1
|
Venkatraman K, Lipp NF, Budin I. Origin and evolution of mitochondrial inner membrane composition. J Cell Sci 2025; 138:jcs263780. [PMID: 40265338 DOI: 10.1242/jcs.263780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Unique membrane architectures and lipid building blocks underlie the metabolic and non-metabolic functions of mitochondria. During eukaryogenesis, mitochondria likely arose from an alphaproteobacterial symbiont of an Asgard archaea-related host cell. Subsequently, mitochondria evolved inner membrane folds known as cristae alongside a specialized lipid composition supported by metabolic and transport machinery. Advancements in phylogenetic methods and genomic and metagenomic data have suggested potential origins for cristae-shaping protein complexes, such as the mitochondrial contact site and cristae-organizing system (MICOS). MICOS protein homologs function in the formation of cristae-like intracytoplasmic membranes (ICMs) in diverse extant alphaproteobacteria. The machinery responsible for synthesizing key mitochondrial phospholipids - which cooperate with cristae-shaping proteins to establish inner membrane architecture - could have also evolved from a bacterial ancestor, but its origins have been less explored. In this Review, we examine the current understanding of mitochondrial membrane evolution, highlighting distinctions between prokaryotic and eukaryotic mitochondrial-specific proteins and lipids and their differing roles in shaping cristae and ICM architecture, and propose a model explaining the concurrent specialization of the mitochondrial lipidome and inner membrane structure in eukaryogenesis. We discuss how advancements across a range of disciplines are shedding light on how multiple membrane components co-evolved to support the central functions of eukaryotic mitochondria.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicolas-Frédéric Lipp
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Lee-Glover LP, Picard M, Shutt TE. Mitochondria - the CEO of the cell. J Cell Sci 2025; 138:jcs263403. [PMID: 40310473 PMCID: PMC12070065 DOI: 10.1242/jcs.263403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
As we have learned more about mitochondria over the past decades, including about their essential cellular roles and how altered mitochondrial biology results in disease, it has become apparent that they are not just powerplants pumping out ATP at the whim of the cell. Rather, mitochondria are dynamic information and energy processors that play crucial roles in directing dozens of cellular processes and behaviors. They provide instructions to enact programs that regulate various cellular operations, such as complex metabolic networks, signaling and innate immunity, and even control cell fate, dictating when cells should divide, differentiate or die. To help current and future generations of cell biologists incorporate the dynamic, multifaceted nature of mitochondria and assimilate modern discoveries into their scientific framework, mitochondria need a 21st century 'rebranding'. In this Opinion article, we argue that mitochondria should be considered as the 'Chief Executive Organelle' - the CEO - of the cell.
Collapse
Affiliation(s)
- Laurie P. Lee-Glover
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, 10032, USA
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, 10032, USA
- New York State Psychiatric Institute, New York, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, 10032, USA
| | - Timothy E. Shutt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
3
|
Bravo-Arévalo JE. Tracing the evolutionary pathway: on the origin of mitochondria and eukaryogenesis. FEBS J 2025. [PMID: 40271811 DOI: 10.1111/febs.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
The mito-early hypothesis posits that mitochondrial integration was a key driver in the evolution of defining eukaryotic characteristics (DECs). Building on previous work that identified endosymbiotic selective pressures as central to eukaryotic cell evolution, this study examines how endosymbiotic gene transfer (EGT) and the resulting genomic and bioenergetic constraints shaped mitochondrial protein import systems. These systems were crucial for maintaining cellular function in early eukaryotes and facilitated their subsequent diversification. A primary focus is the co-evolution of mitochondrial import mechanisms and eukaryotic endomembrane complexity. Specifically, I investigate how the necessity for nuclear-encoded mitochondrial protein import drove the adaptation of bacterial secretion components, alongside eukaryotic innovations, to refine translocation pathways. Beyond enabling bioenergetic expansion, mitochondrial endosymbiosis played a fundamental role in the emergence of compartmentalisation and cellular complexity in LECA, driving the evolution of organellar networks. By integrating genomic, structural and phylogenetic evidence, this study aimed to contribute to the mito-early framework, clarifying the mechanisms that linked mitochondrial acquisition to the origin of eukaryotic cells.
Collapse
Affiliation(s)
- J Ernesto Bravo-Arévalo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
4
|
Pánek T, Tice AK, Corre P, Hrubá P, Žihala D, Kamikawa R, Yazaki E, Shiratori T, Kume K, Hashimoto T, Ishida KI, Hradilová M, Silberman JD, Roger A, Inagaki Y, Eliáš M, Brown MW, Čepička I. An expanded phylogenomic analysis of Heterolobosea reveals the deep relationships, non-canonical genetic codes, and cryptic flagellate stages in the group. Mol Phylogenet Evol 2025; 204:108289. [PMID: 39826589 DOI: 10.1016/j.ympev.2025.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The phylum Heterolobosea Page and Blanton, 1985 is a group of eukaryotes that contains heterotrophic flagellates, amoebae, and amoeboflagellates, including the infamous brain-eating amoeba Naegleria fowleri. In this study, we investigate the deep evolutionary history of Heterolobosea by generating and analyzing transcriptome data from 16 diverse isolates and combine this with previously published data in a comprehensive phylogenomic analysis. This dataset has representation of all but one of the major lineages classified here as orders. Our phylogenomic analyses recovered a robustly supported phylogeny of Heterolobosea providing a phylogenetic framework for understanding their evolutionary history. Based on the newly recovered relationships, we revised the classification of Heterolobosea to the family level. We describe two new classes (Eutetramitea cl. nov. and Selenaionea cl. nov) and one new order (Naegleriida ord. nov.), and provide a new delimitation of the largest family of Heterolobosea, Vahlkampfiidae Jollos, 1917. Unexpectedly, we unveiled the first two cases of genetic code alterations in the group: UAG as a glutamine codon in the nuclear genome of Dactylomonas venusta and UGA encoding tryptophan in the mitochondrial genome of Neovahlkampfia damariscottae. In addition, analysis of the genome of the latter species confirmed its inability to make flagella, whereas we identified hallmark flagellum-specific genes in most other heteroloboseans not previously observed to form flagellates, suggesting that the loss of flagella in Heterolobosea is much rarer than generally thought. Finally, we define the first autapomorphy of the subphylum Pharyngomonada, represented by a fusion of two key genes for peroxisomal β-oxidation enzymes.
Collapse
Affiliation(s)
- Tomáš Pánek
- Charles University, Faculty of Science, Department of Zoology, Prague, Czechia.
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Pia Corre
- Charles University, Faculty of Science, Department of Zoology, Prague, Czechia
| | - Pavla Hrubá
- Charles University, Faculty of Science, Department of Zoology, Prague, Czechia
| | - David Žihala
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Ostrava, Czechia; Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | | | - Euki Yazaki
- University of Tsukuba, Tsukuba, Japan; Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | | | | | | | | | - Miluše Hradilová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic, Czechia
| | - Jeffrey D Silberman
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia; University of Arkansas, Department of Biological Sciences, Fayetteville, AR, USA
| | - Andrew Roger
- Dalhousie University, Dept. of Biochemistry and Molecular Biology, Halifax, Canada
| | | | - Marek Eliáš
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Ostrava, Czechia
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA; Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - Ivan Čepička
- Charles University, Faculty of Science, Department of Zoology, Prague, Czechia
| |
Collapse
|
5
|
Haro R, Walunjkar N, Jorapur S, Slamovits CH. Long-read DNA sequencing reveals the organization of the mitochondrial genome in the early-branching dinoflagellate Oxyrrhis marina. Protist 2024; 175:126071. [PMID: 39603112 DOI: 10.1016/j.protis.2024.126071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The mitochondrial genomes of dinoflagellate protists are remarkable for their highly fragmented and heterogeneous organization. Early attempts to determine their structure without 'next-generation' DNA sequencing failed to recover a defined genome. Still, it coincided in showing that the proteins coding genes, three in total, and parts of the ribosomal RNA genes were spread across a diffuse assortment of small linear fragments. In contrast, a recent study employed Illumina sequencing to assemble a 326 kbp long single-molecule, circular mitochondrial genome in the symbiotic dinoflagellate Breviolum minutum. Here, we used a combination of short- and long-read massively-parallel DNA sequencing to analyze further the mitochondrial DNA of the early-branching dinoflagellate Oxyrrhis marina. We found that the mitochondrial genome of O. marina consists of 3 linear chromosomes sized 15.9, 33.8 and 40.6 kbp for a total of 90.3 kbp. It contains the cox1, cox3 and cob genes, the same three proteins encoded in the mitochondrion of all myzozoans (Apicomplexa and Dinophyceae), some fragments of ribosomal RNA genes as well as many non-functional gene fragments and extensive noncoding DNA. Our analysis unveiled segments syntenic patterns and rearrangements encompassing coding and non-coding regions, suggesting that recombination is a pervasive process driving the evolution of these genomes.
Collapse
Affiliation(s)
- Ronie Haro
- Institute for Comparative Genomics and Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St, Halifax, Nova Scotia, Canada.
| | - Nikita Walunjkar
- Department of Biological Sciences, Indian Institute of Science Education and Research, 77QG+F7Q, IISER Bhopal Rd, Bhopal, India.
| | - Soham Jorapur
- Department of Biological Sciences, Indian Institute of Science Education and Research, 77QG+F7Q, IISER Bhopal Rd, Bhopal, India.
| | - Claudio H Slamovits
- Department of Biological Sciences, Indian Institute of Science Education and Research, 77QG+F7Q, IISER Bhopal Rd, Bhopal, India.
| |
Collapse
|
6
|
Richards TA, Eme L, Archibald JM, Leonard G, Coelho SM, de Mendoza A, Dessimoz C, Dolezal P, Fritz-Laylin LK, Gabaldón T, Hampl V, Kops GJPL, Leger MM, Lopez-Garcia P, McInerney JO, Moreira D, Muñoz-Gómez SA, Richter DJ, Ruiz-Trillo I, Santoro AE, Sebé-Pedrós A, Snel B, Stairs CW, Tromer EC, van Hooff JJE, Wickstead B, Williams TA, Roger AJ, Dacks JB, Wideman JG. Reconstructing the last common ancestor of all eukaryotes. PLoS Biol 2024; 22:e3002917. [PMID: 39585925 PMCID: PMC11627563 DOI: 10.1371/journal.pbio.3002917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/09/2024] [Indexed: 11/27/2024] Open
Abstract
Understanding the origin of eukaryotic cells is one of the most difficult problems in all of biology. A key challenge relevant to the question of eukaryogenesis is reconstructing the gene repertoire of the last eukaryotic common ancestor (LECA). As data sets grow, sketching an accurate genomics-informed picture of early eukaryotic cellular complexity requires provision of analytical resources and a commitment to data sharing. Here, we summarise progress towards understanding the biology of LECA and outline a community approach to inferring its wider gene repertoire. Once assembled, a robust LECA gene set will be a useful tool for evaluating alternative hypotheses about the origin of eukaryotes and understanding the evolution of traits in all descendant lineages, with relevance in diverse fields such as cell biology, microbial ecology, biotechnology, agriculture, and medicine. In this Consensus View, we put forth the status quo and an agreed path forward to reconstruct LECA's gene content.
Collapse
Affiliation(s)
| | - Laura Eme
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology and the Institute for Comparative Genomics, Dalhousie University, Halifax, Canada
| | - Guy Leonard
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Susana M. Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United States of America
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pavel Dolezal
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Lillian K. Fritz-Laylin
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Geert J. P. L. Kops
- Hubrecht Institute-KNAW, Oncode Institute, UMC Utrecht, Utrecht, the Netherlands
| | - Michelle M. Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Purificacion Lopez-Garcia
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - James O. McInerney
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Sergio A. Muñoz-Gómez
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Daniel J. Richter
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Alyson E. Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, United States of America
| | - Arnau Sebé-Pedrós
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Jolien J. E. van Hooff
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology and the Institute for Comparative Genomics, Dalhousie University, Halifax, Canada
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom
| | - Jeremy G. Wideman
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
7
|
A. Ghomi F, Jung JJ, Langridge GC, Cain AK, Boinett CJ, Abd El Ghany M, Pickard DJ, Kingsley RA, Thomson NR, Parkhill J, Gardner PP, Barquist L. High-throughput transposon mutagenesis in the family Enterobacteriaceae reveals core essential genes and rapid turnover of essentiality. mBio 2024; 15:e0179824. [PMID: 39207104 PMCID: PMC11481867 DOI: 10.1128/mbio.01798-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The Enterobacteriaceae are a scientifically and medically important clade of bacteria, containing the model organism Escherichia coli, as well as major human pathogens including Salmonella enterica and Klebsiella pneumoniae. Essential gene sets have been determined for several members of the Enterobacteriaceae, with the Keio E. coli single-gene deletion library often regarded as a gold standard. However, it remains unclear how gene essentiality varies between related strains and species. To investigate this, we have assembled a collection of 13 sequenced high-density transposon mutant libraries from five genera within the Enterobacteriaceae. We first assess several gene essentiality prediction approaches, investigate the effects of transposon density on essentiality prediction, and identify biases in transposon insertion sequencing data. Based on these investigations, we develop a new classifier for gene essentiality. Using this new classifier, we define a core essential genome in the Enterobacteriaceae of 201 universally essential genes. Despite the presence of a large cohort of variably essential genes, we find an absence of evidence for genus-specific essential genes. A clear example of this sporadic essentiality is given by the set of genes regulating the σE extracytoplasmic stress response, which appears to have independently acquired essentiality multiple times in the Enterobacteriaceae. Finally, we compare our essential gene sets to the natural experiment of gene loss in obligate insect endosymbionts that have emerged from within the Enterobacteriaceae. This isolates a remarkably small set of genes absolutely required for survival and identifies several instances of essential stress responses masked by redundancy in free-living bacteria.IMPORTANCEThe essential genome, that is the set of genes absolutely required to sustain life, is a core concept in genetics. Essential genes in bacteria serve as drug targets, put constraints on the engineering of biological chassis for technological or industrial purposes, and are key to constructing synthetic life. Despite decades of study, relatively little is known about how gene essentiality varies across related bacteria. In this study, we have collected gene essentiality data for 13 bacteria related to the model organism Escherichia coli, including several human pathogens, and investigated the conservation of essentiality. We find that approximately a third of the genes essential in any particular strain are non-essential in another related strain. Surprisingly, we do not find evidence for essential genes unique to specific genera; rather it appears a substantial fraction of the essential genome rapidly gains or loses essentiality during evolution. This suggests that essentiality is not an immutable characteristic but depends crucially on the genomic context. We illustrate this through a comparison of our essential genes in free-living bacteria to genes conserved in 34 insect endosymbionts with naturally reduced genomes, finding several cases where genes generally regarded as being important for specific stress responses appear to have become essential in endosymbionts due to a loss of functional redundancy in the genome.
Collapse
Affiliation(s)
- Fatemeh A. Ghomi
- Biomolecular Interactions Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jakob J. Jung
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Gemma C. Langridge
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| | | | - Moataz Abd El Ghany
- The Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
- School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Derek J. Pickard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Robert A. Kingsley
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Department of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul P. Gardner
- Biomolecular Interactions Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry, Otago University, Dunedin, New Zealand
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| |
Collapse
|
8
|
Fang J, Lin A, Yan H, Feng L, Lin S, Mason P, Zhou L, Xu X, Zhao K, Huang Y, Henry RJ. Cytoplasmic genomes of Jasminum sambac reveal divergent sub-mitogenomic conformations and a large nuclear chloroplast-derived insertion. BMC PLANT BIOLOGY 2024; 24:861. [PMID: 39272034 PMCID: PMC11401388 DOI: 10.1186/s12870-024-05557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Jasminum sambac, a widely recognized ornamental plant prized for its aromatic blossoms, exhibits three flora phenotypes: single-petal ("SP"), double-petal ("DP"), and multi-petal ("MP"). The lack of detailed characterization and comparison of J. sambac mitochondrial genomes (mitogenomes) hinders the exploration of the genetic and structural diversity underlying the varying floral phenotypes in jasmine accessions. RESULTS Here, we de novo assembled three mitogenomes of typical phenotypes of J. sambac, "SP", "DP", and "MP-hutou" ("HT"), with PacBio reads and the "HT" chloroplast (cp) genome with Illumina reads, and verified them with read mapping and fluorescence in situ hybridization (FISH). The three mitogenomes present divergent sub-genomic conformations, with two, two, and four autonomous circular chromosomes ranging in size from 35.7 kb to 405.3 kb. Each mitogenome contained 58 unique genes. Ribosome binding sites with conserved AAGAAx/AxAAAG motifs were detected upstream of uncanonical start codons TTG, CTG and GTG. The three mitogenomes were similar in genomic content but divergent in structure. The structural variations were mainly attributed to recombination mediated by a large (~ 5 kb) forward repeat pair and several short repeats. The three jasmine cp. genomes showed a well-conserved structure, apart from a 19.9 kb inversion in "HT". We identified a 14.3 kb "HT"-specific insertion on Chr7 of the "HT" nuclear genome, consisting of two 7 kb chloroplast-derived fragments with two intact ndhH and rps15 genes, further validated by polymerase chain reaction (PCR). The well-resolved phylogeny suggests faster mitogenome evolution in J. sambac compared to other Oleaceae species and outlines the mitogenome evolutionary trajectories within Lamiales. All evidence supports that "DP" and "HT" evolved from "SP", with "HT" being the most recent derivative of "DP". CONCLUSION The comprehensive characterization of jasmine organelle genomes has added to our knowledge of the structural diversity and evolutionary trajectories behind varying jasmine traits, paving the way for in-depth exploration of mechanisms and targeted genetic research.
Collapse
Affiliation(s)
- Jingping Fang
- College of Life Science, Fujian Normal University, Fuzhou, China.
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
| | - Aiting Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hansong Yan
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liqing Feng
- College of Life Science, Fujian Normal University, Fuzhou, China
- Marine and Agricultural Biotechnology Laboratory, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Shaoqing Lin
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Patrick Mason
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - Linwei Zhou
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xiuming Xu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yongji Huang
- Marine and Agricultural Biotechnology Laboratory, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China.
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
| |
Collapse
|
9
|
Konkel Z, Kubatko L, Slot JC. CLOCI: unveiling cryptic fungal gene clusters with generalized detection. Nucleic Acids Res 2024; 52:e75. [PMID: 39016185 PMCID: PMC11381361 DOI: 10.1093/nar/gkae625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Gene clusters are genomic loci that contain multiple genes that are functionally and genetically linked. Gene clusters collectively encode diverse functions, including small molecule biosynthesis, nutrient assimilation, metabolite degradation, and production of proteins essential for growth and development. Identifying gene clusters is a powerful tool for small molecule discovery and provides insight into the ecology and evolution of organisms. Current detection algorithms focus on canonical 'core' biosynthetic functions many gene clusters encode, while overlooking uncommon or unknown cluster classes. These overlooked clusters are a potential source of novel natural products and comprise an untold portion of overall gene cluster repertoires. Unbiased, function-agnostic detection algorithms therefore provide an opportunity to reveal novel classes of gene clusters and more precisely define genome organization. We present CLOCI (Co-occurrence Locus and Orthologous Cluster Identifier), an algorithm that identifies gene clusters using multiple proxies of selection for coordinated gene evolution. Our approach generalizes gene cluster detection and gene cluster family circumscription, improves detection of multiple known functional classes, and unveils non-canonical gene clusters. CLOCI is suitable for genome-enabled small molecule mining, and presents an easily tunable approach for delineating gene cluster families and homologous loci.
Collapse
Affiliation(s)
- Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Laura Kubatko
- Department of Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Statistics, The Ohio State University, Columbus, OH 43210, USA
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Moreira D, Blaz J, Kim E, Eme L. A gene-rich mitochondrion with a unique ancestral protein transport system. Curr Biol 2024; 34:3812-3819.e3. [PMID: 39084221 DOI: 10.1016/j.cub.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Mitochondria originated from an ancient endosymbiosis involving an alphaproteobacterium.1,2,3 Over time, these organelles reduced their gene content massively, with most genes being transferred to the host nucleus before the last eukaryotic common ancestor (LECA).4 This process has yielded varying gene compositions in modern mitogenomes, including the complete loss of this organellar genome in some extreme cases.5,6,7,8,9,10,11,12,13,14 At the other end of the spectrum, jakobids harbor the most gene-rich mitogenomes, encoding 60-66 proteins.8 Here, we introduce the mitogenome of Mantamonas sphyraenae, a protist from the deep-branching CRuMs supergroup.15,16 Remarkably, it boasts the most gene-rich mitogenome outside of jakobids, by housing 91 genes, including 62 protein-coding ones. These include rare homologs of the four subunits of the bacterial-type cytochrome c maturation system I (CcmA, CcmB, CcmC, and CcmF) alongside a unique ribosomal protein S6. During the early evolution of mitochondria, gene transfer from the proto-mitochondrial endosymbiont to the nucleus became possible thanks to systems facilitating the transport of proteins synthesized in the host cytoplasm back to the mitochondrion. In addition to the universally found eukaryotic protein import systems, jakobid mitogenomes were reported to uniquely encode the SecY transmembrane protein of the Sec general secretory pathway, whose evolutionary origin was however unclear. The Mantamonas mitogenome not only encodes SecY but also SecA, SecE, and SecG, making it the sole eukaryote known to house a complete mitochondrial Sec translocation system. Furthermore, our phylogenetic and comparative genomic analyses provide compelling evidence for the alphaproteobacterial origin of this system, establishing its presence in LECA.
Collapse
Affiliation(s)
- David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France.
| | - Jazmin Blaz
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France
| | - Eunsoo Kim
- Division of EcoScience, Ewha Womans University, Seoul, South Korea; Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Laura Eme
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Leger MM, Gawryluk RMR. Evolution: A gene-rich mitochondrial genome sheds light on the last eukaryotic common ancestor. Curr Biol 2024; 34:R776-R779. [PMID: 39163838 DOI: 10.1016/j.cub.2024.06.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
A new mitochondrial genome is the most gene-rich one found in a major division of eukaryotes - and it shares remarkable features with that of one of its most distant relatives.
Collapse
Affiliation(s)
- Michelle M Leger
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - Ryan M R Gawryluk
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
12
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Howe CJ, Barbrook AC. Dinoflagellate chloroplasts as a model for extreme genome reduction and fragmentation in organelles - The COCOA principle for gene retention. Protist 2024; 175:126048. [PMID: 38981407 DOI: 10.1016/j.protis.2024.126048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
The genomes of peridinin-containing dinoflagellate chloroplasts have a very unusual organisation. These genomes are highly fragmented and greatly reduced, with most of the usual complement of chloroplast genes relocated to the nucleus. Dinoflagellate chloroplasts highlight evolutionary changes that are found to varying extents in a number of other organelle genomes. These include the chloroplast genome of the green alga Boodlea and other Cladophorales, and the mitochondrial genomes of blood-sucking and chewing lice, the parasitic plant Rhopalocnemis phalloides, the red alga Rhodosorus marinus and other members of the Stylonematophyceae, diplonemid flagellates, and some Cnidaria. Consideration of the coding content of the remnant chloroplast genomes indicates that organelles may preferentially retain genes for proteins important in initiating assembly of complexes, and the same is largely true for mitochondria. We propose a new principle, of CO-location for COntrol of Assembly (COCOA), indicating the importance of retaining these genes in the organelle. This adds to, but does not invalidate, the existing hypotheses of the multisubunit completion principle, CO-location for Redox Regulation (CORR) and Control by Epistasy of Synthesis (CES).
Collapse
Affiliation(s)
- Christopher J Howe
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK; Stellenbosch Institute for Advanced Study, (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Adrian C Barbrook
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK.
| |
Collapse
|
14
|
Ma L, Lin I, Hunter ST, Blasi B, Danesi P, Weissenbacher-Lang C, Cisse OH, Rothenburger JL, Kovacs JA. Development of Highly Efficient Universal Pneumocystis Primers and Their Application in Investigating the Prevalence and Genetic Diversity of Pneumocystis in Wild Hares and Rabbits. J Fungi (Basel) 2024; 10:355. [PMID: 38786710 PMCID: PMC11121927 DOI: 10.3390/jof10050355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Despite its ubiquitous infectivity to mammals with strong host specificity, our current knowledge about Pneumocystis has originated from studies of merely 4% of extant mammalian species. Further studies of Pneumocystis epidemiology across a broader range of animal species require the use of assays with high sensitivity and specificity. To this end, we have developed multiple universal Pneumocystis primers targeting different genetic loci with high amplification efficiency. Application of these primers to PCR investigation of Pneumocystis in free-living hares (Lepus townsendii, n = 130) and rabbits (Oryctolagus cuniculus, n = 8) in Canada revealed a prevalence of 81% (105/130) and 25% (2/8), respectively. Genotyping analysis identified five and two variants of Pneumocystis from hares and rabbits, respectively, with significant sequence divergence between the variants from hares. Based on phylogenetic analysis using nearly full-length sequences of the mitochondrial genome, nuclear rRNA operon and dihydropteroate synthase gene for the two most common variants, Pneumocystis in hares and rabbits are more closely related to each other than either are to Pneumocystis in other mammals. Furthermore, Pneumocystis in both hares and rabbits are more closely related to Pneumocystis in primates and dogs than to Pneumocystis in rodents. The high prevalence of Pneumocystis in hares (P. sp. 'townsendii') suggests its widespread transmissibility in the natural environment, similar to P. oryctolagi in rabbits. The presence of multiple distinct Pneumocystis populations in hares contrasts with the lack of apparent intra-species heterogeneity in P. oryctolagi, implying a unique evolution history of P. sp. 'townsendii' in hares.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; (I.L.); (O.H.C.); (J.A.K.)
| | - Isabella Lin
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; (I.L.); (O.H.C.); (J.A.K.)
| | - Summer T. Hunter
- Faculty of Veterinary Medicine, University of Calgary, Canadian Wildlife Health Cooperative (Alberta Region), Calgary, AB T2N 1N4, Canada; (S.T.H.); (J.L.R.)
| | - Barbara Blasi
- Department of Biological Sciences and Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, 1210 Wien, Austria; (B.B.); (C.W.-L.)
| | - Patrizia Danesi
- Laboratory of Parasitology, Mycology and Medical Enthomology, Istituto Zooprofilattico delle Venezie, 35020 Legnaro, Italy;
| | - Christiane Weissenbacher-Lang
- Department of Biological Sciences and Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, 1210 Wien, Austria; (B.B.); (C.W.-L.)
| | - Ousmane H. Cisse
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; (I.L.); (O.H.C.); (J.A.K.)
| | - Jamie L. Rothenburger
- Faculty of Veterinary Medicine, University of Calgary, Canadian Wildlife Health Cooperative (Alberta Region), Calgary, AB T2N 1N4, Canada; (S.T.H.); (J.L.R.)
| | - Joseph A. Kovacs
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; (I.L.); (O.H.C.); (J.A.K.)
| |
Collapse
|
15
|
Dohnálek V, Doležal P. Installation of LYRM proteins in early eukaryotes to regulate the metabolic capacity of the emerging mitochondrion. Open Biol 2024; 14:240021. [PMID: 38772414 PMCID: PMC11293456 DOI: 10.1098/rsob.240021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/13/2024] [Indexed: 05/23/2024] Open
Abstract
Core mitochondrial processes such as the electron transport chain, protein translation and the formation of Fe-S clusters (ISC) are of prokaryotic origin and were present in the bacterial ancestor of mitochondria. In animal and fungal models, a family of small Leu-Tyr-Arg motif-containing proteins (LYRMs) uniformly regulates the function of mitochondrial complexes involved in these processes. The action of LYRMs is contingent upon their binding to the acylated form of acyl carrier protein (ACP). This study demonstrates that LYRMs are structurally and evolutionarily related proteins characterized by a core triplet of α-helices. Their widespread distribution across eukaryotes suggests that 12 specialized LYRMs were likely present in the last eukaryotic common ancestor to regulate the assembly and folding of the subunits that are conserved in bacteria but that lack LYRM homologues. The secondary reduction of mitochondria to anoxic environments has rendered the function of LYRMs and their interaction with acylated ACP dispensable. Consequently, these findings strongly suggest that early eukaryotes installed LYRMs in aerobic mitochondria as orchestrated switches, essential for regulating core metabolism and ATP production.
Collapse
Affiliation(s)
- Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec252 50, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec252 50, Czech Republic
| |
Collapse
|
16
|
Kumar P, Sankaranarayanan R. When Paul Berg meets Donald Crothers: an achiral connection through protein biosynthesis. Nucleic Acids Res 2024; 52:2130-2141. [PMID: 38407292 PMCID: PMC10954443 DOI: 10.1093/nar/gkae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
Outliers in scientific observations are often ignored and mostly remain unreported. However, presenting them is always beneficial since they could reflect the actual anomalies that might open new avenues. Here, we describe two examples of the above that came out of the laboratories of two of the pioneers of nucleic acid research in the area of protein biosynthesis, Paul Berg and Donald Crothers. Their work on the identification of D-aminoacyl-tRNA deacylase (DTD) and 'Discriminator hypothesis', respectively, were hugely ahead of their time and were partly against the general paradigm at that time. In both of the above works, the smallest and the only achiral amino acid turned out to be an outlier as DTD can act weakly on glycine charged tRNAs with a unique discriminator base of 'Uracil'. This peculiar nature of glycine remained an enigma for nearly half a century. With a load of available information on the subject by the turn of the century, our work on 'chiral proofreading' mechanisms during protein biosynthesis serendipitously led us to revisit these findings. Here, we describe how we uncovered an unexpected connection between them that has implications for evolution of different eukaryotic life forms.
Collapse
Affiliation(s)
- Pradeep Kumar
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Rajan Sankaranarayanan
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
17
|
Butenko A, Lukeš J, Speijer D, Wideman JG. Mitochondrial genomes revisited: why do different lineages retain different genes? BMC Biol 2024; 22:15. [PMID: 38273274 PMCID: PMC10809612 DOI: 10.1186/s12915-024-01824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
The mitochondria contain their own genome derived from an alphaproteobacterial endosymbiont. From thousands of protein-coding genes originally encoded by their ancestor, only between 1 and about 70 are encoded on extant mitochondrial genomes (mitogenomes). Thanks to a dramatically increasing number of sequenced and annotated mitogenomes a coherent picture of why some genes were lost, or relocated to the nucleus, is emerging. In this review, we describe the characteristics of mitochondria-to-nucleus gene transfer and the resulting varied content of mitogenomes across eukaryotes. We introduce a 'burst-upon-drift' model to best explain nuclear-mitochondrial population genetics with flares of transfer due to genetic drift.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, USA.
| |
Collapse
|
18
|
Eglit Y, Shiratori T, Jerlström-Hultqvist J, Williamson K, Roger AJ, Ishida KI, Simpson AGB. Meteora sporadica, a protist with incredible cell architecture, is related to Hemimastigophora. Curr Biol 2024; 34:451-459.e6. [PMID: 38262350 DOI: 10.1016/j.cub.2023.12.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
"Kingdom-level" branches are being added to the tree of eukaryotes at a rate approaching one per year, with no signs of slowing down.1,2,3,4 Some are completely new discoveries, whereas others are morphologically unusual protists that were previously described but lacked molecular data. For example, Hemimastigophora are predatory protists with two rows of flagella that were known since the 19th century but proved to represent a new deep-branching eukaryote lineage when phylogenomic analyses were conducted.2Meteora sporadica5 is a protist with a unique morphology; cells glide over substrates along a long axis of anterior and posterior projections while a pair of lateral "arms" swing back and forth, a motility system without any obvious parallels. Originally, Meteora was described by light microscopy only, from a short-term enrichment of deep-sea sediment. A small subunit ribosomal RNA (SSU rRNA) sequence was reported recently, but the phylogenetic placement of Meteora remained unresolved.6 Here, we investigated two cultivated Meteora sporadica isolates in detail. Transmission electron microscopy showed that both the anterior-posterior projections and the arms are supported by microtubules originating from a cluster of subnuclear microtubule organizing centers (MTOCs). Neither have a flagellar axoneme-like structure. Sequencing the mitochondrial genome showed this to be among the most gene-rich known, outside jakobids. Remarkably, phylogenomic analyses of 254 nuclear protein-coding genes robustly support a close relationship with Hemimastigophora. Our study suggests that Meteora and Hemimastigophora together represent a morphologically diverse "supergroup" and thus are important for resolving the tree of eukaryote life and early eukaryote evolution.
Collapse
Affiliation(s)
- Yana Eglit
- Institute for Comparative Genomics, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Takashi Shiratori
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Jon Jerlström-Hultqvist
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kelsey Williamson
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andrew J Roger
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ken-Ichiro Ishida
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | - Alastair G B Simpson
- Institute for Comparative Genomics, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
19
|
Golik P. RNA processing and degradation mechanisms shaping the mitochondrial transcriptome of budding yeasts. IUBMB Life 2024; 76:38-52. [PMID: 37596708 DOI: 10.1002/iub.2779] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Yeast mitochondrial genes are expressed as polycistronic transcription units that contain RNAs from different classes and show great evolutionary variability. The promoters are simple, and transcriptional control is rudimentary. Posttranscriptional mechanisms involving RNA maturation, stability, and degradation are thus the main force shaping the transcriptome and determining the expression levels of individual genes. Primary transcripts are fragmented by tRNA excision by RNase P and tRNase Z, additional processing events occur at the dodecamer site at the 3' end of protein-coding sequences. groups I and II introns are excised in a self-splicing reaction that is supported by protein splicing factors encoded by the nuclear genes, or by the introns themselves. The 3'-to-5' exoribonucleolytic complex called mtEXO is the main RNA degradation activity involved in RNA turnover and processing, supported by an auxiliary 5'-to-3' exoribonuclease Pet127p. tRNAs and, to a lesser extent, rRNAs undergo several different base modifications. This complex gene expression system relies on the coordinated action of mitochondrial and nuclear genes and undergoes rapid evolution, contributing to speciation events. Moving beyond the classical model yeast Saccharomyces cerevisiae to other budding yeasts should provide important insights into the coevolution of both genomes that constitute the eukaryotic genetic system.
Collapse
Affiliation(s)
- Pawel Golik
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Chrzanowska-Lightowlers ZM, Lightowlers RN. Mitochondrial RNA maturation. RNA Biol 2024; 21:28-39. [PMID: 39385590 PMCID: PMC11469412 DOI: 10.1080/15476286.2024.2414157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
The vast majority of oxygen-utilizing eukaryotes need to express their own mitochondrial genome, mtDNA, to survive. In comparison to size of their nuclear genome, mtDNA is minimal, even in the most exceptional examples. Having evolved from bacteria in an endosymbiotic event, it might be expected that the process of mtDNA expression would be relatively simple. The aim of this short review is to illustrate just how wrong this assumption is. The production of functional mitochondrial RNA across species evolved in many directions. Organelles use a dizzying array of RNA processing, modifying, editing, splicing and maturation events that largely require the import of nuclear-encoded proteins from the cytosol. These processes are sometimes driven by the unusual behaviour of the mitochondrial genome from which the RNA is originally transcribed, but in many examples the complex processes that are essential for the production of functional RNA in the organelle, are fascinating and bewildering.
Collapse
Affiliation(s)
- Zofia M. Chrzanowska-Lightowlers
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robert N. Lightowlers
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
21
|
Perez LJ, Cloherty GA, Berg MG. Parallel evolution of picobirnaviruses from distinct ancestral origins. Microbiol Spectr 2023; 11:e0269323. [PMID: 37888988 PMCID: PMC10714727 DOI: 10.1128/spectrum.02693-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE Picobirnaviruses (PBVs) are highly heterogeneous viruses encoding a capsid and RdRp. Detected in a wide variety of animals with and without disease, their association with gastrointestinal and respiratory infections, and consequently their public health importance, has rightly been questioned. Determining the "true" host of Picobirnavirus lies at the center of this debate, as evidence exists for them having both vertebrate and prokaryotic origins. Using integrated and time-stamped phylogenetic approaches, we show they are contemporaneous viruses descending from two different ancestors: avian Reovirus and fungal Partitivirus. The fungal PBV-R2 species emerged with a single segment (RdRp) until it acquired a capsid from vertebrate PBV-R1 and PBV-R3 species. Protein and RNA folding analyses revealed how the former came to resemble the latter over time. Thus, parallel evolution from disparate hosts has driven the adaptation and genetic diversification of the Picobirnaviridae family.
Collapse
Affiliation(s)
- Lester J. Perez
- Infectious Disease Core Research, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
- Abbott Pandemic Defense Coalition (APDC), Chicago, Illinois, USA
| | - Gavin A. Cloherty
- Infectious Disease Core Research, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
- Abbott Pandemic Defense Coalition (APDC), Chicago, Illinois, USA
| | - Michael G. Berg
- Infectious Disease Core Research, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
- Abbott Pandemic Defense Coalition (APDC), Chicago, Illinois, USA
| |
Collapse
|
22
|
Gastineau R, Harðardóttir S, Guilmette C, Lemieux C, Turmel M, Otis C, Boyle B, Levesque RC, Gauthier J, Potvin M, Lovejoy C. Mitochondrial genome sequence of the protist Ancyromonas sigmoides Kent, 1881 (Ancyromonadida) from the Sugluk Inlet, Hudson Strait, Nunavik, Québec. Front Microbiol 2023; 14:1275665. [PMID: 38143861 PMCID: PMC10749196 DOI: 10.3389/fmicb.2023.1275665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction There is little information on evolutionarily ancient eukaryotes, which are often referred to as basal eukaryotes, in Arctic waters. Despite earlier studies being conducted in the Russian White Sea, only few have been reported. Methods Following a shotgun sequence survey of diatom cultures from Sugluk Inlet off the Hudson Strait in Northern Québec, we obtained the complete mitochondrial genome and the operon of nuclear ribosomal RNA genes from a strain that matches that of Ancyromonas sigmoides (Kent, 1881). Results The sequence of the mitogenome retrieved was 41,889 bp in length and encoded 38 protein-coding genes, 5 non-conserved open-reading frames, and 2 rRNA and 24 tRNA genes. The mitogenome has retained sdh2 and sdh3, two genes of the succinate dehydrogenase complex, which are sometimes found among basal eukaryotes but seemingly missing among the Malawimonadidae, a lineage sister to Ancyromonadida in some phylogenies. The phylogeny inferred from the 18S rRNA gene associated A. sigmoides from Sugluk Inlet with several other strains originating from the Arctic. The study also unveiled the presence of a metagenomic sequence ascribed to bacteria in GenBank, but it was clearly a mitochondrial genome with a gene content highly similar to that of A. sigmoides, including the non-conserved open-reading frames. Discussion After re-annotation, a phylogeny was inferred from mitochondrial protein sequences, and it strongly associated A. sigmoides with the misidentified organism, with the two being possibly conspecific or sibling species as they are more similar to one another than to species of the genus Malawimonas. Overall our phylogeny showed that the ice associated ancryomonads were clearly distinct from more southerly strains.
Collapse
Affiliation(s)
- Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| | - Sara Harðardóttir
- Geological Survey of Denmark and Greenland, København K, Denmark
- Biology Department, Takuvik International Research Laboratory (IRL 3376), Université Laval – CNRS, Québec City, QC, Canada
- The Marine and Freshwater Research Institute in Iceland, Hafnarfjörður, Iceland
| | - Caroline Guilmette
- Biology Department, Takuvik International Research Laboratory (IRL 3376), Université Laval – CNRS, Québec City, QC, Canada
| | - Claude Lemieux
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC, Canada
- Département de biochimie, de microbiologie et de bio-Informatique, Université Laval, Québec City, QC, Canada
| | - Monique Turmel
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC, Canada
- Département de biochimie, de microbiologie et de bio-Informatique, Université Laval, Québec City, QC, Canada
| | - Christian Otis
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC, Canada
- Plateforme d’Analyse génomique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC, Canada
- Plateforme d’Analyse génomique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC, Canada
| | - Roger C. Levesque
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC, Canada
| | - Jeff Gauthier
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC, Canada
| | - Marianne Potvin
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC, Canada
- Département de biochimie, de microbiologie et de bio-Informatique, Université Laval, Québec City, QC, Canada
| | - Connie Lovejoy
- Biology Department, Takuvik International Research Laboratory (IRL 3376), Université Laval – CNRS, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC, Canada
| |
Collapse
|
23
|
Geiger O, Sanchez-Flores A, Padilla-Gomez J, Degli Esposti M. Multiple approaches of cellular metabolism define the bacterial ancestry of mitochondria. SCIENCE ADVANCES 2023; 9:eadh0066. [PMID: 37556552 PMCID: PMC10411912 DOI: 10.1126/sciadv.adh0066] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/11/2023] [Indexed: 08/11/2023]
Abstract
We breathe at the molecular level when mitochondria in our cells consume oxygen to extract energy from nutrients. Mitochondria are characteristic cellular organelles that derive from aerobic bacteria and carry out oxidative phosphorylation and other key metabolic pathways in eukaryotic cells. The precise bacterial origin of mitochondria and, consequently, the ancestry of the aerobic metabolism of our cells remain controversial despite the vast genomic information that is now available. Here, we use multiple approaches to define the most likely living relatives of the ancestral bacteria from which mitochondria originated. These bacteria live in marine environments and exhibit the highest frequency of aerobic traits and genes for the metabolism of fundamental lipids that are present in the membranes of eukaryotes, sphingolipids, and cardiolipin.
Collapse
Affiliation(s)
- Otto Geiger
- Center for Genomic Sciences, UNAM Campus de Morelos, Cuernavaca, México
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformatica, Institute of Biotechnology, UNAM, Cuernavaca, México
| | | | | |
Collapse
|
24
|
Jacobs HT. A century of mitochondrial research, 1922-2022. Enzymes 2023; 54:37-70. [PMID: 37945177 DOI: 10.1016/bs.enz.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Although recognized earlier as subcellular entities by microscopists, mitochondria have been the subject of functional studies since 1922, when their biochemical similarities with bacteria were first noted. In this overview I trace the history of research on mitochondria from that time up to the present day, focussing on the major milestones of the overlapping eras of mitochondrial biochemistry, genetics, pathology and cell biology, and its explosion into new areas in the past 25 years. Nowadays, mitochondria are considered to be fully integrated into cell physiology, rather than serving specific functions in isolation.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
25
|
Valach M, Benz C, Aguilar LC, Gahura O, Faktorová D, Zíková A, Oeffinger M, Burger G, Gray MW, Lukeš J. Miniature RNAs are embedded in an exceptionally protein-rich mitoribosome via an elaborate assembly pathway. Nucleic Acids Res 2023; 51:6443-6460. [PMID: 37207340 PMCID: PMC10325924 DOI: 10.1093/nar/gkad422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
The mitochondrial ribosome (mitoribosome) has diverged drastically from its evolutionary progenitor, the bacterial ribosome. Structural and compositional diversity is particularly striking in the phylum Euglenozoa, with an extraordinary protein gain in the mitoribosome of kinetoplastid protists. Here we report an even more complex mitoribosome in diplonemids, the sister-group of kinetoplastids. Affinity pulldown of mitoribosomal complexes from Diplonema papillatum, the diplonemid type species, demonstrates that they have a mass of > 5 MDa, contain as many as 130 integral proteins, and exhibit a protein-to-RNA ratio of 11:1. This unusual composition reflects unprecedented structural reduction of ribosomal RNAs, increased size of canonical mitoribosomal proteins, and accretion of three dozen lineage-specific components. In addition, we identified >50 candidate assembly factors, around half of which contribute to early mitoribosome maturation steps. Because little is known about early assembly stages even in model organisms, our investigation of the diplonemid mitoribosome illuminates this process. Together, our results provide a foundation for understanding how runaway evolutionary divergence shapes both biogenesis and function of a complex molecular machine.
Collapse
Affiliation(s)
- Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montréal, Quebec, Canada
| | - Corinna Benz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Lisbeth C Aguilar
- Center for Genetic and Neurological Diseases, Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Marlene Oeffinger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montréal, Quebec, Canada
- Center for Genetic and Neurological Diseases, Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montréal, Quebec, Canada
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology and Institute of Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
26
|
Lang BF, Beck N, Prince S, Sarrasin M, Rioux P, Burger G. Mitochondrial genome annotation with MFannot: a critical analysis of gene identification and gene model prediction. FRONTIERS IN PLANT SCIENCE 2023; 14:1222186. [PMID: 37469769 PMCID: PMC10352661 DOI: 10.3389/fpls.2023.1222186] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
Compared to nuclear genomes, mitochondrial genomes (mitogenomes) are small and usually code for only a few dozen genes. Still, identifying genes and their structure can be challenging and time-consuming. Even automated tools for mitochondrial genome annotation often require manual analysis and curation by skilled experts. The most difficult steps are (i) the structural modelling of intron-containing genes; (ii) the identification and delineation of Group I and II introns; and (iii) the identification of moderately conserved, non-coding RNA (ncRNA) genes specifying 5S rRNAs, tmRNAs and RNase P RNAs. Additional challenges arise through genetic code evolution which can redefine the translational identity of both start and stop codons, thus obscuring protein-coding genes. Further, RNA editing can render gene identification difficult, if not impossible, without additional RNA sequence data. Current automated mito- and plastid-genome annotators are limited as they are typically tailored to specific eukaryotic groups. The MFannot annotator we developed is unique in its applicability to a broad taxonomic scope, its accuracy in gene model inference, and its capabilities in intron identification and classification. The pipeline leverages curated profile Hidden Markov Models (HMMs), covariance (CMs) and ERPIN models to better capture evolutionarily conserved signatures in the primary sequence (HMMs and CMs) as well as secondary structure (CMs and ERPIN). Here we formally describe MFannot, which has been available as a web-accessible service (https://megasun.bch.umontreal.ca/apps/mfannot/) to the research community for nearly 16 years. Further, we report its performance on particularly intron-rich mitogenomes and describe ongoing and future developments.
Collapse
|
27
|
Abstract
Much of the higher-order phylogeny of eukaryotes is well resolved, but the root remains elusive. We assembled a dataset of 183 eukaryotic proteins of archaeal ancestry to test this root. The resulting phylogeny identifies four lineages of eukaryotes currently classified as "Excavata" branching separately at the base of the tree. Thus, Parabasalia appear as the first major branch of eukaryotes followed sequentially by Fornicata, Preaxostyla, and Discoba. All four excavate branch points receive full statistical support from analyses with commonly used evolutionary models, a protein structure partition model that we introduce here, and various controls for deep phylogeny artifacts. The absence of aerobic mitochondria in Parabasalia, Fornicata, and Preaxostyla suggests that modern eukaryotes arose under anoxic conditions, probably much earlier than expected, and without the benefit of mitochondrial respiration.
Collapse
|
28
|
Macher JN, Coots NL, Poh YP, Girard EB, Langerak A, Muñoz-Gómez SA, Sinha SD, Jirsová D, Vos R, Wissels R, Gile GH, Renema W, Wideman JG. Single-Cell Genomics Reveals the Divergent Mitochondrial Genomes of Retaria (Foraminifera and Radiolaria). mBio 2023; 14:e0030223. [PMID: 36939357 PMCID: PMC10127745 DOI: 10.1128/mbio.00302-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
Mitochondria originated from an ancient bacterial endosymbiont that underwent reductive evolution by gene loss and endosymbiont gene transfer to the nuclear genome. The diversity of mitochondrial genomes published to date has revealed that gene loss and transfer processes are ongoing in many lineages. Most well-studied eukaryotic lineages are represented in mitochondrial genome databases, except for the superphylum Retaria-the lineage comprising Foraminifera and Radiolaria. Using single-cell approaches, we determined two complete mitochondrial genomes of Foraminifera and two nearly complete mitochondrial genomes of radiolarians. We report the complete coding content of an additional 14 foram species. We show that foraminiferan and radiolarian mitochondrial genomes contain a nearly fully overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. In contrast to animals and fungi, many protists encode a diverse set of proteins on their mitochondrial genomes, including several ribosomal genes; however, some aerobic eukaryotic lineages (euglenids, myzozoans, and chlamydomonas-like algae) have reduced mitochondrial gene content and lack all ribosomal genes. Similar to these reduced outliers, we show that retarian mitochondrial genomes lack ribosomal protein and tRNA genes, contain truncated and divergent small and large rRNA genes, and contain only 14 or 15 protein-coding genes, including nad1, -3, -4, -4L, -5, and -7, cob, cox1, -2, and -3, and atp1, -6, and -9, with forams and radiolarians additionally carrying nad2 and nad6, respectively. In radiolarian mitogenomes, a noncanonical genetic code was identified in which all three stop codons encode amino acids. Collectively, these results add to our understanding of mitochondrial genome evolution and fill in one of the last major gaps in mitochondrial sequence databases. IMPORTANCE We present the reduced mitochondrial genomes of Retaria, the rhizarian lineage comprising the phyla Foraminifera and Radiolaria. By applying single-cell genomic approaches, we found that foraminiferan and radiolarian mitochondrial genomes contain an overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. An alternative genetic code was identified in radiolarian mitogenomes in which all three stop codons encode amino acids. Collectively, these results shed light on the divergent nature of the mitochondrial genomes from an ecologically important group, warranting further questions into the biological underpinnings of gene content variability and genetic code variation between mitochondrial genomes.
Collapse
Affiliation(s)
- Jan-Niklas Macher
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Nicole L. Coots
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Yu-Ping Poh
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Elsa B. Girard
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
- University of Amsterdam, Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity & Ecosystem Dynamics, Amsterdam, The Netherlands
| | - Anouk Langerak
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | | | - Savar D. Sinha
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Dagmar Jirsová
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Rutger Vos
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Richard Wissels
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Gillian H. Gile
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Willem Renema
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
- University of Amsterdam, Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity & Ecosystem Dynamics, Amsterdam, The Netherlands
| | - Jeremy G. Wideman
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
29
|
Speijer D. How mitochondria showcase evolutionary mechanisms and the importance of oxygen. Bioessays 2023; 45:e2300013. [PMID: 36965057 DOI: 10.1002/bies.202300013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
Darwinian evolution can be simply stated: natural selection of inherited variations increasing differential reproduction. However, formulated thus, links with biochemistry, cell biology, ecology, and population dynamics remain unclear. To understand interactive contributions of chance and selection, higher levels of biological organization (e.g., endosymbiosis), complexities of competing selection forces, and emerging biological novelties (such as eukaryotes or meiotic sex), we must analyze actual examples. Focusing on mitochondria, I will illuminate how biology makes sense of life's evolution, and the concepts involved. First, looking at the bacterium - mitochondrion transition: merging with an archaeon, it lost its independence, but played a decisive role in eukaryogenesis, as an extremely efficient aerobic ATP generator and internal ROS source. Second, surveying later mitochondrion adaptations and diversifications illustrates concepts such as constructive neutral evolution, dynamic interactions between endosymbionts and hosts, the contingency of life histories, and metabolic reprogramming. Without oxygen, mitochondria disappear; with (intermittent) oxygen diversification occurs in highly complex ways, especially upon (temporary) phototrophic substrate supply. These expositions show the Darwinian model to be a highly fruitful paradigm.
Collapse
Affiliation(s)
- Dave Speijer
- Department of Medical Biochemistry, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Degli Esposti M. The bacterial origin of mitochondria: Incorrect phylogenies and the importance of metabolic traits. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:1-35. [PMID: 36858653 DOI: 10.1016/bs.ircmb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article provides an updated review on the evolution of mitochondria from bacteria, which were likely related to extant alphaproteobacteria. Particular attention is given to the timeline of oxygen history on Earth and the entwined phases of eukaryotic evolution that produced the animals that still populate our planet. Mitochondria of early-branching unicellular eukaryotes and plants appear to retain partial or vestigial traits that were directly inherited from the alphaproteobacterial ancestors of the organelles. Most of such traits define the current aerobic physiology of mitochondria. Conversely, the anaerobic traits that would be essential in the syntrophic associations postulated for the evolution of eukaryotic cells are scantly present in extant alphaproteobacteria, and therefore cannot help defining from which bacterial lineage the ancestors of mitochondria originated. This question has recently been addressed quantitatively, reaching the novel conclusion that marine bacteria related to Iodidimonas may be the living relatives of protomitochondria. Additional evidence is presented that either support or does not contrast this novel view of the bacterial origin of mitochondria.
Collapse
|
31
|
Mencía M. Acid digestion and symbiont: Proton sharing at the origin of mitochondriogenesis?: Proton production by a symbiotic bacterium may have been the origin of two hallmark eukaryotic features, acid digestion and mitochondria: Proton production by a symbiotic bacterium may have been the origin of two hallmark eukaryotic features, acid digestion and mitochondria. Bioessays 2023; 45:e2200136. [PMID: 36373631 DOI: 10.1002/bies.202200136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
The initial relationships between organisms leading to endosymbiosis and the first eukaryote are currently a topic of hot debate. Here, I present a theory that offers a gradual scenario in which the origins of phagocytosis and mitochondria are intertwined in such a way that the evolution of one would not be possible without the other. In this scenario, the premitochondrial bacterial symbiont became initially associated with a protophagocytic host on the basis of cooperation to kill prey with symbiont-produced toxins and reactive oxygen species (ROS). Subsequently, the cooperation was focused on the digestion stage, through the acidification of the protophagocytic cavities via exportation of protons produced by the aerobic respiration of the symbiont. The host gained an improved phagocytic capacity and the symbiont received organic compounds from prey. As the host gradually lost its membrane energetics to develop lysosomal digestion, respiration was centralized in the premitochondrial symbiont for energy production for the consortium.
Collapse
Affiliation(s)
- Mario Mencía
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CBMSO) UAM-CSIC, Universidad Autónoma de Madrid, Madrid, 28409, Spain
| |
Collapse
|
32
|
Bertgen L, Flohr T, Herrmann JM. Methods to Study the Biogenesis of Mitoribosomal Proteins in Yeast. Methods Mol Biol 2023; 2661:143-161. [PMID: 37166637 DOI: 10.1007/978-1-0716-3171-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The biogenesis of mitoribosomes is an intricate process that relies on the coordinated synthesis of nuclear-encoded mitoribosomal proteins (MRPs) in the cytosol, their translocation across mitochondrial membranes, the transcription of rRNA molecules in the matrix as well as the assembly of the roughly 80 different constituents of the mitoribosome. Numerous chaperones, translocases, processing peptidases, and assembly factors of the cytosol and in mitochondria support this complex reaction. The budding yeast Saccharomyces cerevisiae served as a powerful model organism to unravel the different steps by which MRPs are imported into mitochondria, fold into their native structures, and assemble into functional ribosomes.In this chapter, we provide established protocols to study these different processes experimentally. In particular, we describe methods to purify mitochondria from yeast cells, to import radiolabeled MRPs into isolated mitochondria, and to elucidate the assembly reaction of MRPs by immunoprecipitation. These protocols and the list of dos and don'ts will enable beginners and experienced scientists to study the import and assembly of MRPs.
Collapse
Affiliation(s)
- Lea Bertgen
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Tamara Flohr
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
33
|
Alcock F, Berks BC. New insights into the Tat protein transport cycle from characterizing the assembled Tat translocon. Mol Microbiol 2022; 118:637-651. [PMID: 36151601 PMCID: PMC10092561 DOI: 10.1111/mmi.14984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023]
Abstract
The twin-arginine protein translocation (Tat) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of chloroplasts. The Tat translocation site is transiently assembled by the recruitment of multiple TatA proteins to a substrate-activated TatBC receptor complex in a process requiring the protonmotive force. The ephemeral nature of the Tat translocation site has so far precluded its isolation. We now report that detergent solubilization of membranes during active transport allows the recovery of receptor complexes that are associated with elevated levels of TatA. We apply this biochemical analysis in combination with live cell fluorescence imaging to Tat systems trapped in the assembled state. We resolve sub-steps in the Tat translocation cycle and infer that TatA assembly precedes the functional interaction of TatA with a polar cluster site on TatC. We observe that dissipation of the protonmotive force releases TatA oligomers from the assembled translocation site demonstrating that the stability of the TatA oligomer does not depend on binding to the receptor complex and implying that the TatA oligomer is assembled at the periphery of the receptor complex. This work provides new insight into the Tat transport cycle and advances efforts to isolate the active Tat translocon.
Collapse
Affiliation(s)
- Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford, UK.,Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Tikhonenkov DV, Mikhailov KV, Gawryluk RMR, Belyaev AO, Mathur V, Karpov SA, Zagumyonnyi DG, Borodina AS, Prokina KI, Mylnikov AP, Aleoshin VV, Keeling PJ. Microbial predators form a new supergroup of eukaryotes. Nature 2022; 612:714-719. [PMID: 36477531 DOI: 10.1038/s41586-022-05511-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022]
Abstract
Molecular phylogenetics of microbial eukaryotes has reshaped the tree of life by establishing broad taxonomic divisions, termed supergroups, that supersede the traditional kingdoms of animals, fungi and plants, and encompass a much greater breadth of eukaryotic diversity1. The vast majority of newly discovered species fall into a small number of known supergroups. Recently, however, a handful of species with no clear relationship to other supergroups have been described2-4, raising questions about the nature and degree of undiscovered diversity, and exposing the limitations of strictly molecular-based exploration. Here we report ten previously undescribed strains of microbial predators isolated through culture that collectively form a diverse new supergroup of eukaryotes, termed Provora. The Provora supergroup is genetically, morphologically and behaviourally distinct from other eukaryotes, and comprises two divergent clades of predators-Nebulidia and Nibbleridia-that are superficially similar to each other, but differ fundamentally in ultrastructure, behaviour and gene content. These predators are globally distributed in marine and freshwater environments, but are numerically rare and have consequently been overlooked by molecular-diversity surveys. In the age of high-throughput analyses, investigation of eukaryotic diversity through culture remains indispensable for the discovery of rare but ecologically and evolutionarily important eukaryotes.
Collapse
Affiliation(s)
- Denis V Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russian Federation. .,AquaBioSafe Laboratory, University of Tyumen, Tyumen, Russian Federation.
| | - Kirill V Mikhailov
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ryan M R Gawryluk
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Artem O Belyaev
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russian Federation.,Department of Zoology and Ecology, Penza State University, Penza, Russian Federation
| | - Varsha Mathur
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Zoology, University of Oxford, Oxford, UK
| | - Sergey A Karpov
- Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russian Federation.,Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Dmitry G Zagumyonnyi
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russian Federation.,AquaBioSafe Laboratory, University of Tyumen, Tyumen, Russian Federation
| | - Anastasia S Borodina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russian Federation.,Department of Zoology and Parasitology, Voronezh State University, Voronezh, Russian Federation
| | - Kristina I Prokina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russian Federation.,Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Alexander P Mylnikov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russian Federation
| | - Vladimir V Aleoshin
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Yazaki E, Yabuki A, Nishimura Y, Shiratori T, Hashimoto T, Inagaki Y. Microheliella maris possesses the most gene-rich mitochondrial genome in Diaphoretickes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial genomes are very diverse, but their evolutionary history is unclear due to the lack of efforts to sequence those of protists (unicellular eukaryotes), which cover a major part of the eukaryotic tree. Cryptista comprises cryptophytes, goniomonads, kathablepharids, and Palpitomonas bilix, and their mitochondrial genomes (mt-genomes) are characterized by various gene contents, particularly the presence/absence of an ancestral (bacterial) system for the cytochrome c maturation system. To shed light on mt-genome evolution in Cryptista, we report the complete mt-genome of Microheliella maris, which was recently revealed to branch at the root of Cryptista. The M. maris mt-genome was reconstructed as a circular mapping chromosome of 61.2 kbp with a pair of inverted repeats (12.9 kbp) and appeared to be the most gene-rich among the mt-genomes of the members of Diaphoretickes (a mega-scale eukaryotic assembly including Archaeplastida, Cryptista, Haptista, and SAR) studied so far, carrying 53 protein-coding genes. With this newly sequenced mt-genome, we inferred and discussed the evolution of the mt-genome in Cryptista and Diaphoretickes.
Collapse
|
36
|
Fang J, Xu X, Chen Q, Lin A, Lin S, Lei W, Zhong C, Huang Y, He Y. The complete mitochondrial genome of Isochrysis galbana harbors a unique repeat structure and a specific trans-spliced cox1 gene. Front Microbiol 2022; 13:966219. [PMID: 36238593 PMCID: PMC9551565 DOI: 10.3389/fmicb.2022.966219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The haptophyte Isochrysis galbana is considered as a promising source for food supplements due to its rich fucoxanthin and polyunsaturated fatty acids content. Here, the I. galbana mitochondrial genome (mitogenome) was sequenced using a combination of Illumina and PacBio sequencing platforms. This 39,258 bp circular mitogenome has a total of 46 genes, including 20 protein-coding genes, 24 tRNA genes and two rRNA genes. A large block of repeats (~12.7 kb) was segregated in one region of the mitogenome, accounting for almost one third of the total size. A trans-spliced gene cox1 was first identified in I. galbana mitogenome and was verified by RNA-seq and DNA-seq data. The massive expansion of tandem repeat size and cis- to trans-splicing shift could be explained by the high mitogenome rearrangement rates in haptophytes. Strict SNP calling based on deep transcriptome sequencing data suggested the lack of RNA editing in both organelles in this species, consistent with previous studies in other algal lineages. To gain insight into haptophyte mitogenome evolution, a comparative analysis of mitogenomes within haptophytes and among eight main algal lineages was performed. A core gene set of 15 energy and metabolism genes is present in haptophyte mitogenomes, consisting of 1 cob, 3 cox, 7 nad, 2 atp and 2 ribosomal genes. Gene content and order was poorly conserved in this lineage. Haptophyte mitogenomes have lost many functional genes found in many other eukaryotes including rps/rpl, sdh, tat, secY genes, which make it contain the smallest gene set among all algal taxa. All these implied the rapid-evolving and more recently evolved mitogenomes of haptophytes compared to other algal lineages. The phylogenetic tree constructed by cox1 genes of 204 algal mitogenomes yielded well-resolved internal relationships, providing new evidence for red-lineages that contained plastids of red algal secondary endosymbiotic origin. This newly assembled mitogenome will add to our knowledge of general trends in algal mitogenome evolution within haptophytes and among different algal taxa.
Collapse
Affiliation(s)
- Jingping Fang
- College of Life Science, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Xiuming Xu
- College of Life Science, Fujian Normal University, Fuzhou, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qinchang Chen
- College of Life Science, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Aiting Lin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoqing Lin
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Wen Lei
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Cairong Zhong
- College of Life Science, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Yongji Huang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
37
|
Schavemaker PE, Muñoz-Gómez SA. The role of mitochondrial energetics in the origin and diversification of eukaryotes. Nat Ecol Evol 2022; 6:1307-1317. [PMID: 35915152 PMCID: PMC9575660 DOI: 10.1038/s41559-022-01833-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
The origin of eukaryotic cell size and complexity is often thought to have required an energy excess supplied by mitochondria. Recent observations show energy demands to scale continuously with cell volume, suggesting that eukaryotes do not have higher energetic capacity. However, respiratory membrane area scales superlinearly with the cell surface area. Furthermore, the consequences of the contrasting genomic architectures between prokaryotes and eukaryotes have not been precisely quantified. Here, we investigated (1) the factors that affect the volumes at which prokaryotes become surface area-constrained, (2) the amount of energy divested to DNA due to contrasting genomic architectures and (3) the costs and benefits of respiring symbionts. Our analyses suggest that prokaryotes are not surface area-constrained at volumes of 100‒103 µm3, the genomic architecture of extant eukaryotes is only slightly advantageous at genomes sizes of 106‒107 base pairs and a larger host cell may have derived a greater advantage (lower cost) from harbouring ATP-producing symbionts. This suggests that eukaryotes first evolved without the need for mitochondria since these ranges hypothetically encompass the last eukaryotic common ancestor and its relatives. Our analyses also show that larger and faster-dividing prokaryotes would have a shortage of respiratory membrane area and divest more energy into DNA. Thus, we argue that although mitochondria may not have been required by the first eukaryotes, eukaryote diversification was ultimately dependent on mitochondria.
Collapse
Affiliation(s)
- Paul E. Schavemaker
- Center for Mechanisms of Evolution, The Biodesign
Institute, School of Life Sciences, Arizona State University, 727 E. Tyler St.
Tempe, AZ 85281-5001, U.S.A.,Correspondence to:
;
| | - Sergio A. Muñoz-Gómez
- Unité d’Ecologie, Systématique et
Evolution, Université Paris-Saclay, Orsay, France.,Correspondence to:
;
| |
Collapse
|
38
|
Morón-López J, Vergara K, Sato M, Gajardo G, Ueki S. Intraspecies variation of the mitochondrial genome: An evaluation for phylogenetic approaches based on the conventional choices of genes and segments on mitogenome. PLoS One 2022; 17:e0273330. [PMID: 35980990 PMCID: PMC9387813 DOI: 10.1371/journal.pone.0273330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/07/2022] [Indexed: 12/01/2022] Open
Abstract
Intraspecies nucleotide sequence variation is a key to understanding the evolutionary history of a species, such as the geographic distribution and population structure. To date, numerous phylogenetic and population genetics studies have been conducted based on the sequences of a gene or an intergenic region on the mitochondrial genome (mtDNA), such as cytochrome c oxidase subunits or the D-loop. To evaluate the credibility of the usage of such 'classic' markers, we compared the phylogenetic inferences based on the analyses of the partial and entire mtDNA sequences. Importantly, the phylogenetic reconstruction based on the short marker sequences did not necessarily reproduce the tree topologies based on the analyses of the entire mtDNA. In addition, analyses on the datasets of various organisms revealed that the analyses based on the classic markers yielded phylogenetic trees with poor confidence in all tested cases compared to the results based on full-length mtDNA. These results demonstrated that phylogenetic analyses based on complete mtDNA sequences yield more insightful results compared to those based on mitochondrial genes and segments. To ameliorate the shortcomings of the classic markers, we identified a segment of mtDNA that may be used as an 'approximate marker' to closely reproduce the phylogenetic inference obtained from the entire mtDNA in the case of mammalian species, which can be utilized to design amplicon-seq-based studies. Our study demonstrates the importance of the choice of mitochondrial markers for phylogenetic analyses and proposes a novel approach to choosing appropriate markers for mammalian mtDNA that reproduces the phylogenetic inferences obtained from full-length mtDNA.
Collapse
Affiliation(s)
- Jesús Morón-López
- Institute of Plant Science and Resources, Okayama University, Kurashiki city, Okayama, Japan
| | - Karen Vergara
- Laboratorio de Genética, Acuicultura & Biodiversidad, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda, Osorno, Chile
| | - Masanao Sato
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Gonzalo Gajardo
- Laboratorio de Genética, Acuicultura & Biodiversidad, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda, Osorno, Chile
| | - Shoko Ueki
- Institute of Plant Science and Resources, Okayama University, Kurashiki city, Okayama, Japan
| |
Collapse
|
39
|
Kumar P, Bhatnagar A, Sankaranarayanan R. Chiral proofreading during protein biosynthesis and its evolutionary implications. FEBS Lett 2022; 596:1615-1627. [PMID: 35662005 DOI: 10.1002/1873-3468.14419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/29/2022] [Indexed: 11/05/2022]
Abstract
Homochirality of biomacromolecules is a prerequisite for their proper functioning and hence essential for all life forms. This underscores the role of cellular chiral checkpoints in enforcing homochirality during protein biosynthesis. D-aminoacyl-tRNA deacylase (DTD) is an enzyme that performs 'Chirality-based proofreading' to remove D-amino acids mistakenly attached to tRNAs, thus recycling them for further rounds of translation. Paradoxically, owing to its L-chiral rejection mode of action, DTD can remove glycine as well, which is an achiral amino acid. However, this activity is modulated by discriminator base (N73) in tRNA, a unique element that protects the cognate Gly-tRNAGly . Here, we review our recent work showing various aspects of DTD and tRNAGly co-evolution and its key role in maintaining proper translation surveillance in both bacteria and eukaryotes. Moreover, we also discuss two major optimization events on DTD and tRNA that resolved compatibility issues among the archaeal and the bacterial translation apparatuses. Importantly, such optimizations are necessary for the emergence of mitochondria and successful eukaryogenesis.
Collapse
Affiliation(s)
- Pradeep Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-CCMB campus, Uppal Road, Hyderabad, 500007, India
| | - Akshay Bhatnagar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-CCMB campus, Uppal Road, Hyderabad, 500007, India
| |
Collapse
|
40
|
Benler S, Koonin EV. Recruitment of Mobile Genetic Elements for Diverse Cellular Functions in Prokaryotes. Front Mol Biosci 2022; 9:821197. [PMID: 35402511 PMCID: PMC8987985 DOI: 10.3389/fmolb.2022.821197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Prokaryotic genomes are replete with mobile genetic elements (MGE) that span a continuum of replication autonomy. On numerous occasions during microbial evolution, diverse MGE lose their autonomy altogether but, rather than being quickly purged from the host genome, assume a new function that benefits the host, rendering the immobilized MGE subject to purifying selection, and resulting in its vertical inheritance. This mini-review highlights the diversity of the repurposed (exapted) MGE as well as the plethora of cellular functions that they perform. The principal contribution of the exaptation of MGE and their components is to the prokaryotic functional systems involved in biological conflicts, and in particular, defense against viruses and other MGE. This evolutionary entanglement between MGE and defense systems appears to stem both from mechanistic similarities and from similar evolutionary predicaments whereby both MGEs and defense systems tend to incur fitness costs to the hosts and thereby evolve mechanisms for survival including horizontal mobility, causing host addiction, and exaptation for functions beneficial to the host. The examples discussed demonstrate that the identity of an MGE, overall mobility and relationship with the host cell (mutualistic, symbiotic, commensal, or parasitic) are all factors that affect exaptation.
Collapse
Affiliation(s)
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
41
|
Scaltsoyiannes V, Corre N, Waltz F, Giegé P. Types and Functions of Mitoribosome-Specific Ribosomal Proteins across Eukaryotes. Int J Mol Sci 2022; 23:ijms23073474. [PMID: 35408834 PMCID: PMC8998825 DOI: 10.3390/ijms23073474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are key organelles that combine features inherited from their bacterial endosymbiotic ancestor with traits that arose during eukaryote evolution. These energy producing organelles have retained a genome and fully functional gene expression machineries including specific ribosomes. Recent advances in cryo-electron microscopy have enabled the characterization of a fast-growing number of the low abundant membrane-bound mitochondrial ribosomes. Surprisingly, mitoribosomes were found to be extremely diverse both in terms of structure and composition. Still, all of them drastically increased their number of ribosomal proteins. Interestingly, among the more than 130 novel ribosomal proteins identified to date in mitochondria, most of them are composed of a-helices. Many of them belong to the nuclear encoded super family of helical repeat proteins. Here we review the diversity of functions and the mode of action held by the novel mitoribosome proteins and discuss why these proteins that share similar helical folds were independently recruited by mitoribosomes during evolution in independent eukaryote clades.
Collapse
Affiliation(s)
- Vassilis Scaltsoyiannes
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67084 Strasbourg, France; (V.S.); (N.C.)
| | - Nicolas Corre
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67084 Strasbourg, France; (V.S.); (N.C.)
| | - Florent Waltz
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67084 Strasbourg, France; (V.S.); (N.C.)
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Munich, Germany
- Correspondence: (F.W.); (P.G.); Tel.: +33-3-6715-5363 (P.G.); Fax: +33-3-8861-4442 (P.G.)
| | - Philippe Giegé
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67084 Strasbourg, France; (V.S.); (N.C.)
- Correspondence: (F.W.); (P.G.); Tel.: +33-3-6715-5363 (P.G.); Fax: +33-3-8861-4442 (P.G.)
| |
Collapse
|
42
|
Gogoi J, Bhatnagar A, Ann KJ, Pottabathini S, Singh R, Mazeed M, Kuncha SK, Kruparani SP, Sankaranarayanan R. Switching a conflicted bacterial DTD-tRNA code is essential for the emergence of mitochondria. SCIENCE ADVANCES 2022; 8:eabj7307. [PMID: 35020439 PMCID: PMC8754408 DOI: 10.1126/sciadv.abj7307] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/17/2021] [Indexed: 06/09/2023]
Abstract
Mitochondria emerged through an endosymbiotic event involving a proteobacterium and an archaeal host. However, the process of optimization of cellular processes required for the successful evolution and survival of mitochondria, which integrates components from two evolutionarily distinct ancestors as well as novel eukaryotic elements, is not well understood. We identify two key switches in the translational machinery—one in the discriminator recognition code of a chiral proofreader DTD [d-aminoacyl–transfer RNA (tRNA) deacylase] and the other in mitochondrial tRNAGly—that enable the compatibility between disparate elements essential for survival. Notably, the mito-tRNAGly discriminator element is the only one to switch from pyrimidine to purine during the bacteria-to-mitochondria transition. We capture this code transition in the Jakobida, an early diverging eukaryotic clade bearing the most bacterial-like mito-genome, wherein both discriminator elements are present. This study underscores the need to explore the fundamental integration strategies critical for mitochondrial and eukaryotic evolution.
Collapse
Affiliation(s)
- Jotin Gogoi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Akshay Bhatnagar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Kezia. J. Ann
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | | | - Raghvendra Singh
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Mohd Mazeed
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Santosh Kumar Kuncha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Shobha P. Kruparani
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR–CCMB Campus, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
43
|
Oborník M. Organellar Evolution: A Path from Benefit to Dependence. Microorganisms 2022; 10:microorganisms10010122. [PMID: 35056571 PMCID: PMC8781833 DOI: 10.3390/microorganisms10010122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/10/2022] Open
Abstract
Eukaryotic organelles supposedly evolved from their bacterial ancestors because of their benefits to host cells. However, organelles are quite often retained, even when the beneficial metabolic pathway is lost, due to something other than the original beneficial function. The organellar function essential for cell survival is, in the end, the result of organellar evolution, particularly losses of redundant metabolic pathways present in both the host and endosymbiont, followed by a gradual distribution of metabolic functions between the organelle and host. Such biological division of metabolic labor leads to mutual dependence of the endosymbiont and host. Changing environmental conditions, such as the gradual shift of an organism from aerobic to anaerobic conditions or light to dark, can make the original benefit useless. Therefore, it can be challenging to deduce the original beneficial function, if there is any, underlying organellar acquisition. However, it is also possible that the organelle is retained because it simply resists being eliminated or digested untill it becomes indispensable.
Collapse
Affiliation(s)
- Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic;
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| |
Collapse
|
44
|
Petrů M, Dohnálek V, Füssy Z, Doležal P. Fates of Sec, Tat, and YidC Translocases in Mitochondria and Other Eukaryotic Compartments. Mol Biol Evol 2021; 38:5241-5254. [PMID: 34436602 PMCID: PMC8662606 DOI: 10.1093/molbev/msab253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Formation of mitochondria by the conversion of a bacterial endosymbiont was a key moment in the evolution of eukaryotes. It was made possible by outsourcing the endosymbiont's genetic control to the host nucleus, while developing the import machinery for proteins synthesized on cytosolic ribosomes. The original protein export machines of the nascent organelle remained to be repurposed or were completely abandoned. This review follows the evolutionary fates of three prokaryotic inner membrane translocases Sec, Tat, and YidC. Homologs of all three translocases can still be found in current mitochondria, but with different importance for mitochondrial function. Although the mitochondrial YidC homolog, Oxa1, became an omnipresent independent insertase, the other two remained only sporadically present in mitochondria. Only a single substrate is known for the mitochondrial Tat and no function has yet been assigned for the mitochondrial Sec. Finally, this review compares these ancestral mitochondrial proteins with their paralogs operating in the plastids and the endomembrane system.
Collapse
Affiliation(s)
- Markéta Petrů
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Zoltán Füssy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
45
|
van Esveld SL, Meerstein‐Kessel L, Boshoven C, Baaij JF, Barylyuk K, Coolen JPM, van Strien J, Duim RAJ, Dutilh BE, Garza DR, Letterie M, Proellochs NI, de Ridder MN, Venkatasubramanian PB, de Vries LE, Waller RF, Kooij TWA, Huynen MA. A Prioritized and Validated Resource of Mitochondrial Proteins in Plasmodium Identifies Unique Biology. mSphere 2021; 6:e0061421. [PMID: 34494883 PMCID: PMC8550323 DOI: 10.1128/msphere.00614-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Plasmodium species have a single mitochondrion that is essential for their survival and has been successfully targeted by antimalarial drugs. Most mitochondrial proteins are imported into this organelle, and our picture of the Plasmodium mitochondrial proteome remains incomplete. Many data sources contain information about mitochondrial localization, including proteome and gene expression profiles, orthology to mitochondrial proteins from other species, coevolutionary relationships, and amino acid sequences, each with different coverage and reliability. To obtain a comprehensive, prioritized list of Plasmodium falciparum mitochondrial proteins, we rigorously analyzed and integrated eight data sets using Bayesian statistics into a predictive score per protein for mitochondrial localization. At a corrected false discovery rate of 25%, we identified 445 proteins with a sensitivity of 87% and a specificity of 97%. They include proteins that have not been identified as mitochondrial in other eukaryotes but have characterized homologs in bacteria that are involved in metabolism or translation. Mitochondrial localization of seven Plasmodium berghei orthologs was confirmed by epitope labeling and colocalization with a mitochondrial marker protein. One of these belongs to a newly identified apicomplexan mitochondrial protein family that in P. falciparum has four members. With the experimentally validated mitochondrial proteins and the complete ranked P. falciparum proteome, which we have named PlasmoMitoCarta, we present a resource to study unique proteins of Plasmodium mitochondria. IMPORTANCE The unique biology and medical relevance of the mitochondrion of the malaria parasite Plasmodium falciparum have made it the subject of many studies. However, we actually do not have a comprehensive assessment of which proteins reside in this organelle. Many omics data are available that are predictive of mitochondrial localization, such as proteomics data and expression data. Individual data sets are, however, rarely complete and can provide conflicting evidence. We integrated a wide variety of available omics data in a manner that exploits the relative strengths of the data sets. Our analysis gave a predictive score for the mitochondrial localization to each nuclear encoded P. falciparum protein and identified 445 likely mitochondrial proteins. We experimentally validated the mitochondrial localization of seven of the new mitochondrial proteins, confirming the quality of the complete list. These include proteins that have not been observed mitochondria before, adding unique mitochondrial functions to P. falciparum.
Collapse
Affiliation(s)
- Selma L. van Esveld
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Lisette Meerstein‐Kessel
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Cas Boshoven
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Jochem F. Baaij
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Konstantin Barylyuk
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jordy P. M. Coolen
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Joeri van Strien
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Ronald A. J. Duim
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Bas E. Dutilh
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Daniel R. Garza
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Marijn Letterie
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Nicholas I. Proellochs
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Michelle N. de Ridder
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | | | - Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Ross F. Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Martijn A. Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
46
|
Łabędzka-Dmoch K, Kolondra A, Karpińska MA, Dębek S, Grochowska J, Grochowski M, Piątkowski J, Hoang Diu Bui T, Golik P. Pervasive transcription of the mitochondrial genome in Candida albicans is revealed in mutants lacking the mtEXO RNase complex. RNA Biol 2021; 18:303-317. [PMID: 34229573 PMCID: PMC8677008 DOI: 10.1080/15476286.2021.1943929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The mitochondrial genome of the pathogenic yeast Candida albicans displays a typical organization of several (eight) primary transcription units separated by noncoding regions. Presence of genes encoding Complex I subunits and the stability of its mtDNA sequence make it an attractive model to study organellar genome expression using transcriptomic approaches. The main activity responsible for RNA degradation in mitochondria is a two-component complex (mtEXO) consisting of a 3ʹ-5ʹ exoribonuclease, in yeasts encoded by the DSS1 gene, and a conserved Suv3p helicase. In C. albicans, deletion of either DSS1 or SUV3 gene results in multiple defects in mitochondrial genome expression leading to the loss of respiratory competence. Transcriptomic analysis reveals pervasive transcription in mutants lacking the mtEXO activity, with evidence of the entire genome being transcribed, whereas in wild-type strains no RNAs corresponding to a significant fraction of the noncoding genome can be detected. Antisense (‘mirror’) transcripts, absent from normal mitochondria are also prominent in the mutants. The expression of multiple mature transcripts, particularly those translated from bicistronic mRNAs, as well as those that contain introns is affected in the mutants, resulting in a decreased level of proteins and reduced respiratory complex activity. The phenotype is most severe in the case of Complex IV, where a decrease of mature COX1 mRNA level to ~5% results in a complete loss of activity. These results show that RNA degradation by mtEXO is essential for shaping the mitochondrial transcriptome and is required to maintain the functional demarcation between transcription units and non-coding genome segments.
Collapse
Affiliation(s)
- Karolina Łabędzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adam Kolondra
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena A Karpińska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Sonia Dębek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Joanna Grochowska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Grochowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jakub Piątkowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Thi Hoang Diu Bui
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Golik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
47
|
Mitochondrial Genomic Landscape: A Portrait of the Mitochondrial Genome 40 Years after the First Complete Sequence. Life (Basel) 2021; 11:life11070663. [PMID: 34357035 PMCID: PMC8303319 DOI: 10.3390/life11070663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022] Open
Abstract
Notwithstanding the initial claims of general conservation, mitochondrial genomes are a largely heterogeneous set of organellar chromosomes which displays a bewildering diversity in terms of structure, architecture, gene content, and functionality. The mitochondrial genome is typically described as a single chromosome, yet many examples of multipartite genomes have been found (for example, among sponges and diplonemeans); the mitochondrial genome is typically depicted as circular, yet many linear genomes are known (for example, among jellyfish, alveolates, and apicomplexans); the chromosome is normally said to be “small”, yet there is a huge variation between the smallest and the largest known genomes (found, for example, in ctenophores and vascular plants, respectively); even the gene content is highly unconserved, ranging from the 13 oxidative phosphorylation-related enzymatic subunits encoded by animal mitochondria to the wider set of mitochondrial genes found in jakobids. In the present paper, we compile and describe a large database of 27,873 mitochondrial genomes currently available in GenBank, encompassing the whole eukaryotic domain. We discuss the major features of mitochondrial molecular diversity, with special reference to nucleotide composition and compositional biases; moreover, the database is made publicly available for future analyses on the MoZoo Lab GitHub page.
Collapse
|
48
|
Valach M, Gonzalez Alcazar JA, Sarrasin M, Lang BF, Gray MW, Burger G. An Unexpectedly Complex Mitoribosome in Andalucia godoyi, a Protist with the Most Bacteria-like Mitochondrial Genome. Mol Biol Evol 2021; 38:788-804. [PMID: 32886790 PMCID: PMC7947838 DOI: 10.1093/molbev/msaa223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mitoribosome, as known from studies in model organisms, deviates considerably from its ancestor, the bacterial ribosome. Deviations include substantial reduction of the mitochondrial ribosomal RNA (mt-rRNA) structure and acquisition of numerous mitochondrion-specific (M) mitoribosomal proteins (mtRPs). A broadly accepted view assumes that M-mtRPs compensate for structural destabilization of mt-rRNA resulting from its evolutionary remodeling. Since most experimental information on mitoribosome makeup comes from eukaryotes having derived mitochondrial genomes and mt-rRNAs, we tested this assumption by investigating the mitochondrial translation machinery of jakobids, a lineage of unicellular protists with the most bacteria-like mitochondrial genomes. We report here proteomics analyses of the Andalucia godoyi small mitoribosomal subunit and in silico transcriptomic and comparative genome analyses of four additional jakobids. Jakobids have mt-rRNA structures that minimally differ from their bacterial counterparts. Yet, with at least 31 small subunit and 44 large subunit mtRPs, the mitoriboproteome of Andalucia is essentially as complex as that in animals or fungi. Furthermore, the relatively high conservation of jakobid sequences has helped to clarify the identity of several mtRPs, previously considered to be lineage-specific, as divergent homologs of conserved M-mtRPs, notably mS22 and mL61. The coexistence of bacteria-like mt-rRNAs and a complex mitoriboproteome refutes the view that M-mtRPs were ancestrally recruited to stabilize deviations of mt-rRNA structural elements. We postulate instead that the numerous M-mtRPs acquired in the last eukaryotic common ancestor allowed mt-rRNAs to pursue a broad range of evolutionary trajectories across lineages: from dramatic reduction to acquisition of novel elements to structural conservatism.
Collapse
Affiliation(s)
- Matus Valach
- Department of Biochemistry and Molecular Medicine, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec, Canada
| | - José Angel Gonzalez Alcazar
- Department of Biochemistry and Molecular Medicine, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec, Canada
| | - Matt Sarrasin
- Department of Biochemistry and Molecular Medicine, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec, Canada
| | - B Franz Lang
- Department of Biochemistry and Molecular Medicine, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec, Canada
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gertraud Burger
- Department of Biochemistry and Molecular Medicine, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
49
|
Jeedigunta SP, Minenkova AV, Palozzi JM, Hurd TR. Avoiding Extinction: Recent Advances in Understanding Mechanisms of Mitochondrial DNA Purifying Selection in the Germline. Annu Rev Genomics Hum Genet 2021; 22:55-80. [PMID: 34038145 DOI: 10.1146/annurev-genom-121420-081805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are unusual organelles in that they contain their own genomes, which are kept apart from the rest of the DNA in the cell. While mitochondrial DNA (mtDNA) is essential for respiration and most multicellular life, maintaining a genome outside the nucleus brings with it a number of challenges. Chief among these is preserving mtDNA genomic integrity from one generation to the next. In this review, we discuss what is known about negative (purifying) selection mechanisms that prevent deleterious mutations from accumulating in mtDNA in the germline. Throughout, we focus on the female germline, as it is the tissue through which mtDNA is inherited in most organisms and, therefore, the tissue that most profoundly shapes the genome. We discuss recent progress in uncovering the mechanisms of germline mtDNA selection, from humans to invertebrates.
Collapse
Affiliation(s)
- Swathi P Jeedigunta
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada;
| | - Anastasia V Minenkova
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada;
| | - Jonathan M Palozzi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada;
| | - Thomas R Hurd
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada;
| |
Collapse
|
50
|
Horváthová L, Žárský V, Pánek T, Derelle R, Pyrih J, Motyčková A, Klápšťová V, Vinopalová M, Marková L, Voleman L, Klimeš V, Petrů M, Vaitová Z, Čepička I, Hryzáková K, Harant K, Gray MW, Chami M, Guilvout I, Francetic O, Franz Lang B, Vlček Č, Tsaousis AD, Eliáš M, Doležal P. Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system. Nat Commun 2021; 12:2947. [PMID: 34011950 PMCID: PMC8134430 DOI: 10.1038/s41467-021-23046-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
The type 2 secretion system (T2SS) is present in some Gram-negative eubacteria and used to secrete proteins across the outer membrane. Here we report that certain representative heteroloboseans, jakobids, malawimonads and hemimastigotes unexpectedly possess homologues of core T2SS components. We show that at least some of them are present in mitochondria, and their behaviour in biochemical assays is consistent with the presence of a mitochondrial T2SS-derived system (miT2SS). We additionally identified 23 protein families co-occurring with miT2SS in eukaryotes. Seven of these proteins could be directly linked to the core miT2SS by functional data and/or sequence features, whereas others may represent different parts of a broader functional pathway, possibly also involving the peroxisome. Its distribution in eukaryotes and phylogenetic evidence together indicate that the miT2SS-centred pathway is an ancestral eukaryotic trait. Our findings thus have direct implications for the functional properties of the early mitochondrion. Bacteria use the type 2 secretion system to secrete enzymes and toxins across the outer membrane to the environment. Here the authors analyse the T2SS pathway in three protist lineages and suggest that the early mitochondrion may have been capable of secreting proteins into the cytosol.
Collapse
Affiliation(s)
- Lenka Horváthová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vojtěch Žárský
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Tomáš Pánek
- Faculty of Science, Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic.,Faculty of Science, Department of Zoology, Charles University, Prague 2, Czech Republic
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Jan Pyrih
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, UK.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Alžběta Motyčková
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Veronika Klápšťová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Martina Vinopalová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Lenka Marková
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Luboš Voleman
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vladimír Klimeš
- Faculty of Science, Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | - Markéta Petrů
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Zuzana Vaitová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ivan Čepička
- Faculty of Science, Department of Zoology, Charles University, Prague 2, Czech Republic
| | - Klára Hryzáková
- Faculty of Science, Department of Genetics and Microbiology, Charles University, Prague 2, Czech Republic
| | - Karel Harant
- Faculty of Science, Proteomic core facility, Charles University, BIOCEV, Vestec, Czech Republic
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Mohamed Chami
- Center for Cellular Imaging and NanoAnalytics, University of Basel, Basel, Switzerland
| | - Ingrid Guilvout
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - B Franz Lang
- Robert Cedergren Centre for Bioinformatics and Genomics, Département de Biochimie, Université de Montréal, Montreal, QC, Canada
| | - Čestmír Vlček
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague 4, Czech Republic
| | - Anastasios D Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, UK
| | - Marek Eliáš
- Faculty of Science, Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic.
| | - Pavel Doležal
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|