
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - Pablo Mora
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - José M Rico-Porras
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - Ana B S M Ferretti
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP-Universidade Estadual Paulista, Rio Claro, Brazil
| | - Teresa Palomeque
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - Pedro Lorite
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
9
|
Voleníková A, Lukšíková K, Mora P, Pavlica T, Altmanová M, Štundlová J, Pelikánová Š, Simanovsky SA, Jankásek M, Reichard M, Nguyen P, Sember A. Fast satellite DNA evolution in Nothobranchius annual killifishes. Chromosome Res 2023; 31:33. [PMID: 37985497 PMCID: PMC10661780 DOI: 10.1007/s10577-023-09742-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/04/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Satellite DNA (satDNA) is a rapidly evolving class of tandem repeats, with some monomers being involved in centromere organization and function. To identify repeats associated with (peri)centromeric regions, we investigated satDNA across Southern and Coastal clades of African annual killifishes of the genus Nothobranchius. Molecular cytogenetic and bioinformatic analyses revealed that two previously identified satellites, designated here as NkadSat01-77 and NfurSat01-348, are associated with (peri)centromeres only in one lineage of the Southern clade. NfurSat01-348 was, however, additionally detected outside centromeres in three members of the Coastal clade. We also identified a novel satDNA, NrubSat01-48, associated with (peri)centromeres in N. foerschi, N. guentheri, and N. rubripinnis. Our findings revealed fast turnover of satDNA associated with (peri)centromeres and different trends in their evolution in two clades of the genus Nothobranchius.
Collapse
Affiliation(s)
- Anna Voleníková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Karolína Lukšíková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pablo Mora
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Experimental Biology, Genetics Area, University of Jaén, Jaén, Spain
| | - Tomáš Pavlica
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Štundlová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Šárka Pelikánová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Sergey A Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Marek Jankásek
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Nguyen
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Alexandr Sember
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
| |
Collapse
|
10
|
Kavalco KF, Pasa R. Chromosomal Radiation: A model to explain karyotypic diversity in cryptic species. Genet Mol Biol 2023; 46:e20230116. [PMID: 37815421 PMCID: PMC10563172 DOI: 10.1590/1678-4685-gmb-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 10/11/2023] Open
Abstract
We present a concept that explains the pattern of occurrence of widely distributed organisms with large chromosomal diversity, large or small molecular divergence, and the insufficiency or absence of morphological identity. Our model is based on cytogenetic studies associated with molecular and biological data and can be applied to any lineage of sister species, chronospecies, or cryptic species. Through the evaluation of the karyotypic macrostructure, as the physical location of genes e satellites DNAs, in addition to phylogenetic reconstructions from mitochondrial and nuclear genes, per example, we have observed morphologically indistinguishable individuals presenting different locally fixed karyomorphs with phylogeographic discontinuity. The biological process behind this pattern is seen in many groups of cryptic species, in which variation lies mainly in the organization of their genomes but not necessarily in the ecosystems they inhabit or in their external morphology. It's similar to the processes behind other events observed in the distribution of lineages. In this work, we explore the hypothesis of a process analogous to ecological-evolutionary radiation, which we called Chromosomal Radiation. Chromosomal Radiation can be adaptive or non-adaptive and applied to different groups of organisms.
Collapse
Affiliation(s)
- Karine Frehner Kavalco
- Universidade Federal de Viçosa, Instituto de Ciências Biológicas e da Saúde, Laboratório de Genética Ecológica e Evolutiva (LaGEEvo), Campus Rio Paranaíba, Rio Paranaíba, MG, Brazil
- Universidade Federal de Viçosa, Instituto de Ciências Biológicas e da Saúde, Laboratório de Bioinformática e Genômica, Campus Rio Paranaíba, Rio Paranaíba, MG, Brazil
| | - Rubens Pasa
- Universidade Federal de Viçosa, Instituto de Ciências Biológicas e da Saúde, Laboratório de Genética Ecológica e Evolutiva (LaGEEvo), Campus Rio Paranaíba, Rio Paranaíba, MG, Brazil
- Universidade Federal de Viçosa, Instituto de Ciências Biológicas e da Saúde, Laboratório de Bioinformática e Genômica, Campus Rio Paranaíba, Rio Paranaíba, MG, Brazil
| |
Collapse
|
11
|
João Da Silva M, Gazoni T, Haddad CFB, Parise-Maltempi PP. Analysis in Proceratophrys boiei genome illuminates the satellite DNA content in a frog from the Brazilian Atlantic forest. Front Genet 2023; 14:1101397. [PMID: 37065500 PMCID: PMC10095563 DOI: 10.3389/fgene.2023.1101397] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Satellite DNAs (satDNAs) are one of the most abundant elements in genomes. Characterized as tandemly organized sequences that can be amplified into multiple copies, mainly in heterochromatic regions. The frog P. boiei (2n = 22, ZZ♂/ZW♀) is found in the Brazilian Atlantic forest and has an atypical pattern of heterochromatin distribution when compared to other anuran amphibians, with large pericentromeric blocks on all chromosomes. In addition, females of Proceratophrys boiei have a metacentric sex chromosome W showing heterochromatin in all chromosomal extension. In this work, we performed high-throughput genomic, bioinformatic, and cytogenetic analyses to characterize the satellite DNA content (satellitome) in P. boiei, mainly due to high amount of C-positive heterochromatin and the highly heterochromatic W sex chromosome. After all the analyses, it is remarkable that the satellitome of P. boiei is composed of a high number of satDNA families (226), making P. boiei the frog species with the highest number of satellites described so far. Consistent with the observation of large centromeric C-positive heterochromatin blocks, the genome of P. boiei is enriched with high copy number of repetitive DNAs, with total satDNA abundance comprising 16.87% of the genome. We successfully mapped via Fluorescence in situ hybridization the two most abundant repeats in the genome, PboSat01-176 and PboSat02-192, highlighting the presence of certain satDNAs sequences in strategic chromosomal regions (e.g., centromere and pericentromeric region), which leads to their participation in crucial processes for genomic organization and maintenance. Our study reveals a great diversity of satellite repeats that are driving genomic organization in this frog species. The characterization and approaches regarding satDNAs in this species of frog allowed the confirmation of some insights from satellite biology and a possible relationship with the evolution of sex chromosomes, especially in anuran amphibians, including P. boiei, for which data were not available.
Collapse
Affiliation(s)
- Marcelo João Da Silva
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | - Thiago Gazoni
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | - Célio Fernando Baptista Haddad
- Departamento de Biodiversidade e Centro de Aquicultura, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | - Patricia Pasquali Parise-Maltempi
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), São Paulo, Brazil
- *Correspondence: Patricia Pasquali Parise-Maltempi,
| |
Collapse
|
12
|
Šatović-Vukšić E, Plohl M. Satellite DNAs-From Localized to Highly Dispersed Genome Components. Genes (Basel) 2023; 14:genes14030742. [PMID: 36981013 PMCID: PMC10048060 DOI: 10.3390/genes14030742] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
According to the established classical view, satellite DNAs are defined as abundant non-coding DNA sequences repeated in tandem that build long arrays located in heterochromatin. Advances in sequencing methodologies and development of specialized bioinformatics tools enabled defining a collection of all repetitive DNAs and satellite DNAs in a genome, the repeatome and the satellitome, respectively, as well as their reliable annotation on sequenced genomes. Supported by various non-model species included in recent studies, the patterns of satellite DNAs and satellitomes as a whole showed much more diversity and complexity than initially thought. Differences are not only in number and abundance of satellite DNAs but also in their distribution across the genome, array length, interspersion patterns, association with transposable elements, localization in heterochromatin and/or in euchromatin. In this review, we compare characteristic organizational features of satellite DNAs and satellitomes across different animal and plant species in order to summarize organizational forms and evolutionary processes that may lead to satellitomes' diversity and revisit some basic notions regarding repetitive DNA landscapes in genomes.
Collapse
Affiliation(s)
- Eva Šatović-Vukšić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Peona V, Kutschera VE, Blom MPK, Irestedt M, Suh A. Satellite DNA evolution in Corvoidea inferred from short and long reads. Mol Ecol 2023; 32:1288-1305. [PMID: 35488497 DOI: 10.1111/mec.16484] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022]
Abstract
Satellite DNA (satDNA) is a fast-evolving portion of eukaryotic genomes. The homogeneous and repetitive nature of such satDNA causes problems during the assembly of genomes, and therefore it is still difficult to study it in detail in nonmodel organisms as well as across broad evolutionary timescales. Here, we combined the use of short- and long-read data to explore the diversity and evolution of satDNA between individuals of the same species and between genera of birds spanning ~40 millions of years of bird evolution using birds-of-paradise (Paradisaeidae) and crow (Corvus) species. These avian species highlighted the presence of a GC-rich Corvoidea satellitome composed of 61 satellite families and provided a set of candidate satDNA monomers for being centromeric on the basis of length, abundance, homogeneity and transcription. Surprisingly, we found that the satDNA of crow species rapidly diverged between closely related species while the satDNA appeared more similar between birds-of-paradise species belonging to different genera.
Collapse
Affiliation(s)
- Valentina Peona
- Department of Organismal Biology - Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Verena E Kutschera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Mozes P K Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Museum für Naturkunde, Leibniz Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,School of Biological Sciences-Organisms and the Environment, University of East Anglia, Norwich, UK
| |
Collapse
|
14
|
Pereira JA, Cabral-de-Mello DC, Lopes DM. The Satellite DNAs Populating the Genome of Trigona hyalinata and the Sharing of a Highly Abundant satDNA in Trigona Genus. Genes (Basel) 2023; 14:418. [PMID: 36833345 PMCID: PMC9957317 DOI: 10.3390/genes14020418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Among Meliponini species, c-heterochromatin can occupy large portions of chromosomes. This characteristic could be useful for understanding evolutionary patterns of satellite DNAs (satDNAs), although few sequences have been characterized in these bees. In Trigona, phylogenetically represented by clades A and B, the c-heterochromatin is mostly located in one chromosome arm. Here we used different techniques, including restriction endonucleases and genome sequencing followed by chromosomal analysis, to identify satDNAs that may be contributing to the evolution of c-heterochromatin in Trigona. Our results revealed a highly abundant ThyaSat01-301 satDNA, corresponding to about 13.77% of the Trigona hyalinata genome. Another seven satDNAs were identified, one corresponding to 2.24%, and the other six corresponding to 0.545% of the genome. The satDNA ThyaSat01-301 was shown to be one of the main constituents of the c-heterochromatin of this species, as well as of other species belonging to clade B of Trigona. However, this satDNA was not observed on the chromosomes of species from clade A, demonstrating that the c-heterochromatin is evolving divergently between species of clade A and B, as a consequence of the evolution of repetitive DNA sequences. Finally, our data suggest the molecular diversification of the karyotypes, despite a conservated macrochromosomal structure on the genus.
Collapse
Affiliation(s)
- Jaqueline A. Pereira
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, P.H. Rolfs Avenue, Viçosa 36570-900, Minas Gerais, Brazil
| | - Diogo C. Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociêcias/IB, UNESP–Universidade Estadual Paulista, 24 A Avenue, Rio Claro 13506-900, São Paulo, Brazil
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - Denilce M. Lopes
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, P.H. Rolfs Avenue, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
15
|
Navarro-Domínguez B, Cabrero J, López-León MD, Ruiz-Ruano FJ, Pita M, Bella JL, Camacho JPM. Tandem Repeat DNA Provides Many Cytological Markers for Hybrid Zone Analysis in Two Subspecies of the Grasshopper Chorthippus parallelus. Genes (Basel) 2023; 14:397. [PMID: 36833324 PMCID: PMC9957195 DOI: 10.3390/genes14020397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Recent advances in next generation sequencing (NGS) have greatly increased our understanding of non-coding tandem repeat (TR) DNA. Here we show how TR DNA can be useful for the study of hybrid zones (HZ), as it serves as a marker to identify introgression in areas where two biological entities come in contact. We used Illumina libraries to analyse two subspecies of the grasshopper Chorthippus parallelus, which currently form a HZ in the Pyrenees. We retrieved a total of 152 TR sequences, and used fluorescent in situ hybridization (FISH) to map 77 families in purebred individuals from both subspecies. Our analysis revealed 50 TR families that could serve as markers for analysis of this HZ, using FISH. Differential TR bands were unevenly distributed between chromosomes and subspecies. Some of these TR families yielded FISH bands in only one of the subspecies, suggesting the amplification of these TR families after the geographic separation of the subspecies in the Pleistocene. Our cytological analysis of two TR markers along a transect of the Pyrenean hybrid zone showed asymmetrical introgression of one subspecies into the other, consistent with previous findings using other markers. These results demonstrate the reliability of TR-band markers for hybrid zone studies.
Collapse
Affiliation(s)
| | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | | | - Francisco J. Ruiz-Ruano
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| | - Miguel Pita
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José L. Bella
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Pedro M. Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
16
|
Mora P, Pita S, Montiel EE, Rico-Porras JM, Palomeque T, Panzera F, Lorite P. Making the Genome Huge: The Case of Triatoma delpontei, a Triatominae Species with More than 50% of Its Genome Full of Satellite DNA. Genes (Basel) 2023; 14:genes14020371. [PMID: 36833298 PMCID: PMC9957312 DOI: 10.3390/genes14020371] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The genome of Triatoma delpontei Romaña & Abalos 1947 is the largest within Heteroptera, approximately two to three times greater than other evaluated Heteroptera genomes. Here, the repetitive fraction of the genome was determined and compared with its sister species Triatoma infestans Klug 1834, in order to shed light on the karyotypic and genomic evolution of these species. The T. delpontei repeatome analysis showed that the most abundant component in its genome is satellite DNA, which makes up more than half of the genome. The T. delpontei satellitome includes 160 satellite DNA families, most of them also present in T. infestans. In both species, only a few satellite DNA families are overrepresented on the genome. These families are the building blocks of the C-heterochromatic regions. Two of these satellite DNA families that form the heterochromatin are the same in both species. However, there are satellite DNA families highly amplified in the heterochromatin of one species that in the other species are in low abundance and located in the euchromatin. Therefore, the present results depicted the great impact of the satellite DNA sequences in the evolution of Triatominae genomes. Within this scenario, satellitome determination and analysis led to a hypothesis that explains how satDNA sequences have grown on T. delpontei to reach its huge genome size within true bugs.
Collapse
Affiliation(s)
- Pablo Mora
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - Sebastián Pita
- Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay
- Correspondence: (S.P.); (P.L.)
| | - Eugenia E. Montiel
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - José M. Rico-Porras
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - Teresa Palomeque
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - Francisco Panzera
- Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay
| | - Pedro Lorite
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
- Correspondence: (S.P.); (P.L.)
| |
Collapse
|
17
|
Anjos A, Milani D, Bardella VB, Paladini A, Cabral-de-Mello DC. Evolution of satDNAs on holocentric chromosomes: insights from hemipteran insects of the genus Mahanarva. CHROMOSOME RESEARCH : AN INTERNATIONAL JOURNAL ON THE MOLECULAR, SUPRAMOLECULAR AND EVOLUTIONARY ASPECTS OF CHROMOSOME BIOLOGY 2023; 31:5. [PMID: 36705735 DOI: 10.1007/s10577-023-09710-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 01/28/2023]
Abstract
Satellite DNAs (satDNAs) constitute one of the main components of eukaryote genomes and are involved in chromosomal organization and diversification. Although largely studied, little information was gathered about their evolution on holocentric species, i.e., diffuse centromeres, which, due to differences in repeat organization, could result in different evolutionary patterns. Here, we combined bioinformatics and cytogenetic approaches to evaluate the evolution of the satellitomes in Mahanarva holocentric insects. In two species, de novo identification revealed a high number of satDNAs, 110 and 113, with an extreme monomer length range of 18-4228 bp. The overall abundance of satDNAs was observed to be 6.67% in M. quadripunctata and 1.98% in M. spectabilis, with different abundances for the shared satDNAs. Chromosomal mapping of the most abundant repeats of M. quadripunctata and M. spectabilis on other Mahanarva reinforced the dynamic nature of satDNAs. Variable patterns of chromosomal distribution for the satDNAs were noticed, with the occurrence of clusters on distinct numbers of chromosomes and at different positions and the occurrence of scattered signals or nonclustered satDNAs. Altogether, our data demonstrated the high dynamism of satDNAs in Mahanarva with the involvement of this genomic fraction in chromosome diversification of the genus. The general characteristics and patterns of evolution of satDNAs are similar to those observed on monocentric chromosomes, suggesting that the differential organization of genome compartments observed on holocentric chromosomes compared with monocentric chromosomes does not have a large impact on the evolution of satDNAs. Analysis of the satellitomes of other holocentric species in a comparative manner will shed light on this issue.
Collapse
Affiliation(s)
- Allison Anjos
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil
| | - Vanessa B Bardella
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil
| | - Andressa Paladini
- Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil.
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071, Jaen, Spain.
| |
Collapse
|
18
|
Eriksson MC, Mandáková T, McCann J, Temsch EM, Chase MW, Hedrén M, Weiss-Schneeweiss H, Paun O. Repeat Dynamics across Timescales: A Perspective from Sibling Allotetraploid Marsh Orchids (Dactylorhiza majalis s.l.). Mol Biol Evol 2022; 39:msac167. [PMID: 35904928 PMCID: PMC9366187 DOI: 10.1093/molbev/msac167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To provide insights into the fate of transposable elements (TEs) across timescales in a post-polyploidization context, we comparatively investigate five sibling Dactylorhiza allotetraploids (Orchidaceae) formed independently and sequentially between 500 and 100K generations ago by unidirectional hybridization between diploids D. fuchsii and D. incarnata. Our results first reveal that the paternal D. incarnata genome shows a marked increased content of LTR retrotransposons compared to the maternal species, reflected in its larger genome size and consistent with a previously hypothesized bottleneck. With regard to the allopolyploids, in the youngest D. purpurella both genome size and TE composition appear to be largely additive with respect to parents, whereas for polyploids of intermediate ages we uncover rampant genome expansion on a magnitude of multiple entire genomes of some plants such as Arabidopsis. The oldest allopolyploids in the series are not larger than the intermediate ones. A putative tandem repeat, potentially derived from a non-autonomous miniature inverted-repeat TE (MITE) drives much of the genome dynamics in the allopolyploids. The highly dynamic MITE-like element is found in higher proportions in the maternal diploid, D. fuchsii, but is observed to increase in copy number in both subgenomes of the allopolyploids. Altogether, the fate of repeats appears strongly regulated and therefore predictable across multiple independent allopolyploidization events in this system. Apart from the MITE-like element, we consistently document a mild genomic shock following the allopolyploidizations investigated here, which may be linked to their relatively large genome sizes, possibly associated with strong selection against further genome expansions.
Collapse
Affiliation(s)
- Mimmi C Eriksson
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Terezie Mandáková
- Plant Cytogenomics Research Group, CEITEC−Central−European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Jamie McCann
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Eva M Temsch
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mark W Chase
- Royal Botanic Gardens Kew, London TW9 3AE, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Mikael Hedrén
- Department of Biology, University of Lund, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
19
|
Camacho JPM, Cabrero J, López-León MD, Martín-Peciña M, Perfectti F, Garrido-Ramos MA, Ruiz-Ruano FJ. Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution. BMC Biol 2022; 20:36. [PMID: 35130900 PMCID: PMC8822648 DOI: 10.1186/s12915-021-01216-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The full catalog of satellite DNA (satDNA) within a same genome constitutes the satellitome. The Library Hypothesis predicts that satDNA in relative species reflects that in their common ancestor, but the evolutionary mechanisms and pathways of satDNA evolution have never been analyzed for full satellitomes. We compare here the satellitomes of two Oedipodine grasshoppers (Locusta migratoria and Oedaleus decorus) which shared their most recent common ancestor about 22.8 Ma ago. RESULTS We found that about one third of their satDNA families (near 60 in every species) showed sequence homology and were grouped into 12 orthologous superfamilies. The turnover rate of consensus sequences was extremely variable among the 20 orthologous family pairs analyzed in both species. The satDNAs shared by both species showed poor association with sequence signatures and motives frequently argued as functional, except for short inverted repeats allowing short dyad symmetries and non-B DNA conformations. Orthologous satDNAs frequently showed different FISH patterns at both intra- and interspecific levels. We defined indices of homogenization and degeneration and quantified the level of incomplete library sorting between species. CONCLUSIONS Our analyses revealed that satDNA degenerates through point mutation and homogenizes through partial turnovers caused by massive tandem duplications (the so-called satDNA amplification). Remarkably, satDNA amplification increases homogenization, at intragenomic level, and diversification between species, thus constituting the basis for concerted evolution. We suggest a model of satDNA evolution by means of recursive cycles of amplification and degeneration, leading to mostly contingent evolutionary pathways where concerted evolution emerges promptly after lineages split.
Collapse
Affiliation(s)
| | - Josefa Cabrero
- Departamento de Genética, Universidad de Granada, 18071, Granada, Spain
| | | | | | - Francisco Perfectti
- Departamento de Genética, Universidad de Granada, 18071, Granada, Spain.,Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
| | | | - Francisco J Ruiz-Ruano
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden. .,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK.
| |
Collapse
|
20
|
Affiliation(s)
| | - Francisco J. Ruiz-Ruano
- Department of Organismal Biology – Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, Norwich Research Park University of East Anglia, Norwich, UK
| |
Collapse
|
21
|
The extensive amplification of heterochromatin in Melipona bees revealed by high throughput genomic and chromosomal analysis. Chromosoma 2021; 130:251-262. [PMID: 34837120 DOI: 10.1007/s00412-021-00764-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
Satellite DNAs (satDNAs) and transposable elements (TEs) are among the main components of constitutive heterochromatin (c-heterochromatin) and are related to their functionality, dynamics, and evolution. A peculiar case regarding the quantity and distribution of c-heterochromatin is observed in the genus of bees, Melipona, with species having a low amount of heterochromatin and species with high amount occupying almost all chromosomes. By combining low-pass genome sequencing and chromosomal analysis, we characterized the satDNAs and TEs of Melipona quadrifasciata (low c-heterochromatin) and Melipona scutellaris (high low c-heterochromatin) to understand c-heterochromatin composition and evolution. We identified 15 satDNA families and 20 TEs for both species. Significant variations in the repeat landscapes were observed between the species. In M. quadrifasciata, the repetitive fraction corresponded to only 3.78% of the genome library studied, whereas in M. scutellaris, it represented 54.95%. Massive quantitative and qualitative changes contributed to the differential amplification of c-heterochromatin, mainly due to the amplification of exclusive repetitions in M. scutellaris, as the satDNA MscuSat01-195 and the TE LTR/Gypsy_1 that represent 38.20 and 14.4% of its genome, respectively. The amplification of these two repeats is evident at the chromosomal level, with observation of their occurrence on most c-heterochromatin. Moreover, we detected repeats shared between species, revealing that they experienced mainly quantitative variations and varied in the organization on chromosomes and evolutionary patterns. Together, our data allow the discussion of patterns of evolution of repetitive DNAs and c-heterochromatin that occurred in a short period of time, after separation of the Michmelia and Melipona subgenera.
Collapse
|
22
|
Crepaldi C, Martí E, Gonçalves ÉM, Martí DA, Parise-Maltempi PP. Genomic Differences Between the Sexes in a Fish Species Seen Through Satellite DNAs. Front Genet 2021; 12:728670. [PMID: 34659353 PMCID: PMC8514694 DOI: 10.3389/fgene.2021.728670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 11/14/2022] Open
Abstract
Neotropical fishes have highly diversified karyotypic and genomic characteristics and present many diverse sex chromosome systems, with various degrees of sex chromosome differentiation. Knowledge on their sex-specific composition and evolution, however, is still limited. Satellite DNAs (satDNAs) are tandemly repeated sequences with pervasive genomic distribution and distinctive evolutionary pathways, and investigating satDNA content might shed light into how genome architecture is organized in fishes and in their sex chromosomes. The present study investigated the satellitome of Megaleporinus elongatus, a freshwater fish with a proposed Z1Z1Z2Z2/Z1W1Z2W2 multiple sex chromosome system that encompasses a highly heterochromatic and differentiated W1 chromosome. The species satellitome comprises of 140 different satDNA families, including previously isolated sequences and new families found in this study. This diversity is remarkable considering the relatively low proportion that satDNAs generally account for the M. elongatus genome (around only 5%). Differences between the sexes in regards of satDNA content were also evidenced, as these sequences are 14% more abundant in the female genome. The occurrence of sex-biased signatures of satDNA evolution in the species is tightly linked to satellite enrichment associated with W1 in females. Although both sexes share practically all satDNAs, the overall massive amplification of only a few of them accompanied the W1 differentiation. We also investigated the expansion and diversification of the two most abundant satDNAs of M. elongatus, MelSat01-36 and MelSat02-26, both highly amplified sequences in W1 and, in MelSat02-26’s case, also harbored by Z2 and W2 chromosomes. We compared their occurrences in M. elongatus and the sister species M. macrocephalus (with a standard ZW sex chromosome system) and concluded that both satDNAs have led to the formation of highly amplified arrays in both species; however, they formed species-specific organization on female-restricted sex chromosomes. Our results show how satDNA composition is highly diversified in M. elongatus, in which their accumulation is significantly contributing to W1 differentiation and not satDNA diversity per se. Also, the evolutionary behavior of these repeats may be associated with genome plasticity and satDNA variability between the sexes and between closely related species, influencing how seemingly homeologous heteromorphic sex chromosomes undergo independent satDNA evolution.
Collapse
Affiliation(s)
- Carolina Crepaldi
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Emiliano Martí
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Évelin Mariani Gonçalves
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Dardo Andrea Martí
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (IBS), Universidad Nacional de Misiones (UNaM), CONICET, Posadas, Argentina
| | | |
Collapse
|
23
|
Comparative Analysis of Transposable Elements in Genus Calliptamus Grasshoppers Revealed That Satellite DNA Contributes to Genome Size Variation. INSECTS 2021; 12:insects12090837. [PMID: 34564277 PMCID: PMC8466570 DOI: 10.3390/insects12090837] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Calliptamus is a genus of grasshoppers belonging to the family Acrididae. The genus Calliptamus includes approximately 17 recognized species. Calliptamus abbreviatus, Calliptamus italicus, and Calliptamus barbarus are three species that are widely found in northern China. These species are polyphagous, feeding on a variety of wild plants as well as crops, particularly legumes. The genome sizes, phylogenetic position, and transcriptome analysis of the genus Calliptamus were already known previous to this research. The repeatome analysis of these species was missing, which is directly linked to the larger genome sizes of the grasshoppers. Here, we classified repetitive DNA sequences at the level of superfamilies and sub-families, and found that LINE, TcMar-Tc1 and Ty3-gypsy LTR retrotransposons dominated the repeatomes of all genomes, accounting for 16–34% of the total genomes of these species. Satellite DNA dynamic evolutionary changes in all three genomes played a role in genome size evolution. This study would be a valuable source for future genome assemblies. Abstract Transposable elements (TEs) play a significant role in both eukaryotes and prokaryotes genome size evolution, structural changes, duplication, and functional variabilities. However, the large number of different repetitive DNA has hindered the process of assembling reference genomes, and the genus level TEs diversification of the grasshopper massive genomes is still under investigation. The genus Calliptamus diverged from Peripolus around 17 mya and its species divergence dated back about 8.5 mya, but their genome size shows rather large differences. Here, we used low-coverage Illumina unassembled short reads to investigate the effects of evolutionary dynamics of satDNAs and TEs on genome size variations. The Repeatexplorer2 analysis with 0.5X data resulted in 52%, 56%, and 55% as repetitive elements in the genomes of Calliptamus barbarus, Calliptamus italicus, and Calliptamus abbreviatus, respectively. The LINE and Ty3-gypsy LTR retrotransposons and TcMar-Tc1 dominated the repeatomes of all genomes, accounting for 16–35% of the total genomes of these species. Comparative analysis unveiled that most of the transposable elements (TEs) except satDNAs were highly conserved across three genomes in the genus Calliptamus grasshoppers. Out of a total of 20 satDNA families, 17 satDNA families were commonly shared with minor variations in abundance and divergence between three genomes, and 3 were Calliptamus barbarus specific. Our findings suggest that there is a significant amplification or contraction of satDNAs at genus phylogeny which is the main cause that made genome size different.
Collapse
|
24
|
Heitkam T, Schulte L, Weber B, Liedtke S, Breitenbach S, Kögler A, Morgenstern K, Brückner M, Tröber U, Wolf H, Krabel D, Schmidt T. Comparative Repeat Profiling of Two Closely Related Conifers ( Larix decidua and Larix kaempferi) Reveals High Genome Similarity With Only Few Fast-Evolving Satellite DNAs. Front Genet 2021; 12:683668. [PMID: 34322154 PMCID: PMC8312256 DOI: 10.3389/fgene.2021.683668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
In eukaryotic genomes, cycles of repeat expansion and removal lead to large-scale genomic changes and propel organisms forward in evolution. However, in conifers, active repeat removal is thought to be limited, leading to expansions of their genomes, mostly exceeding 10 giga base pairs. As a result, conifer genomes are largely littered with fragmented and decayed repeats. Here, we aim to investigate how the repeat landscapes of two related conifers have diverged, given the conifers' accumulative genome evolution mode. For this, we applied low-coverage sequencing and read clustering to the genomes of European and Japanese larch, Larix decidua (Lamb.) Carrière and Larix kaempferi (Mill.), that arose from a common ancestor, but are now geographically isolated. We found that both Larix species harbored largely similar repeat landscapes, especially regarding the transposable element content. To pin down possible genomic changes, we focused on the repeat class with the fastest sequence turnover: satellite DNAs (satDNAs). Using comparative bioinformatics, Southern, and fluorescent in situ hybridization, we reveal the satDNAs' organizational patterns, their abundances, and chromosomal locations. Four out of the five identified satDNAs are widespread in the Larix genus, with two even present in the more distantly related Pseudotsuga and Abies genera. Unexpectedly, the EulaSat3 family was restricted to L. decidua and absent from L. kaempferi, indicating its evolutionarily young age. Taken together, our results exemplify how the accumulative genome evolution of conifers may limit the overall divergence of repeats after speciation, producing only few repeat-induced genomic novelties.
Collapse
Affiliation(s)
- Tony Heitkam
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Luise Schulte
- Institute of Botany, Technische Universität Dresden, Dresden, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Beatrice Weber
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Susan Liedtke
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Sarah Breitenbach
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Anja Kögler
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Kristin Morgenstern
- Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, Tharandt, Germany
| | | | - Ute Tröber
- Staatsbetrieb Sachsenforst, Pirna, Germany
| | - Heino Wolf
- Staatsbetrieb Sachsenforst, Pirna, Germany
| | - Doris Krabel
- Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, Tharandt, Germany
| | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
25
|
Martí E, Milani D, Bardella VB, Albuquerque L, Song H, Palacios-Gimenez OM, Cabral-de-Mello DC. Cytogenomic analysis unveils mixed molecular evolution and recurrent chromosomal rearrangements shaping the multigene families on Schistocerca grasshopper genomes. Evolution 2021; 75:2027-2041. [PMID: 34155627 DOI: 10.1111/evo.14287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Multigene families are essential components of eukaryotic genomes and play key roles either structurally and functionally. Their modes of evolution remain elusive even in the era of genomics, because multiple multigene family sequences coexist in genomes, particularly in large repetitive genomes. Here, we investigate how the multigene families 18S rDNA, U2 snDNA, and H3 histone evolved in 10 species of Schistocerca grasshoppers with very large and repeat-enriched genomes. Using sequenced genomes and fluorescence in situ hybridization mapping, we find substantial differences between species, including the number of chromosomal clusters, changes in sequence abundance and nucleotide composition, pseudogenization, and association with transposable elements (TEs). The intragenomic analysis of Schistocerca gregaria using long-read sequencing and genome assembly unveils conservation for H3 histone and recurrent pseudogenization for 18S rDNA and U2 snDNA, likely promoted by association with TEs and sequence truncation. Remarkably, TEs were frequently associated with truncated copies, were also among the most abundant in the genome, and revealed signatures of recent activity. Our findings suggest a combined effect of concerted and birth-and-death models driving the evolution of multigene families in Schistocerca over the last 8 million years, and the occurrence of intra- and interchromosomal rearrangements shaping their chromosomal distribution. Despite the conserved karyotype in Schistocerca, our analysis highlights the extensive reorganization of repetitive DNAs in Schistocerca, contributing to the advance of comparative genomics for this important grasshopper genus.
Collapse
Affiliation(s)
- Emiliano Martí
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Vanessa B Bardella
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Lucas Albuquerque
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, Texas, 77843
| | - Octavio M Palacios-Gimenez
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-75236, Sweden.,Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, DE-07743, Germany
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| |
Collapse
|
26
|
Montiel EE, Panzera F, Palomeque T, Lorite P, Pita S. Satellitome Analysis of Rhodnius prolixus, One of the Main Chagas Disease Vector Species. Int J Mol Sci 2021; 22:6052. [PMID: 34205189 PMCID: PMC8199985 DOI: 10.3390/ijms22116052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
The triatomine Rhodnius prolixus is the main vector of Chagas disease in countries such as Colombia and Venezuela, and the first kissing bug whose genome has been sequenced and assembled. In the repetitive genome fraction (repeatome) of this species, the transposable elements represented 19% of R. prolixus genome, being mostly DNA transposon (Class II elements). However, scarce information has been published regarding another important repeated DNA fraction, the satellite DNA (satDNA), or satellitome. Here, we offer, for the first time, extended data about satellite DNA families in the R. prolixus genome using bioinformatics pipeline based on low-coverage sequencing data. The satellitome of R. prolixus represents 8% of the total genome and it is composed by 39 satDNA families, including four satDNA families that are shared with Triatoma infestans, as well as telomeric (TTAGG)n and (GATA)n repeats, also present in the T. infestans genome. Only three of them exceed 1% of the genome. Chromosomal hybridization with these satDNA probes showed dispersed signals over the euchromatin of all chromosomes, both in autosomes and sex chromosomes. Moreover, clustering analysis revealed that most abundant satDNA families configured several superclusters, indicating that R. prolixus satellitome is complex and that the four most abundant satDNA families are composed by different subfamilies. Additionally, transcription of satDNA families was analyzed in different tissues, showing that 33 out of 39 satDNA families are transcribed in four different patterns of expression across samples.
Collapse
Affiliation(s)
- Eugenia E. Montiel
- Department of Experimental Biology, Genetics, University of Jaén. Paraje las Lagunillas sn., 23071 Jaén, Spain; (E.E.M.); (T.P.)
| | - Francisco Panzera
- Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay;
| | - Teresa Palomeque
- Department of Experimental Biology, Genetics, University of Jaén. Paraje las Lagunillas sn., 23071 Jaén, Spain; (E.E.M.); (T.P.)
| | - Pedro Lorite
- Department of Experimental Biology, Genetics, University of Jaén. Paraje las Lagunillas sn., 23071 Jaén, Spain; (E.E.M.); (T.P.)
| | - Sebastián Pita
- Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay;
| |
Collapse
|
27
|
Cytogenetic Analysis, Heterochromatin Characterization and Location of the rDNA Genes of Hycleus scutellatus (Coleoptera, Meloidae); A Species with an Unexpected High Number of rDNA Clusters. INSECTS 2021; 12:insects12050385. [PMID: 33925926 PMCID: PMC8146434 DOI: 10.3390/insects12050385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 01/12/2023]
Abstract
Simple Summary The family Meloidae contains approximately 3000 species, commonly known as blister beetles for their ability to secrete a substance called cantharidin, which causes irritation and blistering in contact with animal or human skin. In recent years there have been numerous studies focused on the anticancer action of cantharidin and its derivatives. Despite the recent interest in blister beetles, cytogenetic and molecular studies in this group are scarce and most of them use only classical chromosome staining techniques. The main aim of our study was to provide new information in Meloidae. In this study, cytogenetic and molecular analyses were applied for the first time in the family Meloidae. We applied fluorescence staining with DAPI and the position of ribosomal DNA in Hycleus scutellatus was mapped by FISH. Hycleus is one of the most species-rich genera of Meloidae but no cytogenetic data have yet been published for this particular genus. Additionally, we isolated a satellite DNA family located within the pericentromeric regions of all chromosomes. The results obtained in this study may be a suitable starting point to initiate more extensive cytogenetic analyses in this important species-rich genus, and in the family Meloidae in general. Abstract Meloidae are commonly known as blister beetles, so called for the secretion of cantharidin, a toxic substance that causes irritation and blistering. There has been a recent increase in the interest of the cantharidin anticancer potential of this insect group. Cytogenetic and molecular data in this group are scarce. In this study, we performed a karyotype analysis of Hycleus scutellatus, an endemic species of the Iberian Peninsula. We determined its chromosome number, 2n = 20, as well as the presence of the X and Y sex chromosomes. In addition to a karyotype analysis, we carried out DAPI staining. By fluorescence in situ hybridization we mapped the rDNA clusters on 12 different chromosomes. Compared to others, this species shows an unusually high number of chromosomes carrying rDNA. This is one of the highest numbers of rDNA sites found in the Polyphaga suborder (Coleoptera). Additionally, we isolated a satellite DNA family (Hyscu-H), which was located within the pericentromeric regions of all chromosomes, including the sex chromosomes. The results suggest that Hyscu-H is likely to be one of the most abundant satellite DNA repeats in H. scutellatus.
Collapse
|
28
|
Cabral-de-Mello DC, Zrzavá M, Kubíčková S, Rendón P, Marec F. The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths. Front Genet 2021; 12:661417. [PMID: 33859676 PMCID: PMC8042265 DOI: 10.3389/fgene.2021.661417] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Tandem repeats are important parts of eukaryotic genomes being crucial e.g., for centromere and telomere function and chromatin modulation. In Lepidoptera, knowledge of tandem repeats is very limited despite the growing number of sequenced genomes. Here we introduce seven new satellite DNAs (satDNAs), which more than doubles the number of currently known lepidopteran satDNAs. The satDNAs were identified in genomes of three species of Crambidae moths, namely Ostrinia nubilalis, Cydalima perspectalis, and Diatraea postlineella, using graph-based computational pipeline RepeatExplorer. These repeats varied in their abundance and showed high variability within and between species, although some degree of conservation was noted. The satDNAs showed a scattered distribution, often on both autosomes and sex chromosomes, with the exception of both satellites in D. postlineella, in which the satDNAs were located at a single autosomal locus. Three satDNAs were abundant on the W chromosomes of O. nubilalis and C. perspectalis, thus contributing to their differentiation from the Z chromosomes. To provide background for the in situ localization of the satDNAs, we performed a detailed cytogenetic analysis of the karyotypes of all three species. This comparative analysis revealed differences in chromosome number, number and location of rDNA clusters, and molecular differentiation of sex chromosomes.
Collapse
Affiliation(s)
- Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP-Univ Estadual Paulista, Rio Claro, Brazil.,Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| | - Magda Zrzavá
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | | | - Pedro Rendón
- IAEA-TCLA-Consultant-USDA-APHIS-Moscamed Program Guatemala, Guatemala City, Guatemala
| | - František Marec
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| |
Collapse
|
29
|
Vozdova M, Kubickova S, Martínková N, Galindo DJ, Bernegossi AM, Cernohorska H, Kadlcikova D, Musilová P, Duarte JM, Rubes J. Satellite DNA in Neotropical Deer Species. Genes (Basel) 2021; 12:genes12010123. [PMID: 33478071 PMCID: PMC7835801 DOI: 10.3390/genes12010123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 01/04/2023] Open
Abstract
The taxonomy and phylogenetics of Neotropical deer have been mostly based on morphological criteria and needs a critical revision on the basis of new molecular and cytogenetic markers. In this study, we used the variation in the sequence, copy number, and chromosome localization of satellite I-IV DNA to evaluate evolutionary relationships among eight Neotropical deer species. Using FISH with satI-IV probes derived from Mazama gouazoubira, we proved the presence of satellite DNA blocks in peri/centromeric regions of all analyzed deer. Satellite DNA was also detected in the interstitial chromosome regions of species of the genus Mazama with highly reduced chromosome numbers. In contrast to Blastocerus dichotomus, Ozotoceros bezoarticus, and Odocoileus virginianus, Mazama species showed high abundance of satIV DNA by FISH. The phylogenetic analysis of the satellite DNA showed close relationships between O. bezoarticus and B. dichotomus. Furthermore, the Neotropical and Nearctic populations of O. virginianus formed a single clade. However, the satellite DNA phylogeny did not allow resolving the relationships within the genus Mazama. The high abundance of the satellite DNA in centromeres probably contributes to the formation of chromosomal rearrangements, thus leading to a fast and ongoing speciation in this genus, which has not yet been reflected in the satellite DNA sequence diversification.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
- Correspondence: ; Tel.: +4205-3333-1422
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic;
| | - David Javier Galindo
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Agda Maria Bernegossi
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Halina Cernohorska
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Dita Kadlcikova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Petra Musilová
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Jose Mauricio Duarte
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| |
Collapse
|
30
|
Palacios-Gimenez OM, Koelman J, Palmada-Flores M, Bradford TM, Jones KK, Cooper SJB, Kawakami T, Suh A. Comparative analysis of morabine grasshopper genomes reveals highly abundant transposable elements and rapidly proliferating satellite DNA repeats. BMC Biol 2020; 18:199. [PMID: 33349252 PMCID: PMC7754599 DOI: 10.1186/s12915-020-00925-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Repetitive DNA sequences, including transposable elements (TEs) and tandemly repeated satellite DNA (satDNAs), collectively called the "repeatome", are found in high proportion in organisms across the Tree of Life. Grasshoppers have large genomes, averaging 9 Gb, that contain a high proportion of repetitive DNA, which has hampered progress in assembling reference genomes. Here we combined linked-read genomics with transcriptomics to assemble, characterize, and compare the structure of repetitive DNA sequences in four chromosomal races of the morabine grasshopper Vandiemenella viatica species complex and determine their contribution to genome evolution. RESULTS We obtained linked-read genome assemblies of 2.73-3.27 Gb from estimated genome sizes of 4.26-5.07 Gb DNA per haploid genome of the four chromosomal races of V. viatica. These constitute the third largest insect genomes assembled so far. Combining complementary annotation tools and manual curation, we found a large diversity of TEs and satDNAs, constituting 66 to 75% per genome assembly. A comparison of sequence divergence within the TE classes revealed massive accumulation of recent TEs in all four races (314-463 Mb per assembly), indicating that their large genome sizes are likely due to similar rates of TE accumulation. Transcriptome sequencing showed more biased TE expression in reproductive tissues than somatic tissues, implying permissive transcription in gametogenesis. Out of 129 satDNA families, 102 satDNA families were shared among the four chromosomal races, which likely represent a diversity of satDNA families in the ancestor of the V. viatica chromosomal races. Notably, 50 of these shared satDNA families underwent differential proliferation since the recent diversification of the V. viatica species complex. CONCLUSION This in-depth annotation of the repeatome in morabine grasshoppers provided new insights into the genome evolution of Orthoptera. Our TEs analysis revealed a massive recent accumulation of TEs equivalent to the size of entire Drosophila genomes, which likely explains the large genome sizes in grasshoppers. Despite an overall high similarity of the TE and satDNA diversity between races, the patterns of TE expression and satDNA proliferation suggest rapid evolution of grasshopper genomes on recent timescales.
Collapse
Affiliation(s)
- Octavio M Palacios-Gimenez
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden.
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden.
| | - Julia Koelman
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden
| | - Marc Palmada-Flores
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden
| | - Tessa M Bradford
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA, 5000, Australia
- School of Biological Sciences and Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Karl K Jones
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA, 5000, Australia
| | - Steven J B Cooper
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA, 5000, Australia
- School of Biological Sciences and Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Takeshi Kawakami
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden.
- Embark Veterinary, Inc., Boston, MA, USA.
| | - Alexander Suh
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden.
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK.
| |
Collapse
|
31
|
Belyayev A, Jandová M, Josefiová J, Kalendar R, Mahelka V, Mandák B, Krak K. The major satellite DNA families of the diploid Chenopodium album aggregate species: Arguments for and against the "library hypothesis". PLoS One 2020; 15:e0241206. [PMID: 33108401 PMCID: PMC7591062 DOI: 10.1371/journal.pone.0241206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/10/2020] [Indexed: 01/20/2023] Open
Abstract
Satellite DNA (satDNA) is one of the major fractions of the eukaryotic nuclear genome. Highly variable satDNA is involved in various genome functions, and a clear link between satellites and phenotypes exists in a wide range of organisms. However, little is known about the origin and temporal dynamics of satDNA. The “library hypothesis” indicates that the rapid evolutionary changes experienced by satDNAs are mostly quantitative. Although this hypothesis has received some confirmation, a number of its aspects are still controversial. A recently developed next-generation sequencing (NGS) method allows the determination of the satDNA landscape and could shed light on unresolved issues. Here, we explore low-coverage NGS data to infer satDNA evolution in the phylogenetic context of the diploid species of the Chenopodium album aggregate. The application of the Illumina read assembly algorithm in combination with Oxford Nanopore sequencing and fluorescent in situ hybridization allowed the estimation of eight satDNA families within the studied group, six of which were newly described. The obtained set of satDNA families of different origins can be divided into several categories, namely group-specific, lineage-specific and species-specific. In the process of evolution, satDNA families can be transmitted vertically and can be eliminated over time. Moreover, transposable element-derived satDNA families may appear repeatedly in the satellitome, creating an illusion of family conservation. Thus, the obtained data refute the “library hypothesis”, rather than confirming it, and in our opinion, it is more appropriate to speak about “the library of the mechanisms of origin”.
Collapse
Affiliation(s)
- Alexander Belyayev
- The Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
- * E-mail:
| | - Michaela Jandová
- The Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Jiřina Josefiová
- The Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Ruslan Kalendar
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Václav Mahelka
- The Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Bohumil Mandák
- The Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, Suchdol, Czech Republic
| | - Karol Krak
- The Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, Suchdol, Czech Republic
| |
Collapse
|