1
|
Marshall KL, Stadtmauer DJ, Maziarz J, Wagner GP, Lesch BJ. Evolutionary innovations in germline biology of placental mammals identified by transcriptomics of first-wave spermatogenesis in opossum. Dev Cell 2025; 60:646-664.e8. [PMID: 39536760 PMCID: PMC11859772 DOI: 10.1016/j.devcel.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Mammalian spermatogenesis is a highly stereotyped and conserved developmental process that is essential for fitness. At the same time, gene expression in spermatogenic cells is rapidly evolving. This combination of features has been suggested to drive rapid fixation of new gene expression patterns. Using a high-resolution dataset comprising bulk and single-cell data from juvenile and adult testes of the opossum Monodelphis domestica, a model marsupial, we define the developmental timing of the spermatogenic first wave in opossum and delineate conserved and divergent gene expression programs across the placental-marsupial split by comparison to equivalent data from mouse, a model placental mammal. Epigenomic data confirmed divergent regulation at the level of transcription, and comparison to data from four additional amniote species identified hundreds of genes with evidence of rapid fixation of expression. This gene set encompasses known and previously undescribed regulators of spermatogenic development.
Collapse
Affiliation(s)
- Kira L Marshall
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel J Stadtmauer
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Bluma J Lesch
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
2
|
Xia S, Chen J, Arsala D, Emerson JJ, Long M. Functional innovation through new genes as a general evolutionary process. Nat Genet 2025; 57:295-309. [PMID: 39875578 DOI: 10.1038/s41588-024-02059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/15/2024] [Indexed: 01/30/2025]
Abstract
In the past decade, our understanding of how new genes originate in diverse organisms has advanced substantially, and more than a dozen molecular mechanisms for generating initial gene structures were identified, in addition to gene duplication. These new genes have been found to integrate into and modify pre-existing gene networks primarily through mutation and selection, revealing new patterns and rules with stable origination rates across various organisms. This progress has challenged the prevailing belief that new proteins evolve from pre-existing genes, as new genes may arise de novo from noncoding DNA sequences in many organisms, with high rates observed in flowering plants. New genes have important roles in phenotypic and functional evolution across diverse biological processes and structures, with detectable fitness effects of sexual conflict genes that can shape species divergence. Such knowledge of new genes can be of translational value in agriculture and medicine.
Collapse
Affiliation(s)
- Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Pai VJ, Lau CJ, Garcia-Ruiz A, Donaldson C, Vaughan JM, Miller B, De Souza EV, Pinto AM, Diedrich J, Gavva NR, Yu S, DeBoever C, Horman SR, Saghatelian A. Microprotein-encoding RNA regulation in cells treated with pro-inflammatory and pro-fibrotic stimuli. BMC Genomics 2024; 25:1034. [PMID: 39497054 PMCID: PMC11536906 DOI: 10.1186/s12864-024-10948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Recent analysis of the human proteome via proteogenomics and ribosome profiling of the transcriptome revealed the existence of thousands of previously unannotated microprotein-coding small open reading frames (smORFs). Most functional microproteins were chosen for characterization because of their evolutionary conservation. However, one example of a non-conserved immunomodulatory microprotein in mice suggests that strict sequence conservation misses some intriguing microproteins. RESULTS We examine the ability of gene regulation to identify human microproteins with potential roles in inflammation or fibrosis of the intestine. To do this, we collected ribosome profiling data of intestinal cell lines and peripheral blood mononuclear cells and used gene expression of microprotein-encoding transcripts to identify strongly regulated microproteins, including several examples of microproteins that are only conserved with primates. CONCLUSION This approach reveals a number of new microproteins worthy of additional functional characterization and provides a dataset that can be queried in different ways to find additional gut microproteins of interest.
Collapse
Affiliation(s)
- Victor J Pai
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Calvin J Lau
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Almudena Garcia-Ruiz
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Cynthia Donaldson
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Joan M Vaughan
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Brendan Miller
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Eduardo V De Souza
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Antonio M Pinto
- Mass Spectrometry Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jolene Diedrich
- Mass Spectrometry Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Narender R Gavva
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA
| | - Shan Yu
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA
| | | | - Shane R Horman
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA.
| | - Alan Saghatelian
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
4
|
Vara C, Montañés JC, Albà MM. High Polymorphism Levels of De Novo ORFs in a Yoruba Human Population. Genome Biol Evol 2024; 16:evae126. [PMID: 38934859 PMCID: PMC11221430 DOI: 10.1093/gbe/evae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/08/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
During evolution, new open reading frames (ORFs) with the potential to give rise to novel proteins continuously emerge. A recent compilation of noncanonical ORFs with translation signatures in humans has identified thousands of cases with a putative de novo origin. However, it is not known which is their distribution in the population. Are they universally translated? Here, we use ribosome profiling data from 65 lymphoblastoid cell lines from individuals of Yoruba origin to investigate this question. We identify 2,587 de novo ORFs translated in at least one of the cell lines. In line with their de novo origin, the encoded proteins tend to be smaller than 100 amino acids and encode positively charged proteins. We observe that the de novo ORFs are more polymorphic in the population than the set of canonical proteins, with a substantial fraction of them being translated in only some of the cell lines. Remarkably, this difference remains significant after controlling for differences in the translation levels. These results suggest that variations in the level translation of de novo ORFs could be a relevant source of intraspecies phenotypic diversity in humans.
Collapse
Affiliation(s)
- Covadonga Vara
- Research Programme on Biomedical Informatics (GRIB),Hospital del Mar Research Institute, Barcelona, Spain
| | - José Carlos Montañés
- Research Programme on Biomedical Informatics (GRIB),Hospital del Mar Research Institute, Barcelona, Spain
| | - M Mar Albà
- Research Programme on Biomedical Informatics (GRIB),Hospital del Mar Research Institute, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
5
|
Yañez AJ, Barrientos CA, Isla A, Aguilar M, Flores-Martin SN, Yuivar Y, Ojeda A, Ibieta P, Hernández M, Figueroa J, Avendaño-Herrera R, Mancilla M. Discovery and Characterization of the ddx41 Gene in Atlantic Salmon: Evolutionary Implications, Structural Functions, and Innate Immune Responses to Piscirickettsia salmonis and Renibacterium salmoninarum Infections. Int J Mol Sci 2024; 25:6346. [PMID: 38928053 PMCID: PMC11204154 DOI: 10.3390/ijms25126346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The innate immune response in Salmo salar, mediated by pattern recognition receptors (PRRs), is crucial for defending against pathogens. This study examined DDX41 protein functions as a cytosolic/nuclear sensor for cyclic dinucleotides, RNA, and DNA from invasive intracellular bacteria. The investigation determined the existence, conservation, and functional expression of the ddx41 gene in S. salar. In silico predictions and experimental validations identified a single ddx41 gene on chromosome 5 in S. salar, showing 83.92% homology with its human counterpart. Transcriptomic analysis in salmon head kidney confirmed gene transcriptional integrity. Proteomic identification through mass spectrometry characterized three unique peptides with 99.99% statistical confidence. Phylogenetic analysis demonstrated significant evolutionary conservation across species. Functional gene expression analysis in SHK-1 cells infected by Piscirickettsia salmonis and Renibacterium salmoninarum indicated significant upregulation of DDX41, correlated with increased proinflammatory cytokine levels and activation of irf3 and interferon signaling pathways. In vivo studies corroborated DDX41 activation in immune responses, particularly when S. salar was challenged with P. salmonis, underscoring its potential in enhancing disease resistance. This is the first study to identify the DDX41 pathway as a key component in S. salar innate immune response to invading pathogens, establishing a basis for future research in salmonid disease resistance.
Collapse
Affiliation(s)
- Alejandro J. Yañez
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
| | - Claudia A. Barrientos
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
| | - Adolfo Isla
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Valdivia 5090000, Chile
| | - Marcelo Aguilar
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
| | - Sandra N. Flores-Martin
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
| | - Yassef Yuivar
- ADL Diagnostic Chile, Sector la Vara, Puerto Montt 5480000, Chile; (Y.Y.); (A.O.)
| | - Adriana Ojeda
- ADL Diagnostic Chile, Sector la Vara, Puerto Montt 5480000, Chile; (Y.Y.); (A.O.)
| | - Pablo Ibieta
- TEKBios Ltda, Camino Pargua Km 8, Maullín 5580000, Chile;
| | - Mauricio Hernández
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz 4133515, Chile;
| | - Jaime Figueroa
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Rubén Avendaño-Herrera
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar 2520000, Chile
| | - Marcos Mancilla
- ADL Diagnostic Chile, Sector la Vara, Puerto Montt 5480000, Chile; (Y.Y.); (A.O.)
| |
Collapse
|
6
|
Ma F, Zheng C. Single-cell phylotranscriptomics of developmental and cell type evolution. Trends Genet 2024; 40:495-510. [PMID: 38490933 DOI: 10.1016/j.tig.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
Single-cell phylotranscriptomics is an emerging tool to reveal the molecular and cellular mechanisms of evolution. We summarize its utility in studying the hourglass pattern of ontogenetic evolution and for understanding the evolutionary history of cell types. The developmental hourglass model suggests that the mid-embryonic stage is the most conserved period of development across species, which is supported by morphological and molecular studies. Single-cell phylotranscriptomic analysis has revealed previously underappreciated heterogeneity in transcriptome ages among lineages and cell types throughout development, and has identified the lineages and tissues that drive the whole-organism hourglass pattern. Single-cell transcriptome age analyses also provide important insights into the origin of germ layers, the different selective forces on tissues during adaptation, and the evolutionary relationships between cell types.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Gomez RA, Dallai R, Sims-West DJ, Mercati D, Sinka R, Ahmed-Braimah Y, Pitnick S, Dorus S. Proteomic diversification of spermatostyles among six species of whirligig beetles. Mol Reprod Dev 2024; 91:e23745. [PMID: 38785179 PMCID: PMC11246569 DOI: 10.1002/mrd.23745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
Seminal fluid protein composition is complex and commonly assumed to be rapidly divergent due to functional interactions with both sperm and the female reproductive tract (FRT), both of which evolve rapidly. In addition to sperm, seminal fluid may contain structures, such as mating plugs and spermatophores. Here, we investigate the evolutionary diversification of a lesser-known ejaculate structure: the spermatostyle, which has independently arisen in several families of beetles and true bugs. We characterized the spermatostyle proteome, in addition to spermatostyle and FRT morphology, in six species of whirligig beetles (family Gyrinidae). Spermatostyles were enriched for proteolytic enzymes, and assays confirmed they possess proteolytic activity. Sperm-leucylaminopeptidases (S-LAPs) were particularly abundant, and their localization to spermatostyles was confirmed by immunohistochemistry. Although there was evidence for functional conservation of spermatostyle proteomes across species, phylogenetic regressions suggest evolutionary covariation between protein composition and the morphology of both spermatostyles and FRTs. We postulate that S-LAPs (and other proteases) have evolved a novel structural role in spermatostyles and discuss spermatostyles as adaptations for delivering male-derived materials to females.
Collapse
Affiliation(s)
- R. Antonio Gomez
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - Romano Dallai
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Dylan J. Sims-West
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - David Mercati
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Yasir Ahmed-Braimah
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - Scott Pitnick
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - Steve Dorus
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
8
|
Villanueva-Cañas JL, Fernandez-Fuentes N, Saul D, Kosinsky RL, Teyssier C, Rogalska ME, Pérez FP, Oliva B, Notredame C, Beato M, Sharma P. Evolutionary analysis reveals the role of a non-catalytic domain of peptidyl arginine deiminase 2 in transcriptional regulation. iScience 2024; 27:109584. [PMID: 38623337 PMCID: PMC11016909 DOI: 10.1016/j.isci.2024.109584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Peptidyl arginine deiminases (PADIs) catalyze protein citrullination, a post-translational conversion of arginine to citrulline. The most widely expressed member of this family, PADI2, regulates cellular processes that impact several diseases. We hypothesized that we could gain new insights into PADI2 function through a systematic evolutionary and structural analysis. Here, we identify 20 positively selected PADI2 residues, 16 of which are structurally exposed and maintain PADI2 interactions with cognate proteins. Many of these selected residues reside in non-catalytic regions of PADI2. We validate the importance of a prominent loop in the middle domain that encompasses PADI2 L162, a residue under positive selection. This site is essential for interaction with the transcription elongation factor (P-TEFb) and mediates the active transcription of the oncogenes c-MYC, and CCNB1, as well as impacting cellular proliferation. These insights could be key to understanding and addressing the role of the PADI2 c-MYC axis in cancer progression.
Collapse
Affiliation(s)
- José Luis Villanueva-Cañas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Dominik Saul
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Tübingen, Germany
| | | | - Catherine Teyssier
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Du Cancer de Montpellier (ICM), F-34298 Montpellier, France
| | - Malgorzata Ewa Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ferran Pegenaute Pérez
- Live-Cell Structural Biology Laboratory, Department of Medicine and Life Sciences, E-08005 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Baldomero Oliva
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Structural Bioinformatics Laboratory (GRIB-IMIM), Department of Medicine and Life Sciences, E-08003 Barcelona, Spain
| | - Cedric Notredame
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Miguel Beato
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Priyanka Sharma
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
9
|
Ma F, Lau CY, Zheng C. Young duplicate genes show developmental stage- and cell type-specific expression and function in Caenorhabditis elegans. CELL GENOMICS 2024; 4:100467. [PMID: 38190105 PMCID: PMC10794840 DOI: 10.1016/j.xgen.2023.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024]
Abstract
Gene duplication produces the material that fuels evolutionary innovation. The "out-of-testis" hypothesis suggests that sperm competition creates selective pressure encouraging the emergence of new genes in male germline, but the somatic expression and function of the newly evolved genes are not well understood. We systematically mapped the expression of young duplicate genes throughout development in Caenorhabditis elegans using both whole-organism and single-cell transcriptomic data. Based on the expression dynamics across developmental stages, young duplicate genes fall into three clusters that are preferentially expressed in early embryos, mid-stage embryos, and late-stage larvae. Early embryonic genes are involved in protein degradation and develop essentiality comparable to the genomic average. In mid-to-late embryos and L4-stage larvae, young genes are enriched in intestine, epidermal cells, coelomocytes, and amphid chemosensory neurons. Their molecular functions and inducible expression indicate potential roles in innate immune response and chemosensory perceptions, which may contribute to adaptation outside of the sperm.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chun Yin Lau
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Li J, Lee CR. The role of gene presence-absence variations on genetic incompatibility in Asian rice. THE NEW PHYTOLOGIST 2023; 239:778-791. [PMID: 37194454 PMCID: PMC7615310 DOI: 10.1111/nph.18969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
Genetic incompatibilities are widespread between species. However, it remains unclear whether they all originated after population divergence as suggested by the Bateson-Dobzhansky-Muller model, and if not, what is their prevalence and distribution within populations. The gene presence-absence variations (PAVs) provide an opportunity for investigating gene-gene incompatibility. Here, we searched for the repulsion of coexistence between gene PAVs to identify the negative interaction of gene functions separately in two Oryza sativa subspecies. Many PAVs are involved in subspecies-specific negative epistasis and segregate at low-to-intermediate frequencies in focal subspecies but at low or high frequencies in the other subspecies. Incompatible PAVs are enriched in two functional groups, defense response and protein phosphorylation, which are associated with plant immunity and consistent with autoimmunity being a known mechanism of hybrid incompatibility in plants. Genes in the two enriched functional groups are older and seldom directly interact with each other. Instead, they interact with other younger gene PAVs with diverse functions. Our results illustrate the landscape of genetic incompatibility at gene PAVs in rice, where many incompatible pairs have already segregated as polymorphisms within subspecies, and many are novel negative interactions between older defense-related genes and younger genes with diverse functions.
Collapse
Affiliation(s)
- Juan Li
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 106319, Taiwan
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 106319, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
11
|
Li J, Shen J, Wang R, Chen Y, Zhang T, Wang H, Guo C, Qi J. The nearly complete assembly of the Cercis chinensis genome and Fabaceae phylogenomic studies provide insights into new gene evolution. PLANT COMMUNICATIONS 2023; 4:100422. [PMID: 35957520 PMCID: PMC9860166 DOI: 10.1016/j.xplc.2022.100422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 05/27/2023]
Abstract
Fabaceae is a large family of angiosperms with high biodiversity that contains a variety of economically important crops and model plants for the study of biological nitrogen fixation. Polyploidization events have been extensively studied in some Fabaceae plants, but the occurrence of new genes is still concealed, owing to a lack of genomic information on certain species of the basal clade of Fabaceae. Cercis chinensis (Cercidoideae) is one such species; it diverged earliest from Fabaceae and is essential for phylogenomic studies and new gene predictions in Fabaceae. To facilitate genomic studies on Fabaceae, we performed genome sequencing of C. chinensis and obtained a 352.84 Mb genome, which was further assembled into seven pseudochromosomes with 30 612 predicted protein-coding genes. Compared with other legume genomes, that of C. chinensis exhibits no lineage-specific polyploidization event. Further phylogenomic analyses of 22 legumes and 11 other angiosperms revealed that many gene families are lineage specific before and after the diversification of Fabaceae. Among them, dozens of genes are candidates for new genes that have evolved from intergenic regions and are thus regarded as de novo-originated genes. They differ significantly from established genes in coding sequence length, exon number, guanine-cytosine content, and expression patterns among tissues. Functional analysis revealed that many new genes are related to asparagine metabolism. This study represents an important advance in understanding the evolutionary pattern of new genes in legumes and provides a valuable resource for plant phylogenomic studies.
Collapse
Affiliation(s)
- Jinglong Li
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jingting Shen
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Rui Wang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yamao Chen
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Haifeng Wang
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Chunce Guo
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
12
|
Metivier JC, Chain FJJ. Diversity in Expression Biases of Lineage-Specific Genes During Development and Anhydrobiosis Among Tardigrade Species. Evol Bioinform Online 2022; 18:11769343221140277. [PMID: 36578471 PMCID: PMC9791283 DOI: 10.1177/11769343221140277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
Lineage-specific genes can contribute to the emergence and evolution of novel traits and adaptations. Tardigrades are animals that have adapted to tolerate extreme conditions by undergoing a form of cryptobiosis called anhydrobiosis, a physical transformation to an inactive desiccated state. While studies to understand the genetics underlying the interspecies diversity in anhydrobiotic transitions have identified tardigrade-specific genes and family expansions involved in this process, the contributions of species-specific genes to the variation in tardigrade development and cryptobiosis are less clear. We used previously published transcriptomes throughout development and anhydrobiosis (5 embryonic stages, 7 juvenile stages, active adults, and tun adults) to assess the transcriptional biases of different classes of genes between 2 tardigrade species, Hypsibius exemplaris and Ramazzottius varieornatus. We also used the transcriptomes of 2 other tardigrades, Echiniscoides sigismundi and Richtersius coronifer, and data from 3 non-tardigrade species (Adenita vaga, Drosophila melanogaster, and Caenorhabditis elegans) to help identify lineage-specific genes. We found that lineage-specific genes have generally low and narrow expression but are enriched among biased genes in different stages of development depending on the species. Biased genes tend to be specific to early and late development, but there is little overlap in functional enrichment of biased genes between species. Gene expansions in the 2 tardigrades also involve families with different functions despite homologous genes being expressed during anhydrobiosis in both species. Our results demonstrate the interspecific variation in transcriptional contributions and biases of lineage-specific genes during development and anhydrobiosis in 2 tardigrades.
Collapse
Affiliation(s)
| | - Frédéric J J Chain
- Frédéric J J Chain, Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
13
|
Rabbani M, Zheng X, Manske GL, Vargo A, Shami AN, Li JZ, Hammoud SS. Decoding the Spermatogenesis Program: New Insights from Transcriptomic Analyses. Annu Rev Genet 2022; 56:339-368. [PMID: 36070560 PMCID: PMC10722372 DOI: 10.1146/annurev-genet-080320-040045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spermatogenesis is a complex differentiation process coordinated spatiotemporally across and along seminiferous tubules. Cellular heterogeneity has made it challenging to obtain stage-specific molecular profiles of germ and somatic cells using bulk transcriptomic analyses. This has limited our ability to understand regulation of spermatogenesis and to integrate knowledge from model organisms to humans. The recent advancement of single-cell RNA-sequencing (scRNA-seq) technologies provides insights into the cell type diversity and molecular signatures in the testis. Fine-grained cell atlases of the testis contain both known and novel cell types and define the functional states along the germ cell developmental trajectory in many species. These atlases provide a reference system for integrated interspecies comparisons to discover mechanistic parallels and to enable future studies. Despite recent advances, we currently lack high-resolution data to probe germ cell-somatic cell interactions in the tissue environment, but the use of highly multiplexed spatial analysis technologies has begun to resolve this problem. Taken together, recent single-cell studies provide an improvedunderstanding of gametogenesis to examine underlying causes of infertility and enable the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Xianing Zheng
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Gabe L Manske
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Vargo
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Adrienne N Shami
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Kufe DW. Emergence of MUC1 in Mammals for Adaptation of Barrier Epithelia. Cancers (Basel) 2022; 14:cancers14194805. [PMID: 36230728 PMCID: PMC9564314 DOI: 10.3390/cancers14194805] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The mucin 1 (MUC1) gene was discovered based on its overexpression in human breast cancers. Subsequent work demonstrated that MUC1 is aberrantly expressed in cancers originating from other diverse organs, including skin and immune cells. These findings supported a role for MUC1 in the adaptation of barrier tissues to infection and environmental stress. Of fundamental importance for this evolutionary adaptation was inclusion of a SEA domain, which catalyzes autoproteolysis of the MUC1 protein and formation of a non-covalent heterodimeric complex. The resulting MUC1 heterodimer is poised at the apical cell membrane to respond to loss of homeostasis. Disruption of the complex releases the MUC1 N-terminal (MUC1-N) subunit into a protective mucous gel. Conversely, the transmembrane C-terminal (MUC1-C) subunit activates a program of lineage plasticity, epigenetic reprogramming and repair. This MUC1-C-activated program apparently evolved for barrier tissues to mount self-regulating proliferative, inflammatory and remodeling responses associated with wound healing. Emerging evidence indicates that MUC1-C underpins inflammatory adaptation of tissue stem cells and immune cells in the barrier niche. This review focuses on how prolonged activation of MUC1-C by chronic inflammation in these niches promotes the cancer stem cell (CSC) state by establishing auto-inductive nodes that drive self-renewal and tumorigenicity.
Collapse
Affiliation(s)
- Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA
| |
Collapse
|
15
|
Delihas N. An ancestral genomic sequence that serves as a nucleation site for de novo gene birth. PLoS One 2022; 17:e0267864. [PMID: 35552551 PMCID: PMC9097989 DOI: 10.1371/journal.pone.0267864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/17/2022] [Indexed: 11/24/2022] Open
Abstract
The process of gene birth is of major interest with current excitement concerning de novo gene formation. We report a new and different mechanism of de novo gene birth based on the finding and the characteristics of a short non-coding sequence situated between two protein genes, termed a spacer sequence. This non-coding sequence is present in genomes of Mus musculus, the house mouse and Philippine tarsier, a primitive ancestral primate. The ancestral sequence is highly conserved during primate evolution with certain base pairs totally invariant from mouse to humans. By following the birth of the sequence of human lincRNA BCRP3 (BCR activator of RhoGEF and GTPase 3 pseudogene) during primate evolution, we find diverse genes, long non-coding RNA and protein genes (and sequences that do not appear to encode a gene) that all stem from the 3’ end of the spacer, and all begin with a similar sequence. During primate evolution, part of the BCRP3 sequence initially formed in the Old World Monkeys and developed into different primate genes before evolving into the BCRP3 gene in humans. The gene developmental process consists of the initiation of DNA synthesis at spacer 3’ ends, addition of a complex of tandem transposable elements and the addition of a segment of another gene. The findings support the concept of the spacer sequence as a starting site for DNA synthesis that leads to formation of different genes with the addition of other sequences. These data suggest a new process of de novo gene birth.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Leurs N, Martinand-Mari C, Marcellini S, Debiais-Thibaud M. Parallel evolution of ameloblastic scpp genes in bony and cartilaginous vertebrates. Mol Biol Evol 2022; 39:6582990. [PMID: 35535508 PMCID: PMC9122587 DOI: 10.1093/molbev/msac099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In bony vertebrates, skeletal mineralization relies on the secretory calcium-binding phosphoproteins (Scpp) family whose members are acidic extracellular proteins posttranslationally regulated by the Fam20°C kinase. As scpp genes are absent from the elephant shark genome, they are currently thought to be specific to bony fishes (osteichthyans). Here, we report a scpp gene present in elasmobranchs (sharks and rays) that evolved from local tandem duplication of sparc-L 5′ exons and show that both genes experienced recent gene conversion in sharks. The elasmobranch scpp is remarkably similar to the osteichthyan scpp members as they share syntenic and gene structure features, code for a conserved signal peptide, tyrosine-rich and aspartate/glutamate-rich regions, and harbor putative Fam20°C phosphorylation sites. In addition, the catshark scpp is coexpressed with sparc-L and fam20°C in tooth and scale ameloblasts, similarly to some osteichthyan scpp genes. Despite these strong similarities, molecular clock and phylogenetic data demonstrate that the elasmobranch scpp gene originated independently from the osteichthyan scpp gene family. Our study reveals convergent events at the sparc-L locus in the two sister clades of jawed vertebrates, leading to parallel diversification of the skeletal biomineralization toolkit. The molecular evolution of sparc-L and its coexpression with fam20°C in catshark ameloblasts provides a unifying genetic basis that suggests that all convergent scpp duplicates inherited similar features from their sparc-L precursor. This conclusion supports a single origin for the hypermineralized outer odontode layer as produced by an ancestral developmental process performed by Sparc-L, implying the homology of the enamel and enameloid tissues in all vertebrates.
Collapse
Affiliation(s)
- Nicolas Leurs
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Camille Martinand-Mari
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sylvain Marcellini
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
17
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [PMID: 35079164 DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Mammalian development demands precision. Millions of molecules must be properly located in temporal order, and their function regulated, to orchestrate important steps in cell cycle progression, apoptosis, migration and differentiation, to shape developing embryos. Ubiquitin and its associated enzymes act as cellular guardians to ensure precise spatio-temporal control of key molecules during each of these important cellular processes. Loss of precision results in numerous examples of embryological disorders or even cancer. This Review discusses the crucial roles of E3 ubiquitin ligases during key steps of early mammalian development and their roles in human disease, and considers how new methods to manipulate and exploit the ubiquitin regulatory machinery - for example, the development of molecular glues and PROTACs - might facilitate clinical therapy.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Zhuoyao Chen
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Alex N Bullock
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Cherezov RO, Vorontsova JE, Simonova OB. The Phenomenon of Evolutionary “De Novo Generation” of Genes. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Li H, Chen C, Wang Z, Wang K, Li Y, Wang W. Pattern of New Gene Origination in a Special Fish Lineage, the Flatfishes. Genes (Basel) 2021; 12:genes12111819. [PMID: 34828425 PMCID: PMC8618825 DOI: 10.3390/genes12111819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Origination of new genes are of inherent interest of evolutionary geneticists for decades, but few studies have addressed the general pattern in a fish lineage. Using our recent released whole genome data of flatfishes, which evolved one of the most specialized body plans in vertebrates, we identified 1541 (6.9% of the starry flounder genes) flatfish-lineage-specific genes. The origination pattern of these flatfish new genes is largely similar to those observed in other vertebrates, as shown by the proportion of DNA-mediated duplication (1317; 85.5%), RNA-mediated duplication (retrogenes; 96; 6.2%), and de novo-origination (128; 8.3%). The emergence rate of species-specific genes is 32.1 per Mya and the whole average level rate for the flatfish-lineage-specific genes is 20.9 per Mya. A large proportion (31.4%) of these new genes have been subjected to selection, in contrast to the 4.0% in primates, while the old genes remain quite similar (66.4% vs. 65.0%). In addition, most of these new genes (70.8%) are found to be expressed, indicating their functionality. This study not only presents one example of systematic new gene identification in a teleost taxon based on comprehensive phylogenomic data, but also shows that new genes may play roles in body planning.
Collapse
|
20
|
Nicolet BP, Zandhuis ND, Lattanzio VM, Wolkers MC. Sequence determinants as key regulators in gene expression of T cells. Immunol Rev 2021; 304:10-29. [PMID: 34486113 PMCID: PMC9292449 DOI: 10.1111/imr.13021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
T cell homeostasis, T cell differentiation, and T cell effector function rely on the constant fine-tuning of gene expression. To alter the T cell state, substantial remodeling of the proteome is required. This remodeling depends on the intricate interplay of regulatory mechanisms, including post-transcriptional gene regulation. In this review, we discuss how the sequence of a transcript influences these post-transcriptional events. In particular, we review how sequence determinants such as sequence conservation, GC content, and chemical modifications define the levels of the mRNA and the protein in a T cell. We describe the effect of different forms of alternative splicing on mRNA expression and protein production, and their effect on subcellular localization. In addition, we discuss the role of sequences and structures as binding hubs for miRNAs and RNA-binding proteins in T cells. The review thus highlights how the intimate interplay of post-transcriptional mechanisms dictate cellular fate decisions in T cells.
Collapse
Affiliation(s)
- Benoit P. Nicolet
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Nordin D. Zandhuis
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - V. Maria Lattanzio
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Monika C. Wolkers
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
21
|
Wang YW, Hess J, Slot JC, Pringle A. De Novo Gene Birth, Horizontal Gene Transfer, and Gene Duplication as Sources of New Gene Families Associated with the Origin of Symbiosis in Amanita. Genome Biol Evol 2021; 12:2168-2182. [PMID: 32926145 PMCID: PMC7674699 DOI: 10.1093/gbe/evaa193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/24/2022] Open
Abstract
By introducing novel capacities and functions, new genes and gene families may play a crucial role in ecological transitions. Mechanisms generating new gene families include de novo gene birth, horizontal gene transfer, and neofunctionalization following a duplication event. The ectomycorrhizal (ECM) symbiosis is a ubiquitous mutualism and the association has evolved repeatedly and independently many times among the fungi, but the evolutionary dynamics enabling its emergence remain elusive. We developed a phylogenetic workflow to first understand if gene families unique to ECM Amanita fungi and absent from closely related asymbiotic species are functionally relevant to the symbiosis, and then to systematically infer their origins. We identified 109 gene families unique to ECM Amanita species. Genes belonging to unique gene families are under strong purifying selection and are upregulated during symbiosis, compared with genes of conserved or orphan gene families. The origins of seven of the unique gene families are strongly supported as either de novo gene birth (two gene families), horizontal gene transfer (four), or gene duplication (one). An additional 34 families appear new because of their selective retention within symbiotic species. Among the 109 unique gene families, the most upregulated gene in symbiotic cultures encodes a 1-aminocyclopropane-1-carboxylate deaminase, an enzyme capable of downregulating the synthesis of the plant hormone ethylene, a common negative regulator of plant-microbial mutualisms.
Collapse
Affiliation(s)
- Yen-Wen Wang
- Departments of Botany and Bacteriology, University of Wisconsin-Madison
| | - Jaqueline Hess
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University
| | - Anne Pringle
- Departments of Botany and Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
22
|
Cosby RL, Judd J, Zhang R, Zhong A, Garry N, Pritham EJ, Feschotte C. Recurrent evolution of vertebrate transcription factors by transposase capture. Science 2021; 371:eabc6405. [PMID: 33602827 PMCID: PMC8186458 DOI: 10.1126/science.abc6405] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Genes with novel cellular functions may evolve through exon shuffling, which can assemble novel protein architectures. Here, we show that DNA transposons provide a recurrent supply of materials to assemble protein-coding genes through exon shuffling. We find that transposase domains have been captured-primarily via alternative splicing-to form fusion proteins at least 94 times independently over the course of ~350 million years of tetrapod evolution. We find an excess of transposase DNA binding domains fused to host regulatory domains, especially the Krüppel-associated box (KRAB) domain, and identify four independently evolved KRAB-transposase fusion proteins repressing gene expression in a sequence-specific fashion. The bat-specific KRABINER fusion protein binds its cognate transposons genome-wide and controls a network of genes and cis-regulatory elements. These results illustrate how a transcription factor and its binding sites can emerge.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ruiling Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Alan Zhong
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Nathaniel Garry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
23
|
Franchini LF. Genetic Mechanisms Underlying Cortical Evolution in Mammals. Front Cell Dev Biol 2021; 9:591017. [PMID: 33659245 PMCID: PMC7917222 DOI: 10.3389/fcell.2021.591017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The remarkable sensory, motor, and cognitive abilities of mammals mainly depend on the neocortex. Thus, the emergence of the six-layered neocortex in reptilian ancestors of mammals constitutes a fundamental evolutionary landmark. The mammalian cortex is a columnar epithelium of densely packed cells organized in layers where neurons are generated mainly in the subventricular zone in successive waves throughout development. Newborn cells move away from their site of neurogenesis through radial or tangential migration to reach their specific destination closer to the pial surface of the same or different cortical area. Interestingly, the genetic programs underlying neocortical development diversified in different mammalian lineages. In this work, I will review several recent studies that characterized how distinct transcriptional programs relate to the development and functional organization of the neocortex across diverse mammalian lineages. In some primates such as the anthropoids, the neocortex became extremely large, especially in humans where it comprises around 80% of the brain. It has been hypothesized that the massive expansion of the cortical surface and elaboration of its connections in the human lineage, has enabled our unique cognitive capacities including abstract thinking, long-term planning, verbal language and elaborated tool making capabilities. I will also analyze the lineage-specific genetic changes that could have led to the modification of key neurodevelopmental events, including regulation of cell number, neuronal migration, and differentiation into specific phenotypes, in order to shed light on the evolutionary mechanisms underlying the diversity of mammalian brains including the human brain.
Collapse
Affiliation(s)
- Lucía Florencia Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
24
|
Uncovering de novo gene birth in yeast using deep transcriptomics. Nat Commun 2021; 12:604. [PMID: 33504782 PMCID: PMC7841160 DOI: 10.1038/s41467-021-20911-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
De novo gene origination has been recently established as an important mechanism for the formation of new genes. In organisms with a large genome, intergenic and intronic regions provide plenty of raw material for new transcriptional events to occur, but little is know about how de novo transcripts originate in more densely-packed genomes. Here, we identify 213 de novo originated transcripts in Saccharomyces cerevisiae using deep transcriptomics and genomic synteny information from multiple yeast species grown in two different conditions. We find that about half of the de novo transcripts are expressed from regions which already harbor other genes in the opposite orientation; these transcripts show similar expression changes in response to stress as their overlapping counterparts, and some appear to translate small proteins. Thus, a large fraction of de novo genes in yeast are likely to co-evolve with already existing genes.
Collapse
|
25
|
Dowling D, Schmitz JF, Bornberg-Bauer E. Stochastic Gain and Loss of Novel Transcribed Open Reading Frames in the Human Lineage. Genome Biol Evol 2020; 12:2183-2195. [PMID: 33210146 PMCID: PMC7674706 DOI: 10.1093/gbe/evaa194] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to known genes, much of the human genome is transcribed into RNA. Chance formation of novel open reading frames (ORFs) can lead to the translation of myriad new proteins. Some of these ORFs may yield advantageous adaptive de novo proteins. However, widespread translation of noncoding DNA can also produce hazardous protein molecules, which can misfold and/or form toxic aggregates. The dynamics of how de novo proteins emerge from potentially toxic raw materials and what influences their long-term survival are unknown. Here, using transcriptomic data from human and five other primates, we generate a set of transcribed human ORFs at six conservation levels to investigate which properties influence the early emergence and long-term retention of these expressed ORFs. As these taxa diverged from each other relatively recently, we present a fine scale view of the evolution of novel sequences over recent evolutionary time. We find that novel human-restricted ORFs are preferentially located on GC-rich gene-dense chromosomes, suggesting their retention is linked to pre-existing genes. Sequence properties such as intrinsic structural disorder and aggregation propensity-which have been proposed to play a role in survival of de novo genes-remain unchanged over time. Even very young sequences code for proteins with low aggregation propensities, suggesting that genomic regions with many novel transcribed ORFs are concomitantly less likely to produce ORFs which code for harmful toxic proteins. Our data indicate that the survival of these novel ORFs is largely stochastic rather than shaped by selection.
Collapse
Affiliation(s)
- Daniel Dowling
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Jonathan F Schmitz
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | | |
Collapse
|
26
|
Weisman CM, Murray AW, Eddy SR. Many, but not all, lineage-specific genes can be explained by homology detection failure. PLoS Biol 2020; 18:e3000862. [PMID: 33137085 PMCID: PMC7660931 DOI: 10.1371/journal.pbio.3000862] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/12/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
Genes for which homologs can be detected only in a limited group of evolutionarily related species, called “lineage-specific genes,” are pervasive: Essentially every lineage has them, and they often comprise a sizable fraction of the group’s total genes. Lineage-specific genes are often interpreted as “novel” genes, representing genetic novelty born anew within that lineage. Here, we develop a simple method to test an alternative null hypothesis: that lineage-specific genes do have homologs outside of the lineage that, even while evolving at a constant rate in a novelty-free manner, have merely become undetectable by search algorithms used to infer homology. We show that this null hypothesis is sufficient to explain the lack of detected homologs of a large number of lineage-specific genes in fungi and insects. However, we also find that a minority of lineage-specific genes in both clades are not well explained by this novelty-free model. The method provides a simple way of identifying which lineage-specific genes call for special explanations beyond homology detection failure, highlighting them as interesting candidates for further study. Lineage-specific gene families may arise from evolutionary innovations such as de novo gene origination, or may simply mean that a similarity search program failed to identify more distant homologs. A new computational method for modeling the expected decay of similarity search scores with evolutionary distance allows distinction between the two explanations.
Collapse
Affiliation(s)
- Caroline M. Weisman
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Andrew W. Murray
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sean R. Eddy
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Navas-Pérez E, Vicente-García C, Mirra S, Burguera D, Fernàndez-Castillo N, Ferrán JL, López-Mayorga M, Alaiz-Noya M, Suárez-Pereira I, Antón-Galindo E, Ulloa F, Herrera-Úbeda C, Cuscó P, Falcón-Moya R, Rodríguez-Moreno A, D'Aniello S, Cormand B, Marfany G, Soriano E, Carrión ÁM, Carvajal JJ, Garcia-Fernàndez J. Characterization of an eutherian gene cluster generated after transposon domestication identifies Bex3 as relevant for advanced neurological functions. Genome Biol 2020; 21:267. [PMID: 33100228 PMCID: PMC7586669 DOI: 10.1186/s13059-020-02172-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND One of the most unusual sources of phylogenetically restricted genes is the molecular domestication of transposable elements into a host genome as functional genes. Although these kinds of events are sometimes at the core of key macroevolutionary changes, their origin and organismal function are generally poorly understood. RESULTS Here, we identify several previously unreported transposable element domestication events in the human and mouse genomes. Among them, we find a remarkable molecular domestication that gave rise to a multigenic family in placental mammals, the Bex/Tceal gene cluster. These genes, which act as hub proteins within diverse signaling pathways, have been associated with neurological features of human patients carrying genomic microdeletions in chromosome X. The Bex/Tceal genes display neural-enriched patterns and are differentially expressed in human neurological disorders, such as autism and schizophrenia. Two different murine alleles of the cluster member Bex3 display morphological and physiopathological brain modifications, such as reduced interneuron number and hippocampal electrophysiological imbalance, alterations that translate into distinct behavioral phenotypes. CONCLUSIONS We provide an in-depth understanding of the emergence of a gene cluster that originated by transposon domestication and gene duplication at the origin of placental mammals, an evolutionary process that transformed a non-functional transposon sequence into novel components of the eutherian genome. These genes were integrated into existing signaling pathways involved in the development, maintenance, and function of the CNS in eutherians. At least one of its members, Bex3, is relevant for higher brain functions in placental mammals and may be involved in human neurological disorders.
Collapse
Affiliation(s)
- Enrique Navas-Pérez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Serena Mirra
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Demian Burguera
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Zoology, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Noèlia Fernàndez-Castillo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, 08950, Barcelona, Spain
| | - José Luis Ferrán
- Department of Human Anatomy, School of Medicine, University of Murcia and IMIB-Arrixaca Institute, 30120, Murcia, Spain
| | - Macarena López-Mayorga
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Marta Alaiz-Noya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain.,Present Address: Instituto de Neurociencias de Alicante (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Alicante, Spain
| | - Irene Suárez-Pereira
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain.,Present Address: Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Neuropsychopharmacology and psychobiology research group, UCA, INiBICA, Cádiz, Spain
| | - Ester Antón-Galindo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Pol Cuscó
- Genome Architecture, Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Rafael Falcón-Moya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| | - Bru Cormand
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, 08950, Barcelona, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, 08950, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Ángel M Carrión
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Jaime J Carvajal
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, 41013, Sevilla, Spain.
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
28
|
Alibardi L. Appendage regeneration in anamniotes utilizes genes active during larval-metamorphic stages that have been lost or altered in amniotes: The case for studying lizard tail regeneration. J Morphol 2020; 281:1358-1381. [PMID: 32865265 DOI: 10.1002/jmor.21251] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022]
Abstract
This review elaborates the idea that organ regeneration derives from specific evolutionary histories of vertebrates. Regenerative ability depends on genomic regulation of genes specific to the life-cycles that have differentially evolved in anamniotes and amniotes. In aquatic environments, where fish and amphibians live, one or multiple metamorphic transitions occur before the adult stage is reached. Each transition involves the destruction and remodeling of larval organs that are replaced with adult organs. After organ injury or loss in adult anamniotes, regeneration uses similar genes and developmental process than those operating during larval growth and metamorphosis. Therefore, the broad presence of regenerative capability across anamniotes is possible because generating new organs is included in their life history at metamorphic stages. Soft hyaluronate-rich regenerative blastemas grow in submersed or in hydrated environments, that is, essential conditions for regeneration, like during development. In adult anamniotes, the ability to regenerate different organs decreases in comparison to larval stages and becomes limited during aging. Comparisons of genes activated during metamorphosis and regeneration in anamniotes identify key genes unique to these processes, and include thyroid, wnt and non-coding RNAs developmental pathways. In the terrestrial environment, some genes or developmental pathways for metamorphic transitions were lost during amniote evolution, determining loss of regeneration. Among amniotes, the formation of soft and hydrated blastemas only occurs in lizards, a morphogenetic process that evolved favoring their survival through tail autotomy, leading to a massive although imperfect regeneration of the tail. Deciphering genes activity during lizard tail regeneration would address future attempts to recreate in other amniotes regenerative blastemas that grow into variably completed organs.
Collapse
|
29
|
Heger P, Zheng W, Rottmann A, Panfilio KA, Wiehe T. The genetic factors of bilaterian evolution. eLife 2020; 9:e45530. [PMID: 32672535 PMCID: PMC7535936 DOI: 10.7554/elife.45530] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G-protein-coupled receptors that control physiology and behaviour, the Robo-Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship.
Collapse
Affiliation(s)
- Peter Heger
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Wen Zheng
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Anna Rottmann
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Kristen A Panfilio
- Institute for Zoology: Developmental Biology, Cologne Biocenter, University of CologneCologneGermany
- School of Life Sciences, University of Warwick, Gibbet Hill CampusCoventryUnited Kingdom
| | - Thomas Wiehe
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| |
Collapse
|
30
|
McCartney AM, Hyland EM, Cormican P, Moran RJ, Webb AE, Lee KD, Hernandez-Rodriguez J, Prado-Martinez J, Creevey CJ, Aspden JL, McInerney JO, Marques-Bonet T, O'Connell MJ. Gene Fusions Derived by Transcriptional Readthrough are Driven by Segmental Duplication in Human. Genome Biol Evol 2020; 11:2678-2690. [PMID: 31400206 PMCID: PMC6764479 DOI: 10.1093/gbe/evz163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Gene fusion occurs when two or more individual genes with independent open reading frames becoming juxtaposed under the same open reading frame creating a new fused gene. A small number of gene fusions described in detail have been associated with novel functions, for example, the hominid-specific PIPSL gene, TNFSF12, and the TWE-PRIL gene family. We use Sequence Similarity Networks and species level comparisons of great ape genomes to identify 45 new genes that have emerged by transcriptional readthrough, that is, transcription-derived gene fusion. For 35 of these putative gene fusions, we have been able to assess available RNAseq data to determine whether there are reads that map to each breakpoint. A total of 29 of the putative gene fusions had annotated transcripts (9/29 of which are human-specific). We carried out RT-qPCR in a range of human tissues (placenta, lung, liver, brain, and testes) and found that 23 of the putative gene fusion events were expressed in at least one tissue. Examining the available ribosome foot-printing data, we find evidence for translation of three of the fused genes in human. Finally, we find enrichment for transcription-derived gene fusions in regions of known segmental duplication in human. Together, our results implicate chromosomal structural variation brought about by segmental duplication with the emergence of novel transcripts and translated protein products.
Collapse
Affiliation(s)
- Ann M McCartney
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom
| | - Edel M Hyland
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Institute for Global Food Security, Queens University Belfast, United Kingdom
| | - Paul Cormican
- Teagasc Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County Meath, Ireland
| | - Raymond J Moran
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom
| | - Andrew E Webb
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland
| | - Kate D Lee
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,School of Biological Sciences, University of Auckland, New Zealand.,School of Fundamental Sciences, Massey University, New Zealand
| | | | - Javier Prado-Martinez
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, Queens University Belfast, United Kingdom.,Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, United Kingdom
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom
| | - James O McInerney
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL, United Kingdom.,School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, NG7 2RD, United Kingdom
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain.,NAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom.,School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
31
|
The blueprint of RNA storages relative to oocyte developmental competence in cattle (Bos taurus). Biol Reprod 2020; 102:784-794. [DOI: 10.1093/biolre/ioaa015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/04/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Abstract
From the time oocytes leave quiescence, there are constant microenvironmental influences contributing to development, thus acquiring developmental competence is not a simple, linear phenomenon. During folliculogenesis, oocytes experience many morphological and cytological changes that contribute toward the acquisition of developmental competence, a process defined by an oocyte’s ability to progress through folliculogenesis, be fertilized, undergo cleavage, and develop into an embryo. Many factors, such as ovarian follicle size, cow age, and the morphology of the cumulus–oocyte complex, have been extensively investigated to understand this process. In parallel to aiding in the understanding of oocyte biology, these features have been used to characterize an oocyte’s ability to achieve competence. In addition, oocytes undergo intense gene transcription and protein translation to accumulate the maternal stores. When the oocyte is fully grown, most genes are transcriptionally inactive, and the chromatin is densely compacted. More recently, RNA profiling has been used to further define the transcriptional parameters that are associated with oocyte development. Here, focusing on cattle, we provide an overview of the experimental models commonly used to understand the underlying biology related to oocyte developmental competence. We compiled public data and showed that cattle oocytes can express over 15 000 protein-coding genes, suggesting a complex transcriptome landscape. Surprisingly, less than 2% of the expressed genes have been linked to developmental competence. The identification of the gene products that contribute to oocyte development, and understanding their biological function, are a vital component of our quest toward defining oocyte developmental competence at the molecular level.
Collapse
|
32
|
Glover N, Dessimoz C, Ebersberger I, Forslund SK, Gabaldón T, Huerta-Cepas J, Martin MJ, Muffato M, Patricio M, Pereira C, da Silva AS, Wang Y, Sonnhammer E, Thomas PD. Advances and Applications in the Quest for Orthologs. Mol Biol Evol 2020; 36:2157-2164. [PMID: 31241141 PMCID: PMC6759064 DOI: 10.1093/molbev/msz150] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Gene families evolve by the processes of speciation (creating orthologs), gene duplication (paralogs), and horizontal gene transfer (xenologs), in addition to sequence divergence and gene loss. Orthologs in particular play an essential role in comparative genomics and phylogenomic analyses. With the continued sequencing of organisms across the tree of life, the data are available to reconstruct the unique evolutionary histories of tens of thousands of gene families. Accurate reconstruction of these histories, however, is a challenging computational problem, and the focus of the Quest for Orthologs Consortium. We review the recent advances and outstanding challenges in this field, as revealed at a symposium and meeting held at the University of Southern California in 2017. Key advances have been made both at the level of orthology algorithm development and with respect to coordination across the community of algorithm developers and orthology end-users. Applications spanned a broad range, including gene function prediction, phylostratigraphy, genome evolution, and phylogenomics. The meetings highlighted the increasing use of meta-analyses integrating results from multiple different algorithms, and discussed ongoing challenges in orthology inference as well as the next steps toward improvement and integration of orthology resources.
Collapse
Affiliation(s)
- Natasha Glover
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Department of Genetics, Evolution & Environment, University College London, London, United Kingdom.,Department of Computer Science, University College London, London, United Kingdom
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Centre (BIK-F), Frankfurt, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Sofia K Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany.,Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität u Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Jaime Huerta-Cepas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Maria-Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Mateus Patricio
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Cécile Pereira
- Eura Nova, Marseille, France.,Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL
| | - Alan Sousa da Silva
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Yan Wang
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA
| | - Erik Sonnhammer
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Paul D Thomas
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
33
|
Dey S, Brothag C, Vijayaraghavan S. Signaling Enzymes Required for Sperm Maturation and Fertilization in Mammals. Front Cell Dev Biol 2019; 7:341. [PMID: 31921853 PMCID: PMC6930163 DOI: 10.3389/fcell.2019.00341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
In mammals, motility and fertilizing ability of spermatozoa develop during their passage through the epididymis. After ejaculation, sperm undergo capacitation and hyperactivation in the female reproductive tract - a motility transition that is required for sperm penetration of the egg. Both epididymal initiation of sperm motility and hyperactivation are essential for male fertility. Motility initiation in the epididymis and sperm hyperactivation involve changes in metabolism, cAMP (cyclic adenosine mono-phosphate), calcium and pH acting through protein kinases and phosphatases. Despite this knowledge, we still do not understand, in biochemical terms, how sperm acquire motility in the epididymis and how motility is altered in the female reproductive tract. Recent data show that the sperm specific protein phosphatase PP1γ2, glycogen synthase kinase 3 (GSK3), and the calcium regulated phosphatase calcineurin (PP2B), are involved in epididymal sperm maturation. The protein phosphatase PP1γ2 is present only in testis and sperm in mammals. PP1γ2 has a isoform-specific requirement for normal function of mammalian sperm. Sperm PP1γ2 is regulated by three proteins - inhibitor 2, inhibitor 3 and SDS22. Changes in phosphorylation of these three inhibitors and their binding to PP1γ2 are involved in initiation and activation of sperm motility. The inhibitors are phosphorylated by protein kinases, one of which is GSK3. The isoform GSK3α is essential for epididymal sperm maturation and fertility. Calcium levels dramatically decrease during sperm maturation and initiation of motility suggesting that the calcium activated sperm phosphatase (PP2B) activity also decreases. Loss of PP2B results in male infertility due to impaired sperm maturation in the epididymis. Thus the three signaling enzymes PP1γ2, GSK3, and PP2B along with the documented PKA (protein kinase A) have key roles in sperm maturation and hyperactivation. Significantly, all these four signaling enzymes are present as specific isoforms only in placental mammals, a testimony to their essential roles in the unique aspects of sperm function in mammals. These findings should lead to a better biochemical understanding of the basis of male infertility and should lead to novel approaches to a male contraception and managed reproduction.
Collapse
|
34
|
Striedter GF. Variation across Species and Levels: Implications for Model Species Research. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:57-69. [PMID: 31416083 DOI: 10.1159/000499664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/08/2019] [Indexed: 11/19/2022]
Abstract
The selection of model species tends to involve two typically unstated assumptions, namely: (1) that the similarity between species decreases steadily with phylogenetic distance, and (2) that similarities are greater at lower levels of biological organization. The first assumption holds on average, but species similarities tend to decrease with the square root of divergence time, rather than linearly, and lineages with short generation times (which includes most model species) tend to diverge faster than average, making the decrease in similarity non-monotonic. The second assumption is more difficult to test. Comparative molecular research has traditionally emphasized species similarities over differences, whereas comparative research at higher levels of organization frequently highlights the species differences. However, advances in comparative genomics have brought to light a great variety of species differences, not just in gene regulation but also in protein coding genes. Particularly relevant are cases in which homologous high-level characters are based on non-homologous genes. This phenomenon of non-orthologous gene displacement, or "deep non-homology," indicates that species differences at the molecular level can be surprisingly large. Given these observations, it is not surprising that some findings obtained in model species do not generalize across species as well as researchers had hoped, even if the research is molecular.
Collapse
Affiliation(s)
- Georg F Striedter
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA,
| |
Collapse
|
35
|
Royall AH, Frankenberg S, Pask AJ, Holland PWH. Of eyes and embryos: subfunctionalization of the CRX homeobox gene in mammalian evolution. Proc Biol Sci 2019; 286:20190830. [PMID: 31337308 PMCID: PMC6661347 DOI: 10.1098/rspb.2019.0830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/28/2019] [Indexed: 11/12/2022] Open
Abstract
ETCHbox genes are fast-evolving homeobox genes present only in eutherian (placental) mammals which originated by duplication and divergence from a conserved homeobox gene, Cone-rod homeobox (CRX). While expression and function of CRX are restricted to the retina in eutherian mammals, ETCHbox gene expression is specific to preimplantation embryos. This dramatic difference could reflect the acquisition of new functions by duplicated genes or subfunctionalization of pleiotropic roles between CRX and ETCHbox genes. To resolve between these hypotheses, we compared expression, sequence and inferred function between CRX of metatherian (marsupial) mammals and ETCHbox genes of eutherians. We find the metatherian CRX homeobox gene is expressed in early embryos and in eyes, unlike eutherian CRX, and distinct amino acid substitutions were fixed in the metatherian and eutherian evolutionary lineages consistent with altered transcription factor specificity. We find that metatherian CRX is capable of regulating embryonically expressed genes in cultured cells in a comparable way to eutherian ETCHbox. The data are consistent with CRX having a dual role in eyes and embryos of metatherians, providing an early embryonic function comparable to that of eutherian ETCHbox genes; we propose that subfunctionalization of pleiotropic functions occurred after gene duplication along the placental lineage, followed by functional elaboration.
Collapse
Affiliation(s)
- Amy H. Royall
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Stephen Frankenberg
- School of BioSciences, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Andrew J. Pask
- School of BioSciences, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Peter W. H. Holland
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
36
|
Zhang JY, Zhou Q. On the Regulatory Evolution of New Genes Throughout Their Life History. Mol Biol Evol 2019; 36:15-27. [PMID: 30395322 DOI: 10.1093/molbev/msy206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Every gene has a birthplace and an age, that is, a cis-regulatory environment and an evolution lifespan since its origination, yet how the two shape the evolution trajectories of genes remains unclear. Here, we address this basic question by comparing phylogenetically dated new genes in the context of both their ages and origination mechanisms. In both Drosophila and vertebrates, we confirm a clear "out of the testis" transition from the specifically expressed young genes to the broadly expressed old housekeeping genes, observed only in testis but not in other tissues. Many new genes have gained important functions during embryogenesis, manifested as either specific activation at maternal-zygotic transition, or different spatiotemporal expressions from their parental genes. These expression patterns are largely driven by an age-dependent evolution of cis-regulatory environment. We discover that retrogenes are more frequently born in a pre-existing repressive regulatory domain, and are more diverged in their enhancer repertoire than the DNA-based gene duplications. During evolution, new gene duplications gradually gain active histone modifications and undergo more enhancer turnovers when becoming older, but exhibit complex trends of gaining or losing repressive histone modifications in Drosophila or vertebrates, respectively. Interestingly, vertebrate new genes exhibit an "into the testis" epigenetic transition that older genes become more likely to be co-occupied by both active and repressive ("bivalent") histone modifications specifically in testis. Our results uncover the regulatory mechanisms underpinning the stepwise acquisition of novel and complex functions by new genes, and illuminate the general evolution trajectory of genes throughout their life history.
Collapse
Affiliation(s)
- Jia-Yu Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qi Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Affiliation(s)
- Stephen Branden Van Oss
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
38
|
Uniquely human CHRFAM7A gene increases the hematopoietic stem cell reservoir in mice and amplifies their inflammatory response. Proc Natl Acad Sci U S A 2019; 116:7932-7940. [PMID: 30944217 PMCID: PMC6475388 DOI: 10.1073/pnas.1821853116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The emergence of uniquely human genes during hominid speciation enabled numerous human-specific adaptations that presumably included changes in resilience to disease but potentially increased susceptibility as well. Here we show that the transgenic expression of one such gene, called CHRFAM7A, changes the mouse reservoir of hematopoietic stem cells in bone marrow and amplifies the mouse inflammatory response in a model of human systemic inflammatory response syndrome (SIRS). Because the CHRFAM7A gene is a dominant-negative inhibitor of ligand binding to α7 nicotinic acetylcholine receptor (α7nAChR), a neurotransmitter receptor implicated in immunity, inflammation, neurodegeneration, and cognitive function, the results underscore the importance of understanding the contribution of species-specific genes to human disease and the impact they may have on the fidelity of animal models for translational medicine. A subset of genes in the human genome are uniquely human and not found in other species. One example is CHRFAM7A, a dominant-negative inhibitor of the antiinflammatory α7 nicotinic acetylcholine receptor (α7nAChR/CHRNA7) that is also a neurotransmitter receptor linked to cognitive function, mental health, and neurodegenerative disease. Here we show that CHRFAM7A blocks ligand binding to both mouse and human α7nAChR, and hypothesized that CHRFAM7A-transgenic mice would allow us to study its biological significance in a tractable animal model of human inflammatory disease, namely SIRS, the systemic inflammatory response syndrome that accompanies severe injury and sepsis. We found that CHRFAM7A increased the hematopoietic stem cell (HSC) reservoir in bone marrow and biased HSC differentiation to the monocyte lineage in vitro. We also observed that while the HSC reservoir was depleted in SIRS, HSCs were spared in CHRFAM7A-transgenic mice and that these mice also had increased immune cell mobilization, myeloid cell differentiation, and a shift to inflammatory monocytes from granulocytes in their inflamed lungs. Together, the findings point to a pathophysiological inflammatory consequence to the emergence of CHRFAM7A in the human genome. To this end, it is interesting to speculate that human genes like CHRFAM7A can account for discrepancies between the effectiveness of drugs like α7nAChR agonists in animal models and human clinical trials for inflammatory and neurodegenerative disease. The findings also support the hypothesis that uniquely human genes may be contributing to underrecognized human-specific differences in resiliency/susceptibility to complications of injury, infection, and inflammation, not to mention the onset of neurodegenerative disease.
Collapse
|
39
|
Villarreal LP, Witzany G. That is life: communicating RNA networks from viruses and cells in continuous interaction. Ann N Y Acad Sci 2019; 1447:5-20. [PMID: 30865312 DOI: 10.1111/nyas.14040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
All the conserved detailed results of evolution stored in DNA must be read, transcribed, and translated via an RNA-mediated process. This is required for the development and growth of each individual cell. Thus, all known living organisms fundamentally depend on these RNA-mediated processes. In most cases, they are interconnected with other RNAs and their associated protein complexes and function in a strictly coordinated hierarchy of temporal and spatial steps (i.e., an RNA network). Clearly, all cellular life as we know it could not function without these key agents of DNA replication, namely rRNA, tRNA, and mRNA. Thus, any definition of life that lacks RNA functions and their networks misses an essential requirement for RNA agents that inherently regulate and coordinate (communicate to) cells, tissues, organs, and organisms. The precellular evolution of RNAs occurred at the core of the emergence of cellular life and the question remained of how both precellular and cellular levels are interconnected historically and functionally. RNA networks and RNA communication can interconnect these levels. With the reemergence of virology in evolution, it became clear that communicating viruses and subviral infectious genetic parasites are bridging these two levels by invading, integrating, coadapting, exapting, and recombining constituent parts in host genomes for cellular requirements in gene regulation and coordination aims. Therefore, a 21st century understanding of life is of an inherently social process based on communicating RNA networks, in which viruses and cells continuously interact.
Collapse
Affiliation(s)
- Luis P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | | |
Collapse
|
40
|
Translation of Small Open Reading Frames: Roles in Regulation and Evolutionary Innovation. Trends Genet 2018; 35:186-198. [PMID: 30606460 DOI: 10.1016/j.tig.2018.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023]
Abstract
The translatome can be defined as the sum of the RNA sequences that are translated into proteins in the cell by the ribosomal machinery. Until recently, it was generally assumed that the translatome was essentially restricted to evolutionary conserved proteins encoded by the set of annotated protein-coding genes. However, it has become increasingly clear that it also includes small regulatory open reading frames (ORFs), functional micropeptides, de novo proteins, and the pervasive translation of likely nonfunctional proteins. Many of these ORFs have been discovered thanks to the development of ribosome profiling, a technique to sequence ribosome-protected RNA fragments. To fully capture the diversity of translated ORFs, we propose a comprehensive classification that includes the new types of translated ORFs in addition to standard proteins.
Collapse
|
41
|
Incipient de novo genes can evolve from frozen accidents that escaped rapid transcript turnover. Nat Ecol Evol 2018; 2:1626-1632. [DOI: 10.1038/s41559-018-0639-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/09/2018] [Indexed: 11/08/2022]
|
42
|
Bekpen C, Xie C, Tautz D. Dealing with the adaptive immune system during de novo evolution of genes from intergenic sequences. BMC Evol Biol 2018; 18:121. [PMID: 30075701 PMCID: PMC6091031 DOI: 10.1186/s12862-018-1232-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022] Open
Abstract
Background The adaptive immune system of vertebrates has an extraordinary potential to sense and neutralize foreign antigens entering the body. De novo evolution of genes implies that the genome itself expresses novel antigens from intergenic sequences which could cause a problem with this immune system. Peptides from these novel proteins could be presented by the major histocompatibility complex (MHC) receptors to the cell surface and would be recognized as foreign. The respective cells would then be attacked and destroyed, or would cause inflammatory responses. Hence, de novo expressed peptides have to be introduced to the immune system as being self-peptides to avoid such autoimmune reactions. The regulation of the distinction between self and non-self starts during embryonic development, but continues late into adulthood. It is mostly mediated by specialized cells in the thymus, but can also be conveyed in peripheral tissues, such as the lymph nodes and the spleen. The self-antigens need to be exposed to the reactive T-cells, which requires the expression of the genes in the respective tissues. Since the initial activation of a promotor for new intergenic transcription of a de novo gene could occur in any tissue, we should expect that the evolutionary establishment of a de novo gene in animals with an adaptive immune system should also involve expression in at least one of the tissues that confer self-recognition. Results We have studied this question by analyzing the transcriptomes of multiple tissues from young mice in three closely related natural populations of the house mouse (M. m. domesticus). We find that new intergenic transcription occurs indeed mostly in only a single tissue. When a second tissue becomes involved, thymus and spleen are significantly overrepresented. Conclusions We conclude that the inclusion of de novo transcripts in the processes for the induction of self-tolerance is indeed an important step in the evolution of functional de novo genes in vertebrates. Electronic supplementary material The online version of this article (10.1186/s12862-018-1232-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cemalettin Bekpen
- Max-Planck Institute for Evolutionary Biology, August-Thienemannstr. 2, 24306, Plön, Germany
| | - Chen Xie
- Max-Planck Institute for Evolutionary Biology, August-Thienemannstr. 2, 24306, Plön, Germany
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, August-Thienemannstr. 2, 24306, Plön, Germany.
| |
Collapse
|
43
|
Translation of neutrally evolving peptides provides a basis for de novo gene evolution. Nat Ecol Evol 2018; 2:890-896. [DOI: 10.1038/s41559-018-0506-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 02/16/2018] [Indexed: 01/29/2023]
|