1
|
Ikoma T, Nishijima R, Ikeda M, Ishii K, Nagalla AD, Abe T, Kazama Y. Effect of heterozygous deletions on phenotypic changes and dosage compensation in Arabidopsis thaliana. Sci Rep 2025; 15:14284. [PMID: 40360674 PMCID: PMC12075518 DOI: 10.1038/s41598-025-98141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Heterozygous deletions, which include a large number of genes, are often caused by the induction of mutations. The induction of gene dosage compensation should be considered when assessing the effects of heterozygous deletions on phenotypic changes. This mechanism is known to balance the expression levels of genes with different copy numbers in sex chromosomes, but it is also known to operate in autosomes. In the present study, 12 Arabidopsis thaliana BC1 mutants with heterozygous deletions were produced by crossing wild-type Col-0 plants with mutants induced by heavy ion beams. The sizes of the deletions ranged from 50.9 kb to 2.03 Mb, and the number of deleted genes ranged from 8 to 92. Nine of the 12 BC1 mutants showed phenotypic changes in fresh weight 14 days after cultivation or during the flowering period. RNA-sequencing (RNA-seq) analyses of 14-day-old leaves, 40-day-old leaves, and flower buds showed that dosage compensation did not occur in any stage or tissue tested. These results indicate that heterozygous deletions cause phenotypic changes owing to the absence of dosage compensation.
Collapse
Affiliation(s)
- Takuya Ikoma
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Fukui, 910-1195, Japan
| | - Ryo Nishijima
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Fukui, 910-1195, Japan
| | - Miho Ikeda
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Fukui, 910-1195, Japan
| | - Kotaro Ishii
- Department of Radiation Measurement and Dose Assessment, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba 263-8555, Japan
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | | | - Tomoko Abe
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Yusuke Kazama
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Fukui, 910-1195, Japan.
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan.
| |
Collapse
|
2
|
Basilicata MF, Keller Valsecchi CI. The good, the bad, and the ugly: Evolutionary and pathological aspects of gene dosage alterations. PLoS Genet 2021; 17:e1009906. [PMID: 34882671 PMCID: PMC8659298 DOI: 10.1371/journal.pgen.1009906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diploid organisms contain a maternal and a paternal genome complement that is thought to provide robustness and allow developmental progression despite genetic perturbations that occur in heterozygosity. However, changes affecting gene dosage from the chromosome down to the individual gene level possess a significant pathological potential and can lead to developmental disorders (DDs). This indicates that expression from a balanced gene complement is highly relevant for proper cellular and organismal function in eukaryotes. Paradoxically, gene and whole chromosome duplications are a principal driver of evolution, while heteromorphic sex chromosomes (XY and ZW) are naturally occurring aneuploidies important for sex determination. Here, we provide an overview of the biology of gene dosage at the crossroads between evolutionary benefit and pathogenicity during disease. We describe the buffering mechanisms and cellular responses to alterations, which could provide a common ground for the understanding of DDs caused by copy number alterations.
Collapse
|
3
|
Yu S, Chen WX, Zhang YF, Ni Y, Lu P, Wang B, Wang Y, Wu B, Ni Q, Wang H, Xu ZM. Apparent homozygosity for a novel splicing variant in EPS8 causes congenital profound hearing loss. Eur J Med Genet 2021; 64:104362. [PMID: 34637946 DOI: 10.1016/j.ejmg.2021.104362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/17/2021] [Accepted: 10/08/2021] [Indexed: 12/27/2022]
Abstract
Autosomal recessive deafness-102 (DFNB102), a new profound prelingual non-syndromic hearing loss, is caused by mutations in the EPS8 gene. To date, only three such consanguineous families with three different homozygous variants in EPS8 have been reported. Here, we report the fourth case from a non-consanguineous Chinese family, an 11-month-old male infant presented with congenital profound non-syndromic hearing loss. Trio whole-exome sequencing initially identified the patient with a novel seemingly homozygous splicing variant NM_004447.5: c.1435-2A > T in intron 14 of the EPS8 gene and was inherited from his father; further CNVs analysis identified a novel 65.9 kb intragenic deletion and was inherited from his mother. The deletion is covering intron 14 that could account for the apparent homozygosity of the patient. In vitro splicing assay showed the variant c.1435-2A > T creates a new donor site at position c.1443, which is predicted to produce a stop codon after 14 additional amino acids (p.His479Cysfs*14). Furthermore, quantitative allele-specific expression assay showed that relative EPS8 gene expression in the patient significantly decreased (0-fold for the wild-type transcript and 0.25-0.27-fold for the mutant transcript) compared to the control (P < 0.05), indicating the pathogenicity of the identified variants. Overall, our study provides additional evidence that EPS8 is a causative gene for DFNB102 and highlights the clinical utility of simultaneous analysis of CNVs and SNVs to avoid potential errors in the diagnosis and interpretation of patients with apparent homozygosity.
Collapse
Affiliation(s)
- Sha Yu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wen-Xia Chen
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yun-Fei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yihua Ni
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Ping Lu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bin Wang
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yan Wang
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qi Ni
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Zheng-Min Xu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
4
|
Liu G, Liu W, Zhao R, He J, Dong Z, Chen L, Wan W, Chang Z, Wang W, Li X. Genome-wide identification and gene-editing of pigment transporter genes in the swallowtail butterfly Papilio xuthus. BMC Genomics 2021; 22:120. [PMID: 33596834 PMCID: PMC7891156 DOI: 10.1186/s12864-021-07400-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/19/2021] [Indexed: 02/03/2023] Open
Abstract
Background Insect body coloration often functions as camouflage to survive from predators or mate selection. Transportation of pigment precursors or related metabolites from cytoplasm to subcellular pigment granules is one of the key steps in insect pigmentation and usually executed via such transporter proteins as the ATP-binding cassette (ABC) transmembrane transporters and small G-proteins (e.g. Rab protein). However, little is known about the copy numbers of pigment transporter genes in the butterfly genomes and about the roles of pigment transporters in the development of swallowtail butterflies. Results Here, we have identified 56 ABC transporters and 58 Rab members in the genome of swallowtail butterfly Papilio xuthus. This is the first case of genome-wide gene copy number identification of ABC transporters in swallowtail butterflies and Rab family in lepidopteran insects. Aiming to investigate the contribution of the five genes which are orthologous to well-studied pigment transporters (ABCG: white, scarlet, brown and ok; Rab: lightoid) of fruit fly or silkworm during the development of swallowtail butterflies, we performed CRISPR/Cas9 gene-editing of these genes using P. xuthus as a model and sequenced the transcriptomes of their morphological mutants. Our results indicate that the disruption of each gene produced mutated phenotypes in the colors of larvae (cuticle, testis) and/or adult eyes in G0 individuals but have no effect on wing color. The transcriptomic data demonstrated that mutations induced by CRISPR/Cas9 can lead to the accumulation of abnormal transcripts and the decrease or dosage compensation of normal transcripts at gene expression level. Comparative transcriptomes revealed 606 ~ 772 differentially expressed genes (DEGs) in the mutants of four ABCG transporters and 1443 DEGs in the mutants of lightoid. GO and KEGG enrichment analysis showed that DEGs in ABCG transporter mutants enriched to the oxidoreductase activity, heme binding, iron ion binding process possibly related to the color display, and DEGs in lightoid mutants are enriched in glycoprotein binding and protein kinases. Conclusions Our data indicated these transporter proteins play an important role in body color of P. xuthus. Our study provides new insights into the function of ABC transporters and small G-proteins in the morphological development of butterflies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07400-z.
Collapse
Affiliation(s)
- Guichun Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jinwu He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhiwei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China
| | - Wenting Wan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhou Chang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Kunming, 650223, Yunnan, China.
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
5
|
Selective tracking of FFAR3-expressing neurons supports receptor coupling to N-type calcium channels in mouse sympathetic neurons. Sci Rep 2018; 8:17379. [PMID: 30478340 PMCID: PMC6255804 DOI: 10.1038/s41598-018-35690-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Activation of short-chain free fatty acid receptors 3 (FFAR3) has been suggested to promote sympathetic outflow in postganglionic sympathetic neurons or hamper it by a negative coupling to N-type calcium (CaV2.2) channels. Heterogeneity of FFAR3 expression in sympathetic neurons, however, renders single neurons studies extremely time-consuming in wild-type mice. Previous studies demonstrated large variability of the degree of CaV2.2 channel inhibition by FFAR3 in a global population of rat sympathetic neurons. Therefore, we focused on a small subpopulation of mouse sympathetic neurons using an FFAR3 antibody and an Ffar3 reporter mouse to perform immunofluorescent and electrophysiological studies. Whole-cell patch-clamp recordings of identified FFAR3-expressing neurons from reporter mice revealed a 2.5-fold decrease in the CaV2.2-FFAR3 inhibitory coupling variability and 1.5-fold increase in the mean ICa2+ inhibition, when compared with unlabeled neurons from wild-type mice. Further, we found that the ablation of Ffar3 gene expression in two knockout mouse models led to a complete loss-of-function. Subpopulations of sympathetic neurons are associated with discrete functional pathways. However, little is known about the neural pathways of the FFAR3-expressing subpopulation. Our data indicate that FFAR3 is expressed primarily in neurons with a vasoconstrictor phenotype. Thus, fine-tuning of chemically-coded neurotransmitters may accomplish an adequate outcome.
Collapse
|
6
|
Deitz KC, Takken W, Slotman MA. The Effect of Hybridization on Dosage Compensation in Member Species of the Anopheles gambiae Species Complex. Genome Biol Evol 2018; 10:1663-1672. [PMID: 29860336 PMCID: PMC6037052 DOI: 10.1093/gbe/evy108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
Dosage compensation has evolved in concert with Y-chromosome degeneration in many taxa that exhibit heterogametic sex chromosomes. Dosage compensation overcomes the biological challenge of a “half dose” of X chromosome gene transcripts in the heterogametic sex. The need to equalize gene expression of a hemizygous X with that of autosomes arises from the fact that the X chromosomes retain hundreds of functional genes that are actively transcribed in both sexes and interact with genes expressed on the autosomes. Sex determination and heterogametic sex chromosomes have evolved multiple times in Diptera, and in each case the genetic control of dosage compensation is tightly linked to sex determination. In the Anopheles gambiae species complex (Culicidae), maleness is conferred by the Y-chromosome gene Yob, which despite its conserved role between species is polymorphic in its copy number between them. Previous work demonstrated that male An. gambiae s.s. males exhibit complete dosage compensation in pupal and adult stages. In the present study, we have extended this analysis to three sister species in the An. gambiae complex: An. coluzzii, An. arabiensis, and An. quadriannulatus. In addition, we analyzed dosage compensation in bi-directional F1 hybrids between these species to determine if hybridization results in the mis-regulation and disruption of dosage compensation. Our results confirm that dosage compensation operates in the An. gambiae species complex through the hypertranscription of the male X chromosome. Additionally, dosage compensation in hybrid males does not differ from parental males, indicating that hybridization does not result in the mis-regulation of dosage compensation.
Collapse
Affiliation(s)
- Kevin C Deitz
- Department of Entomology, Texas A&M University.,Department of Ecology and Evolutionary Biology and The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Willem Takken
- Laboratory of Entomology, Department of Plant Sciences, Wageningen University, The Netherlands
| | | |
Collapse
|
7
|
Lee H, Oliver B. Non-canonical Drosophila X chromosome dosage compensation and repressive topologically associated domains. Epigenetics Chromatin 2018; 11:62. [PMID: 30355339 PMCID: PMC6199721 DOI: 10.1186/s13072-018-0232-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Background In animals with XY sex chromosomes, X-linked genes from a single X chromosome in males are imbalanced relative to autosomal genes. To minimize the impact of genic imbalance in male Drosophila, there is a dosage compensation complex (MSL) that equilibrates X-linked gene expression with the autosomes. There are other potential contributions to dosage compensation. Hemizygous autosomal genes located in repressive chromatin domains are often derepressed. If this homolog-dependent repression occurs on the X, which has no pairing partner, then derepression could contribute to male dosage compensation. Results We asked whether different chromatin states or topological associations correlate with X chromosome dosage compensation, especially in regions with little MSL occupancy. Our analyses demonstrated that male X chromosome genes that are located in repressive chromatin states are depleted of MSL occupancy; however, they show dosage compensation. The genes in these repressive regions were also less sensitive to knockdown of MSL components. Conclusions Our results suggest that this non-canonical dosage compensation is due to the same transacting derepression that occurs on autosomes. This mechanism would facilitate immediate compensation during the evolution of sex chromosomes from autosomes. This mechanism is similar to that of C. elegans, where enhanced recruitment of X chromosomes to the nuclear lamina dampens X chromosome expression as part of the dosage compensation response in XX individuals. Electronic supplementary material The online version of this article (10.1186/s13072-018-0232-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hangnoh Lee
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, USA. .,Section on Cell Cycle Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Brian Oliver
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Tan C, Pan Q, Cui C, Xiang Y, Ge X, Li Z. Genome-Wide Gene/Genome Dosage Imbalance Regulates Gene Expressions in Synthetic Brassica napus and Derivatives (AC, AAC, CCA, CCAA). FRONTIERS IN PLANT SCIENCE 2016; 7:1432. [PMID: 27721820 PMCID: PMC5033974 DOI: 10.3389/fpls.2016.01432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/08/2016] [Indexed: 05/29/2023]
Abstract
Gene/genome dosage balance is an essential evolutionary mechanism for organisms to ensure a normal function, but the underlying causes of dosage-imbalance regulation remain poorly understood. Herein, the serial Brassica hybrids/polyploids (AC, AAC, CCA, CCAA) with different copies of A and C subgenomes from the same two parents of Brassica rapa and Brassica oleracea were synthesized to investigate the effects of genome dosages on gene expressions and interactions by using RNA-Seq. The expression changes of A- and C-subgenome genes were consistent with dosage alterations. Dosage-dependent and -independent genes were grouped according to the correlations between dosage variations and gene expressions. Expression levels of dosage-dependent genes were strongly correlated with dosage changes and mainly contributed to dosage effects, while those of dosage-independent genes gave weak correlations with dosage variations and mostly facilitated dosage compensation. More protein-protein interactions were detected for dosage-independent genes than dosage-dependent ones, as predicted by the dosage balance hypothesis. Dosage-dependent genes more likely impacted the expressions by trans effects, whereas dosage-independent genes preferred to play by cis effects. Furthermore, dosage-dependent genes were mainly associated with the basic biological processes to maintain the stability of the growth and development, while dosage-independent genes were more enriched in the stress response related processes to accelerate adaptation. The present comprehensive analysis of gene expression dependent/independent on dosage alterations in Brassica polyploids provided new insights into gene/genome dosage-imbalance regulation of gene expressions.
Collapse
Affiliation(s)
- Chen Tan
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Qi Pan
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Cheng Cui
- Crop Research Institute, Sichuan Academy of Agricultural SciencesChengdu, China
| | - Yi Xiang
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xianhong Ge
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Zaiyun Li
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
9
|
Lee H, Cho DY, Whitworth C, Eisman R, Phelps M, Roote J, Kaufman T, Cook K, Russell S, Przytycka T, Oliver B. Effects of Gene Dose, Chromatin, and Network Topology on Expression in Drosophila melanogaster. PLoS Genet 2016; 12:e1006295. [PMID: 27599372 PMCID: PMC5012587 DOI: 10.1371/journal.pgen.1006295] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 08/10/2016] [Indexed: 11/18/2022] Open
Abstract
Deletions, commonly referred to as deficiencies by Drosophila geneticists, are valuable tools for mapping genes and for genetic pathway discovery via dose-dependent suppressor and enhancer screens. More recently, it has become clear that deviations from normal gene dosage are associated with multiple disorders in a range of species including humans. While we are beginning to understand some of the transcriptional effects brought about by gene dosage changes and the chromosome rearrangement breakpoints associated with them, much of this work relies on isolated examples. We have systematically examined deficiencies of the left arm of chromosome 2 and characterize gene-by-gene dosage responses that vary from collapsed expression through modest partial dosage compensation to full or even over compensation. We found negligible long-range effects of creating novel chromosome domains at deletion breakpoints, suggesting that cases of gene regulation due to altered nuclear architecture are rare. These rare cases include trans de-repression when deficiencies delete chromatin characterized as repressive in other studies. Generally, effects of breakpoints on expression are promoter proximal (~100bp) or in the gene body. Effects of deficiencies genome-wide are in genes with regulatory relationships to genes within the deleted segments, highlighting the subtle expression network defects in these sensitized genetic backgrounds.
Collapse
Affiliation(s)
- Hangnoh Lee
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dong-Yeon Cho
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cale Whitworth
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Robert Eisman
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Melissa Phelps
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - John Roote
- Department of Genetics and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Kaufman
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Kevin Cook
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Steven Russell
- Department of Genetics and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Teresa Przytycka
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
10
|
Lombardi R, Chen SN, Ruggiero A, Gurha P, Czernuszewicz GZ, Willerson JT, Marian AJ. Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. Circ Res 2016; 119:41-54. [PMID: 27121621 DOI: 10.1161/circresaha.115.308136] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/27/2016] [Indexed: 12/21/2022]
Abstract
RATIONALE Mutations in desmosome proteins cause arrhythmogenic cardiomyopathy (AC), a disease characterized by excess myocardial fibroadipocytes. Cellular origin(s) of fibroadipocytes in AC is unknown. OBJECTIVE To identify the cellular origin of adipocytes in AC. METHODS AND RESULTS Human and mouse cardiac cells were depleted from myocytes and flow sorted to isolate cells expressing platelet-derived growth factor receptor-α and exclude those expressing other lineage and fibroblast markers (CD32, CD11B, CD45, Lys76, Ly(-6c) and Ly(6c), thymocyte differentiation antigen 1, and discoidin domain receptor 2). The PDGFRA(pos):Lin(neg):THY1(neg):DDR2(neg) cells were bipotential as the majority expressed collagen 1 α-1, a fibroblast marker, and a subset CCAAT/enhancer-binding protein α, a major adipogenic transcription factor, and therefore, they were referred to as fibroadipocyte progenitors (FAPs). FAPs expressed desmosome proteins, including desmoplakin, predominantly in the adipogenic but not fibrogenic subsets. Conditional heterozygous deletion of Dsp in mice using Pdgfra-Cre deleter led to increased fibroadipogenesis in the heart and mild cardiac dysfunction. Genetic fate mapping tagged 41.4±4.1% of the cardiac adipocytes in the Pdgfra-Cre:Eyfp:Dsp(W/F) mice, indicating an origin from FAPs. FAPs isolated from the Pdgfra-Cre:Eyfp:Dsp(W/F) mouse hearts showed enhanced differentiation to adipocytes. Mechanistically, deletion of Dsp was associated with suppressed canonical Wnt signaling and enhanced adipogenesis. In contrast, activation of the canonical Wnt signaling rescued adipogenesis in a dose-dependent manner. CONCLUSIONS A subset of cardiac FAPs, identified by the PDGFRA(pos):Lin(neg):THY1(neg):DDR2(neg) signature, expresses desmosome proteins and differentiates to adipocytes in AC through a Wnt-dependent mechanism. The findings expand the cellular spectrum of AC, commonly recognized as a disease of cardiac myocytes, to include nonmyocyte cells in the heart.
Collapse
Affiliation(s)
- Raffaella Lombardi
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Science Center at Houston (R.L., S.N.C., A.R., P.G., G.Z.C., A.J.M.); and Department of Medicine, Texas Heart Institute, Houston (J.T.W.).
| | - Suet Nee Chen
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Science Center at Houston (R.L., S.N.C., A.R., P.G., G.Z.C., A.J.M.); and Department of Medicine, Texas Heart Institute, Houston (J.T.W.)
| | - Alessandra Ruggiero
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Science Center at Houston (R.L., S.N.C., A.R., P.G., G.Z.C., A.J.M.); and Department of Medicine, Texas Heart Institute, Houston (J.T.W.)
| | - Priyatansh Gurha
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Science Center at Houston (R.L., S.N.C., A.R., P.G., G.Z.C., A.J.M.); and Department of Medicine, Texas Heart Institute, Houston (J.T.W.)
| | - Grazyna Z Czernuszewicz
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Science Center at Houston (R.L., S.N.C., A.R., P.G., G.Z.C., A.J.M.); and Department of Medicine, Texas Heart Institute, Houston (J.T.W.)
| | - James T Willerson
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Science Center at Houston (R.L., S.N.C., A.R., P.G., G.Z.C., A.J.M.); and Department of Medicine, Texas Heart Institute, Houston (J.T.W.)
| | - Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Science Center at Houston (R.L., S.N.C., A.R., P.G., G.Z.C., A.J.M.); and Department of Medicine, Texas Heart Institute, Houston (J.T.W.).
| |
Collapse
|
11
|
Evidence for the fixation of gene duplications by positive selection in Drosophila. Genome Res 2016; 26:787-98. [PMID: 27197209 PMCID: PMC4889967 DOI: 10.1101/gr.199323.115] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/11/2016] [Indexed: 11/30/2022]
Abstract
Gene duplications play a key role in the emergence of novel traits and in adaptation. But despite their centrality to evolutionary processes, it is still largely unknown how new gene duplicates are initially fixed within populations and later maintained in genomes. Long-standing debates on the evolution of gene duplications could be settled by determining the relative importance of genetic drift vs. positive selection in the fixation of new gene duplicates. Using the Drosophila Global Diversity Lines (GDL), we have combined genome-wide SNP polymorphism data with a novel set of copy number variant calls and gene expression profiles to characterize the polymorphic phase of new genes. We found that approximately half of the roughly 500 new complete gene duplications segregating in the GDL lead to significant increases in the expression levels of the duplicated genes and that these duplications are more likely to be found at lower frequencies, suggesting a negative impact on fitness. However, we also found that six of the nine gene duplications that are fixed or close to fixation in at least one of the five populations in our study show signs of being under positive selection, and that these duplications are likely beneficial because of dosage effects, with a possible role for additional mutations in two duplications. Our work suggests that in Drosophila, theoretical models that posit that gene duplications are immediately beneficial and fixed by positive selection are most relevant to explain the long-term evolution of gene duplications in this species.
Collapse
|
12
|
Rivas MA, Pirinen M, Conrad DF, Lek M, Tsang EK, Karczewski KJ, Maller JB, Kukurba KR, DeLuca DS, Fromer M, Ferreira PG, Smith KS, Zhang R, Zhao F, Banks E, Poplin R, Ruderfer DM, Purcell SM, Tukiainen T, Minikel EV, Stenson PD, Cooper DN, Huang KH, Sullivan TJ, Nedzel J, Bustamante CD, Li JB, Daly MJ, Guigo R, Donnelly P, Ardlie K, Sammeth M, Dermitzakis ET, McCarthy MI, Montgomery SB, Lappalainen T, MacArthur DG. Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science 2015; 348:666-9. [PMID: 25954003 PMCID: PMC4537935 DOI: 10.1126/science.1261877] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Accurate prediction of the functional effect of genetic variation is critical for clinical genome interpretation. We systematically characterized the transcriptome effects of protein-truncating variants, a class of variants expected to have profound effects on gene function, using data from the Genotype-Tissue Expression (GTEx) and Geuvadis projects. We quantitated tissue-specific and positional effects on nonsense-mediated transcript decay and present an improved predictive model for this decay. We directly measured the effect of variants both proximal and distal to splice junctions. Furthermore, we found that robustness to heterozygous gene inactivation is not due to dosage compensation. Our results illustrate the value of transcriptome data in the functional interpretation of genetic variants.
Collapse
Affiliation(s)
- Manuel A Rivas
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| | - Matti Pirinen
- FInstitute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Monkol Lek
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Emily K Tsang
- Department of Genetics, Stanford University, Stanford, CA, USA. Department of Pathology, Stanford University, Stanford, CA, USA. Biomedical Informatics Program, Stanford University, Stanford, CA, USA
| | - Konrad J Karczewski
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Julian B Maller
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Kimberly R Kukurba
- Department of Genetics, Stanford University, Stanford, CA, USA. Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Menachem Fromer
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. Department of Psychiatry, Mt. Sinai Hospital, NY, USA
| | - Pedro G Ferreira
- Department of Genetic Medicine and Development,University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Kevin S Smith
- Department of Genetics, Stanford University, Stanford, CA, USA. Department of Pathology, Stanford University, Stanford, CA, USA
| | - Rui Zhang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Fengmei Zhao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eric Banks
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan Poplin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Douglas M Ruderfer
- Department of Psychiatry, Mt. Sinai Hospital, NY, USA. Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Shaun M Purcell
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. Department of Psychiatry, Mt. Sinai Hospital, NY, USA. Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Taru Tukiainen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eric V Minikel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | | | | | - Jared Nedzel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Roderic Guigo
- Center for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Peter Donnelly
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK. Department of Statistics, University of Oxford, Oxford, UK
| | | | - Michael Sammeth
- Center for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. National Institute for Scientific Computing (LNCC), Petropolis, Rio de Janeiro, Brazil
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development,University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK. Oxford Center for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Stephen B Montgomery
- Department of Genetics, Stanford University, Stanford, CA, USA. Department of Pathology, Stanford University, Stanford, CA, USA
| | - Tuuli Lappalainen
- Department of Genetics, Stanford University, Stanford, CA, USA. Department of Genetic Medicine and Development,University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland. New York Genome Center, New York, NY, USA. Department of Systems Biology, Columbia University, New York, NY, USA.
| | - Daniel G MacArthur
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Veitia RA, Potier MC. Gene dosage imbalances: action, reaction, and models. Trends Biochem Sci 2015; 40:309-17. [PMID: 25937627 DOI: 10.1016/j.tibs.2015.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/17/2015] [Accepted: 03/27/2015] [Indexed: 12/29/2022]
Abstract
Single-gene deletions, duplications, and misregulation, as well as aneuploidy, can lead to stoichiometric imbalances within macromolecular complexes and cellular networks, causing their malfunction. Such alterations can be responsible for inherited or somatic genetic disorders including Mendelian diseases, aneuploid syndromes, and cancer. We review the effects of gene dosage alterations at the transcriptomic and proteomic levels, and the various responses of the cell to counteract their effects. Furthermore, we explore several biochemical models and ideas that can provide the rationale for treatments modulating the effects of gene dosage imbalances.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, Paris, France; Université Paris Diderot, Paris, France.
| | - Marie Claude Potier
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, Institut National de la Santé et de la Recherche Médicale (INSERM) and Centre National de la Recherche Scientifique (CNRS) Unités de Recherche U75, U1127, U7225, and Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France
| |
Collapse
|
14
|
Caburet S, Anttonen M, Todeschini AL, Unkila-Kallio L, Mestivier D, Butzow R, Veitia RA. Combined comparative genomic hybridization and transcriptomic analyses of ovarian granulosa cell tumors point to novel candidate driver genes. BMC Cancer 2015; 15:251. [PMID: 25884336 PMCID: PMC4407711 DOI: 10.1186/s12885-015-1283-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/27/2015] [Indexed: 12/23/2022] Open
Abstract
Background Ovarian granulosa cell tumors (GCTs) are the most frequent sex cord-stromal tumors. Several studies have shown that a somatic mutation leading to a C134W substitution in the transcription factor FOXL2 appears in more than 95% of adult-type GCTs. Its pervasive presence suggests that FOXL2 is the main cancer driver gene. However, other mutations and genomic changes might also contribute to tumor formation and/or progression. Methods We have performed a combined comparative genomic hybridization and transcriptomic analyses of 10 adult-type GCTs to obtain a picture of the genomic landscape of this cancer type and to identify new candidate co-driver genes. Results Our results, along with a review of previous molecular studies, show the existence of highly recurrent chromosomal imbalances (especially, trisomy 14 and monosomy 22) and preferential co-occurrences (i.e. trisomy 14/monosomy 22 and trisomy 7/monosomy 16q). In-depth analyses showed the presence of recurrently broken, amplified/duplicated or deleted genes. Many of these genes, such as AKT1, RUNX1 and LIMA1, are known to be involved in cancer and related processes. Further genomic explorations suggest that they are functionally related. Conclusions Our combined analysis identifies potential candidate genes, whose alterations might contribute to adult-type GCT formation/progression together with the recurrent FOXL2 somatic mutation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1283-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandrine Caburet
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France. .,Université Paris-Diderot & Institut Jacques Monod, CNRS-UMR 7592, Bâtiment Buffon, 15 Rue Hélène Brion, Paris, Cedex 13, France.
| | - Mikko Anttonen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland. .,Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Anne-Laure Todeschini
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France.
| | - Leila Unkila-Kallio
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Denis Mestivier
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France.
| | - Ralf Butzow
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland. .,Department of pathology, University of Helsinki, and HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.
| | - Reiner A Veitia
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France. .,Université Paris-Diderot & Institut Jacques Monod, CNRS-UMR 7592, Bâtiment Buffon, 15 Rue Hélène Brion, Paris, Cedex 13, France.
| |
Collapse
|
15
|
X Chromosome and Autosome Dosage Responses in Drosophila melanogaster Heads. G3-GENES GENOMES GENETICS 2015; 5:1057-63. [PMID: 25850426 PMCID: PMC4478536 DOI: 10.1534/g3.115.017632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
X chromosome dosage compensation is required for male viability in Drosophila. Dosage compensation relative to autosomes is two-fold, but this is likely to be due to a combination of homeostatic gene-by-gene regulation and chromosome-wide regulation. We have baseline values for gene-by-gene dosage compensation on autosomes, but not for the X chromosome. Given the evolutionary history of sex chromosomes, these baseline values could differ. We used a series of deficiencies on the X and autosomes, along with mutations in the sex-determination gene transformer-2, to carefully measure the sex-independent X-chromosome response to gene dosage in adult heads by RNA sequencing. We observed modest and indistinguishable dosage compensation for both X chromosome and autosome genes, suggesting that the X chromosome is neither inherently more robust nor sensitive to dosage change.
Collapse
|
16
|
Bou Dib P, Gnägi B, Daly F, Sabado V, Tas D, Glauser DA, Meister P, Nagoshi E. A conserved role for p48 homologs in protecting dopaminergic neurons from oxidative stress. PLoS Genet 2014; 10:e1004718. [PMID: 25340742 PMCID: PMC4207665 DOI: 10.1371/journal.pgen.1004718] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Both environmental and genetic factors are thought to contribute to the pathogenesis of PD. Although several genes linked to rare familial PD have been identified, endogenous risk factors for sporadic PD, which account for the majority of PD cases, remain largely unknown. Genome-wide association studies have identified many single nucleotide polymorphisms associated with sporadic PD in neurodevelopmental genes including the transcription factor p48/ptf1a. Here we investigate whether p48 plays a role in the survival of DA neurons in Drosophila melanogaster and Caenorhabditis elegans. We show that a Drosophila p48 homolog, 48-related-2 (Fer2), is expressed in and required for the development and survival of DA neurons in the protocerebral anterior medial (PAM) cluster. Loss of Fer2 expression in adulthood causes progressive PAM neuron degeneration in aging flies along with mitochondrial dysfunction and elevated reactive oxygen species (ROS) production, leading to the progressive locomotor deficits. The oxidative stress challenge upregulates Fer2 expression and exacerbates the PAM neuron degeneration in Fer2 loss-of-function mutants. hlh-13, the worm homolog of p48, is also expressed in DA neurons. Unlike the fly counterpart, hlh-13 loss-of-function does not impair development or survival of DA neurons under normal growth conditions. Yet, similar to Fer2, hlh-13 expression is upregulated upon an acute oxidative challenge and is required for the survival of DA neurons under oxidative stress in adult worms. Taken together, our results indicate that p48 homologs share a role in protecting DA neurons from oxidative stress and degeneration, and suggest that loss-of-function of p48 homologs in flies and worms provides novel tools to study gene-environmental interactions affecting DA neuron survival. Parkinson's disease is a common movement disorder with no known cure. Its characteristic motor symptoms are primarily caused by the progressive loss of midbrain dopaminergic neurons. Although studies have shown that various environmental and genetic factors both contribute to the development of the disease, the underlying mechanisms remain unknown. Here we use powerful invertebrate model organisms, fruit flies and nematode worms, and identify a new gene required for the survival of dopaminergic neurons. We show that homologs of the p48/ptf1-a gene in both flies and worms are expressed in dopaminergic neurons and mutations in p48 increase the susceptibility of dopaminergic neuron death when animals are under oxidative stress. Importantly, genetic variations in p48 in humans have been detected in the sporadic Parkinson's disease patients, indicating the possibility that similar mechanism might play a role in the death of dopaminergic neurons in humans. Oxidative stress has been regarded as a major pathogenic factor for Parkinson's disease. Our results add evidence to the link between oxidative stress and neurodegeneration, and suggest that p48 mutant flies and worms can be used to study mechanisms of neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Peter Bou Dib
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Gnägi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Fiona Daly
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
| | - Virginie Sabado
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
| | - Damla Tas
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
| | - Dominique A. Glauser
- Department of Biology/Zoology, University of Fribourg, Chemin du Musée, Fribourg, Switzerland
| | - Peter Meister
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Emi Nagoshi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
- * E-mail:
| |
Collapse
|
17
|
Jansa P, Homolka D, Blatny R, Mistrik M, Bartek J, Forejt J. Dosage compensation of an aneuploid genome in mouse spermatogenic cells. Biol Reprod 2014; 90:124. [PMID: 24790161 DOI: 10.1095/biolreprod.114.118497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Autosomal trisomies and monosomies bring serious threats to embryonic development through transcriptional disarray caused primarily by the dosage effect of the aneuploid part of the genome. The present study compared the effect of a mouse-viable 30-Mb segmental trisomy on the genome-wide transcriptional profile of somatic (liver) cells and male germ cells. Although the 1.6-fold change in expression of triplicated genes reflected the gene dosage in liver cells, the extra copy genes were compensated in early pachytene spermatocytes, showing 1.18-fold increase. Although more pronounced, the dosage compensation of trisomic genes was concordant with the incidence of HORMAD2 protein and histone gammaH2AX markers of unsynapsed chromatin. A possible explanation for this includes insufficient sensitivity to detect the meiotic silencing of unsynapsed chromatin markers in the 30-Mb region of the chromosome or an earlier silencing effect of another epigenetic factor. Taken together, our results indicate that the meiotic silencing of unsynapsed chromatin is the major, but most likely not the only, factor driving the dosage compensation of triplicated genes in primary spermatocytes.
Collapse
Affiliation(s)
- Petr Jansa
- Laboratory of Mouse Molecular Genetics Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - David Homolka
- Laboratory of Mouse Molecular Genetics Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Radek Blatny
- Laboratory of Mouse Molecular Genetics Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jiri Forejt
- Laboratory of Mouse Molecular Genetics Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
18
|
Eckersley-Maslin MA, Thybert D, Bergmann JH, Marioni JC, Flicek P, Spector DL. Random monoallelic gene expression increases upon embryonic stem cell differentiation. Dev Cell 2014; 28:351-365. [PMID: 24576421 PMCID: PMC3955261 DOI: 10.1016/j.devcel.2014.01.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 12/21/2013] [Accepted: 01/21/2014] [Indexed: 11/23/2022]
Abstract
Random autosomal monoallelic gene expression refers to the transcription of a gene from one of two homologous alleles. We assessed the dynamics of monoallelic expression during development through an allele-specific RNA-sequencing screen in clonal populations of hybrid mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We identified 67 and 376 inheritable autosomal random monoallelically expressed genes in ESCs and NPCs, respectively, a 5.6-fold increase upon differentiation. Although DNA methylation and nuclear positioning did not distinguish the active and inactive alleles, specific histone modifications were differentially enriched between the two alleles. Interestingly, expression levels of 8% of the monoallelically expressed genes remained similar between monoallelic and biallelic clones. These results support a model in which random monoallelic expression occurs stochastically during differentiation and, for some genes, is compensated for by the cell to maintain the required transcriptional output of these genes.
Collapse
Affiliation(s)
- Mélanie A Eckersley-Maslin
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - David Thybert
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jan H Bergmann
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - David L Spector
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
19
|
Lott SE, Villalta JE, Zhou Q, Bachtrog D, Eisen MB. Sex-specific embryonic gene expression in species with newly evolved sex chromosomes. PLoS Genet 2014; 10:e1004159. [PMID: 24550743 PMCID: PMC3923672 DOI: 10.1371/journal.pgen.1004159] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022] Open
Abstract
Sex chromosome dosage differences between females and males are a significant form of natural genetic variation in many species. Like many species with chromosomal sex determination, Drosophila females have two X chromosomes, while males have one X and one Y. Fusions of sex chromosomes with autosomes have occurred along the lineage leading to D. pseudoobscura and D. miranda. The resulting neo-sex chromosomes are gradually evolving the properties of sex chromosomes, and neo-X chromosomes are becoming targets for the molecular mechanisms that compensate for differences in X chromosome dose between sexes. We have previously shown that D. melanogaster possess at least two dosage compensation mechanisms: the well- characterized MSL-mediated dosage compensation active in most somatic tissues, and another system active during early embryogenesis prior to the onset of MSL-mediated dosage compensation. To better understand the developmental constraints on sex chromosome gene expression and evolution, we sequenced mRNA from individual male and female embryos of D. pseudoobscura and D. miranda, from ∼0.5 to 8 hours of development. Autosomal expression levels are highly conserved between these species. But, unlike D. melanogaster, we observe a general lack of dosage compensation in D. pseudoobscura and D. miranda prior to the onset of MSL-mediated dosage compensation. Thus, either there has been a lineage-specific gain or loss in early dosage compensation mechanism(s) or increasing X chromosome dose may strain dosage compensation systems and make them less effective. The extent of female bias on the X chromosomes decreases through developmental time with the establishment of MSL-mediated dosage compensation, but may do so more slowly in D. miranda than D. pseudoobscura. These results also prompt a number of questions about whether species with more sex-linked genes have more sex-specific phenotypes, and how much transcript level variance is tolerable during critical stages of development. Many animals have sex-specific combinations of chromosomes. In humans, for example, females have two X chromosomes while males have one X and one Y. In most species with XX:XY systems, the Y chromosome is degenerate and gene-poor while the X encodes a large number of functional genes. A variety of systems have evolved to ensure that males with one X chromosome and females with two X chromosomes have the same gene expression level for X-linked genes. The vinegar fly D. melanogaster has at least two dosage compensation systems: one that acts early in development, and another active in later stages. In this paper, we determine expression levels for thousands of genes in male and female embryos at different developmental stages in two species, D. pseudoobscura and D. miranda, that have unusually large fractions of their genomes in X or X-like chromosomes. We show that dosage compensation is established slowly during embryogenesis, and that in these species, dosage compensation appears to be absent in early development. This may be due to a lineage-specific loss or gain of compensation mechanism, or possibly because the machinery of dosage compensation cannot effectively handle the increased demand in these species.
Collapse
Affiliation(s)
- Susan E. Lott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Jacqueline E. Villalta
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Qi Zhou
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
20
|
Gene dosage effects: nonlinearities, genetic interactions, and dosage compensation. Trends Genet 2013; 29:385-93. [PMID: 23684842 DOI: 10.1016/j.tig.2013.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/23/2013] [Accepted: 04/15/2013] [Indexed: 11/20/2022]
Abstract
High-throughput genomic analyses have shown that many mutations, including loss-of-function (LOF) mutations, are present in diseased as well as in healthy individuals. Gene dosage effects due to deletions, duplications, and LOF mutations provide avenues to explore oligo- and multigenic inheritance. Here, we focus on several mechanisms that mediate gene dosage effects and analyze biochemical interactions among multiple gene products that are sources of nonlinear relations connecting genotypes and phenotypes. We also explore potential mechanisms that compensate for gene dosage effects. Understanding these issues is critical to understanding why an individual bearing a few damaging mutations can be severely diseased, whereas others harboring tens of potentially deleterious mutations can appear quite healthy.
Collapse
|
21
|
Hoekstra LA, Montooth KL. Inducing extra copies of the Hsp70 gene in Drosophila melanogaster increases energetic demand. BMC Evol Biol 2013; 13:68. [PMID: 23510136 PMCID: PMC3641968 DOI: 10.1186/1471-2148-13-68] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/26/2013] [Indexed: 12/17/2022] Open
Abstract
Background Mutations that increase gene expression are predicted to increase energy allocation to transcription, translation and protein function. Despite an appreciation that energetic tradeoffs may constrain adaptation, the energetic costs of increased gene expression are challenging to quantify and thus easily ignored when modeling the evolution of gene expression, particularly for multicellular organisms. Here we use the well-characterized, inducible heat-shock response to test whether expressing additional copies of the Hsp70 gene increases energetic demand in Drosophila melanogaster. Results We measured metabolic rates of larvae with different copy numbers of the Hsp70 gene to quantify energy expenditure before, during, and after exposure to 36°C, a temperature known to induce robust expression of Hsp70. We observed a rise in metabolic rate within the first 30 minutes of 36°C exposure above and beyond the increase in routine metabolic rate at 36°C. The magnitude of this increase in metabolic rate was positively correlated with Hsp70 gene copy number and reflected an increase as great as 35% of the 22°C metabolic rate. Gene copy number also affected Hsp70 mRNA levels as early as 15 minutes after larvae were placed at 36°C, demonstrating that gene copy number affects transcript abundance on the same timescale as the metabolic effects that we observed. Inducing Hsp70 also had lasting physiological costs, as larvae had significantly depressed metabolic rate when returned to 22°C after induction. Conclusions Our results demonstrate both immediate and persistent energetic consequences of gene copy number in a multicellular organism. We discuss these consequences in the context of existing literature on the pleiotropic effects of variation in Hsp70 copy number, and argue that the increased energetic demand of expressing extra copies of Hsp70 may contribute to known tradeoffs in physiological performance of extra-copy larvae. Physiological costs of mutations that greatly increase gene expression, such as these, may constrain their utility for adaptive evolution.
Collapse
Affiliation(s)
- Luke A Hoekstra
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
22
|
Abstract
It is now well established that plants have an important place in studies of sex chromosome evolution because of the repeated independent evolution of separate sexes and sex chromosomes. There has been considerable recent progress in studying plant sex chromosomes. In this review, I focus on how these recent studies have helped clarify or answer several important questions about sex chromosome evolution, and I shall also try to clarify some common misconceptions. I also outline future work that will be needed to make further progress, including testing some important ideas by genetic, molecular, and developmental approaches. Systems with different ages can clearly help show the time course of events during changes from an ancestral co-sexual state (hermaphroditism or monoecy), and I will also explain how different questions can be studied in lineages whose dioecy or sex chromosomes evolved at different times in the past.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| |
Collapse
|
23
|
Malone JH, Cho DY, Mattiuzzo NR, Artieri CG, Jiang L, Dale RK, Smith HE, McDaniel J, Munro S, Salit M, Andrews J, Przytycka TM, Oliver B. Mediation of Drosophila autosomal dosage effects and compensation by network interactions. Genome Biol 2012; 13:r28. [PMID: 22531030 PMCID: PMC3446302 DOI: 10.1186/gb-2012-13-4-r28] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/06/2012] [Accepted: 04/24/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Gene dosage change is a mild perturbation that is a valuable tool for pathway reconstruction in Drosophila. While it is often assumed that reducing gene dose by half leads to two-fold less expression, there is partial autosomal dosage compensation in Drosophila, which may be mediated by feedback or buffering in expression networks. RESULTS We profiled expression in engineered flies where gene dose was reduced from two to one. While expression of most one-dose genes was reduced, the gene-specific dose responses were heterogeneous. Expression of two-dose genes that are first-degree neighbors of one-dose genes in novel network models also changed, and the directionality of change depended on the response of one-dose genes. CONCLUSIONS Our data indicate that expression perturbation propagates in network space. Autosomal compensation, or the lack thereof, is a gene-specific response, largely mediated by interactions with the rest of the transcriptome.
Collapse
Affiliation(s)
- John H Malone
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD 20892, USA
- Department of Biology, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Dong-Yeon Cho
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20814, USA
| | - Nicolas R Mattiuzzo
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD 20892, USA
| | - Carlo G Artieri
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD 20892, USA
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA 94304, USA
| | - Lichun Jiang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD 20892, USA
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD 20892, USA
| | - Harold E Smith
- Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD 20814, USA
| | - Jennifer McDaniel
- Biochemical Science Division, Molecular Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Sarah Munro
- Biochemical Science Division, Molecular Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Marc Salit
- Biochemical Science Division, Molecular Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Justen Andrews
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
| | - Teresa M Przytycka
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20814, USA
| | - Brian Oliver
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
POF regulates the expression of genes on the fourth chromosome in Drosophila melanogaster by binding to nascent RNA. Mol Cell Biol 2012; 32:2121-34. [PMID: 22473994 DOI: 10.1128/mcb.06622-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In Drosophila, two chromosome-wide compensatory systems have been characterized: the dosage compensation system that acts on the male X chromosome and the chromosome-specific regulation of genes located on the heterochromatic fourth chromosome. Dosage compensation in Drosophila is accomplished by hypertranscription of the single male X chromosome mediated by the male-specific lethal (MSL) complex. The mechanism of this compensation is suggested to involve enhanced transcriptional elongation mediated by the MSL complex, while the mechanism of compensation mediated by the painting of fourth (POF) protein on the fourth chromosome has remained elusive. Here, we show that POF binds to nascent RNA, and this binding is associated with increased transcription output from chromosome 4. We also show that genes located in heterochromatic regions spend less time in transition from the site of transcription to the nuclear envelope. These results provide useful insights into the means by which genes in heterochromatic regions can overcome the repressive influence of their hostile environment.
Collapse
|
25
|
Lundberg LE, Figueiredo MLA, Stenberg P, Larsson J. Buffering and proteolysis are induced by segmental monosomy in Drosophila melanogaster. Nucleic Acids Res 2012; 40:5926-37. [PMID: 22434883 PMCID: PMC3401434 DOI: 10.1093/nar/gks245] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Variation in the number of individual chromosomes (chromosomal aneuploidy) or chromosome segments (segmental aneuploidy) is associated with developmental abnormalities and reduced fitness in all species examined; it is the leading cause of miscarriages and mental retardation and a hallmark of cancer. However, despite their documented importance in disease, the effects of aneuploidies on the transcriptome remain largely unknown. We have examined the expression effects of seven heterozygous chromosomal deficiencies, both singly and in all pairwise combinations, in Drosophila melanogaster. The results show that genes in one copy are buffered, i.e. expressed more strongly than the expected 50% of wild-type level, the buffering is general and not influenced by other monosomic regions. Furthermore, long genes are significantly more highly buffered than short genes and gene length appears to be the primary determinant of the buffering degree. For short genes the degree of buffering depends on expression level and expression pattern. Furthermore, the results show that in deficiency heterozygotes the expression of genes involved in proteolysis is enhanced and negatively correlates with the degree of buffering. Thus, enhanced proteolysis appears to be a general response to aneuploidy.
Collapse
Affiliation(s)
- Lina E Lundberg
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | | | | | | |
Collapse
|
26
|
Sheltzer JM, Amon A. The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends Genet 2011; 27:446-53. [PMID: 21872963 DOI: 10.1016/j.tig.2011.07.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 07/21/2011] [Accepted: 07/26/2011] [Indexed: 01/09/2023]
Abstract
Aneuploidy has a paradoxical effect on cell proliferation. In all normal cells analyzed to date, aneuploidy has been found to decrease the rate of cell proliferation. Yet, aneuploidy is also a hallmark of cancer, a disease of enhanced proliferative capacity, and aneuploid cells are frequently recovered following the experimental evolution of microorganisms. Thus, in certain contexts, aneuploidy might also have growth-advantageous properties. New models of aneuploidy and chromosomal instability have shed light on the diverse effects that karyotypic imbalances have on cellular phenotypes, and suggest novel ways of understanding the role of aneuploidy in development and disease.
Collapse
Affiliation(s)
- Jason M Sheltzer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
27
|
Laverty C, Li F, Belikoff EJ, Scott MJ. Abnormal dosage compensation of reporter genes driven by the Drosophila glass multiple reporter (GMR) enhancer-promoter. PLoS One 2011; 6:e20455. [PMID: 21655213 PMCID: PMC3105068 DOI: 10.1371/journal.pone.0020455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/26/2011] [Indexed: 11/19/2022] Open
Abstract
In Drosophila melanogaster the male specific lethal (MSL) complex is required for upregulation of expression of most X-linked genes in males, thereby achieving X chromosome dosage compensation. The MSL complex is highly enriched across most active X-linked genes with a bias towards the 3′ end. Previous studies have shown that gene transcription facilitates MSL complex binding but the type of promoter did not appear to be important. We have made the surprising observation that genes driven by the glass multiple reporter (GMR) enhancer-promoter are not dosage compensated at X-linked sites. The GMR promoter is active in all cells in, and posterior to, the morphogenetic furrow of the developing eye disc. Using phiC31 integrase-mediated targeted integration, we measured expression of lacZ reporter genes driven by either the GMR or armadillo (arm) promoters at each of three X-linked sites. At all sites, the arm-lacZ reporter gene was dosage compensated but GMR-lacZ was not. We have investigated why GMR-driven genes are not dosage compensated. Earlier or constitutive expression of GMR-lacZ did not affect the level of compensation. Neither did proximity to a strong MSL binding site. However, replacement of the hsp70 minimal promoter with a minimal promoter from the X-linked 6-Phosphogluconate dehydrogenase gene did restore partial dosage compensation. Similarly, insertion of binding sites for the GAGA and DREF factors upstream of the GMR promoter led to significantly higher lacZ expression in males than females. GAGA and DREF have been implicated to play a role in dosage compensation. We conclude that the gene promoter can affect MSL complex-mediated upregulation and dosage compensation. Further, it appears that the nature of the basal promoter and the presence of binding sites for specific factors influence the ability of a gene promoter to respond to the MSL complex.
Collapse
Affiliation(s)
- Corey Laverty
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | - Fang Li
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | - Esther J. Belikoff
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | - Maxwell J. Scott
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
- * E-mail:
| |
Collapse
|
28
|
Mank JE, Hosken DJ, Wedell N. Some inconvenient truths about sex chromosome dosage compensation and the potential role of sexual conflict. Evolution 2011; 65:2133-44. [PMID: 21790564 DOI: 10.1111/j.1558-5646.2011.01316.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sex chromosome dosage compensation was once thought to be required to balance gene expression levels between sex-linked and autosomal genes in the heterogametic sex. Recent evidence from a range of animals has indicated that although sex chromosome dosage compensation exists in some clades, it is far from a necessary companion to sex chromosome evolution, and is in fact rather rare in animals. This raises questions about why complex dosage compensation mechanisms arise in some clades when they are not strictly needed, and suggests that the role of sex-specific selection in sex chromosome gene regulation should be reassessed. We show there exists a tremendous diversity in the mechanisms that regulate gene dosage and argue that sexual conflict may be an overlooked agent responsible for some of the variation seen in sex chromosome gene dose regulation.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, UK.
| | | | | |
Collapse
|
29
|
Walters JR, Hardcastle TJ. Getting a full dose? Reconsidering sex chromosome dosage compensation in the silkworm, Bombyx mori. Genome Biol Evol 2011; 3:491-504. [PMID: 21508430 PMCID: PMC3296447 DOI: 10.1093/gbe/evr036] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2011] [Indexed: 12/31/2022] Open
Abstract
Dosage compensation--equalizing gene expression levels in response to differences in gene dose or copy number--is classically considered to play a critical role in the evolution of heteromorphic sex chromosomes. As the X and Y diverge through degradation and gene loss on the Y (or the W in female-heterogametic ZW taxa), it is expected that dosage compensation will evolve to correct for sex-specific differences in gene dose. Although this is observed in some organisms, recent genome-wide expression studies in other taxa have revealed striking exceptions. In particular, reports that both birds and the silkworm moth (Bombyx mori) lack dosage compensation have spurred speculation that this is the rule for all female-heterogametic taxa. Here, we revisit the issue of dosage compensation in silkworm by replicating and extending the previous analysis. Contrary to previous reports, our efforts reveal a pattern typically associated with dosage compensated taxa: the global male:female expression ratio does not differ between the Z and autosomes. We believe the previous report of unequal male:female ratios on the Z reflects artifacts of microarray normalization in conjunction with not testing a major assumption that the male:female global expression ratio was unbiased for autosomal loci. However, we also find that the global Z chromosome expression is significantly reduced relative to autosomes, a pattern not expected in dosage compensated taxa. This combination of male:female parity with an overall reduction in expression for sex-linked loci is not consistent with the prevailing evolutionary theory of sex chromosome evolution and dosage compensation.
Collapse
Affiliation(s)
- James R Walters
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
30
|
Stenberg P, Larsson J. Buffering and the evolution of chromosome-wide gene regulation. Chromosoma 2011; 120:213-25. [PMID: 21505791 PMCID: PMC3098985 DOI: 10.1007/s00412-011-0319-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/15/2011] [Accepted: 03/31/2011] [Indexed: 11/30/2022]
Abstract
Copy number variation (CNV) in terms of aneuploidies of both entire chromosomes and chromosomal segments is an important evolutionary driving force, but it is inevitably accompanied by potentially problematic variations in gene doses and genomic instability. Thus, a delicate balance must be maintained between mechanisms that compensate for variations in gene doses (and thus allow such genomic variability) and selection against destabilizing CNVs. In Drosophila, three known compensatory mechanisms have evolved: a general segmental aneuploidy-buffering system and two chromosome-specific systems. The two chromosome-specific systems are the male-specific lethal complex, which is important for dosage compensation of the male X chromosome, and Painting of fourth, which stimulates expression of the fourth chromosome. In this review, we discuss the origin and function of buffering and compensation using Drosophila as a model.
Collapse
Affiliation(s)
- Per Stenberg
- Department of Molecular Biology, Umeå University, Sweden
| | | |
Collapse
|
31
|
Wolf JB, Bryk J. General lack of global dosage compensation in ZZ/ZW systems? Broadening the perspective with RNA-seq. BMC Genomics 2011; 12:91. [PMID: 21284834 PMCID: PMC3040151 DOI: 10.1186/1471-2164-12-91] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 02/01/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Species with heteromorphic sex chromosomes face the challenge of large-scale imbalance in gene dose. Microarray-based studies in several independent male heterogametic XX/XY systems suggest that dosage compensation mechanisms are in place to mitigate the detrimental effects of gene dose differences. However, recent genomic research on female heterogametic ZZ/ZW systems has generated surprising results. In two bird species and one lepidopteran no evidence for a global dosage compensating mechanism has been found. The recent advent of massively parallel RNA sequencing now opens up the possibility to gauge the generality of this observation with a broader phylogenetic sampling. It further allows assessing the validity of microarray-based inference on dosage compensation with a novel technology. RESULTS We here exemplify this approach using massively parallel sequencing on barcoded individuals of a bird species, the European crow (Corvus corone), where previously no genetic resources were available. Testing for Z-linkage with quantitative PCR (qPCR,) we first establish that orthology with distantly related species (chicken, zebra finch) can be used as a good predictor for chromosomal affiliation of a gene. We then use a digital measure of gene expression (RNA-seq) on brain transcriptome and confirm a global lack of dosage compensation on the Z chromosome. RNA-seq estimates of male-to-female (m:f) expression difference on the Z compare well to previous microarray-based estimates in birds and lepidopterans. The data further lends support that an up-regulation of female Z-linked genes conveys partial compensation and suggest a relationship between sex-bias and absolute expression level of a gene. Correlation of sex-biased gene expression on the Z chromosome across all three bird species further suggests that the degree of compensation has been partly conserved across 100 million years of avian evolution. CONCLUSIONS This work demonstrates that the study of dosage compensation has become amenable to species where previously no genetic resources were available. Massively parallele transcriptome sequencing allows re-assessing the degree of dosage compensation with a novel tool in well-studies species and, in addition, gain valuable insights into the generality of mechanisms across independent taxonomic group for both the XX/XY and ZZ/ZW system.
Collapse
Affiliation(s)
- Jochen Bw Wolf
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Genetics, August-Thienemannstr, 2, 24306 Plön, Germany.
| | | |
Collapse
|
32
|
Abstract
Data from several thousand knockout mutations in yeast (Saccharomyces cerevisiae) were used to estimate the distribution of dominance coefficients. We propose a new unbiased likelihood approach to measuring dominance coefficients. On average, deleterious mutations are partially recessive, with a mean dominance coefficient ~0.2. Alleles with large homozygous effects are more likely to be more recessive than are alleles of weaker effect. Our approach allows us to quantify, for the first time, the substantial variance and skew in the distribution of dominance coefficients. This heterogeneity is so great that many population genetic processes analyses based on the mean dominance coefficient alone will be in substantial error. These results are applied to the debate about various mechanisms for the evolution of dominance, and we conclude that they are most consistent with models that depend on indirect selection on homeostatic gene expression or on the ability to perform well under periods of high demand for a protein.
Collapse
|