1
|
Wu Y, Li J, Xiao Z, Li W, Xiao Y. Genomic insights into ORs gene family of G protein-coupled receptors expansion driving omnivorous feeding in Spotted knifejaw (Oplegnathus punctatus). Int J Biol Macromol 2025; 309:142674. [PMID: 40164253 DOI: 10.1016/j.ijbiomac.2025.142674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
The Spotted knifejaw was previously considered a predominantly carnivorous species, but emerging evidence suggests that it exhibits omnivorous characteristics. However, the mechanisms underpinning its dietary remain poorly understood; Behavioral experiments have demonstrated that the fish shows preferences for both carnivorous and herbivorous foods and olfactory dysfunction was found to significantly reduced the responsiveness to food stimuli. Anatomical and histological analyses revealed a well-developed olfactory system, with increases in the number of olfactory lamellae and epithelial cells at 50 and 120 dph, which were consistent with spatio-temporal gene expression patterns. Genomic analyses identified ORs within the GPCR family, including 164 MORs, 77 TAARs, 4 V1Rs, and 7 V2Rs. Notably, a significant expansion of the δ subtype of MORs was observed suggesting a role in omnivorous adaptation. Transcriptomic WGCNA revealed the pathways related to protein digestion and absorption, pancreatic secretion, olfactory transduction, and gastric acid secretion. It is hypothesized that the expansion of TAAR13c is related to the carnivorous nature of O. punctatus. In situ hybridization confirmed the expression of key ORs in olfactory epithelial cells, sensory neurons, and intestinal endocrine cells, and functional validation of ORs using the dual luciferase assay, providing new insights into the molecular mechanisms governing omnivory in the Spotted knifejaw.
Collapse
Affiliation(s)
- Yanduo Wu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture Qingdao, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture Qingdao, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Zhizhong Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture Qingdao, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic Products Co., Ltd., Yantai, China
| | - Yongshuang Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture Qingdao, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
2
|
Hogan MP, Holding ML, Nystrom GS, Lawrence KC, Broussard EM, Ellsworth SA, Mason AJ, Margres MJ, Gibbs HL, Parkinson CL, Rokyta DR. Life history and chromosome organization determine chemoreceptor gene expression in rattlesnakes. J Hered 2025:esae078. [PMID: 40296328 DOI: 10.1093/jhered/esae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/14/2024] [Indexed: 04/30/2025] Open
Abstract
Predatory species who hunt for their prey rely on a suite of integrated characters, including sensory traits that are also used for nonpredatory behaviors. Linking the evolution of sensory traits to specific selection pressures therefore requires a deep understanding of the underlying genetics and molecular mechanisms producing these complex phenotypes. However, this relationship remains poorly understood for complex sensory systems that consist of proteins encoded by large gene families. The chemosensory repertoire of rattlesnakes includes hundreds of type-2 vomeronasal receptors and olfactory receptors, representing the two largest gene families found in the genome. To investigate the biological importance of this chemoreceptor diversity, we assessed gene expression in the eastern diamondback rattlesnake (Crotalus adamanteus) and identified sex- and age-biased genes. We found type-2 vomeronasal receptor expression in the vomeronasal epithelium was limited to juvenile snakes, suggesting the sensory programming of this tissue may be correlated with early life development. In the olfactory epithelium, we found subtle expression biases that were more indicative of life history rather than development. We also found transcriptional evidence for dosage compensation of sex-linked genes and trait integration in the expression of transcription factors. We overlay our molecular characterizations in Crotalus adamanteus onto updated olfactory receptor and type-2 vomeronasal receptor phylogenies, providing a genetic road map for future research on these receptors. Finally, we investigated the deeper macroevolutionary context of the most highly expressed type-2 vomeronasal receptor gene spanning the rise of tetrapods and estimated the strength of positive selection for individual amino acid residues in the predicted protein structure. We hypothesize that this gene may have evolved as a conserved signaling subunit to ensure consistent G-protein coupled receptor functionality, potentially relaxing signaling constraints on other type-2 vomeronasal receptor paralogs and promoting ligand binding specificity.
Collapse
Affiliation(s)
- Michael P Hogan
- Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - Matthew L Holding
- Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Gunnar S Nystrom
- Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
| | - Kylie C Lawrence
- Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
| | - Emilie M Broussard
- Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
| | - Schyler A Ellsworth
- Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
| | - Andrew J Mason
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, United States
| | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | - H Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, United States
| | | | - Darin R Rokyta
- Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
3
|
Lawless C, Simonitis LE, Finarelli JA, Hughes GM. Decoding deception: the binding affinity of cuttlefish ink on shark smell receptors. G3 (BETHESDA, MD.) 2025; 15:jkaf001. [PMID: 39778157 PMCID: PMC11917480 DOI: 10.1093/g3journal/jkaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Chemical signaling can play a crucial role in predator-prey dynamics. Here, we present evidence that ink from the common cuttlefish (Sepia officinalis) targets olfactory receptor proteins in sharks, potentially acting as a predator deterrent. We apply in silico 3D docking analysis to investigate the binding affinity of various odorant molecules to shark olfactory receptors of 2 shark species: cloudy catshark (Scyliorhinus torazame) and white shark (Carcharodon carcharias). Pavoninin-4 (a known shark repellent compound) displayed selectivity in binding to receptors in the white shark. In contrast, the primary component of cuttlefish ink, melanin, displayed the highest binding affinities to all shark olfactory receptor proteins in both species. Taurine, another important ink component, exhibited standard to strong bindings for both species. Trans-4,5-epoxy-(E)-2-decenal ("blood decenal"), an odorant associated with the smell of blood, displayed strong binding affinities to all shark olfactory receptors, similar to that of melanin. These findings provide new insights into the molecular interplay between cephalopod inking behavior and their shark predators, with cuttlefish ink likely exploiting the narrow band of the shark olfactory repertoire.
Collapse
Affiliation(s)
- Colleen Lawless
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lauren E Simonitis
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - John A Finarelli
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
4
|
Nath R, Panda B, Rakesh S, Krishnan A. Lineage-Specific Class-A GPCR Dynamics Reflect Diverse Chemosensory Adaptations in Lophotrochozoa. Mol Biol Evol 2025; 42:msaf042. [PMID: 39943858 PMCID: PMC11886862 DOI: 10.1093/molbev/msaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 03/08/2025] Open
Abstract
Sensing external chemosensory cues via Class-A G protein-coupled receptors (GPCRs) is crucial for a multitude of behavioral and biological functions, influencing animal evolution and ecological adaptations. While extensively studied in vertebrates and echinoderms, the role of GPCR-mediated chemoreception in major protostome clades like Lophotrochozoa remains obscure despite their remarkable ecological adaptations across diverse aquatic and terrestrial environments. Utilizing 238 lophotrochozoan genomes across eight phyla, we conducted a large-scale comparative genomics analysis to identify lineage-specific expansions of Class-A GPCR subsets that are likely adapted for chemoreception. Using phylogeny and orthology-inference-based clustering, we distinguished these expansions from conserved orthogroups of prospective endogenous ligand-binding Class-A GPCR subsets. Across phyla, lineage-specific expansions correlated with adaptations to various habitats, ecological niches, and lifestyles, while the influence of whole-genome duplications in driving these lineage-specific expansions appeared to be less significant. Species adapted to various coastal, freshwater, and terrestrial habitats across several classes of Mollusca, Annelida, and other analyzed phyla exhibit large and diverse lineage-specific expansions, while adaptations to extreme deep-sea environments, parasitic lifestyles, sessile behaviors, or alternative chemosensory mechanisms consistently exhibit reductions. Sequence heterogeneity, signatures of positive selection, and conformational flexibility in ligand-binding pockets further highlighted adaptations to environmental signals. In summary, the evolutionary dynamics of Class-A GPCRs in lophotrochozoans reveal a widespread pattern of lineage-specific expansions driven by adaptations for chemoreception across diverse environmental niches, mirroring the trends and prominent roles seen in deuterostome lineages. The comprehensive datasets spanning numerous genomes offer a valuable foundation for advancing GPCR-mediated chemoreception studies in Lophotrochozoa.
Collapse
Affiliation(s)
- Rohan Nath
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| | - Biswajit Panda
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| | - Siuli Rakesh
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| |
Collapse
|
5
|
Frasnelli E, Chivers BD, Smith BC, Fitch WT. Rats can distinguish (and generalize) among two white wine varieties. Anim Cogn 2025; 28:16. [PMID: 39979641 PMCID: PMC11842533 DOI: 10.1007/s10071-025-01937-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
In the olfactory literature there is considerable debate about how differences in olfactory receptors across different species map onto variations in perceptual acuity and performance. Although humans have fewer functional olfactory receptors than most other mammals, it has been suggested that linguistic and cognitive abilities help compensate for this apparent deficit and enhance discriminative abilities, particularly through humans' ability to categorize sensory stimuli into conceptual categories. However, previous research suggests that non-human animals can learn complex categories, involving multiple perceptual dimensions, indicating that they can discriminate complex odor stimuli without language. We investigated generalization over complex olfactory categories by examining rats' discrimination of wine varieties, a challenging task for humans that has been suggested to rely heavily on human-specific linguistic, cognitive and categorization abilities. Nine rats were trained in an olfactory discrimination task (go/no-go) using a specific wine variety (Riesling or Sauvignon Blanc from different winemakers) as the S + . Rats were then tested using novel wines of the same varieties in unrewarded probe trials to assess their abilities to correctly assign instances of wine to specific categories. Interestingly, all nine rats successfully learned to discriminate the two varieties, and most rats generalized within two test trials to novel wines of the same varieties. We explore the implications of our results for olfactory concept formation and categorization more generally.
Collapse
Affiliation(s)
- Elisa Frasnelli
- CIMeC Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, Italy.
- School of Life Science, University of Lincoln, Lincoln, LN6 7DL, UK.
| | | | - Barry C Smith
- Institute of Philosophy, Centre for the Study of the Senses, School of Advanced Study, University of London, Senate House, Malet Street, London, WC1E 7HU, UK
| | - W Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Ibáñez A, Garcia-Porta J. The scent of habitat shift: Olfactory receptor evolution is associated with environmental transitions in turtles. ZOOLOGY 2025; 168:126236. [PMID: 39709692 DOI: 10.1016/j.zool.2024.126236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 10/30/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
The transition between aquatic and terrestrial habitats leads to extreme structural changes in sensorial systems. Olfactory receptors (OR) are involved in the detection of odorant molecules both in water and on land. Therefore, ORs are affected by evolutionary habitat transitions experienced by organisms. In this study, we used turtles, a group of vertebrates which inhabit many distinct environments, to explore whether functional olfactory gene receptor repertoires are correlated to habitat. We found that the proportion of class I vs class II functional olfactory receptor genes (used for waterborne odorant detection and volatile odorant detection, respectively) was closely linked to habitat. Fully terrestrial turtles had the largest proportion of class II functional receptor genes while marine turtles had a larger proportion of class I receptor genes. Freshwater turtles had more balanced numbers of class I and class II functional receptor genes, but showed a gradient of OR type proportions likely reflecting species-specific amphibious preferences. Interestingly, freshwater turtles had by far the largest number of functional OR genes compared to those in other habitats, challenging the hypothesis that secondary adaptions to water may have reduced OR repertoires in amniotes. Our study provides novel results which shed new light on the relationship between chemical communication and habitat.
Collapse
Affiliation(s)
- Alejandro Ibáñez
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland.
| | - Joan Garcia-Porta
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Itoigawa A, Nakagita T, Toda Y. The Remarkable Diversity of Vertebrate Bitter Taste Receptors: Recent Advances in Genomic and Functional Studies. Int J Mol Sci 2024; 25:12654. [PMID: 39684366 PMCID: PMC11641376 DOI: 10.3390/ijms252312654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Bitter taste perception is crucial for animal survival. By detecting potentially harmful substances, such as plant secondary metabolites, as bitter, animals can avoid ingesting toxic compounds. In vertebrates, this function is mediated by taste receptors type 2 (T2Rs), a family of G protein-coupled receptors (GPCRs) expressed on taste buds. Given their vital roles, T2Rs have undergone significant selective pressures throughout vertebrate evolution, leading to frequent gene duplications and deletions, functional changes, and intrapopulation differentiation across various lineages. Recent advancements in genomic and functional research have uncovered the repertoires and functions of bitter taste receptors in a wide range of vertebrate species, shedding light on their evolution in relation to dietary habits and other ecological factors. This review summarizes recent research on bitter taste receptors and explores the mechanisms driving the diversity of these receptors from the perspective of vertebrate ecology and evolution.
Collapse
Affiliation(s)
- Akihiro Itoigawa
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku 102-0083, Tokyo, Japan
| | - Tomoya Nakagita
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Yasuka Toda
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| |
Collapse
|
8
|
de March CA, Ma N, Billesbølle CB, Tewari J, Llinas Del Torrent C, van der Velden WJC, Ojiro I, Takayama I, Faust B, Li L, Vaidehi N, Manglik A, Matsunami H. Engineered odorant receptors illuminate the basis of odour discrimination. Nature 2024; 635:499-508. [PMID: 39478229 DOI: 10.1038/s41586-024-08126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/26/2024] [Indexed: 11/06/2024]
Abstract
How the olfactory system detects and distinguishes odorants with diverse physicochemical properties and molecular configurations remains poorly understood. Vertebrate animals perceive odours through G protein-coupled odorant receptors (ORs)1. In humans, around 400 ORs enable the sense of smell. The OR family comprises two main classes: class I ORs are tuned to carboxylic acids whereas class II ORs, which represent most of the human repertoire, respond to a wide variety of odorants2. A fundamental challenge in understanding olfaction is the inability to visualize odorant binding to ORs. Here we uncover molecular properties of odorant-OR interactions by using engineered ORs crafted using a consensus protein design strategy3. Because such consensus ORs (consORs) are derived from the 17 major subfamilies of human ORs, they provide a template for modelling individual native ORs with high sequence and structural homology. The biochemical tractability of consORs enabled the determination of four cryogenic electron microscopy structures of distinct consORs with specific ligand recognition properties. The structure of a class I consOR, consOR51, showed high structural similarity to the native human receptor OR51E2 and generated a homology model of a related member of the human OR51 family with high predictive power. Structures of three class II consORs revealed distinct modes of odorant-binding and activation mechanisms between class I and class II ORs. Thus, the structures of consORs lay the groundwork for understanding molecular recognition of odorants by the OR superfamily.
Collapse
Affiliation(s)
- Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Christian B Billesbølle
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Jeevan Tewari
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Claudia Llinas Del Torrent
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Barcelona, Spain
| | - Wijnand J C van der Velden
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Ichie Ojiro
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ikumi Takayama
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Bryan Faust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Linus Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA.
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
9
|
Hirose A, Nakamura G, Nikaido M, Fujise Y, Kato H, Kishida T. Localized Expression of Olfactory Receptor Genes in the Olfactory Organ of Common Minke Whales. Int J Mol Sci 2024; 25:3855. [PMID: 38612665 PMCID: PMC11012115 DOI: 10.3390/ijms25073855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Baleen whales (Mysticeti) possess the necessary anatomical structures and genetic elements for olfaction. Nevertheless, the olfactory receptor gene (OR) repertoire has undergone substantial degeneration in the cetacean lineage following the divergence of the Artiodactyla and Cetacea. The functionality of highly degenerated mysticete ORs within their olfactory epithelium remains unknown. In this study, we extracted total RNA from the nasal mucosae of common minke whales (Balaenoptera acutorostrata) to investigate ORs' localized expression. All three sections of the mucosae examined in the nasal chamber displayed comparable histological structure. However, the posterior portion of the frontoturbinal region exhibited notably high OR expression. Neither the olfactory bulb nor the external skin exhibited the expression of these genes. Although this species possesses four intact non-class-2 ORs, all the ORs expressed in the nasal mucosae belong to class-2, implying the loss of aversion to specific odorants. These anatomical and genomic analyses suggest that ORs are still responsible for olfaction within the nasal region of baleen whales, enabling them to detect desirable scents such as prey and potential mating partners.
Collapse
Affiliation(s)
- Ayumi Hirose
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan;
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Gen Nakamura
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan;
| | | | - Hidehiro Kato
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
- The Institute of Cetacean Research, Tokyo 104-0055, Japan
| | - Takushi Kishida
- Museum of Natural and Environmental History, Shizuoka 422-8017, Japan;
- College of Bioresource Sciences, Nihon University, Fujisawa 252-0880, Japan
| |
Collapse
|
10
|
Fritzsch B, Glover JC. Gene networks and the evolution of olfactory organs, eyes, hair cells and motoneurons: a view encompassing lancelets, tunicates and vertebrates. Front Cell Dev Biol 2024; 12:1340157. [PMID: 38533086 PMCID: PMC10963430 DOI: 10.3389/fcell.2024.1340157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Key developmental pathways and gene networks underlie the formation of sensory cell types and structures involved in chemosensation, vision and mechanosensation, and of the efferents these sensory inputs can activate. We describe similarities and differences in these pathways and gene networks in selected species of the three main chordate groups, lancelets, tunicates, and vertebrates, leading to divergent development of olfactory receptors, eyes, hair cells and motoneurons. The lack of appropriately posited expression of certain transcription factors in lancelets and tunicates prevents them from developing vertebrate-like olfactory receptors and eyes, although they generate alternative structures for chemosensation and vision. Lancelets and tunicates lack mechanosensory cells associated with the sensation of acoustic stimuli, but have gravisensitive organs and ciliated epidermal sensory cells that may (and in some cases clearly do) provide mechanosensation and thus the capacity to respond to movement relative to surrounding water. Although functionally analogous to the vertebrate vestibular apparatus and lateral line, homology is questionable due to differences in the expression of the key transcription factors Neurog and Atoh1/7, on which development of vertebrate hair cells depends. The vertebrate hair cell-bearing inner ear and lateral line thus likely represent major evolutionary advances specific to vertebrates. Motoneurons develop in vertebrates under the control of the ventral signaling molecule hedgehog/sonic hedgehog (Hh,Shh), against an opposing inhibitory effect mediated by dorsal signaling molecules. Many elements of Shh-signaling and downstream genes involved in specifying and differentiating motoneurons are also exhibited by lancelets and tunicates, but the repertoire of MNs in vertebrates is broader, indicating greater diversity in motoneuron differentiation programs.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Joel C. Glover
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Policarpo M, Baldwin MW, Casane D, Salzburger W. Diversity and evolution of the vertebrate chemoreceptor gene repertoire. Nat Commun 2024; 15:1421. [PMID: 38360851 PMCID: PMC10869828 DOI: 10.1038/s41467-024-45500-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Chemoreception - the ability to smell and taste - is an essential sensory modality of most animals. The number and type of chemical stimuli that animals can perceive depends primarily on the diversity of chemoreceptors they possess and express. In vertebrates, six families of G protein-coupled receptors form the core of their chemosensory system, the olfactory/pheromone receptor gene families OR, TAAR, V1R and V2R, and the taste receptors T1R and T2R. Here, we study the vertebrate chemoreceptor gene repertoire and its evolutionary history. Through the examination of 1,527 vertebrate genomes, we uncover substantial differences in the number and composition of chemoreceptors across vertebrates. We show that the chemoreceptor gene families are co-evolving, highly dynamic, and characterized by lineage-specific expansions (for example, OR in tetrapods; TAAR, T1R in teleosts; V1R in mammals; V2R, T2R in amphibians) and losses. Overall, amphibians, followed by mammals, are the vertebrate clades with the largest chemoreceptor repertoires. While marine tetrapods feature a convergent reduction of chemoreceptor numbers, the number of OR genes correlates with habitat in mammals and birds and with migratory behavior in birds, and the taste receptor repertoire correlates with diet in mammals and with aquatic environment in fish.
Collapse
Affiliation(s)
- Maxime Policarpo
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Didier Casane
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
- Université Paris Cité, UFR Sciences du Vivant, Paris, France
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Nakamuta S, Itoh M, Mori M, Kurita M, Zhang Z, Nikaido M, Miyazaki M, Yokoyama T, Yamamoto Y, Nakamuta N. In situ hybridization analysis of odorant receptor expression in the olfactory organ of the pig-nosed turtle Carettochelys insculpta. Tissue Cell 2023; 85:102255. [PMID: 37922676 DOI: 10.1016/j.tice.2023.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
The turtle olfactory organ consists of upper (UCE) and lower (LCE) chamber epithelium, which send axons to the ventral and dorsal portions of the olfactory bulbs, respectively. Generally, the UCE is associated with glands and contains ciliated olfactory receptor neurons (ORNs), while the LCE is devoid of glands and contains microvillous ORNs. However, the olfactory organ of the pig-nosed turtle Carettochelys insculpta appears to be a single olfactory system morphologically: there are no associated glands; ciliated ORNs are distributed throughout the olfactory organ; and the olfactory bulb is not divided into ventral and dorsal portions. In this study, we analyzed the expression of odorant receptors (ORs), the major olfactory receptors in turtles, in the pig-nosed turtle olfactory organ, via in situ hybridization. Of 690 ORs, 375 were classified as class I and 315 as class II. Some class II ORs were expressed predominantly in the posterior dorsomedial walls of the nasal cavity, while other class II ORs and all class I ORs examined were expressed in the remaining region. These results suggest that the pig-nosed turtle olfactory organ can be divided into two regions according to the expression of ORs.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Miho Itoh
- Port of Nagoya Public Aquarium, 1-3 Minato-machi, Minato-ku, Nagoya, Aichi 455-0033, Japan
| | - Masanori Mori
- Port of Nagoya Public Aquarium, 1-3 Minato-machi, Minato-ku, Nagoya, Aichi 455-0033, Japan
| | - Masanori Kurita
- Port of Nagoya Public Aquarium, 1-3 Minato-machi, Minato-ku, Nagoya, Aichi 455-0033, Japan
| | - Zicong Zhang
- Institute for the Advanced Study of Human Biology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masao Miyazaki
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
13
|
Ferreira JS, Bruschi DP. Tracking the Diversity and Chromosomal Distribution of the Olfactory Receptor Gene Repertoires of Three Anurans Species. J Mol Evol 2023; 91:793-805. [PMID: 37906255 DOI: 10.1007/s00239-023-10135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Olfaction is a crucial capability for most vertebrates and is realized through olfactory receptors in the nasal cavity. The enormous diversity of olfactory receptors has been created by gene duplication, following a birth-and-death model of evolution. The olfactory receptor genes of the amphibians have received relatively little attention up to now, although recent studies have increased the number of species for which data are available. This study analyzed the diversity and chromosomal distribution of the OR genes of three anuran species (Engystomops pustulosus, Bufo bufo and Hymenochirus boettgeri). The OR genes were identified through searches for homologies, and sequence filtering and alignment using bioinformatic tools and scripts. A high diversity of OR genes was found in all three species, ranging from 917 in B. bufo to 1194 in H. boettgeri, and a total of 2076 OR genes in E. pustulosus. Six OR groups were recognized using an evolutionary gene tree analysis. While E. pustulosus has one of the highest numbers of genes of the gamma group (which detect airborne odorants) yet recorded in an anuran, B. bufo presented the smallest number of pseudogene sequences ever identified, with no pseudogenes in either the beta or epsilon groups. Although H. boettgeri shares many morphological adaptations for an aquatic lifestyle with Xenopus, and presented a similar number of genes related to the detection of water-soluble odorants, it had comparatively far fewer genes related to the detection of airborne odorants. This study is the first to describe the complete OR repertoire of the three study species and represents an important contribution to the understanding of the evolution and function of the sense of smell in vertebrates.
Collapse
Affiliation(s)
- Johnny Sousa Ferreira
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil
| | - Daniel Pacheco Bruschi
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil.
| |
Collapse
|
14
|
de March CA, Ma N, Billesbølle CB, Tewari J, del Torrent CL, van der Velden WJC, Ojiro I, Takayama I, Faust B, Li L, Vaidehi N, Manglik A, Matsunami H. Engineered odorant receptors illuminate structural principles of odor discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567230. [PMID: 38014344 PMCID: PMC10680712 DOI: 10.1101/2023.11.16.567230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A central challenge in olfaction is understanding how the olfactory system detects and distinguishes odorants with diverse physicochemical properties and molecular configurations. Vertebrate animals perceive odors via G protein-coupled odorant receptors (ORs). In humans, ~400 ORs enable the sense of smell. The OR family is composed of two major classes: Class I ORs are tuned to carboxylic acids while Class II ORs, representing the vast majority of the human repertoire, respond to a wide variety of odorants. How ORs recognize chemically diverse odorants remains poorly understood. A fundamental bottleneck is the inability to visualize odorant binding to ORs. Here, we uncover fundamental molecular properties of odorant-OR interactions by employing engineered ORs crafted using a consensus protein design strategy. Because such consensus ORs (consORs) are derived from the 17 major subfamilies of human ORs, they provide a template for modeling individual native ORs with high sequence and structural homology. The biochemical tractability of consORs enabled four cryoEM structures of distinct consORs with unique ligand recognition properties. The structure of a Class I consOR, consOR51, showed high structural similarity to the native human receptor OR51E2 and yielded a homology model of a related member of the human OR51 family with high predictive power. Structures of three Class II consORs revealed distinct modes of odorant-binding and activation mechanisms between Class I and Class II ORs. Thus, the structures of consORs lay the groundwork for understanding molecular recognition of odorants by the OR superfamily.
Collapse
Affiliation(s)
- Claire A. de March
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Université Paris-Saclay, Gifsur- Yvette, 91190, France
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | - Jeevan Tewari
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Claudia Llinas del Torrent
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain; Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Wijnand J. C. van der Velden
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Ichie Ojiro
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ikumi Takayama
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Bryan Faust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Linus Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain; Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
15
|
Kang M, Ahn B, Youk S, Jeon H, Soundarajan N, Cho ES, Park W, Park C. Individual and population diversity of 20 representative olfactory receptor genes in pigs. Sci Rep 2023; 13:18668. [PMID: 37907519 PMCID: PMC10618239 DOI: 10.1038/s41598-023-45784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
Understanding the influence of genetic variations in olfactory receptor (OR) genes on the olfaction-influenced phenotypes such as behaviors, reproduction, and feeding is important in animal biology. However, our understanding of the complexity of the OR subgenome is limited. In this study, we analyzed 1120 typing results of 20 representative OR genes belonging to 13 OR families on 14 pig chromosomes from 56 individuals belonging to seven different breeds using a sequence-based OR typing method. We showed that the presence of copy number variations, conservation of locus-specific diversity, abundance of breed-specific alleles, presence of a loss-of-function allele, and low-level purifying selection in pig OR genes could be common characteristics of OR genes in mammals. The observed nucleotide sequence diversity of pig ORs was higher than that of dogs. To the best of our knowledge, this is the first report on the individual- or population-level characterization of a large number of OR family genes in livestock species.
Collapse
Affiliation(s)
- Mingue Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byeongyong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seungyeon Youk
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyoim Jeon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | | | - Eun-Seok Cho
- Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Woncheoul Park
- Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
16
|
Silva L, Mendes T, Ramos L, Zhang G, Antunes A. Parallel evolution of fish bi-modal breathing and expansion of olfactory receptor (OR) genes: toward a universal ORs nomenclature. J Genet Genomics 2023; 50:600-610. [PMID: 36935037 DOI: 10.1016/j.jgg.2023.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/19/2023]
Abstract
Olfactory receptors (ORs) play a key role in the prime sensorial perception, being highly relevant for intra/interspecific interactions. ORs are a subgroup of G-protein coupled receptors that exhibit highly complex subgenomes in vertebrates. However, OR repertoires remain poorly studied in fish lineages, precluding finely retracing their origin, evolution, and diversification, especially in the most basal groups. Here, we conduct an exhaustive gene screening upon 43 high-quality fish genomes exhibiting varied gene repertoires (2-583 genes). While the early vertebrates performed gas exchange through gills, we hypothesize that the emergence of new breathing structures (swim bladder and paired lungs) in early osteichthyans may be associated with expansions in the ORs gene families sensitive to airborne molecules. Additionally, we verify that the OR repertoire of moderns actinopterygians has not increased as expected following a whole genome duplication, likely due to regulatory mechanisms compensating the gene load excess. Finally, we identify 25 distinct OR families, allowing us to propose an updated universal nomenclature for the fish ORs.
Collapse
Affiliation(s)
- Liliana Silva
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Tito Mendes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Luana Ramos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong 518083, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
17
|
Burguera D, Dionigi F, Kverková K, Winkler S, Brown T, Pippel M, Zhang Y, Shafer M, Nichols ALA, Myers E, Němec P, Musilova Z. Expanded olfactory system in ray-finned fishes capable of terrestrial exploration. BMC Biol 2023; 21:163. [PMID: 37525196 PMCID: PMC10392011 DOI: 10.1186/s12915-023-01661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Smell abilities differ greatly among vertebrate species due to distinct sensory needs, with exceptional variability reported in the number of olfactory genes and the size of the odour-processing regions of the brain. However, key environmental factors shaping genomic and phenotypic changes linked to the olfactory system remain difficult to identify at macroevolutionary scales. Here, we investigate the association between diverse ecological traits and the number of olfactory chemoreceptors in approximately two hundred ray-finned fishes. RESULTS We found independent expansions producing large gene repertoires in several lineages of nocturnal amphibious fishes, generally able to perform active terrestrial exploration. We reinforced this finding with on-purpose genomic and transcriptomic analysis of Channallabes apus, a catfish species from a clade with chemosensory-based aerial orientation. Furthermore, we also detected an augmented information-processing capacity in the olfactory bulb of nocturnal amphibious fishes by estimating the number of cells contained in this brain region in twenty-four actinopterygian species. CONCLUSIONS Overall, we report a convergent genomic and phenotypic magnification of the olfactory system in nocturnal amphibious fishes. This finding suggests the possibility of an analogous evolutionary event in fish-like tetrapod ancestors during the first steps of the water-to-land transition, favouring terrestrial adaptation through enhanced aerial orientation.
Collapse
Affiliation(s)
- Demian Burguera
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Francesco Dionigi
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kristina Kverková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Yicheng Zhang
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
18
|
Ye M, Lin X, Zhang Y, Huang Y, Li G, Tian C. Genome-Wide Identification and Characterization of Olfactory Receptor Genes in Silver Sillago (Sillago sihama). Animals (Basel) 2023; 13:ani13071232. [PMID: 37048487 PMCID: PMC10093537 DOI: 10.3390/ani13071232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Olfactory receptor (OR) genes are essential in the specific recognition of diverse stimuli in fish. In this study, a total of 141 OR genes were identified in silver sillago (Sillago sihama), a marine fish sensitive to environmental stimuli, including 112 intact genes, 26 truncated genes, and three pseudogenes. A phylogenetic tree analysis elucidated that the OR genes of S. sihama were classified into six groups, of which β, γ, δ, ε, and ζ groups belonged to type I, and the η group belonged to type II. The type I OR genes contained almost all conserved motifs (n = 62), while type II OR genes mainly retained conserved motifs 7(3), 1, 10, 4, and 2 (n = 39). OR genes were mainly distributed on LG1, LG9, LG11, and LG12. Of all OR genes, 36.23% (50 genes) showed significant expansion in S. sihama. Ka/Ks analysis demonstrated that 227 sites were under purifying selection, while 12 sites were under positive selection, including eight genes in the OR2A12 gene subfamily. Sixty-one genes (44.20%) displayed differential expression under hypoxic stress. The identified OR genes explored the mechanism of environmental stress and ecological adaptation of S. sihama, and provided valuable genomic resources for further research on the olfaction of teleosts.
Collapse
Affiliation(s)
- Minghui Ye
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinghua Lin
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yulei Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Yang Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| |
Collapse
|
19
|
Martinez Q, Courcelle M, Douzery E, Fabre PH. When morphology does not fit the genomes: the case of rodent olfaction. Biol Lett 2023; 19:20230080. [PMID: 37042683 PMCID: PMC10092080 DOI: 10.1098/rsbl.2023.0080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Linking genes to phenotypes has been a major question in evolutionary biology for the last decades. In the genomic era, few studies attempted to link olfactory-related genes to different anatomical proxies. However, they found very inconsistent results. This study is the first to investigate a potential relation between olfactory turbinals and olfactory receptor (OR) genes. We demonstrated that despite the use of similar methodology in the acquisition of data, OR genes do not correlate with the relative and the absolute surface area of olfactory turbinals. These results challenged the interpretations of several studies based on different proxies related to olfaction and their potential relation to olfactory capabilities.
Collapse
Affiliation(s)
- Quentin Martinez
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM-EPHE), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
- Staatliches Museum für Naturkunde Stuttgart DE-70191, Stuttgart, Germany
| | - Maxime Courcelle
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM-EPHE), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
| | - Emmanuel Douzery
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM-EPHE), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM-EPHE), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
- Mammal Section, Department of Life Sciences, The Natural History Museum, London SW7 5DB, UK
- Institut Universitaire de France (IUF), Paris, France
- Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, Central Park West, 79th St., New York, NY 10024-5192, USA
| |
Collapse
|
20
|
Kishida T. Tadpoles and frogs have a different sense of taste. Proc Natl Acad Sci U S A 2023; 120:e2300973120. [PMID: 36802423 PMCID: PMC9992856 DOI: 10.1073/pnas.2300973120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Affiliation(s)
- Takushi Kishida
- Museum of Natural and Environmental History, Shizuoka, 422-8017Japan
| |
Collapse
|
21
|
Wang H, Wan HT, Wu B, Jian J, Ng AHM, Chung CYL, Chow EYC, Zhang J, Wong AOL, Lai KP, Chan TF, Zhang EL, Wong CKC. A Chromosome-level assembly of the Japanese eel genome, insights into gene duplication and chromosomal reorganization. Gigascience 2022; 11:giac120. [PMID: 36480030 PMCID: PMC9730501 DOI: 10.1093/gigascience/giac120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Japanese eels (Anguilla japonica) are commercially important species, harvested extensively for food. Currently, this and related species (American and European eels) are challenging to breed on a commercial basis. As a result, the wild stock is used for aquaculture. Moreover, climate change, habitat loss, water pollution, and altered ocean currents affect eel populations negatively. Accordingly, the International Union for Conservation of Nature lists Japanese eels as endangered and on its red list. Here we presented a high-quality genome assembly for Japanese eels and demonstrated that large chromosome reorganizations occurred in the events of third-round whole-genome duplications (3R-WRDs). Several chromosomal fusions and fissions have reduced the ancestral protochromosomal number of 25 to 19 in the Anguilla lineage. A phylogenetic analysis of the expanded gene families showed that the olfactory receptors (group δ and ζ genes) and voltage-gated Ca2+ channels expanded significantly. Both gene families are crucial for olfaction and neurophysiology. Additional tandem and proximal duplications occurred following 3R-WGD to acquire immune-related genes for an adaptive advantage against various pathogens. The Japanese eel assembly presented here can be used to study other Anguilla species relating to evolution and conservation.
Collapse
Affiliation(s)
- Hongbo Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR
| | - Hin Ting Wan
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong SAR
| | - Bin Wu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Alice H M Ng
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong SAR
| | - Claire Yik-Lok Chung
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, Hong Kong Bioinformatics Centre, the Chinese University of Hong Kong, Hong Kong SAR
| | - Eugene Yui-Ching Chow
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, Hong Kong Bioinformatics Centre, the Chinese University of Hong Kong, Hong Kong SAR
| | - Jizhou Zhang
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, Hong Kong Bioinformatics Centre, the Chinese University of Hong Kong, Hong Kong SAR
| | - Anderson O L Wong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China
- School of Biological Sciences, the University of Hong Kong, Hong Kong SAR
| | - Keng Po Lai
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Ting Fung Chan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, Hong Kong Bioinformatics Centre, the Chinese University of Hong Kong, Hong Kong SAR
| | - Eric Lu Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR
| | - Chris Kong-Chu Wong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong SAR
| |
Collapse
|
22
|
Han W, Wu Y, Zeng L, Zhao S. Building the Chordata Olfactory Receptor Database using more than 400,000 receptors annotated by Genome2OR. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2539-2551. [PMID: 35696018 DOI: 10.1007/s11427-021-2081-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 06/15/2023]
Abstract
Olfactory receptors are poorly annotated for most genome-sequenced chordates. To address this deficiency, we developed a nhmmer-based olfactory receptor annotation tool Genome2OR ( https://github.com/ToHanwei/Genome2OR.git ), and used it to process 1,695 sequenced chordate genomes in the NCBI Assembly database as of January, 2021. In total, 765,248 olfactory receptor genes were annotated, with 404,426 functional genes and 360,822 pseudogenes, which represents a four-fold increase in the number of annotated olfactory receptors. Based on the annotation data, we built a database called Chordata Olfactory Receptor Database (CORD, https://cord.ihuman.shanghaitech.edu.cn ) for archiving, analysing and disseminating the data. Beyond the primary data, we offer derivative information, including pictures of species, cross references to public databases, structural models, sequence similarity networks and sequence profiles in the CORD. Furthermore, we did brief analyses on these receptors, including building a huge protein sequence similarity network covering all receptors in the database, and clustering them into 20 communities, classifying the 20 communities into three categories based on their presences/absences in ray-finned fish and/or lobe-finned fish. We infer that olfactory receptors should have unique activation and desensitization mechanisms by analysing their sequences and structural models. We believe the CORD can benefit the researchers and the general public who are interested in olfaction.
Collapse
Affiliation(s)
- Wei Han
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Liting Zeng
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
23
|
Buggiotti L, Yudin NS, Larkin DM. Copy Number Variants in Two Northernmost Cattle Breeds Are Related to Their Adaptive Phenotypes. Genes (Basel) 2022; 13:genes13091595. [PMID: 36140763 PMCID: PMC9498843 DOI: 10.3390/genes13091595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Copy number variations (CNVs) are genomic structural variants with potential functional and evolutionary effects on phenotypes. In this study, we report the identification and characterization of CNVs from the whole-genome resequencing data of two northernmost cattle breeds from Russia: the Yakut and Kholmogory cattle and their phylogenetically most related breeds, Hanwoo and Holstein, respectively. Comparisons of the CNV regions (CNVRs) among the breeds led to the identification of breed-specific CNVRs shared by cold-adapted Kholmogory and Yakut cattle. An investigation of their overlap with genes, regulatory domains, conserved non-coding elements (CNEs), enhancers, and quantitative trait loci (QTLs) was performed to further explore breed-specific biology and adaptations. We found CNVRs enriched for gene ontology terms related to adaptation to environments in both the Kholmogory and Yakut breeds and related to thermoregulation specifically in Yakut cattle. Interestingly, the latter has also been supported when exploring the enrichment of breed-specific CNVRs in the regulatory domains and enhancers, CNEs, and QTLs implying the potential contribution of CNVR to the Yakut and Kholmogory cattle breeds’ adaptation to a harsh environment.
Collapse
Affiliation(s)
- Laura Buggiotti
- Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Nikolay S. Yudin
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genomics Center, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science (ICG SB RAS), Novosibirsk 630090, Russia
| | - Denis M. Larkin
- Royal Veterinary College, University of London, London NW1 0TU, UK
- Correspondence:
| |
Collapse
|
24
|
Policarpo M, Bemis KE, Laurenti P, Legendre L, Sandoz JC, Rétaux S, Casane D. Coevolution of the olfactory organ and its receptor repertoire in ray-finned fishes. BMC Biol 2022; 20:195. [PMID: 36050670 PMCID: PMC9438307 DOI: 10.1186/s12915-022-01397-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ray-finned fishes (Actinopterygii) perceive their environment through a range of sensory modalities, including olfaction. Anatomical diversity of the olfactory organ suggests that olfaction is differentially important among species. To explore this topic, we studied the evolutionary dynamics of the four main gene families (OR, TAAR, ORA/VR1 and OlfC/VR2) coding for olfactory receptors in 185 species of ray-finned fishes. Results The large variation in the number of functional genes, between 28 in the ocean sunfish Mola mola and 1317 in the reedfish Erpetoichthys calabaricus, is the result of parallel expansions and contractions of the four main gene families. Several ancient and independent simplifications of the olfactory organ are associated with massive gene losses. In contrast, Polypteriformes, which have a unique and complex olfactory organ, have almost twice as many olfactory receptor genes as any other ray-finned fish. Conclusions We document a functional link between morphology of the olfactory organ and richness of the olfactory receptor repertoire. Further, our results demonstrate that the genomic underpinning of olfaction in ray-finned fishes is heterogeneous and presents a dynamic pattern of evolutionary expansions, simplifications, and reacquisitions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01397-x.
Collapse
Affiliation(s)
- Maxime Policarpo
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Katherine E Bemis
- NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C, 20560, USA
| | - Patrick Laurenti
- Université Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, 75013, Paris, France
| | - Laurent Legendre
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France.
| | - Didier Casane
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. .,Université Paris Cité, UFR Sciences du Vivant, 75013, Paris, France.
| |
Collapse
|
25
|
Koyama S, Heinbockel T. Chemical Constituents of Essential Oils Used in Olfactory Training: Focus on COVID-19 Induced Olfactory Dysfunction. Front Pharmacol 2022; 13:835886. [PMID: 35721200 PMCID: PMC9201274 DOI: 10.3389/fphar.2022.835886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The recent increase in the number of patients with post-viral olfactory dysfunction (PVOD) following the outbreak of COVID-19 has raised the general interest in and concern about olfactory dysfunction. At present, no clear method of treatment for PVOD has been established. Currently the most well-known method to improve the symptoms of olfactory dysfunction is "olfactory training" using essential oils. The essential oils used in olfactory training typically include rose, lemon, clove, and eucalyptus, which were selected based on the odor prism hypothesis proposed by Hans Henning in 1916. He classified odors based on six primary categories or dimensions and suggested that any olfactory stimulus fits into his smell prism, a three-dimensional space. The term "olfactory training" has been used based on the concept of training olfactory sensory neurons to relearn and distinguish olfactory stimuli. However, other mechanisms might contribute to how olfactory training can improve the recovery of the olfactory sense. Possibly, the essential oils contain chemical constituents with bioactive properties that facilitate the recovery of the olfactory sense by suppressing inflammation and enhancing regeneration. In this review, we summarize the chemical constituents of the essential oils of rose, lemon, clove, and eucalyptus and raise the possibility that the chemical constituents with bioactive properties are involved in improving the symptoms of olfactory dysfunction. We also propose that other essential oils that contain chemical constituents with anti-inflammatory effects and have binding affinity with SARS-CoV-2 can be new candidates to test their efficiencies in facilitating the recovery.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, College of Arts and Sciences, Indiana University, Bloomington, IN, United States
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC, United States
| |
Collapse
|
26
|
Sakellakis M. Orphan receptors in prostate cancer. Prostate 2022; 82:1016-1024. [PMID: 35538397 DOI: 10.1002/pros.24370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The identification of new cellular receptors has been increasing rapidly. A receptor is called "orphan" if an endogenous ligand has not been identified yet. METHODS Here we review receptors that contribute to prostate cancer and are considered orphan or partially orphan. This means that the full spectrum of their endogenous ligands remains unknown. RESULTS The orphan receptors are divided into two major families. The first group includes G protein-coupled receptors. Most are orphan olfactory receptors. OR51E1 inhibits cell proliferation and induces senescence in prostate cancer. OR51E2 inhibits prostate cancer growth, but promotes invasiveness and metastasis. GPR158, GPR110, and GPCR-X play significant roles in prostate cancer development and progression. However, GPR160 induces cell cycle arrest and apoptosis. The other major subset of orphan receptors are nuclear receptors. Receptor-related orphan receptor α (RORα) inhibits tumor growth, but RORγ stimulates androgen receptor signaling. PXR contributes to metabolic deactivation of androgens and inhibits cell proliferation. TLX has protumorigenic effects in prostate cancer, while its knockdown triggers cellular senescence and growth arrest. Estrogen-related receptor ERRγ can inhibit tumor growth but ERRα is protumorigenic. Dax1 and short heterodimeric partner are also inhibitory in prostate cancer. CONCLUSION There is a "zoo" of relatively underappreciated orphan receptors that play key roles in prostate cancer.
Collapse
Affiliation(s)
- Minas Sakellakis
- Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
27
|
Identification and characterization of olfactory receptor genes and olfactory perception in rapa whelk Rapana venosa (Valenciennes, 1846) during larval settlement and metamorphosis. Gene 2022; 825:146403. [PMID: 35306113 DOI: 10.1016/j.gene.2022.146403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/13/2022] [Accepted: 03/04/2022] [Indexed: 11/23/2022]
Abstract
The rapa whelk Rapana venosa, an economically important marine fishery resource in China but a major invader all over the world, changes from a phytophagous to a carnivorous form following settlement and metamorphosis. However, the low settlement and metamorphosis rates (<1%) of larvae limit the abundance of R. venosa. This critical step (settlement and metamorphosis) remains poorly characterized but may be related to how larvae perceive the presence of shellfish, their new source of food. Here, we report that larvae may use olfactory perception to sense shellfish. Olfactory receptor (OR) genes are involved in odor sensing in animals. We identified a total of 463 OR genes, which could be grouped into nine clades based on phylogenetic analysis. When assessing the attraction of larvae at different developmental stages to oyster odor, R. venosa showed active settlement and metamorphosis behavior only at the J4 stage (competent larva, 1000-1500 μm shell length) and in the presence of shellfish odor at the same time. Expression of OR gene family members differed between stage 2 (four-spiral whorl stage) and stage 1 (single- to three-spiral whorl stage), indicating significant changes in the olfactory system during larval development. These findings broaden our understanding of olfactory perception, settlement, and metamorphosis in gastropods and can be used to improve R. venosa harvesting, as well as the sustainable development and utilization of this resource.
Collapse
|
28
|
Sin SYW, Cloutier A, Nevitt G, Edwards SV. Olfactory receptor subgenome and expression in a highly olfactory procellariiform seabird. Genetics 2021; 220:6458329. [PMID: 34888634 DOI: 10.1093/genetics/iyab210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Procellariiform seabirds rely on their sense of smell for foraging and homing. Both genomes and transcriptomes yield important clues about how olfactory receptor (OR) subgenomes are shaped by natural and sexual selection, yet no transcriptomes have been made of any olfactory epithelium of any bird species thus far. Here we assembled a high-quality genome and nasal epithelium transcriptome of the Leach's storm-petrel (Oceanodroma leucorhoa) to extensively characterize their OR repertoire. Using a depth-of-coverage-assisted counting method, we estimated over 160 intact OR genes (∼500 including OR fragments). This method reveals the highest number of intact OR genes and the lowest proportion of pseudogenes compared to other waterbirds studied, and suggests that rates of OR gene duplication vary between major clades of birds, with particularly high rates in passerines. OR expression patterns reveal two OR genes (OR6-6 and OR5-11) highly expressed in adults, and four OR genes (OR14-14, OR14-12, OR10-2, and OR14-9) differentially expressed between age classes of storm-petrels. All four genes differentially expressed between age classes were more highly expressed in chicks compared to adults, suggesting that ORs genes may exhibit ontogenetic specializations. Three highly differentially expressed OR genes also had high copy number ratios, suggesting that expression variation may be linked to copy number in the genome. We provide better estimates of OR gene number by using a copy number-assisted counting method, and document ontogenetic changes in OR gene expression that may be linked to olfactory specialization. These results provide valuable insight into the expression, development, and macroevolution of olfaction in seabirds.
Collapse
Affiliation(s)
- Simon Yung Wa Sin
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.,School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Alison Cloutier
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Gabrielle Nevitt
- Department of Neurobiology, Physiology and Behavior and the Graduate Group in Ecology, University of California, Davis, CA 95616, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
29
|
Abbas G, Tang S, Noble J, Lane RP. Olfactory receptor coding sequences cause silencing of episomal constructs in multiple cell lines. Mol Cell Neurosci 2021; 117:103681. [PMID: 34742908 PMCID: PMC8669572 DOI: 10.1016/j.mcn.2021.103681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022] Open
Abstract
The mammalian olfactory system consists of sensory neurons with specialized odorant-binding capability accomplished by mutually exclusive odorant receptor (OR) expression. Mutually exclusive OR expression is a complex multi-step process regulated by a number of cis and trans factors, including pan-silencing of all OR genes preceding the robust and stable expression of the one OR selected in each sensory neuron. We transfected two olfactory-placode-derived cell lines modeling immature odorant sensory neurons, as well as the GD25 fibroblast cell line, with episomes containing CMV-driven GFP and TK-driven hygromycin reporter genes. We inserted various coding sequences, along with an IRES, immediately upstream of the GFP gene to produce bicistronic mRNAs driven from the local CMV promoter. We found that the presence of several OR coding sequences resulted in significantly diminished episomal expression of GFP in all three cell lines. These findings suggest that OR coding sequences have intrinsic self-silencing capability that might facilitate mutually exclusive OR expression in olfactory sensory neurons by making it less likely that multiple ORs acquire an above-threshold level of expression at once.
Collapse
Affiliation(s)
- Ghazia Abbas
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Spencer Tang
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Joyce Noble
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Robert P Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA.
| |
Collapse
|
30
|
Hu X, Jiang Z, Ming Y, Jian J, Jiang S, Zhang D, Zhang J, Zheng S, Fang X, Yang Y, Zheng R. A chromosomal level genome sequence for Quasipaa spinosa (Dicroglossidae) reveals chromosomal evolution and population diversity. Mol Ecol Resour 2021; 22:1545-1558. [PMID: 34837460 DOI: 10.1111/1755-0998.13560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Quasipaa spinosa is an Asian commercial Dicroglossidae species noted for its spiny chest found in adult males. Here, we report the first chromosomal level Q. spinosa genome employing PacBio long read sequencing and high-resolution chromosome conformation capture (Hi-C) technology. The total length of the final assembled genome was 2,839,292,578 bp, with contig N50 of 3.79 Mb and scaffold N50 of 327.44 Mb. Approximately 99.30% of the length of the assembled genome sequences were anchored to 13 chromosomes with the assistance of Hi-C reads. A total of 26,173 protein-coding genes were predicted, and 95.98% of the genes were functionally annotated. The annotated genes covered a total of 92.10% of the complete vertebrate core gene set according to the BUSCO pipeline evaluation. Approximately 41 million years ago, Q. spinosa began to diverge from its dicroglossid sister taxon Nanorana parkeri. The Q. spinosa genome revealed obvious chromosomal fissions compared with Xenopus tropicalis, which probably represented a specific chromosome evolutionary history within frogs. Population analysis showed that Chinese Q. spinosa could be divided into eastern and western genetic clusters, with the western population showing higher diversity than the eastern population. The effective population size of Q. spinosa showed a continuously decreasing trend from one million years ago to 10,000 years ago. In summary, this study sheds light on Q. spinosa evolution and population differentiation, providing a valuable genomic resource for further biological and genetic studies on this species, and other closely related frog taxa.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China.,Xinzhi College, Zhejiang Normal University, Jinhua, China
| | - Zeyuan Jiang
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yao Ming
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China.,Center for Plant and Animal Genomics Engineering Research of Guangdong Province, Shenzhen, Guangdong, China
| | - Jianbo Jian
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China.,Center for Plant and Animal Genomics Engineering Research of Guangdong Province, Shenzhen, Guangdong, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sanjie Jiang
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China.,Center for Plant and Animal Genomics Engineering Research of Guangdong Province, Shenzhen, Guangdong, China
| | - Dandan Zhang
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jiayong Zhang
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Shanjian Zheng
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Xiaodong Fang
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China.,Center for Plant and Animal Genomics Engineering Research of Guangdong Province, Shenzhen, Guangdong, China
| | - Yulan Yang
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China.,Center for Plant and Animal Genomics Engineering Research of Guangdong Province, Shenzhen, Guangdong, China
| | - Rongquan Zheng
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China.,Xinzhi College, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
31
|
Xu P, Zhao C, You X, Yang F, Chen J, Ruan Z, Gu R, Xu J, Bian C, Shi Q. Draft Genome of the Mirrorwing Flyingfish ( Hirundichthys speculiger). Front Genet 2021; 12:695700. [PMID: 34306036 PMCID: PMC8294118 DOI: 10.3389/fgene.2021.695700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/03/2021] [Indexed: 12/04/2022] Open
Affiliation(s)
- Pengwei Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chenxi Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxin You
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Fan Yang
- Marine Geological Department, Marine Geological Survey Institute of Hainan Province, Haikou, China
| | - Jieming Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Zhiqiang Ruan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Ruobo Gu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Chao Bian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Qiong Shi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| |
Collapse
|
32
|
Heinbockel T, Straiker A. Cannabinoids Regulate Sensory Processing in Early Olfactory and Visual Neural Circuits. Front Neural Circuits 2021; 15:662349. [PMID: 34305536 PMCID: PMC8294086 DOI: 10.3389/fncir.2021.662349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Our sensory systems such as the olfactory and visual systems are the target of neuromodulatory regulation. This neuromodulation starts at the level of sensory receptors and extends into cortical processing. A relatively new group of neuromodulators includes cannabinoids. These form a group of chemical substances that are found in the cannabis plant. Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the main cannabinoids. THC acts in the brain and nervous system like the chemical substances that our body produces, the endogenous cannabinoids or endocannabinoids, also nicknamed the brain's own cannabis. While the function of the endocannabinoid system is understood fairly well in limbic structures such as the hippocampus and the amygdala, this signaling system is less well understood in the olfactory pathway and the visual system. Here, we describe and compare endocannabinoids as signaling molecules in the early processing centers of the olfactory and visual system, the olfactory bulb, and the retina, and the relevance of the endocannabinoid system for synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| | - Alex Straiker
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
33
|
Driver RJ, Balakrishnan CN. Highly contiguous genomes improve the understanding of avian olfactory receptor repertoires. Integr Comp Biol 2021; 61:1281-1290. [PMID: 34180521 DOI: 10.1093/icb/icab150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/14/2022] Open
Abstract
Third generation (long read-based) sequencing technologies are reshaping our understanding of genome structure and function. One of the most persistent challenges in genome biology has been confidently reconstructing radiations of complex gene families. Olfactory receptors (ORs) represent just such a gene family with upwards of 1000s of receptors in some mammalian taxa. Whereas in birds olfaction was historically an overlooked sensory modality, new studies have revealed an important role for smell. Chromosome-level assemblies for birds allow a new opportunity to characterize patterns of OR diversity among major bird lineages. Previous studies of short read (second-generation) genome assemblies have associated OR gene family size with avian ecology, but such conclusions could be premature if new assembly methods reshape our understanding of avian OR evolution. Here we provide a fundamental characterization of OR repertoires in five recent genome assemblies, including the most recent assembly of golden-collared manakin (Manacus vitellinus). We find that short read-based assemblies systematically undercount the avian-specific gamma-c OR subfamily, a subfamily that comprises over 65% of avian OR diversity. Therefore, in contrast to previous studies we find a high diversity of gamma-c ORs across the avian tree of life. Building on these findings, ongoing sequencing efforts and improved genome assemblies will clarify the relationship between OR diversity and avian ecology.
Collapse
|
34
|
Ding W, Zhang X, Zhao X, Jing W, Cao Z, Li J, Huang Y, You X, Wang M, Shi Q, Bing X. A Chromosome-Level Genome Assembly of the Mandarin Fish ( Siniperca chuatsi). Front Genet 2021; 12:671650. [PMID: 34249093 PMCID: PMC8262678 DOI: 10.3389/fgene.2021.671650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
The mandarin fish, Siniperca chuatsi, is an economically important perciform species with widespread aquaculture practices in China. Its special feeding habit, acceptance of only live prey fishes, contributes to its delicious meat. However, little is currently known about related genetic mechanisms. Here, we performed whole-genome sequencing and assembled a 758.78 Mb genome assembly of the mandarin fish, with the scaffold and contig N50 values reaching 2.64 Mb and 46.11 Kb, respectively. Approximately 92.8% of the scaffolds were ordered onto 24 chromosomes (Chrs) with the assistance of a previously established genetic linkage map. The chromosome-level genome contained 19,904 protein-coding genes, of which 19,059 (95.75%) genes were functionally annotated. The special feeding behavior of mandarin fish could be attributable to the interaction of a variety of sense organs (such as vision, smell, and endocrine organs). Through comparative genomics analysis, some interesting results were found. For example, olfactory receptor (OR) genes (especially the beta and delta types) underwent a significant expansion, and endocrinology/vision related npy, spexin, and opsin genes presented various functional mutations. These may contribute to the special feeding habit of the mandarin fish by strengthening the olfactory and visual systems. Meanwhile, previously identified sex-related genes and quantitative trait locis (QTLs) were localized on the Chr14 and Chr17, respectively. 155 toxin proteins were predicted from mandarin fish genome. In summary, the high-quality genome assembly of the mandarin fish provides novel insights into the feeding habit of live prey and offers a valuable genetic resource for the quality improvement of this freshwater fish.
Collapse
Affiliation(s)
- Weidong Ding
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Xiaomeng Zhao
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Wu Jing
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Zheming Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Min Wang
- BGI Zhenjiang Institute of Hydrobiology, Zhenjiang, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Xuwen Bing
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
35
|
Liu H, Chen C, Lv M, Liu N, Hu Y, Zhang H, Enbody ED, Gao Z, Andersson L, Wang W. A chromosome-level assembly of blunt snout bream (Megalobrama amblycephala) reveals an expansion of olfactory receptor genes in freshwater fish. Mol Biol Evol 2021; 38:4238-4251. [PMID: 34003267 PMCID: PMC8476165 DOI: 10.1093/molbev/msab152] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The number of olfactory receptor genes (ORs), which are responsible for detecting diverse odor molecules varies extensively among mammals as a result of frequent gene gains and losses that contribute to olfactory specialization. However, how OR expansions/contractions in fish are influenced by habitat and feeding habit and which OR subfamilies are important in each ecological niche is unknown. Here, we report a major OR expansion in a freshwater herbivorous fish, Megalobrama amblycephala, using a highly contiguous, chromosome-level assembly. We evaluate the possible contribution of OR expansion to habitat and feeding specialization by comparing the OR repertoire in 28 phylogenetically and ecologically diverse teleosts. In total, we analyzed > 4,000 ORs including 3,253 intact, 122 truncated, and 913 pseudogenes. The number of intact ORs is highly variable ranging from 20 to 279. We estimate that the most recent common ancestor of Osteichthyes had 62 intact ORs, which declined in most lineages except the freshwater Otophysa clade that has a substantial expansion in subfamily β and ε ORs. Across teleosts, we found a strong association between duplications of β and ε ORs and freshwater habitat. Nearly, all ORs were expressed in the olfactory epithelium (OE) in three tested fish species. Specifically, all the expanded β and ε ORs were highly expressed in OE of M. amblycephala. Together, we provide molecular and functional evidence for how OR repertoires in fish have undergone gain and loss with respect to ecological factors and highlight the role of β and ε OR in freshwater adaptation.
Collapse
Affiliation(s)
- Han Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.,Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China
| | - Chunhai Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Maolin Lv
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ning Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yafei Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hailin Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Erik D Enbody
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE75237, Sweden
| | - Zexia Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.,Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE75237, Sweden.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Weimin Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
36
|
Policarpo M, Bemis KE, Tyler JC, Metcalfe CJ, Laurenti P, Sandoz JC, Rétaux S, Casane D. Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape. Mol Biol Evol 2021; 38:3742-3753. [PMID: 33950257 PMCID: PMC8661438 DOI: 10.1093/molbev/msab145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role. Richness of the olfactory repertoire depends on the diversity of receptors coded by homologous genes classified into four families: OR, TAAR, VR1, and VR2. Herein, we focus on the OR gene repertoire. While independent large contractions of the OR gene repertoire associated with ecological transitions have been found in mammals, little is known about the diversity of the OR gene repertoire and its evolution in teleost fishes, a group that includes more than 34,000 living species. We analyzed genomes of 163 species representing diversity in this large group. We found a large range of variation in the number of functional OR genes, from 15 in the Broad-nose Pipefish Syngnathus typhle and the Ocean Sunfish Mola mola, to 429 in the Zig-zag Eel Mastacembelus armatus. The number of OR genes was higher in species when a multilamellar olfactory rosette was present. Moreover, the number of lamellae was correlated with the richness of the OR gene repertoire. While a slow and balanced birth-and-death process generally drives the evolution of the OR gene repertoire, we inferred several episodes of high rates of gene loss, sometimes followed by large gains in the number of OR genes. These gains coincide with morphological changes of the olfactory organ and suggest a strong functional association between changes in the morphology and the evolution of the OR gene repertoire.
Collapse
Affiliation(s)
- Maxime Policarpo
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Katherine E Bemis
- NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A
| | - James C Tyler
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A
| | | | - Patrick Laurenti
- Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Jean-Christophe Sandoz
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Didier Casane
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.,Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France
| |
Collapse
|
37
|
Mu Y, Bian C, Liu R, Wang Y, Shao G, Li J, Qiu Y, He T, Li W, Ao J, Shi Q, Chen X. Whole genome sequencing of a snailfish from the Yap Trench (~7,000 m) clarifies the molecular mechanisms underlying adaptation to the deep sea. PLoS Genet 2021; 17:e1009530. [PMID: 33983934 PMCID: PMC8118300 DOI: 10.1371/journal.pgen.1009530] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/05/2021] [Indexed: 11/25/2022] Open
Abstract
Hadal environments (depths below 6,000 m) are characterized by extremely high hydrostatic pressures, low temperatures, a scarce food supply, and little light. The evolutionary adaptations that allow vertebrates to survive in this extreme environment are poorly understood. Here, we constructed a high-quality reference genome for Yap hadal snailfish (YHS), which was captured at a depth of ~7,000 m in the Yap Trench. The final YHS genome assembly was 731.75 Mb, with a contig N50 of 0.75 Mb and a scaffold N50 of 1.26 Mb. We predicted 24,329 protein-coding genes in the YHS genome, and 24,265 of these genes were successfully functionally annotated. Phylogenetic analyses suggested that YHS diverged from a Mariana Trench snailfish approximately 0.92 million years ago. Many genes associated with DNA repair show evidence of positive selection and have expanded copy numbers in the YHS genome, possibly helping to maintain the integrity of DNA under increased hydrostatic pressure. The levels of trimethylamine N-oxide (TMAO), a potent protein stabilizer, are much higher in the muscles of YHS than in those of shallow-water fish. This difference is perhaps due to the five copies of the TMAO-generating enzyme flavin-containing monooxygenase-3 gene (fmo3) in the YHS genome and the abundance of trimethylamine (TMA)-generating bacteria in the YHS gut. Thus, the high TMAO content might help YHS adapt to high hydrostatic pressure by improving protein stability. Additionally, the evolutionary features of the YHS genes encoding sensory-related proteins are consistent with the scarce food supply and darkness in the hadal environments. These results clarify the molecular mechanisms underlying the adaptation of hadal organisms to the deep-sea environment and provide valuable genomic resources for in-depth investigations of hadal biology.
Collapse
Affiliation(s)
- Yinnan Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong, China
| | - Ruoyu Liu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuguang Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Guangming Shao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong, China
| | - Ying Qiu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong, China
| | - Tianliang He
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wanru Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| |
Collapse
|
38
|
Shepherd GM, Rowe TB, Greer CA. An Evolutionary Microcircuit Approach to the Neural Basis of High Dimensional Sensory Processing in Olfaction. Front Cell Neurosci 2021; 15:658480. [PMID: 33994949 PMCID: PMC8120314 DOI: 10.3389/fncel.2021.658480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Odor stimuli consist of thousands of possible molecules, each molecule with many different properties, each property a dimension of the stimulus. Processing these high dimensional stimuli would appear to require many stages in the brain to reach odor perception, yet, in mammals, after the sensory receptors this is accomplished through only two regions, the olfactory bulb and olfactory cortex. We take a first step toward a fundamental understanding by identifying the sequence of local operations carried out by microcircuits in the pathway. Parallel research provided strong evidence that processed odor information is spatial representations of odor molecules that constitute odor images in the olfactory bulb and odor objects in olfactory cortex. Paleontology provides a unique advantage with evolutionary insights providing evidence that the basic architecture of the olfactory pathway almost from the start ∼330 million years ago (mya) has included an overwhelming input from olfactory sensory neurons combined with a large olfactory bulb and olfactory cortex to process that input, driven by olfactory receptor gene duplications. We identify a sequence of over 20 microcircuits that are involved, and expand on results of research on several microcircuits that give the best insights thus far into the nature of the high dimensional processing.
Collapse
Affiliation(s)
- Gordon M. Shepherd
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Timothy B. Rowe
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States
| | - Charles A. Greer
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
39
|
The Chemosensory Repertoire of the Eastern Diamondback Rattlesnake (Crotalus adamanteus) Reveals Complementary Genetics of Olfactory and Vomeronasal-Type Receptors. J Mol Evol 2021; 89:313-328. [PMID: 33881604 DOI: 10.1007/s00239-021-10007-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 01/14/2023]
Abstract
Pitviper sensory perception incorporates diverse stimuli through the integration of trichromatic color vision, bifocal heat-sensing, and dual-system chemoperception. Chemoperception, or olfaction, is mediated by chemoreceptors in the olfactory bulb and the vomeronasal organ, but the true genomic complexity of the gene families and their relative contributions is unknown. A full genomic accounting of pitviper chemoperception directly complements our current understanding of their venoms by generating a more complete polyphenic representation of their predatory arsenal. To characterize the genetic repertoire of pitviper chemoperception, we analyzed a full-genome assembly for Crotalus adamanteus, the eastern diamondback rattlesnake. We identified hundreds of genes encoding both olfactory receptors (ORs; 362 full-length genes) and type-2 vomeronasal receptors (V2Rs; 430 full-length genes). Many chemoreceptor genes are organized into large tandem repeat arrays. Comparative analysis of V2R orthologs across squamates demonstrates how gene array expansion and contraction underlies the evolution of the chemoreceptor repertoire, which likely reflects shifts in life history traits. Chromosomal assignments of chemosensory genes identified sex chromosome specific chemoreceptor genes, providing gene candidates underlying observed sex-specific chemosensory-based behaviors. We detected widespread episodic evolution in the extracellular, ligand-binding domains of both ORs and V2Rs, suggesting the diversification of chemoreceptors is driven by transient periods of positive selection. We provide a robust genetic framework for studying pitviper chemosensory ecology and evolution.
Collapse
|
40
|
Westbury MV, Le Duc D, Duchêne DA, Krishnan A, Prost S, Rutschmann S, Grau JH, Dalen L, Weyrich A, Norén K, Werdelin L, Dalerum F, Schöneberg T, Hofreiter M. Ecological Specialisation and Evolutionary Reticulation in Extant Hyaenidae. Mol Biol Evol 2021; 38:3884-3897. [PMID: 34426844 PMCID: PMC8382907 DOI: 10.1093/molbev/msab055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During the Miocene, Hyaenidae was a highly diverse family of Carnivora that has since been severely reduced to four species: the bone-cracking spotted, striped, and brown hyenas, and the specialized insectivorous aardwolf. Previous studies investigated the evolutionary histories of the spotted and brown hyenas, but little is known about the remaining two species. Moreover, the genomic underpinnings of scavenging and insectivory, defining traits of the extant species, remain elusive. Here, we generated an aardwolf genome and analyzed it together with the remaining three species to reveal their evolutionary relationships, genomic underpinnings of their scavenging and insectivorous lifestyles, and their respective genetic diversities and demographic histories. High levels of phylogenetic discordance suggest gene flow between the aardwolf lineage and the ancestral brown/striped hyena lineage. Genes related to immunity and digestion in the bone-cracking hyenas and craniofacial development in the aardwolf showed the strongest signals of selection, suggesting putative key adaptations to carrion and termite feeding, respectively. A family-wide expansion in olfactory receptor genes suggests that an acute sense of smell was a key early adaptation. Finally, we report very low levels of genetic diversity within the brown and striped hyenas despite no signs of inbreeding, putatively linked to their similarly slow decline in effective population size over the last ∼2 million years. High levels of genetic diversity and more stable population sizes through time are seen in the spotted hyena and aardwolf. Taken together, our findings highlight how ecological specialization can impact the evolutionary history, demographics, and adaptive genetic changes of an evolutionary lineage.
Collapse
Affiliation(s)
- M V Westbury
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany.,Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, 04103, Germany.,Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - David A Duchêne
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark.,Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Arunkumar Krishnan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Stefan Prost
- LOEWE-Center for Translational Biodiversity Genomics, Senckenberg, 60325, Germany. Frankfurt.,South African National Biodiversity Institute, National Zoological Garden, Pretoria, 0184, South Africa
| | - Sereina Rutschmann
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
| | - Jose H Grau
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany.,amedes Genetics, amedes Medizinische Dienstleistungen, Berlin, Germany
| | - Love Dalen
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, Stockholm, 10405, Sweden
| | - Alexandra Weyrich
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, 10315, Germany
| | - Karin Norén
- Department of Zoology, Stockholm University, Stockholm, 106 91, Sweden
| | - Lars Werdelin
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, Stockholm, SE-10405, Sweden
| | - Fredrik Dalerum
- Department of Zoology, Stockholm University, Stockholm, 106 91, Sweden.,Research Unit of Biodiversity (UO-CSIC-PA), Mieres Campus, University of Oviedo, Mieres, Asturias, 33600, Spain.,Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, South Africa
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Johannisallee 30, Leipzig, 04103, Germany
| | - Michael Hofreiter
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
| |
Collapse
|
41
|
Bi X, Wang K, Yang L, Pan H, Jiang H, Wei Q, Fang M, Yu H, Zhu C, Cai Y, He Y, Gan X, Zeng H, Yu D, Zhu Y, Jiang H, Qiu Q, Yang H, Zhang YE, Wang W, Zhu M, He S, Zhang G. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell 2021; 184:1377-1391.e14. [PMID: 33545088 DOI: 10.1016/j.cell.2021.01.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/11/2020] [Accepted: 01/27/2021] [Indexed: 01/20/2023]
Abstract
Rich fossil evidence suggests that many traits and functions related to terrestrial evolution were present long before the ancestor of lobe- and ray-finned fishes. Here, we present genome sequences of the bichir, paddlefish, bowfin, and alligator gar, covering all major early divergent lineages of ray-finned fishes. Our analyses show that these species exhibit many mosaic genomic features of lobe- and ray-finned fishes. In particular, many regulatory elements for limb development are present in these fishes, supporting the hypothesis that the relevant ancestral regulation networks emerged before the origin of tetrapods. Transcriptome analyses confirm the homology between the lung and swim bladder and reveal the presence of functional lung-related genes in early ray-finned fishes. Furthermore, we functionally validate the essential role of a jawed vertebrate highly conserved element for cardiovascular development. Our results imply the ancestors of jawed vertebrates already had the potential gene networks for cardio-respiratory systems supporting air breathing.
Collapse
Affiliation(s)
- Xupeng Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | - Haifeng Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | | | - Hao Yu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chenglong Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yiran Cai
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yuming He
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youan Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Huifeng Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Min Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
42
|
Genome-wide identification and characterization of olfactory receptor genes in common carp (Cyprinus carpio). Gene 2021; 777:145468. [PMID: 33539942 DOI: 10.1016/j.gene.2021.145468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 11/21/2022]
Abstract
The environment contains a large extent of chemical information, which could be detected as olfactory sense. Olfactory in vertebrates plays important roles on many aspects during life time, including localizing prey or food, avoiding predators, mating behavior and social communication. Considering the essential role of olfactory receptors in the specific recognition of diverse stimuli, understanding the evolutionary dynamics of olfactory receptors in teleost means a lot, especially in the allotetraploid common carp, who has undergone the fourth whole-genome duplication event. Here, we identified the whole set of olfactory receptor genes in representative teleosts and found a significant contraction in common carp when compared with other teleosts. Odorant receptor genes (OR) occupy the most among four groups of olfactory receptors, including 33 functional genes and 16 pseudogenes. Furthermore, 6 trace amine-associated receptor (TAAR) genes (including 1 pseudogene), 7 odorant-related-A receptor genes, and 10 olfactory C family receptor genes (including 3 pseudogenes) were identified in common carp. Phylogenetic and motif analysis were performed to illustrate the phylogenetic relationship and structural conservation of teleost olfactory receptors. Selection pressure analysis suggested that olfactory receptor groups in common carp were all under relaxed purifying-selection. Additionally, gene expression divergences for olfactory receptor genes were investigated during embryonic development stages of common carp. We aim to determine the abundance of common carp olfactory receptor genes, explore the evolutionary fate and expression dynamics, and provide some genomic clues for the evolution of polyploid olfactory after whole-genome duplication and for future studies of teleost olfactory.
Collapse
|
43
|
Abstract
Amniotes originated on land, but aquatic/amphibious groups emerged multiple times independently in amniotes. On becoming aquatic, species with different phylogenetic backgrounds and body plans have to adapt themselves to handle similar problems inflicted by their new environment, and this makes aquatic adaptation of amniotes one of the greatest natural experiments. Particularly, evolution of the sense of smell upon aquatic adaptation is of great interest because receptors required for underwater olfaction differ remarkably from those for terrestrial olfaction. Here, I review the olfactory capabilities of aquatic/amphibious amniotes, especially those of cetaceans and sea snakes. Most aquatic/amphibious amniotes show reduced olfactory organs, receptor gene repertoires, and olfactory capabilities. Remarkably, cetaceans and sea snakes show extreme examples: cetaceans have lost the vomeronasal system, and furthermore, toothed whales have lost all of their olfactory nervous systems. Baleen whales can smell in the air, but their olfactory capability is limited. Fully aquatic sea snakes have lost the main olfactory system but they retain the vomeronasal system for sensing underwater. Amphibious species show an intermediate status between terrestrial and aquatic species, implying their importance on understanding the process of aquatic adaptation. The olfactory capabilities of aquatic amniotes are diverse, reflecting their diverse phylogenetic backgrounds and ecology.
Collapse
|
44
|
Abstract
Vertebrates develop an olfactory system that detects odorants and pheromones through their interaction with specialized cell surface receptors on olfactory sensory neurons. During development, the olfactory system forms from the olfactory placodes, specialized areas of the anterior ectoderm that share cellular and molecular properties with placodes involved in the development of other cranial senses. The early-diverging chordate lineages amphioxus, tunicates, lampreys and hagfishes give insight into how this system evolved. Here, we review olfactory system development and cell types in these lineages alongside chemosensory receptor gene evolution, integrating these data into a description of how the vertebrate olfactory system evolved. Some olfactory system cell types predate the vertebrates, as do some of the mechanisms specifying placodes, and it is likely these two were already connected in the common ancestor of vertebrates and tunicates. In stem vertebrates, this evolved into an organ system integrating additional tissues and morphogenetic processes defining distinct olfactory and adenohypophyseal components, followed by splitting of the ancestral placode to produce the characteristic paired olfactory organs of most modern vertebrates.
Collapse
Affiliation(s)
- Guillaume Poncelet
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
45
|
Diving into the streams and waves of constitutive and regenerative olfactory neurogenesis: insights from zebrafish. Cell Tissue Res 2020; 383:227-253. [PMID: 33245413 DOI: 10.1007/s00441-020-03334-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
The olfactory system is renowned for its functional and structural plasticity, with both peripheral and central structures displaying persistent neurogenesis throughout life and exhibiting remarkable capacity for regenerative neurogenesis after damage. In general, fish are known for their extensive neurogenic ability, and the zebrafish in particular presents an attractive model to study plasticity and adult neurogenesis in the olfactory system because of its conserved structure, relative simplicity, rapid cell turnover, and preponderance of neurogenic niches. In this review, we present an overview of the anatomy of zebrafish olfactory structures, with a focus on the neurogenic niches in the olfactory epithelium, olfactory bulb, and ventral telencephalon. Constitutive and regenerative neurogenesis in both the peripheral olfactory organ and central olfactory bulb of zebrafish is reviewed in detail, and a summary of current knowledge about the cellular origin and molecular signals involved in regulating these processes is presented. While some features of physiologic and injury-induced neurogenic responses are similar, there are differences that indicate that regeneration is not simply a reiteration of the constitutive proliferation process. We provide comparisons to mammalian neurogenesis that reveal similarities and differences between species. Finally, we present a number of open questions that remain to be answered.
Collapse
|
46
|
Zhang Z, Zhang Q, Dexheimer TS, Ren J, Neubig RR, Li W. Two highly related odorant receptors specifically detect α-bile acid pheromones in sea lamprey ( Petromyzon marinus). J Biol Chem 2020; 295:12153-12166. [PMID: 32636305 PMCID: PMC7443511 DOI: 10.1074/jbc.ra119.011532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 07/01/2020] [Indexed: 10/23/2022] Open
Abstract
Pheromones play critical roles in habitat identification and reproductive behavior synchronization in the sea lamprey (Petromyzon marinus). The bile acid 3-keto petromyzonol sulfate (3kPZS) is a major component of the sex pheromone mixture from male sea lamprey that induces specific olfactory and behavioral responses in conspecific individuals. Olfactory receptors interact directly with pheromones, which is the first step in their detection, but identifying the cognate receptors of specific pheromones is often challenging. Here, we deorphanized two highly related odorant receptors (ORs), OR320a and OR320b, of P. marinus that respond to 3kPZS. In a heterologous expression system coupled to a cAMP-responsive CRE-luciferase, OR320a and OR320b specifically responded to C24 5α-bile acids, and both receptors were activated by the same set of 3kPZS analogs. OR320a displayed larger responses to all 3kPZS analogs than did OR320b. This difference appeared to be largely determined by a single amino acid residue, Cys-792.56, the C-terminal sixth residue relative to the most conserved residue in the second transmembrane domain (2.56) of OR320a. This region of TM2 residues 2.56-2.60 apparently is critical for the detection of steroid compounds by odorant receptors in lamprey, zebrafish, and humans. Finally, we identified OR320 orthologs in Japanese lamprey (Lethenteron camtschaticum), suggesting that the OR320 family may be widely present in lamprey species and that OR320 may be under purifying selection. Our results provide a system to examine the origin of olfactory steroid detection in vertebrates and to define a highly conserved molecular mechanism for steroid-ligand detection by G protein-coupled receptors.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
| | - Thomas S Dexheimer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA.
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
47
|
Baldwin MW, Ko MC. Functional evolution of vertebrate sensory receptors. Horm Behav 2020; 124:104771. [PMID: 32437717 DOI: 10.1016/j.yhbeh.2020.104771] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sensory receptors enable animals to perceive their external world, and functional properties of receptors evolve to detect the specific cues relevant for an organism's survival. Changes in sensory receptor function or tuning can directly impact an organism's behavior. Functional tests of receptors from multiple species and the generation of chimeric receptors between orthologs with different properties allow for the dissection of the molecular basis of receptor function and identification of the key residues that impart functional changes in different species. Knowledge of these functionally important sites facilitates investigation into questions regarding the role of epistasis and the extent of convergence, as well as the timing of sensory shifts relative to other phenotypic changes. However, as receptors can also play roles in non-sensory tissues, and receptor responses can be modulated by numerous other factors including varying expression levels, alternative splicing, and morphological features of the sensory cell, behavioral validation can be instrumental in confirming that responses observed in heterologous systems play a sensory role. Expression profiling of sensory cells and comparative genomics approaches can shed light on cell-type specific modifications and identify other proteins that may affect receptor function and can provide insight into the correlated evolution of complex suites of traits. Here we review the evolutionary history and diversity of functional responses of the major classes of sensory receptors in vertebrates, including opsins, chemosensory receptors, and ion channels involved in temperature-sensing, mechanosensation and electroreception.
Collapse
Affiliation(s)
| | - Meng-Ching Ko
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
48
|
Pfister P, Smith BC, Evans BJ, Brann JH, Trimmer C, Sheikh M, Arroyave R, Reddy G, Jeong HY, Raps DA, Peterlin Z, Vergassola M, Rogers ME. Odorant Receptor Inhibition Is Fundamental to Odor Encoding. Curr Biol 2020; 30:2574-2587.e6. [PMID: 32470365 DOI: 10.1016/j.cub.2020.04.086] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/31/2020] [Accepted: 04/28/2020] [Indexed: 11/18/2022]
Abstract
Most natural odors are complex mixtures of volatile components, competing to bind odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs) of the nose. To date, surprisingly little is known about how OR antagonism shapes neuronal representations in the detection layer of the olfactory system. Here, we investigated its prevalence, the degree to which it disrupts OR ensemble activity, and its conservation across phylogenetically related ORs. Calcium imaging microscopy of dissociated OSNs revealed significant inhibition, often complete attenuation, of responses to indole-a commonly occurring volatile associated with both floral and fecal odors-by a set of 36 tested odorants. To confirm an OR mechanism for the observed inhibition, we performed single-cell transcriptomics on OSNs exhibiting specific response profiles to a diagnostic panel of odorants and identified three paralogous receptors-Olfr740, Olfr741, and Olfr743-which, when tested in vitro, recapitulated OSN responses. We screened ten ORs from the Olfr740 gene family with ∼800 perfumery-related odorants spanning a range of chemical scaffolds and functional groups. Over half of these compounds (430) antagonized at least one of the ten ORs. OR activity fitted a mathematical model of competitive receptor binding and suggests normalization of OSN ensemble responses to odorant mixtures is the rule rather than the exception. In summary, we observed OR antagonism occurred frequently and in a combinatorial manner. Thus, extensive receptor-mediated computation of mixture information appears to occur in the olfactory epithelium prior to transmission of odor information to the olfactory bulb.
Collapse
Affiliation(s)
- Patrick Pfister
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Benjamin C Smith
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Barry J Evans
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Jessica H Brann
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Casey Trimmer
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Mushhood Sheikh
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Randy Arroyave
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Gautam Reddy
- Department of Physics, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Hyo-Young Jeong
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Daniel A Raps
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Zita Peterlin
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Massimo Vergassola
- Department of Physics, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Matthew E Rogers
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA.
| |
Collapse
|
49
|
Convergent evolution of olfactory and thermoregulatory capacities in small amphibious mammals. Proc Natl Acad Sci U S A 2020; 117:8958-8965. [PMID: 32253313 DOI: 10.1073/pnas.1917836117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Olfaction and thermoregulation are key functions for mammals. The former is critical to feeding, mating, and predator avoidance behaviors, while the latter is essential for homeothermy. Aquatic and amphibious mammals face olfactory and thermoregulatory challenges not generally encountered by terrestrial species. In mammals, the nasal cavity houses a bony system supporting soft tissues and sensory organs implicated in either olfactory or thermoregulatory functions. It is hypothesized that to cope with aquatic environments, amphibious mammals have expanded their thermoregulatory capacity at the expense of their olfactory system. We investigated the evolutionary history of this potential trade-off using a comparative dataset of three-dimensional (3D) CT scans of 189 skulls, capturing 17 independent transitions from a strictly terrestrial to an amphibious lifestyle across small mammals (Afrosoricida, Eulipotyphla, and Rodentia). We identified rapid and repeated loss of olfactory capacities synchronously associated with gains in thermoregulatory capacity in amphibious taxa sampled from across mammalian phylogenetic diversity. Evolutionary models further reveal that these convergences result from faster rates of turbinal bone evolution and release of selective constraints on the thermoregulatory-olfaction trade-off in amphibious species. Lastly, we demonstrated that traits related to vital functions evolved faster to the optimum compared to traits that are not related to vital functions.
Collapse
|
50
|
Marquet N, Cardoso JCR, Louro B, Fernandes SA, Silva SC, Canário AVM. Holothurians have a reduced GPCR and odorant receptor-like repertoire compared to other echinoderms. Sci Rep 2020; 10:3348. [PMID: 32098989 PMCID: PMC7042368 DOI: 10.1038/s41598-020-60167-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/05/2020] [Indexed: 01/13/2023] Open
Abstract
Sea cucumbers lack vision and rely on chemical sensing to reproduce and survive. However, how they recognize and respond to environmental cues remains unknown. Possible candidates are the odorant receptors (ORs), a diverse family of G protein-coupled receptors (GPCRs) involved in olfaction. The present study aimed at characterizing the chemosensory GPCRs in sea cucumbers. At least 246 distinct GPCRs, of which ca. 20% putative ORs, were found in a transcriptome assembly of putative chemosensory (tentacles, oral cavity, calcareous ring, and papillae/tegument) and reproductive (ovary and testis) tissues from Holothuria arguinensis (57 ORs) and in the Apostichopus japonicus genome (79 ORs). The sea cucumber ORs clustered with those of sea urchin and starfish into four main clades of gene expansions sharing a common ancestor and evolving under purifying selection. However, the sea cucumber ORs repertoire was the smallest among the echinoderms and the olfactory receptor signature motif LxxPxYxxxxxLxxxDxxxxxxxxP was better conserved in cluster OR-l1 which also had more members. ORs were expressed in tentacles, oral cavity, calcareous ring, and papillae/tegument, supporting their potential role in chemosensing. This study is the first comprehensive survey of chemosensory GPCRs in sea cucumbers, and provides the molecular basis to understand how they communicate.
Collapse
Affiliation(s)
- Nathalie Marquet
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - João C R Cardoso
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bruno Louro
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Stefan A Fernandes
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Sandra C Silva
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Adelino V M Canário
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|