1
|
Villalobos G, Lopez-Escamilla E, Olivo-Diaz A, Romero-Valdovinos M, Martinez A, Maravilla P, Martinez-Hernandez F. Genetic Variation among the Partial Gene Sequences of the Ribosomal Protein Large-Two, the Internal Transcribed Spacer, and the Small Ribosomal Subunit of Blastocystis sp. from Human Fecal Samples. Microorganisms 2024; 12:1152. [PMID: 38930533 PMCID: PMC11205392 DOI: 10.3390/microorganisms12061152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
In the present study, we compared the genetic variability of fragments from the internal transcribed spacer region (ITS) and the small subunit ribosomal DNA (SSUrDNA) as nuclear markers, in contrast with the ribosomal protein large two (rpl2) loci, placed in the mitochondrion-related organelles (MROs) within and among human fecal samples with Blastocystis. Samples were analyzed using polymerase chain reaction (PCR)-sequencing, phylogenies, and genetics of population structure analyses were performed. In total, 96 sequences were analyzed, i.e., 33 of SSUrDNA, 35 of rpl2, and 28 of ITS. Only three subtypes (STs) were identified, i.e., ST1 (11.4%), ST2 (28.6%), and ST3 (60%); in all cases, kappa indexes were 1, meaning a perfect agreement among ST assignations. The topologies of phylogenetic inferences were similar among them, clustering to each ST in its specific cluster; discrepancies between phylogeny and assignment of STs were not observed. The STRUCTURE v2.3.4 software assigned three subpopulations corresponding to the STs 1-3, respectively. The population indices were consistent with those previously reported by other groups. Our results suggest the potential use of the ITS and rpl2 genes as molecular markers for Blastocystis subtyping as an alternative approach for the study of the genetic diversity observed within and between human isolates of this microorganism.
Collapse
Affiliation(s)
- Guiehdani Villalobos
- Departamento de Produccion Agricola y Animal, Universidad Autonoma Metropolitana, Mexico City 04960, Mexico;
| | - Eduardo Lopez-Escamilla
- Departamento de Biologia Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea Gonzalez”, Mexico City 14080, Mexico; (E.L.-E.); (A.O.-D.)
| | - Angelica Olivo-Diaz
- Departamento de Biologia Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea Gonzalez”, Mexico City 14080, Mexico; (E.L.-E.); (A.O.-D.)
| | - Mirza Romero-Valdovinos
- Laboratorio de Patogenos Emergentes, Departamento de Biologia Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea Gonzalez”, Mexico City 14080, Mexico;
| | - Arony Martinez
- Departamento de Ecologia de Agentes Patogenos, Hospital General “Dr. Manuel Gea Gonzalez”, Mexico City 14080, Mexico;
| | - Pablo Maravilla
- Departamento de Ecologia de Agentes Patogenos, Hospital General “Dr. Manuel Gea Gonzalez”, Mexico City 14080, Mexico;
| | - Fernando Martinez-Hernandez
- Departamento de Ecologia de Agentes Patogenos, Hospital General “Dr. Manuel Gea Gonzalez”, Mexico City 14080, Mexico;
| |
Collapse
|
2
|
Butenko A, Lukeš J, Speijer D, Wideman JG. Mitochondrial genomes revisited: why do different lineages retain different genes? BMC Biol 2024; 22:15. [PMID: 38273274 PMCID: PMC10809612 DOI: 10.1186/s12915-024-01824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
The mitochondria contain their own genome derived from an alphaproteobacterial endosymbiont. From thousands of protein-coding genes originally encoded by their ancestor, only between 1 and about 70 are encoded on extant mitochondrial genomes (mitogenomes). Thanks to a dramatically increasing number of sequenced and annotated mitogenomes a coherent picture of why some genes were lost, or relocated to the nucleus, is emerging. In this review, we describe the characteristics of mitochondria-to-nucleus gene transfer and the resulting varied content of mitogenomes across eukaryotes. We introduce a 'burst-upon-drift' model to best explain nuclear-mitochondrial population genetics with flares of transfer due to genetic drift.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, USA.
| |
Collapse
|
4
|
Martínez-Ocaña J, Martínez-Flores WA, Olivo-Díaz A, Romero-Valdovinos M, Martínez-Hernández F, Aguilar-Osorio G, Flisser A, Maravilla P. Identification of α-L-fucosidase (ALFuc) of Blastocystis sp. subtypes ST1, ST2 and ST3. Rev Inst Med Trop Sao Paulo 2022; 64:e40. [PMID: 35703609 PMCID: PMC9190516 DOI: 10.1590/s1678-9946202264040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
Blastocystis sp. is a common intestinal microorganism. The α-L-fucosidase (ALFuc) is an enzyme long associated with the colonization of the gut microbiota. However, this enzyme has not been experimentally identified in Blastocystis cultures. The objective of the present study was to identify ALFuc in supernatants of axenic cultures of Blastocystis subtype (ST)1 ATCC-50177 and ATCC-50610 and to compare predicted ALFuc proteins of alfuc genes in sequenced STs1–3 isolates in human Blastocystis carriers. Excretion/secretion (Es/p) and cell lysate proteins were obtained by processing Blastocystis ATCC cultures and submitting them to SDS–PAGE and immunoblotting. In addition, 18 fecal samples from symptomatic Blastocystis human carriers were analyzed by sequencing of amplification products for subtyping. A complete identification of the alfuc gene and phylogenetic analysis were performed. Immunoblotting showed that the amplified band corresponding to ALFuc (~51 kDa) was recognized only in the ES/p. Furthermore, prediction analysis of ALFuc 3D structures revealed that the domain α-L-fucosidase and the GH29 family's catalytic sites were conserved; interestingly, the galactose-binding domain was recognized only in ST1 and ST2. The phylogenetic inferences of ALFuc showed that STs1–3 were clearly identifiable and grouped into specific clusters. Our results show, for the first time through experimental data that ALFuc is a secretion product of Blastocystis sp., which could have a relevant role during intestinal colonization; however, further studies are required to clarify this condition. Furthermore, the alfuc gene is a promising candidate for a phylogenetic marker, as it shows a conserved classification with the SSU-rDNA gene.
Collapse
Affiliation(s)
- Joel Martínez-Ocaña
- Hospital General "Dr. Manuel Gea Gonzalez", Departamento de Ecología de Agentes Patógenos, Ciudad de México, México
| | | | - Angélica Olivo-Díaz
- Hospital General "Dr. Manuel Gea Gonzalez", Departamento de Ecología de Agentes Patógenos, Ciudad de México, México
| | - Mirza Romero-Valdovinos
- Hospital General "Dr. Manuel Gea Gonzalez", Departamento de Ecología de Agentes Patógenos, Ciudad de México, México
| | - Fernando Martínez-Hernández
- Hospital General "Dr. Manuel Gea Gonzalez", Departamento de Ecología de Agentes Patógenos, Ciudad de México, México
| | | | - Ana Flisser
- Universidad Autonoma de México, Facultad de Medicina, Departamento de Microbiologia y Parasitologia, Ciudad de México, México
| | - Pablo Maravilla
- Hospital General "Dr. Manuel Gea Gonzalez", Departamento de Ecología de Agentes Patógenos, Ciudad de México, México
| |
Collapse
|
7
|
Gentekaki E, Curtis BA, Stairs CW, Klimeš V, Eliáš M, Salas-Leiva DE, Herman EK, Eme L, Arias MC, Henrissat B, Hilliou F, Klute MJ, Suga H, Malik SB, Pightling AW, Kolisko M, Rachubinski RA, Schlacht A, Soanes DM, Tsaousis AD, Archibald JM, Ball SG, Dacks JB, Clark CG, van der Giezen M, Roger AJ. Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biol 2017; 15:e2003769. [PMID: 28892507 PMCID: PMC5608401 DOI: 10.1371/journal.pbio.2003769] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/21/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022] Open
Abstract
Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than β-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.
Collapse
Affiliation(s)
- Eleni Gentekaki
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bruce A. Curtis
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Courtney W. Stairs
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Dayana E. Salas-Leiva
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emily K. Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Laura Eme
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maria C. Arias
- Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS-USTL, Cité Scientifique, Villeneuve d’Ascq Cedex, France
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mary J. Klute
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Nanatsuka 562, Shobara, Hiroshima, Japan
| | - Shehre-Banoo Malik
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Arthur W. Pightling
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Martin Kolisko
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Alexander Schlacht
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Darren M. Soanes
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Anastasios D. Tsaousis
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M. Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity, Toronto, Canada
| | - Steven G. Ball
- Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS-USTL, Cité Scientifique, Villeneuve d’Ascq Cedex, France
| | - Joel B. Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - C. Graham Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Andrew J. Roger
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity, Toronto, Canada
| |
Collapse
|