1
|
Mamede L, Fall F, Vast M, Hughes K, Martelli G, Caligiore F, Govaerts B, Michels PAM, Frédérich M, Quetin-Leclercq J. Metabolomics study of 3-O-p-(Z/E)-coumaroyltormentic acid-treated Trypanosoma brucei brucei. Int J Parasitol Drugs Drug Resist 2025; 28:100595. [PMID: 40383077 DOI: 10.1016/j.ijpddr.2025.100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/27/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025]
Abstract
Trypanosomiasis is a parasitic disease for which new treatments are needed due to the frequent occurrence of adverse side effects of current available drugs. Natural compounds found in traditionally used plants offer opportunities to discover innovative compounds that could prove pivotal to antitrypanosomal drug development. 3-O-p-(Z/E)-coumaroyltormentic acids (CTA) were isolated first from the West Africa-native tree Vitellaria paradoxa and have demonstrated quite selective in vitro and in vivo antitrypanosomal activity, despite the unknown mode of action. In this study, a metabolomics analysis using the data from both LC-HR-MS and 1H-NMR described CTA's effects on Trypanosoma brucei after 3 h exposure under 5 or 10 x EC50. Our study shows CTA's activity impacted tryptophan metabolism and reveals potential targets in different branches of this metabolism. Our results demonstrate a likely presence of enzymes dedicated to tryptophan, like a tryptophan aminotransferase, tryptophan 2,3-dioxygenase and/or indoleamine 2,3-dioxygenase, and other enzymes of the kynurenine pathway, despite the absence of their description thus far in this species. These data further implicate that CTA's toxic effect on the tryptophan metabolism may be attributed to the decrease of the intracellular level of essential aspartate, resulting from inhibition of its aminotransferase. In resume, our study shines light on the likelihood of the tryptophan metabolism pathway presenting innovative targets toward the development of antitrypanosomal drugs. These require confirmation through functional and enzymatic studies.
Collapse
Affiliation(s)
- Lúcia Mamede
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium; Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium.
| | - Fanta Fall
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Madeline Vast
- Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA/LIDAM), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Kristelle Hughes
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Giorgia Martelli
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Francesco Caligiore
- de Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200, Brussels, Belgium
| | - Bernadette Govaerts
- Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA/LIDAM), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Paul A M Michels
- School of Biological Sciences, The University of Edinburgh, Scotland, UK
| | - Michel Frédérich
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| |
Collapse
|
2
|
Liu R, Cai R, Wang M, Zhang J, Zhang H, Li C, Sun C. Metagenomic insights into Heimdallarchaeia clades from the deep-sea cold seep and hydrothermal vent. ENVIRONMENTAL MICROBIOME 2024; 19:43. [PMID: 38909236 PMCID: PMC11193907 DOI: 10.1186/s40793-024-00585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Heimdallarchaeia is a class of the Asgardarchaeota, are the most probable candidates for the archaeal protoeukaryote ancestor that have been identified to date. However, little is known about their life habits regardless of their ubiquitous distribution in diverse habitats, which is especially true for Heimdallarchaeia from deep-sea environments. In this study, we obtained 13 metagenome-assembled genomes (MAGs) of Heimdallarchaeia from the deep-sea cold seep and hydrothermal vent. These MAGs belonged to orders o_Heimdallarchaeales and o_JABLTI01, and most of them (9 MAGs) come from the family f_Heimdallarchaeaceae according to genome taxonomy database (GTDB). These are enriched for common eukaryote-specific signatures. Our results show that these Heimdallarchaeia have the metabolic potential to reduce sulfate (assimilatory) and nitrate (dissimilatory) to sulfide and ammonia, respectively, suggesting a previously unappreciated role in biogeochemical cycling. Furthermore, we find that they could perform both TCA and rTCA pathways coupled with pyruvate metabolism for energy conservation, fix CO2 and generate organic compounds through an atypical Wood-Ljungdahl pathway. In addition, many genes closely associated with bacteriochlorophyll and carotenoid biosynthesis, and oxygen-dependent metabolic pathways are identified in these Heimdallarchaeia MAGs, suggesting a potential light-utilization by pigments and microoxic lifestyle. Taken together, our results indicate that Heimdallarchaeia possess a mixotrophic lifestyle, which may give them more flexibility to adapt to the harsh deep-sea conditions.
Collapse
Affiliation(s)
- Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruining Cai
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jing Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
3
|
Stadnichuk IN, Tropin IV. Cyanidiales as Polyextreme Eukaryotes. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:472-487. [PMID: 35790381 DOI: 10.1134/s000629792205008x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/28/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Cyanidiales were named enigmatic microalgae due to their unique polyextreme properties, considered for a very long time unattainable for eukaryotes. Cyanidiales mainly inhabit hot sulfuric springs with high acidity (pH 0-4), temperatures up to 56°C, and ability to survive in the presence of dissolved heavy metals. Owing to the minimal for eukaryotes genome size, Cyanidiales have become one of the most important research objects in plant cell physiology, biochemistry, molecular biology, phylogenomics, and evolutionary biology. They play an important role in studying many aspects of oxygenic photosynthesis and chloroplasts origin. The ability to survive in stressful habitats and the corresponding metabolic pathways were acquired by Cyanidiales from archaea and bacteria via horizontal gene transfer (HGT). Thus, the possibility of gene transfer from prokaryotes to eukaryotes was discovered, which was a new step in understanding of the origin of eukaryotic cell.
Collapse
Affiliation(s)
- Igor N Stadnichuk
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127726, Russia.
| | - Ivan V Tropin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Kim M, Seol J, Sato T, Fukamizu Y, Sakurai T, Okura T. Effect of 12-Week Intake of Nicotinamide Mononucleotide on Sleep Quality, Fatigue, and Physical Performance in Older Japanese Adults: A Randomized, Double-Blind Placebo-Controlled Study. Nutrients 2022; 14:755. [PMID: 35215405 PMCID: PMC8877443 DOI: 10.3390/nu14040755] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Deteriorating sleep quality and physical or mental fatigue in older adults leads to decreased quality of life and increased mortality rates. This study investigated the effects of the time-dependent intake of nicotinamide mononucleotide (NMN) on sleep quality, fatigue, and physical performance in older adults. This randomized, double-blind placebo-controlled study evaluated 108 participants divided into four groups (NMN_AM; antemeridian, NMN_PM; post meridian, Placebo_AM, Placebo_PM). NMN (250 mg) or placebo was administered once a day for 12 weeks. Sleep quality was evaluated using the Pittsburgh Sleep Quality Index. Fatigue was evaluated using the "Jikaku-sho shirabe" questionnaire. Grip strength, 5-times sit-to-stand (5-STS), timed up and go, and 5-m habitual walk were evaluated to assess the physical performance. Significant interactions were observed between 5-STS and drowsiness. 5-STS of all groups on post-intervention and drowsiness of the NMN_PM and Placebo_PM groups on mid- and post-intervention showed significant improvement compared with those in pre-intervention. The NMN_PM group demonstrated the largest effect size for 5-STS (d = 0.72) and drowsiness (d = 0.64). Overall, NMN intake in the afternoon effectively improved lower limb function and reduced drowsiness in older adults. These findings suggest the potential of NMN in preventing loss of physical performance and improving fatigue in older adults.
Collapse
Affiliation(s)
- Mijin Kim
- R&D Center for Tailor-Made QOL, University of Tsukuba, Tsukuba 305-8550, Japan;
| | - Jaehoon Seol
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
- Japan Society for the Promotion of Sciences, Tokyo 102-0083, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Toshiya Sato
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, Tokyo 100-0006, Japan; (T.S.); (Y.F.); (T.S.)
| | - Yuichiro Fukamizu
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, Tokyo 100-0006, Japan; (T.S.); (Y.F.); (T.S.)
| | - Takanobu Sakurai
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, Tokyo 100-0006, Japan; (T.S.); (Y.F.); (T.S.)
| | - Tomohiro Okura
- R&D Center for Tailor-Made QOL, University of Tsukuba, Tsukuba 305-8550, Japan;
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| |
Collapse
|
5
|
Wee HN, Liu JJ, Ching J, Kovalik JP, Lim SC. The Kynurenine Pathway in Acute Kidney Injury and Chronic Kidney Disease. Am J Nephrol 2021; 52:771-787. [PMID: 34753140 PMCID: PMC8743908 DOI: 10.1159/000519811] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The kynurenine pathway (KP) is the major catabolic pathway for tryptophan degradation. The KP plays an important role as the sole de novo nicotinamide adenine dinucleotide (NAD+) biosynthetic pathway in normal human physiology and functions as a counter-regulatory mechanism to mitigate immune responses during inflammation. Although the KP has been implicated in a variety of disorders including Huntington's disease, seizures, cardiovascular disease, and osteoporosis, its role in renal diseases is seldom discussed. SUMMARY This review summarizes the roles of the KP and its metabolites in acute kidney injury (AKI) and chronic kidney disease (CKD) based on current literature evidence. Metabolomics studies demonstrated that the KP metabolites were significantly altered in patients and animal models with AKI or CKD. The diagnostic and prognostic values of the KP metabolites in AKI and CKD were highlighted in cross-sectional and longitudinal human observational studies. The biological impact of the KP on the pathophysiology of AKI and CKD has been studied in experimental models of different etiologies. In particular, the activation of the KP was found to confer protection in animal models of glomerulonephritis, and its immunomodulatory mechanism may involve the regulation of T cell subsets such as Th17 and regulatory T cells. Manipulation of the KP to increase NAD+ production or diversion toward specific KP metabolites was also found to be beneficial in animal models of AKI. Key Messages: KP metabolites are reported to be dysregulated in human observational and animal experimental studies of AKI and CKD. In AKI, the magnitude and direction of changes in the KP depend on the etiology of the damage. In CKD, KP metabolites are altered with the onset and progression of CKD all the way to advanced stages of the disease, including uremia and its related vascular complications. The activation of the KP and diversion to specific sub-branches are currently being explored as therapeutic strategies in these diseases, especially with regards to the immunomodulatory effects of certain KP metabolites. Further elucidation of the KP may hold promise for the development of biomarkers and targeted therapies for these kidney diseases.
Collapse
Affiliation(s)
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, Singapore, Singapore
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | | | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore
| |
Collapse
|
6
|
Suchard MS, Savulescu DM. Nicotinamide pathways as the root cause of sepsis - an evolutionary perspective on macrophage energetic shifts. FEBS J 2021; 289:955-964. [PMID: 33686748 PMCID: PMC9545938 DOI: 10.1111/febs.15807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/07/2021] [Accepted: 03/08/2021] [Indexed: 12/28/2022]
Abstract
Divergent pathways of macrophage metabolism occur during infection, notably switching between oxidative phosphorylation and aerobic glycolysis (Warburg-like metabolism). Concurrently, macrophages shift between alternate and classical activation. A key enzyme upregulated in alternatively activated macrophages is indoleamine 2,3-dioxygenase, which converts tryptophan to kynurenine for de novo synthesis of nicotinamide. Nicotinamide can be used to replenish cellular NAD+ supplies. We hypothesize that an insufficient cellular NAD+ supply is the root cause of metabolic shifts in macrophages. We assert that manipulation of nicotinamide pathways may correct deleterious immune responses. We propose evaluation of nicotinamide (Vitamin B3) and analogues, including isoniazid, nicotinamide mononucleotide and nicotinamide riboside, as potential therapy for infectious causes of sepsis, including COVID-19.
Collapse
Affiliation(s)
- Melinda S Suchard
- Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Vaccines and Immunology, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Dana M Savulescu
- Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Bao Z, Li C, Guo C, Xiang Z. Convergent Evolution of Himalayan Marmot with Some High-Altitude Animals through ND3 Protein. Animals (Basel) 2021; 11:ani11020251. [PMID: 33498455 PMCID: PMC7909448 DOI: 10.3390/ani11020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/16/2022] Open
Abstract
The Himalayan marmot (Marmota himalayana) mainly lives on the Qinghai-Tibet Plateau and it adopts multiple strategies to adapt to high-altitude environments. According to the principle of convergent evolution as expressed in genes and traits, the Himalayan marmot might display similar changes to other local species at the molecular level. In this study, we obtained high-quality sequences of the CYTB gene, CYTB protein, ND3 gene, and ND3 protein of representative species (n = 20) from NCBI, and divided them into the marmot group (n = 11), the plateau group (n = 8), and the Himalayan marmot (n = 1). To explore whether plateau species have convergent evolution on the microscale level, we built a phylogenetic tree, calculated genetic distance, and analyzed the conservation and space structure of Himalayan marmot ND3 protein. The marmot group and Himalayan marmots were in the same branch of the phylogenetic tree for the CYTB gene and CYTB protein, and mean genetic distance was 0.106 and 0.055, respectively, which was significantly lower than the plateau group. However, the plateau group and the Himalayan marmot were in the same branch of the phylogenetic tree, and the genetic distance was only 10% of the marmot group for the ND3 protein, except Marmota flaviventris. In addition, some sites of the ND3 amino acid sequence of Himalayan marmots were conserved from the plateau group, but not the marmot group. This could lead to different structures and functional diversifications. These findings indicate that Himalayan marmots have adapted to the plateau environment partly through convergent evolution of the ND3 protein with other plateau animals, however, this protein is not the only strategy to adapt to high altitudes, as there may have other methods to adapt to this environment.
Collapse
Affiliation(s)
| | | | - Cheng Guo
- Correspondence: (C.G.); (Z.X.); Tel.: +86-731-5623392 (C.G. & Z.X.); Fax: +86-731-5623498 (C.G. & Z.X.)
| | - Zuofu Xiang
- Correspondence: (C.G.); (Z.X.); Tel.: +86-731-5623392 (C.G. & Z.X.); Fax: +86-731-5623498 (C.G. & Z.X.)
| |
Collapse
|
8
|
Li L, Wang S, Wang H, Sahu SK, Marin B, Li H, Xu Y, Liang H, Li Z, Cheng S, Reder T, Çebi Z, Wittek S, Petersen M, Melkonian B, Du H, Yang H, Wang J, Wong GKS, Xu X, Liu X, Van de Peer Y, Melkonian M, Liu H. The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nat Ecol Evol 2020; 4:1220-1231. [PMID: 32572216 PMCID: PMC7455551 DOI: 10.1038/s41559-020-1221-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
Genome analysis of the pico-eukaryotic marine green alga Prasinoderma coloniale CCMP 1413 unveils the existence of a novel phylum within green plants (Viridiplantae), the Prasinodermophyta, which diverged before the split of Chlorophyta and Streptophyta. Structural features of the genome and gene family comparisons revealed an intermediate position of the P. coloniale genome (25.3 Mb) between the extremely compact, small genomes of picoplanktonic Mamiellophyceae (Chlorophyta) and the larger, more complex genomes of early-diverging streptophyte algae. Reconstruction of the minimal core genome of Viridiplantae allowed identification of an ancestral toolkit of transcription factors and flagellar proteins. Adaptations of P. coloniale to its deep-water, oligotrophic environment involved expansion of light-harvesting proteins, reduction of early light-induced proteins, evolution of a distinct type of C4 photosynthesis and carbon-concentrating mechanism, synthesis of the metal-complexing metabolite picolinic acid, and vitamin B1, B7 and B12 auxotrophy. The P. coloniale genome provides first insights into the dawn of green plant evolution.
Collapse
Affiliation(s)
- Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hongli Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Birger Marin
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Haoyuan Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yan Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium
| | - Shifeng Cheng
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Tanja Reder
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Zehra Çebi
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Sebastian Wittek
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Morten Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Gane Ka-Shu Wong
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium.
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Michael Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany.
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Williams AC, Hill LJ. The 4 D's of Pellagra and Progress. Int J Tryptophan Res 2020; 13:1178646920910159. [PMID: 32327922 PMCID: PMC7163231 DOI: 10.1177/1178646920910159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide homeostasis is a candidate common denominator to explain smooth transitions, whether demographic, epidemiological or economic. This 'NAD world', dependent on hydrogen-based energy, is not widely recognised as it is neither measured nor viewed from a sufficiently multi-genomic or historical perspective. Reviewing the importance of meat and nicotinamide balances during our co-evolution, recent history suggests that populations only modernise and age well with low fertility on a suitably balanced diet. Imbalances on the low meat side lead to an excess of infectious disease, short lives and boom-bust demographics. On the high side, meat has led to an excess of degenerative, allergic and metabolic disease and low fertility. A 'Goldilocks' diet derived from mixed and sustainable farming (preserving the topsoil) allows for high intellectual capital, height and good health with controlled population growth resulting in economic growth and prosperity. Implementing meat equity worldwide could lead to progress for future generations on 'spaceship' earth by establishing control over population quality, thermostat and biodiversity, if it is not already too late.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Williams AC, Hill LJ. Nicotinamide as Independent Variable for Intelligence, Fertility, and Health: Origin of Human Creative Explosions? Int J Tryptophan Res 2019; 12:1178646919855944. [PMID: 31258332 PMCID: PMC6585247 DOI: 10.1177/1178646919855944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/28/2022] Open
Abstract
Meat and nicotinamide acquisition was a defining force during the 2-million-year evolution of the big brains necessary for, anatomically modern, Homo sapiens to survive. Our next move was down the food chain during the Mesolithic 'broad spectrum', then horticultural, followed by the Neolithic agricultural revolutions and progressively lower average 'doses' of nicotinamide. We speculate that a fertility crisis and population bottleneck around 40 000 years ago, at the time of the Last Glacial Maximum, was overcome by Homo (but not the Neanderthals) by concerted dietary change plus profertility genes and intense sexual selection culminating in behaviourally modern Homo sapiens. Increased reliance on the 'de novo' synthesis of nicotinamide from tryptophan conditioned the immune system to welcome symbionts, such as TB (that excrete nicotinamide), and to increase tolerance of the foetus and thereby fertility. The trade-offs during the warmer Holocene were physical and mental stunting and more infectious diseases and population booms and busts. Higher nicotinamide exposure could be responsible for recent demographic and epidemiological transitions to lower fertility and higher longevity, but with more degenerative and auto-immune disease.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Bulzu PA, Andrei AŞ, Salcher MM, Mehrshad M, Inoue K, Kandori H, Beja O, Ghai R, Banciu HL. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat Microbiol 2019; 4:1129-1137. [DOI: 10.1038/s41564-019-0404-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/08/2019] [Indexed: 11/09/2022]
|
12
|
De novo NAD + biosynthetic impairment in acute kidney injury in humans. Nat Med 2018; 24:1351-1359. [PMID: 30127395 PMCID: PMC6129212 DOI: 10.1038/s41591-018-0138-z] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) extends longevity in experimental organisms, raising interest in its impact on human health. De novo NAD+ biosynthesis from tryptophan is evolutionarily conserved yet considered supplanted among higher species by biosynthesis from nicotinamide (Nam). Here we show that a bottleneck enzyme in de novo biosynthesis, quinolinate phosphoribosyltransferase (QPRT), defends renal NAD+ and mediates resistance to acute kidney injury (AKI). Following murine AKI, renal NAD+ fell, quinolinate rose, and QPRT declined. QPRT+/− mice exhibited higher quinolinate, lower NAD+, and higher AKI susceptibility. Metabolomics proposed elevated urinary quinolinate/tryptophan (uQ:T) as an indicator of reduced QPRT. Elevated uQ:T predicted AKI and other adverse outcomes in critically ill patients. A Phase 1 placebo-controlled study of oral Nam demonstrated dose-related increase in circulating NAD+ metabolites. Nam was well-tolerated and was associated with less AKI. Impaired NAD+ biosynthesis may therefore be a feature of high-risk hospitalizations for which NAD+ augmentation could be beneficial.
Collapse
|
13
|
Fumarate reductase superfamily: A diverse group of enzymes whose evolution is correlated to the establishment of different metabolic pathways. Mitochondrion 2017; 34:56-66. [PMID: 28088649 DOI: 10.1016/j.mito.2017.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 11/21/2022]
Abstract
Fumarate and succinate are known to be present in prebiotic systems essential for the origin of life. The fumarate and succinate interconversion reactions have been conserved throughout evolution and are found in all living organisms. The fumarate and succinate interconversion is catalyzed by the enzymes succinate dehydrogenase (SDH) and fumarate reductase (FRD). In this work we show that SDH and FRD are part of a group of enzymes that we propose to designate "fumarate reductase superfamily". Our results demonstrate that these enzymes emerged from a common ancestor and were essential in the development of metabolic pathways involved in energy transduction.
Collapse
|
14
|
Rabe F, Seitner D, Bauer L, Navarrete F, Czedik-Eysenberg A, Rabanal FA, Djamei A. Phytohormone sensing in the biotrophic fungus Ustilago maydis - the dual role of the transcription factor Rss1. Mol Microbiol 2016; 102:290-305. [PMID: 27387604 PMCID: PMC5082525 DOI: 10.1111/mmi.13460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 12/30/2022]
Abstract
The phenolic compound salicylic acid (SA) is a key signalling molecule regulating local and systemic plant defense responses, mainly against biotrophs. Many microbial organisms, including pathogens, share the ability to degrade SA. However, the mechanism by which they perceive SA is unknown. Here we show that Ustilago maydis, the causal agent of corn smut disease, employs a so far uncharacterized SA sensing mechanism. We identified and characterized the novel SA sensing regulator, Rss1, a binuclear zinc cluster protein with dual functions as putative SA receptor and transcriptional activator regulating genes important for SA and tryptophan degradation. Rss1 represents a major component in the identified SA sensing pathway during the fungus' saprophytic stage. However, Rss1 does not have a detectable impact on virulence. The data presented in this work indicate that alternative or redundant sensing cascades exist that regulate the expression of SA-responsive genes in U. maydis during its pathogenic development.
Collapse
Affiliation(s)
- Franziska Rabe
- Vienna Biocenter (VBC), Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Denise Seitner
- Vienna Biocenter (VBC), Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Lisa Bauer
- Vienna Biocenter (VBC), Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Fernando Navarrete
- Vienna Biocenter (VBC), Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Angelika Czedik-Eysenberg
- Vienna Biocenter (VBC), Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Fernando A Rabanal
- Vienna Biocenter (VBC), Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Armin Djamei
- Vienna Biocenter (VBC), Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Dr. Bohr-Gasse 3, Vienna, 1030, Austria.
| |
Collapse
|
15
|
Sharif T, Ahn DG, Liu RZ, Pringle E, Martell E, Dai C, Nunokawa A, Kwak M, Clements D, Murphy JP, Dean C, Marcato P, McCormick C, Godbout R, Gujar SA, Lee PWK. The NAD(+) salvage pathway modulates cancer cell viability via p73. Cell Death Differ 2016; 23:669-80. [PMID: 26586573 PMCID: PMC4986639 DOI: 10.1038/cdd.2015.134] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/03/2015] [Accepted: 07/27/2015] [Indexed: 11/08/2022] Open
Abstract
The involvement of the nicotinamide adenine dinucleotide (NAD(+)) salvage pathway in cancer cell survival is poorly understood. Here we show that the NAD(+) salvage pathway modulates cancer cell survival through the rarely mutated tumour suppressor p73. Our data show that pharmacological inhibition or knockdown of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme in the NAD(+) salvage pathway, enhances autophagy and decreases survival of cancer cells in a p53-independent manner. Such NAMPT inhibition stabilizes p73 independently of p53 through increased acetylation and decreased ubiquitination, resulting in enhanced autophagy and cell death. These effects of NAMPT inhibition can be effectively reversed using nicotinamide mononucleotide (NMN), the enzymatic product of NAMPT. Similarly, knockdown of p73 also decreases NAMPT inhibition-induced autophagy and cell death, whereas overexpression of p73 alone enhances these effects. We show that the breast cancer cell lines (MCF-7, MDA-MB-231 and MDA-MB-468) harbour significantly higher levels of NAMPT and lower levels of p73 than does the normal cell line (MCF-10A), and that NAMPT inhibition is cytotoxic exclusively to the cancer cells. Furthermore, data from 176 breast cancer patients demonstrate that higher levels of NAMPT and lower levels of p73 correlate with poorer patient survival, and that high-grade tumours have significantly higher NAMPT/p73 mRNA ratios. Therefore, the inverse relationship between NAMPT and p73 demonstrable in vitro is also reflected from the clinical data. Taken together, our studies reveal a new NAMPT-p73 nexus that likely has important implications for cancer diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- T Sharif
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - D-G Ahn
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - R-Z Liu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - E Pringle
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - E Martell
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - C Dai
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - A Nunokawa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - M Kwak
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - D Clements
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - J P Murphy
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - C Dean
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - P Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - C McCormick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - R Godbout
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - S A Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4R2
- Strategy and Organizational Performance, IWK Health Centre, Halifax, NS, Canada
| | - P W K Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4R2
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
16
|
Zhang DX, Zhang JP, Hu JY, Huang YS. The potential regulatory roles of NAD(+) and its metabolism in autophagy. Metabolism 2016; 65:454-62. [PMID: 26975537 DOI: 10.1016/j.metabol.2015.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/29/2015] [Accepted: 11/25/2015] [Indexed: 02/02/2023]
Abstract
(Macro)autophagy mediates the bulk degradation of defective organelles, long-lived proteins and protein aggregates in lysosomes and plays a critical role in cellular and tissue homeostasis. Defective autophagy processes have been found to contribute to a variety of metabolic diseases. However, the regulatory mechanisms of autophagy are not fully understood. Increasing data indicate that nicotinamide adenine nucleotide (NAD(+)) homeostasis correlates intimately with autophagy. NAD(+) is a ubiquitous coenzyme that functions primarily as an electron carrier of oxidoreductase in multiple redox reactions. Both NAD(+) homeostasis and its metabolism are thought to play critical roles in regulating autophagy. In this review, we discuss how the regulation of NAD(+) and its metabolism can influence autophagy. We focus on the regulation of NAD(+)/NADH homeostasis and the effects of NAD(+) consumption by poly(ADP-ribose) (PAR) polymerase-1 (PARP-1), NAD(+)-dependent deacetylation by sirtuins and NAD(+) metabolites on autophagy processes and the underlying mechanisms. Future studies should provide more direct evidence for the regulation of autophagy processes by NAD(+). A better understanding of the critical roles of NAD(+) and its metabolites on autophagy will shed light on the complexity of autophagy regulation, which is essential for the discovery of new therapeutic tools for autophagy-related diseases.
Collapse
Affiliation(s)
- Dong-Xia Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, PR China, 400038
| | - Jia-Ping Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, PR China, 400038
| | - Jiong-Yu Hu
- Endocrinology Department, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, PR China, 400038
| | - Yue-Sheng Huang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, PR China, 400038.
| |
Collapse
|