1
|
Smith CM, Fadamiro HY, Appel AG. Host range of the oothecal parasitoid Aprostocetus hagenowii (Hymenoptera: Eulophidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2025; 25:2. [PMID: 39846896 PMCID: PMC11756279 DOI: 10.1093/jisesa/ieaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/29/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Aprostocetus hagenowii (Ratzburg) is a generalist parasitoid of cockroach (Blattodea) oothecae. Previous studies examining the host range of A. hagenowii have largely focused on cockroaches of economic and medical importance, which represent a minority of species in an order filled with species of diverse morphology, behavior, and ecology. The aim of this study was to expand the known host range of A. hagenowii with emphasis on nonpest as well as pest species from 3 cockroach families (Blattidae, Corydiidae, and Ectobiidae). Previously recorded host species were also reexamined. Oothecae from 17 cockroach species were exposed to A. hagenowii. Three new host species were recorded: Blatta lateralis (Walker) (Blattidae), Neostylopyga propinqua (Shelford) (Blattidae), and Parcoblatta fulvescens (Saussure and Zehntner) (Ectobiidae). Among the reexamined host species Periplaneta australasiae (Fab.) (Blattidae), Blatta orientalis L. (Blattidae), and Neostylopyga rhombifolia (Stoll) (Blattidae) were successfully parasitized. The cuticle thicknesses of 7 cockroach species' oothecae were also investigated. There were significant differences [Kruskal-Wallis: each zone (below keel, side, and bottom) measured P < 0.001] in cuticle thickness among the species measured. Polyphaga sassurei (Dohrn) (Corydiidae) and Eurycotis floridana (Walker) (Blattidae) had the thickest cuticles (each zone >0.09 mm) and Blattella germanica (L.) (Ectobiidae) had the thinnest (each zone <0.03 mm). However, the mean A. hagenowii ovipositor length (0.92 mm ± 0.01 mm) far exceeded the thickest oothecae measured. Oothecal cuticle thickness alone was not observed to determine the host suitability of each tested cockroach species for A. hagenowii.
Collapse
Affiliation(s)
- Chelsea M Smith
- Department of Biological and Environmental Sciences, Troy University, Troy, AL, USA
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Henry Y Fadamiro
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Arthur G Appel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
Beasley‐Hall PG, Kinjo Y, Rose HA, Walker J, Foster CSP, Kovacs TGL, Bourguignon T, Ho SYW, Lo N. Shrinking in the dark: Parallel endosymbiont genome erosions are associated with repeated host transitions to an underground life. INSECT SCIENCE 2024; 31:1810-1821. [PMID: 38462506 PMCID: PMC11632294 DOI: 10.1111/1744-7917.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024]
Abstract
Microbial symbioses have had profound impacts on the evolution of animals. Conversely, changes in host biology may impact the evolutionary trajectory of symbionts themselves. Blattabacterium cuenoti is present in almost all cockroach species and enables hosts to subsist on a nutrient-poor diet. To investigate if host biology has impacted Blattabacterium at the genomic level, we sequenced and analyzed 25 genomes from Australian soil-burrowing cockroaches (Blaberidae: Panesthiinae), which have undergone at least seven separate subterranean, subsocial transitions from above-ground, wood-feeding ancestors. We find at least three independent instances of genome erosion have occurred in Blattabacterium strains exclusive to Australian soil-burrowing cockroaches. These shrinkages have involved the repeated inactivation of genes involved in amino acid biosynthesis and nitrogen recycling, the core role of Blattabacterium in the host-symbiont relationship. The most drastic of these erosions have occurred in hosts thought to have transitioned underground the earliest relative to other lineages, further suggestive of a link between gene loss in Blattabacterium and the burrowing behavior of hosts. As Blattabacterium is unable to fulfill its core function in certain host lineages, these findings suggest soil-burrowing cockroaches must acquire these nutrients from novel sources. Our study represents one of the first cases, to our knowledge, of parallel host adaptations leading to concomitant parallelism in their mutualistic symbionts, further underscoring the intimate relationship between these two partners.
Collapse
Affiliation(s)
- Perry G. Beasley‐Hall
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Yukihiro Kinjo
- Evolutionary Genomics UnitOkinawa Institute of Science & Technology Graduate UniversityOnna‐sonOkinawaJapan
| | - Harley A. Rose
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - James Walker
- Australian Government Department of Agriculture Water and EnvironmentCanberraAustralia
| | - Charles S. P. Foster
- School of Biomedical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Toby G. L. Kovacs
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Thomas Bourguignon
- Australian Government Department of Agriculture Water and EnvironmentCanberraAustralia
| | - Simon Y. W. Ho
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Nathan Lo
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Schapheer C, González LM, Villagra C. Microorganism Diversity Found in Blatta orientalis L. (Blattodea: Blattidae) Cuticle and Gut Collected in Urban Environments. INSECTS 2024; 15:903. [PMID: 39590502 PMCID: PMC11594291 DOI: 10.3390/insects15110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Pest cockroaches share urban habitats with us; their prevalence in urban areas prompts concerns regarding their effect on human health, as synanthropic cockroaches often host pathogenic microorganisms. Nonetheless, microbial associates in these insects can also be related to their biology, contributing to their physiological homeostasis and reproductive success. In this article, we present in detail, for the first time, the bacterial community associated with the oriental cockroach Blatta orientalis, one of the world's five most prominent pest cockroaches. We report the composition of the communities of bacteria found over the exoskeleton and inside the gut of this global pest. We collected B. orientalis in Santiago, Chile's capital city, and the urban nucleus in this country. We conducted DNA extractions and metabarcoding analysis. We found diverse bacterial lineages, including mutualist symbiotic strains, and microorganisms considered pathogenic to humans. We also analyzed the metabolic functions of the bacterial communities identified and discussed the role of B. orientalis as a reservoir and vector of pathogens in urban areas. We discuss to what extent the diversity of functions of the microbial community associated with cockroaches may contribute to emergent properties enabling these insects to inhabit human-modified habitats.
Collapse
Affiliation(s)
- Constanza Schapheer
- Departamento de Ingeniería y Suelos, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile
| | - Luciano Matías González
- Instituto de Entomología, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile;
| | - Cristian Villagra
- Instituto de Entomología, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile;
| |
Collapse
|
4
|
Dunham SJB, Avelar‐Barragan J, Rothman JA, Adams ED, Faraci G, Forner S, Kawauchi S, Tenner AJ, Green KN, LaFerla FM, MacGregor GR, Mapstone M, Whiteson KL. Sex-specific associations between AD genotype and the microbiome of human amyloid beta knock-in (hAβ-KI) mice. Alzheimers Dement 2024; 20:4935-4950. [PMID: 38572865 PMCID: PMC11247698 DOI: 10.1002/alz.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Emerging evidence links changes in the gut microbiome to late-onset Alzheimer's disease (LOAD), necessitating examination of AD mouse models with consideration of the microbiome. METHODS We used shotgun metagenomics and untargeted metabolomics to study the human amyloid beta knock-in (hAβ-KI) murine model for LOAD compared to both wild-type (WT) mice and a model for early-onset AD (3xTg-AD). RESULTS Eighteen-month female (but not male) hAβ-KI microbiomes were distinct from WT microbiomes, with AD genotype accounting for 18% of the variance by permutational multivariate analysis of variance (PERMANOVA). Metabolomic diversity differences were observed in females, however no individual metabolites were differentially abundant. hAβ-KI mice microbiomes were distinguishable from 3xTg-AD animals (81% accuracy by random forest modeling), with separation primarily driven by Romboutsia ilealis and Turicibacter species. Microbiomes were highly cage specific, with cage assignment accounting for more than 40% of the PERMANOVA variance between the groups. DISCUSSION These findings highlight a sex-dependent variation in the microbiomes of hAβ-KI mice and underscore the importance of considering the microbiome when designing studies that use murine models for AD. HIGHLIGHTS Microbial diversity and the abundance of several species differed in human amyloid beta knock-in (hAβ-KI) females but not males. Correlations to Alzheimer's disease (AD) genotype were stronger for the microbiome than the metabolome. Microbiomes from hAβ-KI mice were distinct from 3xTg-AD mice. Cage effects accounted for most of the variance in the microbiome and metabolome.
Collapse
Affiliation(s)
- Sage J. B. Dunham
- Department of Molecular Biology & BiochemistryUniversity of California IrvineIrvineCaliforniaUSA
| | - Julio Avelar‐Barragan
- Department of Molecular Biology & BiochemistryUniversity of California IrvineIrvineCaliforniaUSA
| | - Jason A. Rothman
- Department of Molecular Biology & BiochemistryUniversity of California IrvineIrvineCaliforniaUSA
| | - Eric D. Adams
- Department of Molecular Biology & BiochemistryUniversity of California IrvineIrvineCaliforniaUSA
| | - Gina Faraci
- Department of Molecular Biology & BiochemistryUniversity of California IrvineIrvineCaliforniaUSA
| | - Stefania Forner
- Institute for Memory Impairments and Neurological Disorders (UCI MIND)University of California IrvineIrvineCaliforniaUSA
| | - Shimako Kawauchi
- Department of Anatomy and NeurobiologyDevelopmental Biology CenterUniversity of California IrvineCollege of MedicineIrvineCaliforniaUSA
| | - Andrea J. Tenner
- Department of Molecular Biology & BiochemistryDepartment of Neurobiology and BehaviorDepartment of Pathology and Laboratory MedicineSchool of MedicineInstitute for Memory Impairments and Neurological Disorders (UCI MIND)University of California IrvineIrvineCaliforniaUSA
| | - Kim N. Green
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), Department of Neurobiology and BehaviorSchool of Biological SciencesCenter for Neural Circuit MappingUniversity of California IrvineIrvineCaliforniaUSA
| | - Frank M. LaFerla
- Institute for Memory Impairments and Neurological Disorders (UCI MIND)Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Grant R. MacGregor
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCaliforniaUSA
| | - Mark Mapstone
- Department of NeurologyUniversity of California IrvineIrvineCaliforniaUSA
| | - Katrine L. Whiteson
- Department of Molecular Biology & BiochemistryUniversity of California IrvineIrvineCaliforniaUSA
| |
Collapse
|
5
|
Bennett GM, Kwak Y, Maynard R. Endosymbioses Have Shaped the Evolution of Biological Diversity and Complexity Time and Time Again. Genome Biol Evol 2024; 16:evae112. [PMID: 38813885 PMCID: PMC11154151 DOI: 10.1093/gbe/evae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Life on Earth comprises prokaryotes and a broad assemblage of endosymbioses. The pages of Molecular Biology and Evolution and Genome Biology and Evolution have provided an essential window into how these endosymbiotic interactions have evolved and shaped biological diversity. Here, we provide a current perspective on this knowledge by drawing on decades of revelatory research published in Molecular Biology and Evolution and Genome Biology and Evolution, and insights from the field at large. The accumulated work illustrates how endosymbioses provide hosts with novel phenotypes that allow them to transition between adaptive landscapes to access environmental resources. Such endosymbiotic relationships have shaped and reshaped life on Earth. The early serial establishment of mitochondria and chloroplasts through endosymbioses permitted massive upscaling of cellular energetics, multicellularity, and terrestrial planetary greening. These endosymbioses are also the foundation upon which all later ones are built, including everything from land-plant endosymbioses with fungi and bacteria to nutritional endosymbioses found in invertebrate animals. Common evolutionary mechanisms have shaped this broad range of interactions. Endosymbionts generally experience adaptive and stochastic genome streamlining, the extent of which depends on several key factors (e.g. mode of transmission). Hosts, in contrast, adapt complex mechanisms of resource exchange, cellular integration and regulation, and genetic support mechanisms to prop up degraded symbionts. However, there are significant differences between endosymbiotic interactions not only in how partners have evolved with each other but also in the scope of their influence on biological diversity. These differences are important considerations for predicting how endosymbioses will persist and adapt to a changing planet.
Collapse
Affiliation(s)
- Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Reo Maynard
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
6
|
Silva FJ, Domínguez-Santos R, Latorre A, García-Ferris C. Comparative Transcriptomics of Fat Bodies between Symbiotic and Quasi-Aposymbiotic Adult Females of Blattella germanica with Emphasis on the Metabolic Integration with Its Endosymbiont Blattabacterium and Its Immune System. Int J Mol Sci 2024; 25:4228. [PMID: 38673813 PMCID: PMC11050582 DOI: 10.3390/ijms25084228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
We explored the metabolic integration of Blattella germanica and its obligate endosymbiont Blattabacterium cuenoti by the transcriptomic analysis of the fat body of quasi-aposymbiotic cockroaches, where the endosymbionts were almost entirely removed with rifampicin. Fat bodies from quasi-aposymbiotic insects displayed large differences in gene expression compared to controls. In quasi-aposymbionts, the metabolism of phenylalanine and tyrosine involved in cuticle sclerotization and pigmentation increased drastically to compensate for the deficiency in the biosynthesis of these amino acids by the endosymbionts. On the other hand, the uricolytic pathway and the biosynthesis of uric acid were severely decreased, probably because the reduced population of endosymbionts was unable to metabolize urea to ammonia. Metabolite transporters that could be involved in the endosymbiosis process were identified. Immune system and antimicrobial peptide (AMP) gene expression was also reduced in quasi-aposymbionts, genes encoding peptidoglycan-recognition proteins, which may provide clues for the maintenance of the symbiotic relationship, as well as three AMP genes whose involvement in the symbiotic relationship will require additional analysis. Finally, a search for AMP-like factors that could be involved in controlling the endosymbiont identified two orphan genes encoding proteins smaller than 200 amino acids underexpressed in quasi-aposymbionts, suggesting a role in the host-endosymbiont relationship.
Collapse
Affiliation(s)
- Francisco J. Silva
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain; (R.D.-S.); (A.L.)
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
| | - Rebeca Domínguez-Santos
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain; (R.D.-S.); (A.L.)
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain; (R.D.-S.); (A.L.)
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
| | - Carlos García-Ferris
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain; (R.D.-S.); (A.L.)
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|
7
|
Pan X, Raaijmakers JM, Carrión VJ. Importance of Bacteroidetes in host-microbe interactions and ecosystem functioning. Trends Microbiol 2023; 31:959-971. [PMID: 37173204 DOI: 10.1016/j.tim.2023.03.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/15/2023]
Abstract
Bacteroidetes are prevalent in soil ecosystems and are associated with various eukaryotic hosts, including plants, animals, and humans. The ubiquity and diversity of Bacteroidetes exemplify their impressive versatility in niche adaptation and genomic plasticity. Over the past decade, a wealth of knowledge has been obtained on the metabolic functions of clinically relevant Bacteroidetes, but much less attention has been given to Bacteroidetes living in close association with plants. To improve our understanding of the functional roles of Bacteroidetes for plants and other hosts, we review the current knowledge of their taxonomy and ecology, in particular their roles in nutrient cycling and host fitness. We highlight their environmental distribution, stress resilience, genomic diversity, and functional importance in diverse ecosystems, including, but not limited to, plant-associated microbiomes.
Collapse
Affiliation(s)
- Xinya Pan
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| | - Víctor J Carrión
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands; Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Málaga, Spain.
| |
Collapse
|
8
|
Smith CM, Chicas-Mosier AM, Fadamiro HY, Appel AG. Potential of the oothecal parasitoid Aprostocetus hagenowii (Hymenoptera: Eulophidae) as a biological control agent for the Turkestan cockroach (Blattodea: Blattidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1128-1136. [PMID: 37227849 DOI: 10.1093/jee/toad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
The Turkestan cockroach, Blatta lateralis (Walker), is a peridomestic pest of growing concern in the US Southwest. The parasitoid Aprostocetus hagenowii (Ratzburg) is used in IPM programs targeting other blattid cockroach species and may aid in B. lateralis suppression. Information about the ability of A. hagenowii to parasitize B. lateralis is lacking. A no-choice host-switching experiment was used to test A. hagenowii acceptance of B. lateralis oothecae, and a multigenerational no-choice experiment was used to determine the suitability of B. lateralis as a host for A. hagenowii over several months of rearing. Periplaneta americana (L.) (Blattodea: Blattidae), the preferred host of A. hagenowii, and Blatta orientalis L., a known host and relative of B. lateralis, were used for comparison. Development time was similar among hosts and generations (P > 0.05). Parasitism success and proportion of female progeny declined significantly with subsequent generations on both Blatta spp. (parasitism success: χ2 = 14.916; df = 2; P = 0.001; proportion female: H = 6.364; df = 2; P = 0.041). These results suggest that A. hagenowii may initially aid in suppression of B. lateralis, but an overall decline in fitness will require repeated releases or provisioning of P. americana oothecae. Development of a strain more suitable for B. lateralis control may be possible via selection from laboratory strains or through use of wild A. hagenowii from areas where B. lateralis is present.
Collapse
Affiliation(s)
- Chelsea M Smith
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849-5413, USA
| | - Ana M Chicas-Mosier
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Building A, Lawrence, KS 66047, USA
| | - Henry Y Fadamiro
- Department of Entomology, Texas A&M University, 404 Heep Ste 2475, College Station, TX 77843-2475, USA
| | - Arthur G Appel
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849-5413, USA
| |
Collapse
|
9
|
Cornwallis CK, van 't Padje A, Ellers J, Klein M, Jackson R, Kiers ET, West SA, Henry LM. Symbioses shape feeding niches and diversification across insects. Nat Ecol Evol 2023; 7:1022-1044. [PMID: 37202501 PMCID: PMC10333129 DOI: 10.1038/s41559-023-02058-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 05/20/2023]
Abstract
For over 300 million years, insects have relied on symbiotic microbes for nutrition and defence. However, it is unclear whether specific ecological conditions have repeatedly favoured the evolution of symbioses, and how this has influenced insect diversification. Here, using data on 1,850 microbe-insect symbioses across 402 insect families, we found that symbionts have allowed insects to specialize on a range of nutrient-imbalanced diets, including phloem, blood and wood. Across diets, the only limiting nutrient consistently associated with the evolution of obligate symbiosis was B vitamins. The shift to new diets, facilitated by symbionts, had mixed consequences for insect diversification. In some cases, such as herbivory, it resulted in spectacular species proliferation. In other niches, such as strict blood feeding, diversification has been severely constrained. Symbioses therefore appear to solve widespread nutrient deficiencies for insects, but the consequences for insect diversification depend on the feeding niche that is invaded.
Collapse
Affiliation(s)
| | - Anouk van 't Padje
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Jacintha Ellers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Malin Klein
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Raphaella Jackson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, UK
| | - Lee M Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
10
|
Coevolution of Metabolic Pathways in Blattodea and Their Blattabacterium Endosymbionts, and Comparisons with Other Insect-Bacteria Symbioses. Microbiol Spectr 2022; 10:e0277922. [PMID: 36094208 PMCID: PMC9603385 DOI: 10.1128/spectrum.02779-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Many insects harbor bacterial endosymbionts that supply essential nutrients and enable their hosts to thrive on a nutritionally unbalanced diet. Comparisons of the genomes of endosymbionts and their insect hosts have revealed multiple cases of mutually-dependent metabolic pathways that require enzymes encoded in 2 genomes. Complementation of metabolic reactions at the pathway level has been described for hosts feeding on unbalanced diets, such as plant sap. However, the level of collaboration between symbionts and hosts that feed on more variable diets is largely unknown. In this study, we investigated amino acid and vitamin/cofactor biosynthetic pathways in Blattodea, which comprises cockroaches and termites, and their obligate endosymbiont Blattabacterium cuenoti (hereafter Blattabacterium). In contrast to other obligate symbiotic systems, we found no clear evidence of "collaborative pathways" for amino acid biosynthesis in the genomes of these taxa, with the exception of collaborative arginine biosynthesis in 2 taxa, Cryptocercus punctulatus and Mastotermes darwiniensis. Nevertheless, we found that several gaps specific to Blattabacterium in the folate biosynthetic pathway are likely to be complemented by their host. Comparisons with other insects revealed that, with the exception of the arginine biosynthetic pathway, collaborative pathways for essential amino acids are only observed in phloem-sap feeders. These results suggest that the host diet is an important driving factor of metabolic pathway evolution in obligate symbiotic systems. IMPORTANCE The long-term coevolution between insects and their obligate endosymbionts is accompanied by increasing levels of genome integration, sometimes to the point that metabolic pathways require enzymes encoded in two genomes, which we refer to as "collaborative pathways". To date, collaborative pathways have only been reported from sap-feeding insects. Here, we examined metabolic interactions between cockroaches, a group of detritivorous insects, and their obligate endosymbiont, Blattabacterium, and only found evidence of collaborative pathways for arginine biosynthesis. The rarity of collaborative pathways in cockroaches and Blattabacterium contrasts with their prevalence in insect hosts feeding on phloem-sap. Our results suggest that host diet is a factor affecting metabolic integration in obligate symbiotic systems.
Collapse
|
11
|
Jackson R, Monnin D, Patapiou PA, Golding G, Helanterä H, Oettler J, Heinze J, Wurm Y, Economou CK, Chapuisat M, Henry LM. Convergent evolution of a labile nutritional symbiosis in ants. THE ISME JOURNAL 2022; 16:2114-2122. [PMID: 35701539 PMCID: PMC9381600 DOI: 10.1038/s41396-022-01256-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 01/07/2023]
Abstract
Ants are among the most successful organisms on Earth. It has been suggested that forming symbioses with nutrient-supplementing microbes may have contributed to their success, by allowing ants to invade otherwise inaccessible niches. However, it is unclear whether ants have evolved symbioses repeatedly to overcome the same nutrient limitations. Here, we address this question by comparing the independently evolved symbioses in Camponotus, Plagiolepis, Formica and Cardiocondyla ants. Our analysis reveals the only metabolic function consistently retained in all of the symbiont genomes is the capacity to synthesise tyrosine. We also show that in certain multi-queen lineages that have co-diversified with their symbiont for millions of years, only a fraction of queens carry the symbiont, suggesting ants differ in their colony-level reliance on symbiont-derived resources. Our results imply that symbioses can arise to solve common problems, but hosts may differ in their dependence on symbionts, highlighting the evolutionary forces influencing the persistence of long-term endosymbiotic mutualisms.
Collapse
Affiliation(s)
- Raphaella Jackson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - David Monnin
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Patapios A Patapiou
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, AL9 7TA, UK
| | - Gemma Golding
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Heikki Helanterä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, 90014, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Jan Oettler
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, 93040, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, 93040, Germany
| | - Yannick Wurm
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
- Alan Turing Institute, London, NW1 2DB, UK
| | - Chloe K Economou
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Lee M Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
12
|
Vasquez YM, Bennett GM. A complex interplay of evolutionary forces continues to shape ancient co-occurring symbiont genomes. iScience 2022; 25:104786. [PMID: 35982793 PMCID: PMC9379567 DOI: 10.1016/j.isci.2022.104786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 01/03/2023] Open
Abstract
Many insects depend on ancient associations with intracellular bacteria for essential nutrition. The genomes of these bacteria are often highly reduced. Although drift is a major driver of symbiont evolution, other evolutionary forces continue to influence them. To understand how ongoing molecular evolution and gene loss shape symbiont genomes, we sequenced two of the most ancient symbionts known, Sulcia and Nasuia, from 20 Hawaiian Nesophrosyne leafhoppers. We leveraged the parallel divergence of Nesophrosyne lineages throughout Hawaii as a natural experimental framework. Sulcia and Nasuia experience ongoing-but divergent-gene loss, often in a convergent fashion. Although some genes are under relaxed selection, purifying and positive selection are also important drivers of genome evolution, particularly in maintaining certain nutritional and cellular functions. Our results further demonstrate that symbionts experience dramatically different evolutionary environments, as evidenced by the finding that Sulcia and Nasuia have one of the slowest and fastest rates of molecular evolution known.
Collapse
Affiliation(s)
- Yumary M. Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Gordon M. Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
13
|
Identification of the Gene Repertoire of the IMD Pathway and Expression of Antimicrobial Peptide Genes in Several Tissues and Hemolymph of the Cockroach Blattella germanica. Int J Mol Sci 2022; 23:ijms23158444. [PMID: 35955579 PMCID: PMC9369362 DOI: 10.3390/ijms23158444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial peptide (AMP) genes, triggered by Toll and IMD pathways, are essential components of the innate immune system in the German cockroach Blattella germanica. Besides their role in killing pathogenic bacteria, AMPs could be involved in controlling its symbiotic systems (endosymbiont and microbiota). We found that the IMD pathway was active in the adult female transcriptomes of six tissues (salivary glands, foregut, midgut, hindgut, Malpighian tubules and fat body) and hemolymph. Total expression of AMP genes was high in hemolymph and salivary glands and much lower in the other sample types. The expression of specific AMP genes was very heterogeneous among sample types. Two genes, defensin_g10 and drosomycin_g5, displayed relevant expression in the seven sample types, although higher in hemolymph. Other genes only displayed high expression in one tissue. Almost no expression of attacin-like and blattellicin genes was observed in any sample type, although some of them were among the genes with the highest expression in adult female whole bodies. The expression of AMP genes in salivary glands could help control pathogens ingested with food and even determine gut microbiota composition. The low expression levels in midgut and hindgut are probably related to the presence of beneficial microbiota. Furthermore, a reduction in the expression of AMP genes in fat body could be the way to prevent damage to the population of the endosymbiont Blattabacterium cuenoti within bacteriocytes.
Collapse
|
14
|
Of Cockroaches and Symbionts: Recent Advances in the Characterization of the Relationship between Blattella germanica and Its Dual Symbiotic System. Life (Basel) 2022; 12:life12020290. [PMID: 35207577 PMCID: PMC8878154 DOI: 10.3390/life12020290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Mutualistic stable symbioses are widespread in all groups of eukaryotes, especially in insects, where symbionts have played an essential role in their evolution. Many insects live in obligate relationship with different ecto- and endosymbiotic bacteria, which are needed to maintain their hosts’ fitness in their natural environment, to the point of even relying on them for survival. The case of cockroaches (Blattodea) is paradigmatic, as both symbiotic systems coexist in the same organism in two separated compartments: an intracellular endosymbiont (Blattabacterium) inside bacteriocytes located in the fat body, and a rich and complex microbiota in the hindgut. The German cockroach Blattella germanica is a good model for the study of symbiotic interactions, as it can be maintained in the laboratory in controlled populations, allowing the perturbations of the two symbiotic systems in order to study the communication and integration of the tripartite organization of the host–endosymbiont–microbiota, and to evaluate the role of symbiotic antimicrobial peptides (AMPs) in host control over their symbionts. The importance of cockroaches as reservoirs and transmission vectors of antibiotic resistance sequences, and their putative interest to search for AMPs to deal with the problem, is also discussed.
Collapse
|
15
|
Gut Microbiota Cannot Compensate the Impact of (quasi) Aposymbiosis in Blattella germanica. BIOLOGY 2021; 10:biology10101013. [PMID: 34681115 PMCID: PMC8533614 DOI: 10.3390/biology10101013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary The German cockroach Blattella germanica is a good model to study complex symbiotic relationships because the following two symbiotic systems coexist in a single individual: the endosymbiont Blattabacterium (living inside specialized cells called bacteriocytes) and the gut microbiota. Although the role of the endosymbiont has been fully elucidated, the function of the gut microbiota remains unclear. The study of the gut microbiota will benefit from the availability of insects deprived of Blattabacterium. Our goal is to determine the effect of the removal (or, at least, the reduction) of the endosymbiont population on the cockroach’s fitness, in a normal gut microbiota community. For this purpose, we treated our cockroach population with rifampicin to decrease the amount of endosymbiont in the following generation. As the treatment also affects rifampicin-sensitive gut bacteria, we allowed it to recover for at least 20 days before sampling. We found that after this antibiotic treatment, the endosymbiont population remained extremely reduced and only the microbiota were able to recover, although it could not compensate for the endosymbiont role, and the host’s fitness was drastically affected. This accomplished reduction, however, is not homogenous and requires further study to develop stable quasi-aposymbiotic cockroaches. Abstract Blattella germanica presents a very complex symbiotic system, involving the following two kinds of symbionts: the endosymbiont Blattabacterium and the gut microbiota. Although the role of the endosymbiont has been fully elucidated, the function of the gut microbiota remains unclear. The study of the gut microbiota will benefit from the availability of insects deprived of Blattabacterium. Our goal is to determine the effect of the removal (or, at least, the reduction) of the endosymbiont population on the cockroach’s fitness, in a normal gut microbiota community. For this purpose, we treated our cockroach population, over several generations, with rifampicin, an antibiotic that only affects the endosymbiont during its extracellular phase, and decreases its amount in the following generation. As rifampicin also affects gut bacteria that are sensitive to this antibiotic, the treatment was performed during the first 12 days of the adult stage, which is the period when the endosymbiont infects the oocytes and lacks bacteriocyte protection. We found that after this antibiotic treatment, the endosymbiont population remained extremely reduced and only the microbiota was able to recover, although it could not compensate for the endosymbiont role, and the host’s fitness was drastically affected. This accomplished reduction, however, is not homogenous and requires further study to develop stable quasi-aposymbiotic cockroaches.
Collapse
|
16
|
Kinjo Y, Lo N, Martín PV, Tokuda G, Pigolotti S, Bourguignon T. Enhanced Mutation Rate, Relaxed Selection, and the "Domino Effect" are associated with Gene Loss in Blattabacterium, A Cockroach Endosymbiont. Mol Biol Evol 2021; 38:3820-3831. [PMID: 34426845 PMCID: PMC8382890 DOI: 10.1093/molbev/msab159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intracellular endosymbionts have reduced genomes that progressively lose genes at a timescale of tens of million years. We previously reported that gene loss rate is linked to mutation rate in Blattabacterium, however, the mechanisms causing gene loss are not yet fully understood. Here, we carried out comparative genomic analyses on the complete genome sequences of a representative set of 67 Blattabacterium strains, with sizes ranging between 511 and 645 kb. We found that 200 of the 566 analyzed protein-coding genes were lost in at least one lineage of Blattabacterium, with the most extreme case being one gene that was lost independently in 24 lineages. We found evidence for three mechanisms influencing gene loss in Blattabacterium. First, gene loss rates were found to increase exponentially with the accumulation of substitutions. Second, genes involved in vitamin and amino acid metabolism experienced relaxed selection in Cryptocercus and Mastotermes, possibly triggered by their vertically inherited gut symbionts. Third, we found evidence of epistatic interactions among genes leading to a "domino effect" of gene loss within pathways. Our results highlight the complexity of the process of genome erosion in an endosymbiont.
Collapse
Affiliation(s)
- Yukihiro Kinjo
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Paula Villa Martín
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| | - Gaku Tokuda
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Simone Pigolotti
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| | - Thomas Bourguignon
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| |
Collapse
|
17
|
Silva FJ, Muñoz-Benavent M, García-Ferris C, Latorre A. Blattella germanica displays a large arsenal of antimicrobial peptide genes. Sci Rep 2020; 10:21058. [PMID: 33273496 PMCID: PMC7712779 DOI: 10.1038/s41598-020-77982-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/19/2020] [Indexed: 11/09/2022] Open
Abstract
Defence systems against microbial pathogens are present in most living beings. The German cockroach Blattella germanica requires these systems to adapt to unhealthy environments with abundance of pathogenic microbes, in addition to potentially control its symbiotic systems. To handle this situation, four antimicrobial gene families (defensins, termicins, drosomycins and attacins) were expanded in its genome. Remarkably, a new gene family (blattellicins) emerged recently after duplication and fast evolution of an attacin gene, which is now encoding larger proteins with the presence of a long stretch of glutamines and glutamic acids. Phylogenetic reconstruction, within Blattellinae, suggests that this duplication took place before the divergence of Blattella and Episymploce genera. The latter harbours a long attacin gene (pre-blattellicin), but the absence of the encoded Glx-region suggests that this element evolved recently in the Blattella lineage. A screening of AMP gene expression in available transcriptomic SR projects of B. germanica showed that, while some AMPs are expressed during almost the whole development, others are restricted to shorter periods. Blattellicins are highly expressed only in adult females. None of the available SR tissue projects could be associated with blattellicins’ expression, suggesting that it takes place in other tissues, maybe the gut.
Collapse
Affiliation(s)
- Francisco J Silva
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain. .,Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research, Valencia, Spain.
| | - Maria Muñoz-Benavent
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain
| | - Carlos García-Ferris
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain.,Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain.,Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research, Valencia, Spain
| |
Collapse
|
18
|
Santos-Garcia D, Mestre-Rincon N, Ouvrard D, Zchori-Fein E, Morin S. Portiera Gets Wild: Genome Instability Provides Insights into the Evolution of Both Whiteflies and Their Endosymbionts. Genome Biol Evol 2020; 12:2107-2124. [PMID: 33049039 PMCID: PMC7821994 DOI: 10.1093/gbe/evaa216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Whiteflies (Hemiptera: Sternorrhyncha: Aleyrodidae) are a superfamily of small phloem-feeding insects. They rely on their primary endosymbionts "Candidatus Portiera aleyrodidarum" to produce essential amino acids not present in their diet. Portiera has been codiverging with whiteflies since their origin and therefore reflects its host's evolutionary history. Like in most primary endosymbionts, the genome of Portiera stays stable across the Aleyrodidae superfamily after millions of years of codivergence. However, Portiera of the whitefly Bemisia tabaci has lost the ancestral genome order, reflecting a rare event in the endosymbiont evolution: the appearance of genome instability. To gain a better understanding of Portiera genome evolution, identify the time point in which genome instability appeared and contribute to the reconstruction of whitefly phylogeny, we developed a new phylogenetic framework. It targeted five Portiera genes and determined the presence of the DNA polymerase proofreading subunit (dnaQ) gene, previously associated with genome instability, and two alternative gene rearrangements. Our results indicated that Portiera gene sequences provide a robust tool for studying intergenera phylogenetic relationships in whiteflies. Using these new framework, we found that whitefly species from the Singhiella, Aleurolobus, and Bemisia genera form a monophyletic tribe, the Aleurolobini, and that their Portiera exhibit genome instability. This instability likely arose once in the common ancestor of the Aleurolobini tribe (at least 70 Ma), drawing a link between the appearance of genome instability in Portiera and the switch from multibacteriocyte to a single-bacteriocyte mode of inheritance in this tribe.
Collapse
Affiliation(s)
- Diego Santos-Garcia
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Natividad Mestre-Rincon
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David Ouvrard
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Entomology and Invasive Plants Unit, Plant Health Laboratory, ANSES, Montferrier-sur-Lez, France
| | - Einat Zchori-Fein
- Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishai, Israel
| | - Shai Morin
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
19
|
Noda T, Okude G, Meng XY, Koga R, Moriyama M, Fukatsu T. Bacteriocytes and Blattabacterium Endosymbionts of the German Cockroach Blattella germanica, the Forest Cockroach Blattella nipponica, and Other Cockroach Species. Zoolog Sci 2020; 37:399-410. [PMID: 32972080 DOI: 10.2108/zs200054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/30/2020] [Indexed: 11/17/2022]
Abstract
Cockroaches are commonly found in human residences and notorious as hygienic and nuisance pests. Notably, however, no more than 30 cockroach species are regarded as pests, while the majority of 4,500 cockroaches in the world are living in forest environments with little relevance to human life. Why some cockroaches have exceptionally adapted to anthropic environments and established pest status is of interest. Here we investigated the German cockroach Blattella germanica, which is a cosmopolitan pest species, and the forest cockroach Blattella nipponica, which is a wild species closely related to B. germanica. In contrast to easy rearing of B. germanica, laboratory rearing of B. nipponica was challenging-several trials enabled us to keep the insects for up to three months. We particularly focused on the distribution patterns of specialized cells, bacteriocytes, for harboring endosymbiotic Blattabacterium, which has been suggested to contribute to host's nitrogen metabolism and recycling, during the postembryonic development of the insects. The bacteriocytes were consistently localized to visceral fat bodies filling the abdominal body cavity, where a number of single bacteriocytes were scattered among the adipocytes, throughout the developmental stages in both females and males. The distribution patterns of the bacteriocytes were quite similar between B. germanica and B. nipponica, and also among other diverse cockroach species, plausibly reflecting the highly conserved cockroach-Blattabacterium symbiotic association over evolutionary time. Our study lays a foundation to experimentally investigate the origin and the processes of urban pest evolution, on account of possible involvement of microbial associates.
Collapse
Affiliation(s)
- Tomohito Noda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Genta Okude
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Xian-Ying Meng
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Ryuichi Koga
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Minoru Moriyama
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Takema Fukatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan,
| |
Collapse
|
20
|
Gupta A, Nair S. Dynamics of Insect-Microbiome Interaction Influence Host and Microbial Symbiont. Front Microbiol 2020; 11:1357. [PMID: 32676060 PMCID: PMC7333248 DOI: 10.3389/fmicb.2020.01357] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Insects share an intimate relationship with their gut microflora and this symbiotic association has developed into an essential evolutionary outcome intended for their survival through extreme environmental conditions. While it has been clearly established that insects, with very few exceptions, associate with several microbes during their life cycle, information regarding several aspects of these associations is yet to be fully unraveled. Acquisition of bacteria by insects marks the onset of microbial symbiosis, which is followed by the adaptation of these bacterial species to the gut environment for prolonged sustenance and successful transmission across generations. Although several insect-microbiome associations have been reported and each with their distinctive features, diversifications and specializations, it is still unclear as to what led to these diversifications. Recent studies have indicated the involvement of various evolutionary processes operating within an insect body that govern the transition of a free-living microbe to an obligate or facultative symbiont and eventually leading to the establishment and diversification of these symbiotic relationships. Data from various studies, summarized in this review, indicate that the symbiotic partners, i.e., the bacteria and the insect undergo several genetic, biochemical and physiological changes that have profound influence on their life cycle and biology. An interesting outcome of the insect-microbe interaction is the compliance of the microbial partner to its eventual genome reduction. Endosymbionts possess a smaller genome as compared to their free-living forms, and thus raising the question what is leading to reductive evolution in the microbial partner. This review attempts to highlight the fate of microbes within an insect body and its implications for both the bacteria and its insect host. While discussion on each specific association would be too voluminous and outside the scope of this review, we present an overview of some recent studies that contribute to a better understanding of the evolutionary trajectory and dynamics of the insect-microbe association and speculate that, in the future, a better understanding of the nature of this interaction could pave the path to a sustainable and environmentally safe way for controlling economically important pests of crop plants.
Collapse
Affiliation(s)
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
21
|
Manzano-Marı N A, Coeur d'acier A, Clamens AL, Orvain C, Cruaud C, Barbe V, Jousselin E. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids' di-symbiotic systems. THE ISME JOURNAL 2020; 14:259-273. [PMID: 31624345 PMCID: PMC6908640 DOI: 10.1038/s41396-019-0533-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/24/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Many insects depend on obligate mutualistic bacteria to provide essential nutrients lacking from their diet. Most aphids, whose diet consists of phloem, rely on the bacterial endosymbiont Buchnera aphidicola to supply essential amino acids and B vitamins. However, in some aphid species, provision of these nutrients is partitioned between Buchnera and a younger bacterial partner, whose identity varies across aphid lineages. Little is known about the origin and the evolutionary stability of these di-symbiotic systems. It is also unclear whether the novel symbionts merely compensate for losses in Buchnera or carry new nutritional functions. Using whole-genome endosymbiont sequences of nine Cinara aphids that harbour an Erwinia-related symbiont to complement Buchnera, we show that the Erwinia association arose from a single event of symbiont lifestyle shift, from a free-living to an obligate intracellular one. This event resulted in drastic genome reduction, long-term genome stasis, and co-divergence with aphids. Fluorescence in situ hybridisation reveals that Erwinia inhabits its own bacteriocytes near Buchnera's. Altogether these results depict a scenario for the establishment of Erwinia as an obligate symbiont that mirrors Buchnera's. Additionally, we found that the Erwinia vitamin-biosynthetic genes not only compensate for Buchnera's deficiencies, but also provide a new nutritional function; whose genes have been horizontally acquired from a Sodalis-related bacterium. A subset of these genes have been subsequently transferred to a new Hamiltonella co-obligate symbiont in one specific Cinara lineage. These results show that the establishment and dynamics of multi-partner endosymbioses can be mediated by lateral gene transfers between co-ocurring symbionts.
Collapse
Affiliation(s)
- Alejandro Manzano-Marı N
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France.
| | - Armelle Coeur d'acier
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | - Anne-Laure Clamens
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | - Céline Orvain
- Institut de Biologie François-Jacob, CEA, Genoscope, Évry Cedex, France
| | - Corinne Cruaud
- Institut de Biologie François-Jacob, CEA, Genoscope, Évry Cedex, France
| | - Valérie Barbe
- Institut de Biologie François-Jacob, CEA, Genoscope, Évry Cedex, France
| | - Emmanuelle Jousselin
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| |
Collapse
|
22
|
Jennings EC, Korthauer MW, Hamilton TL, Benoit JB. Matrotrophic viviparity constrains microbiome acquisition during gestation in a live-bearing cockroach, Diploptera punctata. Ecol Evol 2019; 9:10601-10614. [PMID: 31624569 PMCID: PMC6787804 DOI: 10.1002/ece3.5580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
The vertical transmission of microbes from mother to offspring is critical to the survival, development, and health of animals. Invertebrate systems offer unique opportunities to conduct studies on microbiome-development-reproduction dynamics since reproductive modes ranging from oviparity to multiple types of viviparity are found in these animals. One such invertebrate is the live-bearing cockroach, Diploptera punctata. Females carry embryos in their brood sac, which acts as the functional equivalent of the uterus and placenta. In our study, 16S rRNA sequencing was used to characterize maternal and embryonic microbiomes as well as the development of the whole-body microbiome across nymphal development. We identified 50 phyla and 121 classes overall and found that mothers and their developing embryos had significantly different microbial communities. Of particular interest is the notable lack of diversity in the embryonic microbiome, which is comprised exclusively of Blattabacteria, indicating microbial transmission of only this symbiont during gestation. Our analysis of postnatal development reveals that significant amounts of non-Blattabacteria species are not able to colonize newborn D. punctata until melanization, after which the microbial community rapidly and dynamically diversifies. While the role of these microbes during development has not been characterized, Blattabacteria must serve a critical role providing specific micronutrients lacking in milk secretions to the embryos during gestation. This research provides insight into the microbiome development, specifically with relation to viviparity, provisioning of milk-like secretions, and mother-offspring interactions during pregnancy.
Collapse
Affiliation(s)
- Emily C. Jennings
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhio
| | | | - Trinity L. Hamilton
- Plant and Microbial Biology and the BioTechnology InstituteCollege of Biological SciencesUniversity of MinnesotaSt. PaulMinnesota
| | - Joshua B. Benoit
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhio
| |
Collapse
|
23
|
Otero-Bravo A, Goffredi S, Sabree ZL. Cladogenesis and Genomic Streamlining in Extracellular Endosymbionts of Tropical Stink Bugs. Genome Biol Evol 2019; 10:680-693. [PMID: 29420776 PMCID: PMC5822708 DOI: 10.1093/gbe/evy033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 01/21/2023] Open
Abstract
Phytophagous stink bugs are globally distributed and many harbor vertically inherited bacterial symbionts that are extracellular, yet little is known about how the symbiont’s genomes have evolved under this transmission strategy. Genome reduction is common in insect intracellular symbionts but limited genome sampling of the extracellular symbionts of distantly related stink bugs has precluded inferring patterns of extracellular symbiont genome evolution. To address this knowledge gap, we completely sequenced the genomes of the uncultivable bacterial symbionts of four neotropical stink bugs of the Edessa genus. Phylogenetic and comparative analyses indicated that the symbionts form a clade within the Pantoea genus and their genomes are highly reduced (∼0.8 Mb). Furthermore, genome synteny analysis and a jackknife approach for phylogenetic reconstruction, which corrected for long branch attraction artifacts, indicated that the Edessa symbionts were the result of a single symbiotic event that was distinct from the symbiosis event giving rise to Candidatus “Pantoea carbekii,” the extracellular symbiont of the invasive pentatomid stink bug, Halyomorpha halys. Metabolic functions inferred from the Edessa symbiont genomes suggests a shift in genomic composition characteristic of its lifestyle in that they retained many host-supportive functions while undergoing dramatic gene loss and establishing a stable relationship with their host insects. Given the undersampled nature of extracellular insect symbionts, this study is the first comparative analysis of these symbiont genomes from four distinct Edessa stink bug species. Finally, we propose the candidate name “Candidatus Pantoea edessiphila” for the species of these symbionts with strain designations according to their host species.
Collapse
Affiliation(s)
| | - Shana Goffredi
- Department of Biology, Occidental College, Los Angeles, California
| | - Zakee L Sabree
- Department of Evolution, Ecology and Organismal Biology, Ohio State University
| |
Collapse
|
24
|
Blow F, Douglas AE. The hemolymph microbiome of insects. JOURNAL OF INSECT PHYSIOLOGY 2019; 115:33-39. [PMID: 30953618 DOI: 10.1016/j.jinsphys.2019.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Hemolymph has long been recognized as a key mediator of nutritional and immunological homeostasis in insects, with the tacit understanding that hemolymph is a hostile environment for microorganisms, and microbiologically sterile in healthy insects. Recent research is overturning the conventional wisdom, and there is now overwhelming evidence that various non-pathogenic microorganisms can stably or transiently inhabit hemolymph in a diversity of insects. Most is known about Spiroplasma, especially in Drosophila species, and secondary symbionts of the Enterobacteriaceae, notably Hamiltonella defensa, in aphids. These bacteria require many nutrients, representing a likely drain on host nutritional resources, and they persist in the hemolymph by a combination of evasion and tolerance of insect immune effectors. These traits can be costly to the insect host. For some hemolymph microorganisms, these costs are balanced by other traits beneficial to the insect, notably protection against natural enemies mediated by specific toxins or competition for key nutrients. Three key priorities for future research are: to investigate the prevalence and taxonomic diversity of hemolymph microorganisms in insects; to establish the role of host nutritional and immune factors as determinants of the abundance and proliferation rates of hemolymph microorganisms; and to integrate the developing understanding of these microorganisms and their impacts (both costs and benefits) on insect nutrition and immune function into the wider study of insect physiology.
Collapse
Affiliation(s)
- Frances Blow
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
25
|
Ohbayashi T, Futahashi R, Terashima M, Barrière Q, Lamouche F, Takeshita K, Meng XY, Mitani Y, Sone T, Shigenobu S, Fukatsu T, Mergaert P, Kikuchi Y. Comparative cytology, physiology and transcriptomics of Burkholderia insecticola in symbiosis with the bean bug Riptortus pedestris and in culture. ISME JOURNAL 2019; 13:1469-1483. [PMID: 30742016 DOI: 10.1038/s41396-019-0361-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/04/2018] [Accepted: 01/19/2019] [Indexed: 12/11/2022]
Abstract
In the symbiosis of the bean bug Riptortus pedestris with Burkholderia insecticola, the bacteria occupy an exclusive niche in the insect midgut and favor insect development and reproduction. In order to understand how the symbiotic bacteria stably colonize the midgut crypts and which services they provide to the host, we compared the cytology, physiology, and transcriptomics of free-living and midgut-colonizing B. insecticola. The analyses revealed that midgut-colonizing bacteria were smaller in size and had lower DNA content, they had increased stress sensitivity, lost motility, and an altered cell surface. Transcriptomics revealed what kinds of nutrients are provided by the bean bug to the Burkholderia symbiont. Transporters and metabolic pathways of diverse sugars such as rhamnose and ribose, and sulfur compounds like sulfate and taurine were upregulated in the midgut-colonizing symbionts. Moreover, pathways enabling the assimilation of insect nitrogen wastes, i.e. allantoin and urea, were also upregulated. The data further suggested that the midgut-colonizing symbionts produced all essential amino acids and B vitamins, some of which are scarce in the soybean food of the host insect. Together, these findings suggest that the Burkholderia symbiont is fed with specific nutrients and also recycles host metabolic wastes in the insect gut, and in return, the bacterial symbiont provides the host with essential nutrients limited in the insect food, contributing to the rapid growth and enhanced reproduction of the bean bug host.
Collapse
Affiliation(s)
- Tsubasa Ohbayashi
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France.,Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mia Terashima
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.,Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Quentin Barrière
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Florian Lamouche
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Kazutaka Takeshita
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.,Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yasuo Mitani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Teruo Sone
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Peter Mergaert
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France.
| | - Yoshitomo Kikuchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan. .,Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Sapporo, Japan. .,Bioproduction Research Institute, AIST, Sapporo, Japan.
| |
Collapse
|
26
|
Evangelista DA, Wipfler B, Béthoux O, Donath A, Fujita M, Kohli MK, Legendre F, Liu S, Machida R, Misof B, Peters RS, Podsiadlowski L, Rust J, Schuette K, Tollenaar W, Ware JL, Wappler T, Zhou X, Meusemann K, Simon S. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proc Biol Sci 2019; 286:20182076. [PMID: 30963947 PMCID: PMC6364590 DOI: 10.1098/rspb.2018.2076] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/04/2019] [Indexed: 11/12/2022] Open
Abstract
Phylogenetic relationships among subgroups of cockroaches and termites are still matters of debate. Their divergence times and major phenotypic transitions during evolution are also not yet settled. We addressed these points by combining the first nuclear phylogenomic study of termites and cockroaches with a thorough approach to divergence time analysis, identification of endosymbionts, and reconstruction of ancestral morphological traits and behaviour. Analyses of the phylogenetic relationships within Blattodea robustly confirm previously uncertain hypotheses such as the sister-group relationship between Blaberoidea and remaining Blattodea, and Lamproblatta being the closest relative to the social and wood-feeding Cryptocercus and termites. Consequently, we propose new names for various clades in Blattodea: Cryptocercus + termites = Tutricablattae; Lamproblattidae + Tutricablattae = Kittrickea; and Blattoidea + Corydioidea = Solumblattodea. Our inferred divergence times contradict previous studies by showing that most subgroups of Blattodea evolved in the Cretaceous, reducing the gap between molecular estimates of divergence times and the fossil record. On a phenotypic level, the blattodean ground-plan is for egg packages to be laid directly in a hole while other forms of oviposition, including ovovivipary and vivipary, arose later. Finally, other changes in egg care strategy may have allowed for the adaptation of nest building and other novelties.
Collapse
Affiliation(s)
- Dominic A. Evangelista
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP50, 75005 Paris, France
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Dabney Hall, 1416 Circle Dr., Knoxville, TN 37996, USA
| | - Benjamin Wipfler
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller Universität Jena, Vor dem Neutor 1, 07743 Jena, Germany
- Center for Taxonomy and Evolutionary Research, Zoological Research Museum Alexander Koenig (ZFMK), Adenauerallee 160, 53113 Bonn, Germany
| | - Olivier Béthoux
- CR2P (Centre de Recherche en Paléontologie – Paris), MNHN – CNRS – Sorbonne Université, UPMC Univ Paris 06, MNHN, CNRS, Paris, France
- Muséum national d'Histoire naturelle, 57 rue Cuvier, CP38, 75005 Paris, France
| | - Alexander Donath
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig (ZFMK), Adenauerallee 160, 53113 Bonn, Germany
| | - Mari Fujita
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294 Sugadaira Kogen, Ueda, Nagano 386-2204, Japan
| | - Manpreet K. Kohli
- Federated Department of Biological Sciences, Rutgers, The State University of New Jersey and NJIT, 195 University Ave, Newark, NJ 07102, USA
| | - Frédéric Legendre
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP50, 75005 Paris, France
| | - Shanlin Liu
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Ryuichiro Machida
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294 Sugadaira Kogen, Ueda, Nagano 386-2204, Japan
| | - Bernhard Misof
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig (ZFMK), Adenauerallee 160, 53113 Bonn, Germany
| | - Ralph S. Peters
- Center for Taxonomy and Evolutionary Research, Zoological Research Museum Alexander Koenig (ZFMK), Adenauerallee 160, 53113 Bonn, Germany
| | - Lars Podsiadlowski
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig (ZFMK), Adenauerallee 160, 53113 Bonn, Germany
| | - Jes Rust
- Steinmann-Institute, Institute for Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany
| | - Kai Schuette
- Animal Ecology and Conservation, Zoological Institute, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Ward Tollenaar
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jessica L. Ware
- Federated Department of Biological Sciences, Rutgers, The State University of New Jersey and NJIT, 195 University Ave, Newark, NJ 07102, USA
| | - Torsten Wappler
- Hessisches Landesmuseum Darmstadt, Friedensplatz 1, 64283 Darmstadt, Germany
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, People's Republic of China
- Department of Entomology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Karen Meusemann
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig (ZFMK), Adenauerallee 160, 53113 Bonn, Germany
- Australian National Insect Collection, CSIRO National Research Collections Australia (NRCA), Acton, Canberra, Australian Capital Territory, Australia
- Evolutionary Biology and Ecology, Institute for Biology I, University of Freiburg, Hauptstr. 1, 79104 Freiburg (Brsg.), Germany
| | - Sabrina Simon
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
27
|
Kinjo Y, Bourguignon T, Tong KJ, Kuwahara H, Lim SJ, Yoon KB, Shigenobu S, Park YC, Nalepa CA, Hongoh Y, Ohkuma M, Lo N, Tokuda G. Parallel and Gradual Genome Erosion in the Blattabacterium Endosymbionts of Mastotermes darwiniensis and Cryptocercus Wood Roaches. Genome Biol Evol 2018; 10:1622-1630. [PMID: 29860278 PMCID: PMC6022663 DOI: 10.1093/gbe/evy110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 12/23/2022] Open
Abstract
Almost all examined cockroaches harbor an obligate intracellular endosymbiont, Blattabacterium cuenoti. On the basis of genome content, Blattabacterium has been inferred to recycle nitrogen wastes and provide amino acids and cofactors for its hosts. Most Blattabacterium strains sequenced to date harbor a genome of ∼630 kbp, with the exception of the termite Mastotermes darwiniensis (∼590 kbp) and Cryptocercus punctulatus (∼614 kbp), a representative of the sister group of termites. Such genome reduction may have led to the ultimate loss of Blattabacterium in all termites other than Mastotermes. In this study, we sequenced 11 new Blattabacterium genomes from three species of Cryptocercus in order to shed light on the genomic evolution of Blattabacterium in termites and Cryptocercus. All genomes of Cryptocercus-derived Blattabacterium genomes were reduced (∼614 kbp), except for that associated with Cryptocercus kyebangensis, which comprised 637 kbp. Phylogenetic analysis of these genomes and their content indicates that Blattabacterium experienced parallel genome reduction in Mastotermes and Cryptocercus, possibly due to similar selective forces. We found evidence of ongoing genome reduction in Blattabacterium from three lineages of the C. punctulatus species complex, which independently lost one cysteine biosynthetic gene. We also sequenced the genome of the Blattabacterium associated with Salganea taiwanensis, a subsocial xylophagous cockroach that does not vertically transmit gut symbionts via proctodeal trophallaxis. This genome was 632 kbp, typical of that of nonsubsocial cockroaches. Overall, our results show that genome reduction occurred on multiple occasions in Blattabacterium, and is still ongoing, possibly because of new associations with gut symbionts in some lineages.
Collapse
Affiliation(s)
- Yukihiro Kinjo
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan.,Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Okinawa Institute of Science and Technology, Graduate University, Okinawa, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Thomas Bourguignon
- Okinawa Institute of Science and Technology, Graduate University, Okinawa, Japan.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Kwei Jun Tong
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Hirokazu Kuwahara
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Sang Jin Lim
- Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Kwang Bae Yoon
- Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Shuji Shigenobu
- National Institute for Basic Biology, NIBB Core Research Facilities, Okazaki, Japan
| | - Yung Chul Park
- Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Christine A Nalepa
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, USA
| | - Yuichi Hongoh
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan.,Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Gaku Tokuda
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
28
|
Alleman A, Hertweck KL, Kambhampati S. Random Genetic Drift and Selective Pressures Shaping the Blattabacterium Genome. Sci Rep 2018; 8:13427. [PMID: 30194350 PMCID: PMC6128925 DOI: 10.1038/s41598-018-31796-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/21/2018] [Indexed: 01/30/2023] Open
Abstract
Estimates suggest that at least half of all extant insect genera harbor obligate bacterial mutualists. Whereas an endosymbiotic relationship imparts many benefits upon host and symbiont alike, the intracellular lifestyle has profound effects on the bacterial genome. The obligate endosymbiont genome is a product of opposing forces: genes important to host survival are maintained through physiological constraint, contrasted by the fixation of deleterious mutations and genome erosion through random genetic drift. The obligate cockroach endosymbiont, Blattabacterium - providing nutritional augmentation to its host in the form of amino acid synthesis - displays radical genome alterations when compared to its most recent free-living relative Flavobacterium. To date, eight Blattabacterium genomes have been published, affording an unparalleled opportunity to examine the direction and magnitude of selective forces acting upon this group of symbionts. Here, we find that the Blattabacterium genome is experiencing a 10-fold increase in selection rate compared to Flavobacteria. Additionally, the proportion of selection events is largely negative in direction, with only a handful of loci exhibiting signatures of positive selection. These findings suggest that the Blattabacterium genome will continue to erode, potentially resulting in an endosymbiont with an even further reduced genome, as seen in other insect groups such as Hemiptera.
Collapse
Affiliation(s)
- Austin Alleman
- Department of Biology, University of Texas at Tyler, 3900 University Blvd., Tyler, Texas, 75799, United States.
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, Mainz, 55128, Germany.
| | - Kate L Hertweck
- Department of Biology, University of Texas at Tyler, 3900 University Blvd., Tyler, Texas, 75799, United States
| | - Srini Kambhampati
- Department of Biology, University of Texas at Tyler, 3900 University Blvd., Tyler, Texas, 75799, United States
| |
Collapse
|
29
|
Manzano-Marín A, Coeur d'acier A, Clamens AL, Orvain C, Cruaud C, Barbe V, Jousselin E. A Freeloader? The Highly Eroded Yet Large Genome of the Serratia symbiotica Symbiont of Cinara strobi. Genome Biol Evol 2018; 10:2178-2189. [PMID: 30102395 PMCID: PMC6125246 DOI: 10.1093/gbe/evy173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
Genome reduction is pervasive among maternally inherited bacterial endosymbionts. This genome reduction can eventually lead to serious deterioration of essential metabolic pathways, thus rendering an obligate endosymbiont unable to provide essential nutrients to its host. This loss of essential pathways can lead to either symbiont complementation (sharing of the nutrient production with a novel co-obligate symbiont) or symbiont replacement (complete takeover of nutrient production by the novel symbiont). However, the process by which these two evolutionary events happen remains somewhat enigmatic by the lack of examples of intermediate stages of this process. Cinara aphids (Hemiptera: Aphididae) typically harbor two obligate bacterial symbionts: Buchnera and Serratia symbiotica. However, the latter has been replaced by different bacterial taxa in specific lineages, and thus species within this aphid lineage could provide important clues into the process of symbiont replacement. In the present study, using 16S rRNA high-throughput amplicon sequencing, we determined that the aphid Cinara strobi harbors not two, but three fixed bacterial symbionts: Buchnera aphidicola, a Sodalis sp., and S. symbiotica. Through genome assembly and genome-based metabolic inference, we have found that only the first two symbionts (Buchnera and Sodalis) actually contribute to the hosts' supply of essential nutrients while S. symbiotica has become unable to contribute towards this task. We found that S. symbiotica has a rather large and highly eroded genome which codes only for a few proteins and displays extensive pseudogenization. Thus, we propose an ongoing symbiont replacement within C. strobi, in which a once "competent" S. symbiotica does no longer contribute towards the beneficial association. These results suggest that in dual symbiotic systems, when a substitute cosymbiont is available, genome deterioration can precede genome reduction and a symbiont can be maintained despite the apparent lack of benefit to its host.
Collapse
Affiliation(s)
- Alejandro Manzano-Marín
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, France
| | - Armelle Coeur d'acier
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, France
| | - Anne-Laure Clamens
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, France
| | - Céline Orvain
- Institut de Biologie François-Jacob, CEA, Genoscope, Évry Cedex, France
| | - Corinne Cruaud
- Institut de Biologie François-Jacob, CEA, Genoscope, Évry Cedex, France
| | - Valérie Barbe
- Institut de Biologie François-Jacob, CEA, Genoscope, Évry Cedex, France
| | - Emmanuelle Jousselin
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, France
| |
Collapse
|
30
|
Vicente CSL, Mondal SI, Akter A, Ozawa S, Kikuchi T, Hasegawa K. Genome analysis of new Blattabacterium spp., obligatory endosymbionts of Periplaneta fuliginosa and P. japonica. PLoS One 2018; 13:e0200512. [PMID: 29990378 PMCID: PMC6039017 DOI: 10.1371/journal.pone.0200512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 11/18/2022] Open
Abstract
The successful adaptation of cockroaches is, in part, dependent of the activity of their obligatory endosymbionts, Blattabacterium spp., which are involved in uric acid degradation, nitrogen assimilation and nutrient provisioning. Their strategic localization, within bacteriocytes in the proximities of uric acid storage cells (urocytes), highlights their importance in the recycling of nitrogen from urea and ammonia, end-products not secreted by their host insects. In this study, we present the complete genome sequence of two new Blattabacterium spp. from Periplaneta fuliginosa (BPfu) and P. japonica (BPja), and detailed comparison with other Blattabacterium strains from different cockroach species. The genomes of BPfu and BPja show a high degree of stability as showed with for other Blattabacterium representatives, only presenting a 19-kb fragment inversion between BPja and BPfu. In fact, the phylogenomics showed BPja as an ancestor species of BPfu, BPLAN (P. americana) and BBor (Blatta orientalis), in congruence with their host cockroach phylogeny. Their functional profile is similar and closest to the omnivorous strain BBge (Blattella germanica). Interesting, BPja possesses the complete set of enzymes involved sulfate assimilatory pathway only found in BBge and BMda (Mastotermes darwiniensis). The newly sequenced genomes of BPja and BPfu emphasise the remarkable stability of Blattabacterium genomes supported by their long-term coevolution and obligatory lifestyle in their host insect.
Collapse
Affiliation(s)
- Cláudia S. L. Vicente
- NemaLab/ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Évora, Portugal
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University,Matsumoto, Kasugai, Aichi, Japan
| | - Shakhinur Islam Mondal
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Genetic Engineering and Biotechnology Department, Shahjalal University of Science and Technology, Kumargaon, Sylhet, Bangladesh
| | - Arzuba Akter
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Biochemistry and Molecular Biology Department, Shahjalal University of Science and Technology, Kumargaon, Sylhet, Bangladesh
| | - Sota Ozawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University,Matsumoto, Kasugai, Aichi, Japan
| | - Tasei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Koichi Hasegawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University,Matsumoto, Kasugai, Aichi, Japan
- * E-mail:
| |
Collapse
|
31
|
Llop P, Latorre A, Moya A. Experimental Epidemiology of Antibiotic Resistance: Looking for an Appropriate Animal Model System. Microbiol Spectr 2018; 6:10.1128/microbiolspec.mtbp-0007-2016. [PMID: 29637886 PMCID: PMC11633557 DOI: 10.1128/microbiolspec.mtbp-0007-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Antibiotic resistance is recognized as one of the major challenges in public health. The global spread of antibiotic resistance is the consequence of a constant flow of information across multi-hierarchical interactions, involving cellular (clones), subcellular (resistance genes located in plasmids, transposons, and integrons), and supracellular (clonal complexes, genetic exchange communities, and microbiotic ensembles) levels. In order to study such multilevel complexity, we propose to establish an experimental epidemiology model for the transmission of antibiotic resistance with the cockroach Blatella germanica. This paper reports the results of five types of preliminary experiments with B. germanica populations that allow us to conclude that this animal is an appropriate model for experimental epidemiology: (i) the composition, transmission, and acquisition of gut microbiota and endosymbionts; (ii) the effect of different diets on gut microbiota; (iii) the effect of antibiotics on host fitness; (iv) the evaluation of the presence of antibiotic resistance genes in natural- and lab-reared populations; and (v) the preparation of plasmids harboring specific antibiotic resistance genes. The basic idea is to have populations with higher and lower antibiotic exposure, simulating the hospital and the community, respectively, and with a certain migration rate of insects between populations. In parallel, we present a computational model based on P-membrane computing that will mimic the experimental system of antibiotic resistance transmission. The proposal serves as a proof of concept for the development of more-complex population dynamics of antibiotic resistance transmission that are of interest in public health, which can help us evaluate procedures and design appropriate interventions in epidemiology.
Collapse
Affiliation(s)
- Pablo Llop
- Foundation for the Promotion of Sanitary and Biomedical Research in the Valencian Region (FISABIO), València, Spain
| | - Amparo Latorre
- Foundation for the Promotion of Sanitary and Biomedical Research in the Valencian Region (FISABIO), València, Spain
- Integrative Systems Biology Institute, Universitat de València, València, Spain
- Network Research Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Foundation for the Promotion of Sanitary and Biomedical Research in the Valencian Region (FISABIO), València, Spain
- Integrative Systems Biology Institute, Universitat de València, València, Spain
- Network Research Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
32
|
Rosas T, García-Ferris C, Domínguez-Santos R, Llop P, Latorre A, Moya A. Rifampicin treatment of Blattella germanica evidences a fecal transmission route of their gut microbiota. FEMS Microbiol Ecol 2018; 94:4794938. [DOI: 10.1093/femsec/fiy002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/08/2018] [Indexed: 02/04/2023] Open
|
33
|
Engl T, Eberl N, Gorse C, Krüger T, Schmidt THP, Plarre R, Adler C, Kaltenpoth M. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol Ecol 2017; 27:2095-2108. [PMID: 29117633 DOI: 10.1111/mec.14418] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022]
Abstract
Microbial symbionts of insects provide a range of ecological traits to their hosts that are beneficial in the context of biotic interactions. However, little is known about insect symbiont-mediated adaptation to the abiotic environment, for example, temperature and humidity. Here, we report on an ancient clade of intracellular, bacteriome-located Bacteroidetes symbionts that are associated with grain and wood pest beetles of the phylogenetically distant families Silvanidae and Bostrichidae. In the saw-toothed grain beetle Oryzaephilus surinamensis, we demonstrate that the symbionts affect cuticle thickness, melanization and hydrocarbon profile, enhancing desiccation resistance and thereby strongly improving fitness under dry conditions. Together with earlier observations on symbiont contributions to cuticle biosynthesis in weevils, our findings indicate that convergent acquisitions of bacterial mutualists represented key adaptations enabling diverse pest beetle groups to survive and proliferate under the low ambient humidity that characterizes dry grain storage facilities.
Collapse
Affiliation(s)
- Tobias Engl
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Nadia Eberl
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Carla Gorse
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Theresa Krüger
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Thorsten H P Schmidt
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
| | - Rudy Plarre
- Federal Institute for Material Research and Testing, Berlin, Germany
| | - Cornel Adler
- Federal Research Centre for Cultivated Plants, Julius-Kühn-Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Martin Kaltenpoth
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
34
|
Campbell MA, Łukasik P, Simon C, McCutcheon JP. Idiosyncratic Genome Degradation in a Bacterial Endosymbiont of Periodical Cicadas. Curr Biol 2017; 27:3568-3575.e3. [DOI: 10.1016/j.cub.2017.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 10/25/2022]
|
35
|
Chance and necessity in the genome evolution of endosymbiotic bacteria of insects. ISME JOURNAL 2017; 11:1291-1304. [PMID: 28323281 PMCID: PMC5437351 DOI: 10.1038/ismej.2017.18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/03/2017] [Accepted: 01/18/2017] [Indexed: 02/07/2023]
Abstract
An open question in evolutionary biology is how does the selection–drift balance determine the fates of biological interactions. We searched for signatures of selection and drift in genomes of five endosymbiotic bacterial groups known to evolve under strong genetic drift. Although most genes in endosymbiotic bacteria showed evidence of relaxed purifying selection, many genes in these bacteria exhibited stronger selective constraints than their orthologs in free-living bacterial relatives. Remarkably, most of these highly constrained genes had no role in the host–symbiont interactions but were involved in either buffering the deleterious consequences of drift or other host-unrelated functions, suggesting that they have either acquired new roles or their role became more central in endosymbiotic bacteria. Experimental evolution of Escherichia coli under strong genetic drift revealed remarkable similarities in the mutational spectrum, genome reduction patterns and gene losses to endosymbiotic bacteria of insects. Interestingly, the transcriptome of the experimentally evolved lines showed a generalized deregulation of the genome that affected genes encoding proteins involved in mutational buffering, regulation and amino acid biosynthesis, patterns identical to those found in endosymbiotic bacteria. Our results indicate that drift has shaped endosymbiotic associations through a change in the functional landscape of bacterial genes and that the host had only a small role in such a shift.
Collapse
|
36
|
Latorre A, Manzano-Marín A. Dissecting genome reduction and trait loss in insect endosymbionts. Ann N Y Acad Sci 2016; 1389:52-75. [DOI: 10.1111/nyas.13222] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Amparo Latorre
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva; Universitat de Valencia; C/Catedrático José Beltrán Paterna Valencia Spain
- Área de Genómica y Salud de la Fundación para el fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública; València Spain
| | - Alejandro Manzano-Marín
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva; Universitat de Valencia; C/Catedrático José Beltrán Paterna Valencia Spain
| |
Collapse
|
37
|
Corbin C, Heyworth ER, Ferrari J, Hurst GDD. Heritable symbionts in a world of varying temperature. Heredity (Edinb) 2016; 118:10-20. [PMID: 27703153 DOI: 10.1038/hdy.2016.71] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/25/2022] Open
Abstract
Heritable microbes represent an important component of the biology, ecology and evolution of many plants, animals and fungi, acting as both parasites and partners. In this review, we examine how heritable symbiont-host interactions may alter host thermal tolerance, and how the dynamics of these interactions may more generally be altered by thermal environment. Obligate symbionts, those required by their host, are considered to represent a thermally sensitive weak point for their host, associated with accumulation of deleterious mutations. As such, these symbionts may represent an important determinant of host thermal envelope and spatial distribution. We then examine the varied relationship between thermal environment and the frequency of facultative symbionts that provide ecologically contingent benefits or act as parasites. We note that some facultative symbionts directly alter host thermotolerance. We outline how thermal environment will alter the benefits/costs of infection more widely, and additionally modulate vertical transmission efficiency. Multiple patterns are observed, with symbionts being cold sensitive in some species and heat sensitive in others, with varying and non-coincident thresholds at which phenotype and transmission are ablated. Nevertheless, it is clear that studies aiming to predict ecological and evolutionary dynamics of symbiont-host interactions need to examine the interaction across a range of thermal environments. Finally, we discuss the importance of thermal sensitivity in predicting the success/failure of symbionts to spread into novel species following natural/engineered introduction.
Collapse
Affiliation(s)
- C Corbin
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - E R Heyworth
- Department of Biology, University of York, York, UK
| | - J Ferrari
- Department of Biology, University of York, York, UK
| | - G D D Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
38
|
Affiliation(s)
- Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | | |
Collapse
|
39
|
Manzano-Marín A, Latorre A. Snapshots of a shrinking partner: Genome reduction in Serratia symbiotica. Sci Rep 2016; 6:32590. [PMID: 27599759 PMCID: PMC5013485 DOI: 10.1038/srep32590] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/11/2016] [Indexed: 11/24/2022] Open
Abstract
Genome reduction is pervasive among maternally-inherited endosymbiotic organisms, from bacteriocyte- to gut-associated ones. This genome erosion is a step-wise process in which once free-living organisms evolve to become obligate associates, thereby losing non-essential or redundant genes/functions. Serratia symbiotica (Gammaproteobacteria), a secondary endosymbiont present in many aphids (Hemiptera: Aphididae), displays various characteristics that make it a good model organism for studying genome reduction. While some strains are of facultative nature, others have established co-obligate associations with their respective aphid host and its primary endosymbiont (Buchnera). Furthermore, the different strains hold genomes of contrasting sizes and features, and have strikingly disparate cell shapes, sizes, and tissue tropism. Finally, genomes from closely related free-living Serratia marcescens are also available. In this study, we describe in detail the genome reduction process (from free-living to reduced obligate endosymbiont) undergone by S. symbiotica, and relate it to the stages of integration to the symbiotic system the different strains find themselves in. We establish that the genome reduction patterns observed in S. symbiotica follow those from other dwindling genomes, thus proving to be a good model for the study of the genome reduction process within a single bacterial taxon evolving in a similar biological niche (aphid-Buchnera).
Collapse
Affiliation(s)
- Alejandro Manzano-Marín
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva - Universitat de València, Genética Evolutiva, Paterna, 46980, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva - Universitat de València, Genética Evolutiva, Paterna, 46980, Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Communitat Valenciana (FISABIO), Genómica y Salud, València, 46020, Spain
| |
Collapse
|
40
|
Manzano-Marín A, Simon JC, Latorre A. Reinventing the Wheel and Making It Round Again: Evolutionary Convergence in Buchnera-Serratia Symbiotic Consortia between the Distantly Related Lachninae Aphids Tuberolachnus salignus and Cinara cedri. Genome Biol Evol 2016; 8:1440-58. [PMID: 27190007 PMCID: PMC4898801 DOI: 10.1093/gbe/evw085] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/23/2022] Open
Abstract
Virtually all aphids (Aphididae) harbor Buchnera aphidicola as an obligate endosymbiont to compensate nutritional deficiencies arising from their phloem diet. Many species within the Lachninae subfamily seem to be consistently associated also with Serratia symbiotica We have previously shown that both Cinara (Cinara) cedri and Cinara (Cupressobium) tujafilina (Lachninae: Eulachnini tribe) have indeed established co-obligate associations with both Buchnera and S. symbiotica However, while Buchnera genomes of both Cinara species are similar, genome degradation differs greatly between the two S. symbiotica strains. To gain insight into the essentiality and degree of integration of S. symbiotica within the Lachninae, we sequenced the genome of both Buchnera and S. symbiotica endosymbionts from the distantly related aphid Tuberolachnus salignus (Lachninae: Tuberolachnini tribe). We found a striking level of similarity between the endosymbiotic system of this aphid and that of C. cedri In both aphid hosts, S. symbiotica possesses a highly reduced genome and is found exclusively intracellularly inside bacteriocytes. Interestingly, T. salignus' endosymbionts present the same tryptophan biosynthetic metabolic complementation as C. cedri's, which is not present in C. tujafilina's. Moreover, we corroborate the riboflavin-biosynthetic-role take-over/rescue by S. symbiotica in T. salignus, and therefore, provide further evidence for the previously proposed establishment of a secondary co-obligate endosymbiont in the common ancestor of the Lachninae aphids. Finally, we propose that the putative convergent split of the tryptophan biosynthetic role between Buchnera and S. symbiotica could be behind the establishment of S. symbiotica as an obligate intracellular symbiont and the triggering of further genome degradation.
Collapse
Affiliation(s)
| | - Jean-Christophe Simon
- UMR1349 Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Institut National de la Recherche Agronomique (INRA), Rennes, France
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de Valencia Área de Genómica y Salud de la Fundación para el fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública, València, Spain
| |
Collapse
|
41
|
Gómez-Lunar Z, Hernández-González I, Rodríguez-Torres MD, Souza V, Olmedo-Álvarez G. Microevolution Analysis of Bacillus coahuilensis Unveils Differences in Phosphorus Acquisition Strategies and Their Regulation. Front Microbiol 2016; 7:58. [PMID: 26903955 PMCID: PMC4744853 DOI: 10.3389/fmicb.2016.00058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/13/2016] [Indexed: 11/27/2022] Open
Abstract
Bacterial genomes undergo numerous events of gene losses and gains that generate genome variability among strains of the same species (microevolution). Our aim was to compare the genomes and relevant phenotypes of three Bacillus coahuilensis strains from two oligotrophic hydrological systems in the Cuatro Ciénegas Basin (México), to unveil the environmental challenges that this species cope with, and the microevolutionary differences in these genotypes. Since the strains were isolated from a low P environment, we placed emphasis on the search of different phosphorus acquisition strategies. The three B. coahuilensis strains exhibited similar numbers of coding DNA sequences, of which 82% (2,893) constituted the core genome, and 18% corresponded to accessory genes. Most of the genes in this last group were associated with mobile genetic elements (MGEs) or were annotated as hypothetical proteins. Ten percent of the pangenome consisted of strain-specific genes. Alignment of the three B. coahuilensis genomes indicated a high level of synteny and revealed the presence of several genomic islands. Unexpectedly, one of these islands contained genes that encode the 2-keto-3-deoxymannooctulosonic acid (Kdo) biosynthesis enzymes, a feature associated to cell walls of Gram-negative bacteria. Some microevolutionary changes were clearly associated with MGEs. Our analysis revealed inconsistencies between phenotype and genotype, which we suggest result from the impossibility to map regulatory features to genome analysis. Experimental results revealed variability in the types and numbers of auxotrophies between the strains that could not consistently be explained by in silico metabolic models. Several intraspecific differences in preferences for carbohydrate and phosphorus utilization were observed. Regarding phosphorus recycling, scavenging, and storage, variations were found between the three genomes. The three strains exhibited differences regarding alkaline phosphatase that revealed that in addition to gene gain and loss, regulation adjustment of gene expression also has contributed to the intraspecific diversity of B. coahuilensis.
Collapse
Affiliation(s)
- Zulema Gómez-Lunar
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| | - Ismael Hernández-González
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| | - María-Dolores Rodríguez-Torres
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| | - Valeria Souza
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México México City, Mexico
| | - Gabriela Olmedo-Álvarez
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| |
Collapse
|
42
|
Kinjo Y, Saitoh S, Tokuda G. An Efficient Strategy Developed for Next-Generation Sequencing of Endosymbiont Genomes Performed Using Crude DNA Isolated from Host Tissues: A Case Study of Blattabacterium cuenoti Inhabiting the Fat Bodies of Cockroaches. Microbes Environ 2015; 30:208-20. [PMID: 26156552 PMCID: PMC4567559 DOI: 10.1264/jsme2.me14153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Whole-genome sequencing has emerged as one of the most effective means to elucidate the biological roles and molecular features of obligate intracellular symbionts (endosymbionts). However, the de novo assembly of an endosymbiont genome remains a challenge when host and/or mitochondrial DNA sequences are present in a dataset and hinder the assembly of the genome. By focusing on the traits of genome evolution in endosymbionts, we herein developed and investigated a genome-assembly strategy that consisted of two consecutive procedures: the selection of endosymbiont contigs from an output obtained from a de novo assembly performed using a TBLASTX search against a reference genome, named TBLASTX Contig Selection and Filtering (TCSF), and the iterative reassembling of the genome from reads mapped on the selected contigs, named Iterative Mapping and ReAssembling (IMRA), to merge the contigs. In order to validate this approach, we sequenced two strains of the cockroach endosymbiont Blattabacterium cuenoti and applied this strategy to the datasets. TCSF was determined to be highly accurate and sensitive in contig selection even when the genome of a distantly related free-living bacterium was used as a reference genome. Furthermore, the use of IMRA markedly improved sequence assemblies: the genomic sequence of an endosymbiont was almost completed from a dataset containing only 3% of the sequences of the endosymbiont’s genome. The efficiency of our strategy may facilitate further studies on endosymbionts.
Collapse
Affiliation(s)
- Yukihiro Kinjo
- Tropical Biosphere Research Center, University of the Ryukyus
| | | | | |
Collapse
|
43
|
Williams LE, Wernegreen JJ. Genome evolution in an ancient bacteria-ant symbiosis: parallel gene loss among Blochmannia spanning the origin of the ant tribe Camponotini. PeerJ 2015; 3:e881. [PMID: 25861561 PMCID: PMC4389277 DOI: 10.7717/peerj.881] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/18/2015] [Indexed: 12/11/2022] Open
Abstract
Stable associations between bacterial endosymbionts and insect hosts provide opportunities to explore genome evolution in the context of established mutualisms and assess the roles of selection and genetic drift across host lineages and habitats. Blochmannia, obligate endosymbionts of ants of the tribe Camponotini, have coevolved with their ant hosts for ∼40 MY. To investigate early events in Blochmannia genome evolution across this ant host tribe, we sequenced Blochmannia from two divergent host lineages, Colobopsis obliquus and Polyrhachis turneri, and compared them with four published genomes from Blochmannia of Camponotus sensu stricto. Reconstructed gene content of the last common ancestor (LCA) of these six Blochmannia genomes is reduced (690 protein coding genes), consistent with rapid gene loss soon after establishment of the symbiosis. Differential gene loss among Blochmannia lineages has affected cellular functions and metabolic pathways, including DNA replication and repair, vitamin biosynthesis and membrane proteins. Blochmannia of P. turneri (i.e., B. turneri) encodes an intact DnaA chromosomal replication initiation protein, demonstrating that loss of dnaA was not essential for establishment of the symbiosis. Based on gene content, B. obliquus and B. turneri are unable to provision hosts with riboflavin. Of the six sequenced Blochmannia, B. obliquus is the earliest diverging lineage (i.e., the sister group of other Blochmannia sampled) and encodes the fewest protein-coding genes and the most pseudogenes. We identified 55 genes involved in parallel gene loss, including glutamine synthetase, which may participate in nitrogen recycling. Pathways for biosynthesis of coenzyme A, terpenoids and riboflavin were lost in multiple lineages, suggesting relaxed selection on the pathway after inactivation of one component. Analysis of Illumina read datasets did not detect evidence of plasmids encoding missing functions, nor the presence of coresident symbionts other than Wolbachia. Although gene order is strictly conserved in four Blochmannia of Camponotus sensu stricto, comparisons with deeply divergent lineages revealed inversions in eight genomic regions, indicating ongoing recombination despite ancestral loss of recA. In sum, the addition of two Blochmannia genomes of divergent host lineages enables reconstruction of early events in evolution of this symbiosis and suggests that Blochmannia lineages may experience distinct, host-associated selective pressures. Understanding how evolutionary forces shape genome reduction in this system may help to clarify forces driving gene loss in other bacteria, including intracellular pathogens.
Collapse
Affiliation(s)
- Laura E Williams
- Duke Center for Genomic and Computational Biology, Duke University , Durham, NC , USA
| | - Jennifer J Wernegreen
- Duke Center for Genomic and Computational Biology, Duke University , Durham, NC , USA ; Nicholas School of the Environment, Duke University , Durham, NC , USA
| |
Collapse
|
44
|
Pérez-Cobas AE, Maiques E, Angelova A, Carrasco P, Moya A, Latorre A. Diet shapes the gut microbiota of the omnivorous cockroach Blattella germanica. FEMS Microbiol Ecol 2015; 91:fiv022. [PMID: 25764470 DOI: 10.1093/femsec/fiv022] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 01/20/2023] Open
Abstract
The gut microbiota of insects contributes positively to the physiology of its host mainly by participating in food digestion, protecting against pathogens, or provisioning vitamins or amino acids, but the dynamics of this complex ecosystem is not well understood so far. In this study, we have characterized the gut microbiota of the omnivorous cockroach Blattella germanica by pyrosequencing the hypervariable regions V1-V3 of the 16S rRNA gene of the whole bacterial community. Three diets differing in the protein content (0, 24 and 50%) were tested at two time points in lab-reared individuals. In addition, the gut microbiota of wild adult cockroaches was also analyzed. In contrast to the high microbial richness described on the studied samples, only few species are shared by wild and lab-reared cockroaches, constituting the bacterial core in the gut of B. germanica. Overall, we found that the gut microbiota of B. germanica is highly dynamic as the bacterial composition was reassembled in a diet-specific manner over a short time span, with no-protein diet promoting high diversity, although the highest diversity was found in the wild cockroaches analyzed. We discuss how the flexibility of the gut microbiota is probably due to its omnivorous life style and varied diets.
Collapse
Affiliation(s)
- Ana Elena Pérez-Cobas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, 46071 Valencia, Spain Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain CIBER en Epidemiología y Salud Pública (CIBEResp), 28029 Madrid, Spain
| | - Elisa Maiques
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, 46071 Valencia, Spain
| | - Alexandra Angelova
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, 46071 Valencia, Spain
| | - Purificación Carrasco
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, 46071 Valencia, Spain
| | - Andrés Moya
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, 46071 Valencia, Spain Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain CIBER en Epidemiología y Salud Pública (CIBEResp), 28029 Madrid, Spain
| | - Amparo Latorre
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, 46071 Valencia, Spain Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain CIBER en Epidemiología y Salud Pública (CIBEResp), 28029 Madrid, Spain
| |
Collapse
|
45
|
Santos-Garcia D, Vargas-Chavez C, Moya A, Latorre A, Silva FJ. Genome evolution in the primary endosymbiont of whiteflies sheds light on their divergence. Genome Biol Evol 2015; 7:873-888. [PMID: 25716826 PMCID: PMC5322561 DOI: 10.1093/gbe/evv038] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2015] [Indexed: 02/07/2023] Open
Abstract
Whiteflies are important agricultural insect pests, whose evolutionary success is related to a long-term association with a bacterial endosymbiont, Candidatus Portiera aleyrodidarum. To completely characterize this endosymbiont clade, we sequenced the genomes of three new Portiera strains covering the two extant whitefly subfamilies. Using endosymbiont and mitochondrial sequences we estimated the divergence dates in the clade and used these values to understand the molecular evolution of the endosymbiont coding sequences. Portiera genomes were maintained almost completely stable in gene order and gene content during more than 125 Myr of evolution, except in the Bemisia tabaci lineage. The ancestor had already lost the genetic information transfer autonomy but was able to participate in the synthesis of all essential amino acids and carotenoids. The time of divergence of the B. tabaci complex was much more recent than previous estimations. The recent divergence of biotypes B (MEAM1 species) and Q (MED species) suggests that they still could be considered strains of the same species. We have estimated the rates of evolution of Portiera genes, synonymous and nonsynonymous, and have detected significant differences among-lineages, with most Portiera lineages evolving very slowly. Although the nonsynonymous rates were much smaller than the synonymous, the genomic dN/dS ratios were similar, discarding selection as the driver of among-lineage variation. We suggest variation in mutation rate and generation time as the responsible factors. In conclusion, the slow evolutionary rates of Portiera may have contributed to its long-term association with whiteflies, avoiding its replacement by a novel and more efficient endosymbiont.
Collapse
Affiliation(s)
- Diego Santos-Garcia
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | - Carlos Vargas-Chavez
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain Unidad Mixta de Investigación en Genómica y Salud, FISABIO-Salud Pública and Universitat de València, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain Unidad Mixta de Investigación en Genómica y Salud, FISABIO-Salud Pública and Universitat de València, Spain
| | - Francisco J Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain Unidad Mixta de Investigación en Genómica y Salud, FISABIO-Salud Pública and Universitat de València, Spain
| |
Collapse
|
46
|
Rosas-Pérez T, Rosenblueth M, Rincón-Rosales R, Mora J, Martínez-Romero E. Genome sequence of "Candidatus Walczuchella monophlebidarum" the flavobacterial endosymbiont of Llaveia axin axin (Hemiptera: Coccoidea: Monophlebidae). Genome Biol Evol 2014; 6:714-26. [PMID: 24610838 PMCID: PMC3971599 DOI: 10.1093/gbe/evu049] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Scale insects (Hemiptera: Coccoidae) constitute a very diverse group of sap-feeding insects with a large diversity of symbiotic associations with bacteria. Here, we present the complete genome sequence, metabolic reconstruction, and comparative genomics of the flavobacterial endosymbiont of the giant scale insect Llaveia axin axin. The gene repertoire of its 309,299 bp genome was similar to that of other flavobacterial insect endosymbionts though not syntenic. According to its genetic content, essential amino acid biosynthesis is likely to be the flavobacterial endosymbiont's principal contribution to the symbiotic association with its insect host. We also report the presence of a γ-proteobacterial symbiont that may be involved in waste nitrogen recycling and also has amino acid biosynthetic capabilities that may provide metabolic precursors to the flavobacterial endosymbiont. We propose “Candidatus Walczuchella monophlebidarum” as the name of the flavobacterial endosymbiont of insects from the Monophlebidae family.
Collapse
Affiliation(s)
- Tania Rosas-Pérez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | | | | |
Collapse
|
47
|
Abstract
UNLABELLED Obligate symbioses with bacteria allow insects to feed on otherwise unsuitable diets. Some symbionts have extremely reduced genomes and have lost many genes considered to be essential in other bacteria. To understand how symbiont genome degeneration proceeds, we compared the genomes of symbionts in two leafhopper species, Homalodisca vitripennis (glassy-winged sharpshooter [GWSS]) and Graphocephala atropunctata (blue-green sharpshooter [BGSS]) (Hemiptera: Cicadellidae). Each host species is associated with the anciently acquired "Candidatus Sulcia muelleri" (Bacteroidetes) and the more recently acquired "Candidatus Baumannia cicadellinicola" (Gammaproteobacteria). BGSS "Ca. Baumannia" retains 89 genes that are absent from GWSS "Ca. Baumannia"; these underlie central cellular functions, including cell envelope biogenesis, cellular replication, and stress response. In contrast, "Ca. Sulcia" strains differ by only a few genes. Although GWSS "Ca. Baumannia" cells are spherical or pleomorphic (a convergent trait of obligate symbionts), electron microscopy reveals that BGSS "Ca. Baumannia" maintains a rod shape, possibly due to its retention of genes involved in cell envelope biogenesis and integrity. Phylogenomic results suggest that "Ca. Baumannia" is derived from the clade consisting of Sodalis and relatives, a group that has evolved symbiotic associations with numerous insect hosts. Finally, the rates of synonymous and nonsynonymous substitutions are higher in "Ca. Baumannia" than in "Ca. Sulcia," which may be due to a lower mutation rate in the latter. Taken together, our results suggest that the two "Ca. Baumannia" genomes represent different stages of genome reduction in which many essential functions are being lost and likely compensated by hosts. "Ca. Sulcia" exhibits much greater genome stability and slower sequence evolution, although the mechanisms underlying these differences are poorly understood. IMPORTANCE In obligate animal-bacterial symbioses, bacteria experience extreme patterns of genome evolution, including massive gene loss and rapid evolution. However, little is known about this process, particularly in systems with complementary bacterial partners. To understand whether genome evolution impacts symbiont types equally and whether lineages follow the same evolutionary path, we sequenced the genomes of two coresident symbiotic bacteria from a plant sap-feeding insect and compared them to the symbionts from a related host species. We found that the older symbiont has a highly reduced genome with low rates of mutation and gene loss. In contrast, the younger symbiont has a larger genome that exhibits higher mutation rates and varies dramatically in the retention of genes related to cell wall biogenesis, cellular replication, and stress response. We conclude that while symbiotic bacteria evolve toward tiny genomes, this process is shaped by different selection intensities that may reflect the different ages and metabolic roles of symbiont types.
Collapse
|
48
|
Affiliation(s)
- Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Texas 78712; ,
| | - Gordon M. Bennett
- Department of Integrative Biology, University of Texas at Austin, Texas 78712; ,
| |
Collapse
|
49
|
Patiño-Navarrete R, Piulachs MD, Belles X, Moya A, Latorre A, Peretó J. The cockroach Blattella germanica obtains nitrogen from uric acid through a metabolic pathway shared with its bacterial endosymbiont. Biol Lett 2014; 10:20140407. [PMID: 25079497 PMCID: PMC4126632 DOI: 10.1098/rsbl.2014.0407] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Uric acid stored in the fat body of cockroaches is a nitrogen reservoir mobilized in times of scarcity. The discovery of urease in Blattabacterium cuenoti, the primary endosymbiont of cockroaches, suggests that the endosymbiont may participate in cockroach nitrogen economy. However, bacterial urease may only be one piece in the entire nitrogen recycling process from insect uric acid. Thus, in addition to the uricolytic pathway to urea, there must be glutamine synthetase assimilating the released ammonia by the urease reaction to enable the stored nitrogen to be metabolically usable. None of the Blattabacterium genomes sequenced to date possess genes encoding for those enzymes. To test the host's contribution to the process, we have sequenced and analysed Blattella germanica transcriptomes from the fat body. We identified transcripts corresponding to all genes necessary for the synthesis of uric acid and its catabolism to urea, as well as for the synthesis of glutamine, asparagine, proline and glycine, i.e. the amino acids required by the endosymbiont. We also explored the changes in gene expression with different dietary protein levels. It appears that the ability to use uric acid as a nitrogen reservoir emerged in cockroaches after its age-old symbiotic association with bacteria.
Collapse
Affiliation(s)
- Rafael Patiño-Navarrete
- InstitutCavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C/Catedràtic José Beltrán n° 2, Paterna 46980, Spain
| | - Maria-Dolors Piulachs
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas and Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta n° 37-49, Barcelona 08003, Spain
| | - Xavier Belles
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas and Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta n° 37-49, Barcelona 08003, Spain
| | - Andrés Moya
- InstitutCavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C/Catedràtic José Beltrán n° 2, Paterna 46980, Spain
| | - Amparo Latorre
- InstitutCavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C/Catedràtic José Beltrán n° 2, Paterna 46980, Spain
| | - Juli Peretó
- InstitutCavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C/Catedràtic José Beltrán n° 2, Paterna 46980, Spain Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot 46100, Spain
| |
Collapse
|
50
|
Gao F. Recent Advances in the Identification of Replication Origins Based on the Z-curve Method. Curr Genomics 2014; 15:104-12. [PMID: 24822028 PMCID: PMC4009838 DOI: 10.2174/1389202915999140328162938] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/19/2022] Open
Abstract
Precise DNA replication is critical for the maintenance of genetic integrity in all organisms. In all three domains
of life, DNA replication starts at a specialized locus, termed as the replication origin, oriC or ORI, and its identification
is vital to understanding the complex replication process. In bacteria and eukaryotes, replication initiates from single
and multiple origins, respectively, while archaea can adopt either of the two modes. The Z-curve method has been
successfully used to identify replication origins in genomes of various species, including multiple oriCs in some archaea.
Based on the Z-curve method and comparative genomics analysis, we have developed a web-based system, Ori-Finder, for
finding oriCs in bacterial genomes with high accuracy. Predicted oriC regions in bacterial genomes are organized into an
online database, DoriC. Recently, archaeal oriC regions identified by both in vivo and in silico methods have also been included
in the database. Here, we summarize the recent advances of in silico prediction of oriCs in bacterial and archaeal
genomes using the Z-curve based method.
Collapse
Affiliation(s)
- Feng Gao
- Department of Physics, Tianjin University, Tianjin 300072, China
| |
Collapse
|