1
|
Rybenkov VV. Maintenance of chromosome structure in Pseudomonas aeruginosa. FEMS Microbiol Lett 2014; 356:154-65. [PMID: 24863732 DOI: 10.1111/1574-6968.12478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/11/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022] Open
Abstract
Replication and segregation of genetic information are the activities central to the well-being of all living cells. Concerted mechanisms have evolved that ensure that each cellular chromosome is replicated once and only once per cell cycle and then faithfully segregated into daughter cells. Despite remarkable taxonomic diversity, these mechanisms are largely conserved across eubacteria, although species-specific distinctions can often be noted. Here, we provide an overview of the current state of knowledge about maintenance of the chromosome structure in Pseudomonas aeruginosa. We focus on global chromosome organization and its dynamics during DNA replication and cell division. Special emphasis is made on contrasting these activities in P. aeruginosa and other bacteria. Among unique P. aeruginosa, features are the presence of two distinct autonomously replicating sequences and multiple condensins, which suggests existence of novel regulatory mechanisms.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
2
|
Holloway BW. 1998 Kathleen Barton-Wright Memorial Lecture. The less travelled road in microbial genetics. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 12):3243-3248. [PMID: 9884215 DOI: 10.1099/00221287-144-12-3243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Darzins A, Russell MA. Molecular genetic analysis of type-4 pilus biogenesis and twitching motility using Pseudomonas aeruginosa as a model system--a review. Gene 1997; 192:109-15. [PMID: 9224880 DOI: 10.1016/s0378-1119(97)00037-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic analysis of Pseudomonas aeruginosa pilus biogenesis and twitching motility has revealed the requirement for several pil loci which have been localized to different regions of the chromosome. One pil locus, designated pilE, resides at approx. 71 min on the PAO genetic map, a region of the chromosome previously shown to harbor a number of genes required for pilus assembly (i.e., pilA, -B, -C, -D, -R and -S). The PilE protein shows significant sequence identity to the N-terminal domain of PilA as well as to the pilin precursors from a variety of type-4 pilus producers. Included within this homologous region is a short, positively charged leader sequence followed by a prepilin peptidase cleavage site and a largely hydrophobic region. Additionally, an unlinked set of pil genes, designated pilG, -H, -I, -J and -K, has been localized to the SpeI fragment H which corresponds to approx. 20 min on the PAO genetic map. This gene cluster encodes proteins that demonstrate remarkable similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus and are thought to be part of a signal transduction system that controls P. aeruginosa pilus biosynthesis and twitching motility.
Collapse
Affiliation(s)
- A Darzins
- Department of Microbiology, Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
4
|
Stintzi A, Cornelis P, Hohnadel D, Meyer JM, Dean C, Poole K, Kourambas S, Krishnapillai V. Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa PAO. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 5):1181-1190. [PMID: 8704959 DOI: 10.1099/13500872-142-5-1181] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Conjugational mobilization of a Pseudomonas aeruginosa PAO1 cosmid bank (in pMMB33) into a pyoverdine-deficient (pvd) mutant harbouring a mutation in the 47 min region of the chromosome yielded one clone which restored yellow-green pigmentation and fluorescence when grown on iron-deficient medium. The relevant pMMB33-derivative cosmid, pPYP17, contained a 15.1 kb insert which was subcloned into pKT240 as a 10.8 Sacl-CIal fragment conferring the same phenotype. This derivative, pPYP180, like pPYP17, also conferred an apparent wild-type phenotype on pvd mutants previously shown to map genetically in the 23 min region of the P. aeruginosa PAO chromosomes. Physical mapping indicated that the cloned DNA fragment is located at the 66-70 min region of the PAO chromosome, demonstrating that the restored apparent wild-type phenotype observed for the transconjugants was not the result of a true gene complementation. A gene interruption was obtained by replacing a 0.6 kb BgIll-BgIll region of pPYP180 necessary for the expression of the pigmentation/fluorescence phenotype, by a Hgr interposon (omega Hg). After conjugational transfer and introduction of the mutagenized fragment into the PAO1 chromosome by gene replacement, pyoverdine-deficient mutants were recovered, indicating that the fragment indeed contained at least one gene involved in pyoverdine synthesis. The yellow-green fluorescent compound produced by such cells harbouring plasmids pPYP17 or pPYP180 differed from pyoverdine in several aspects and was consequently named pseudoverdine. Although pseudoverdine was able to complex iron, it was unable to restore growth to pvd mutants in the presence of the iron chelator ethylenediamine di(o-hydroxyphenylacetic acid), or to mediate iron uptake into PAO1. Pseudoverdine lacked a peptide chain but possessed spectral properties similar to pyoverdine, suggesting that it was structurally related to the chromophore of the pyoverdine molecule. The recent structural determination of pseudoverdine as a coumarin derivative confirmed this view and sheds some light on the biosynthetic pathway of the pyoverdine chromophore.
Collapse
Affiliation(s)
- Alain Stintzi
- Laboratoire de Microbiologie, Unité de Recherche Associée no. 1481 du Centre National de la Recherche Scientifique et de l'Université Louis Pasteur, 28 rue Goethe, 67083 Strasbourg, France
| | - Pierre Cornelis
- Laboratorium Algemene Biologie, Vlaams Instituut Biotechnologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 St-Genesius Rode, Belgium
- Laboratoire de Microbiologie, Unité de Recherche Associée no. 1481 du Centre National de la Recherche Scientifique et de l'Université Louis Pasteur, 28 rue Goethe, 67083 Strasbourg, France
| | - Dany Hohnadel
- Laboratoire de Microbiologie, Unité de Recherche Associée no. 1481 du Centre National de la Recherche Scientifique et de l'Université Louis Pasteur, 28 rue Goethe, 67083 Strasbourg, France
| | - Jean-Marie Meyer
- Laboratoire de Microbiologie, Unité de Recherche Associée no. 1481 du Centre National de la Recherche Scientifique et de l'Université Louis Pasteur, 28 rue Goethe, 67083 Strasbourg, France
| | - Charles Dean
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Keith Poole
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Sophia Kourambas
- Department of Genetics and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia
| | - Viji Krishnapillai
- Department of Genetics and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
5
|
Darzins A. The Pseudomonas aeruginosa pilK gene encodes a chemotactic methyltransferase (CheR) homologue that is translationally regulated. Mol Microbiol 1995; 15:703-17. [PMID: 7783642 DOI: 10.1111/j.1365-2958.1995.tb02379.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new locus, designated pilK, located immediately adjacent to the previously described Pseudomonas aeruginosa pilG-J gene cluster, has been identified. Sequence analysis of a 1.3 kb region revealed the presence of a single open reading frame of 291 amino acid residues (M(r) 33,338) that contained significant homology to the chemotactic methyltransferase proteins of Escherichia coli, Bacillus subtilis and the gliding bacterium Myxococcus xanthus. The 60 bp pilJ-pilK intergenic region was devoid of promoter consensus sequences, suggesting that pilJ and pilK are contained within the same transcriptional unit. The intergenic region did contain, however, a large, highly GC-rich, inverted repeat that prevented PilK production in expression studies. To investigate the regulatory role of these sequences, pilK-lacZ gene fusions, as well as derivatives containing sequence alterations in the potential stem-loop region, were constructed and analysed in E. coli and P. aeruginosa. Modification of the inverted repeat region in pilK-lacZ protein fusion constructs resulted in as much as a 24-fold increase in beta-galactosidase activity, whereas similar modifications in pilK-lacZ transcriptional fusions had only a marginal effect on beta-galactosidase levels. These results indicated that PilK production may be largely regulated at the level of translation. In stark contrast to pilG-J mutants, which are dramatically impaired in pilus production and/or function, a PAO1 pilK deletion mutant was indistinguishable from the wild type. In addition, complementation studies suggested that the PilK and E. coli CheR proteins are not functionally interchangeable.
Collapse
Affiliation(s)
- A Darzins
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| |
Collapse
|
6
|
Tricot C, Vander Wauven C, Wattiez R, Falmagne P, Stalon V. Purification and properties of a succinyltransferase from Pseudomonas aeruginosa specific for both arginine and ornithine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 224:853-61. [PMID: 7523119 DOI: 10.1111/j.1432-1033.1994.00853.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The arginine and ornithine succinyltransferase from Pseudomonas aeruginosa, a bifunctional enzyme involved in the aerobic utilization of arginine and ornithine, has been purified to homogeneity. The apparent molecular mass of the native enzyme was 150 kDa by gel filtration and 140 kDa by polyacrylamide gel electrophoresis under non-denaturing conditions. After SDS/PAGE two subunits of 35 kDa and 37 kDa were evident, indicating that the enzyme is a heterotetramer. Microsequence analysis of the electroblotted protein bands gave two different but well-conserved N-terminal amino acid sequences. The L-arginine saturation curve followed Henri-Michaelis kinetics with an apparent Km value of 0.5 mM. The sigmoidal saturation curve for L-ornithine indicated allosteric behaviour. D-Arginine, a competitive inhibitor with respect to L-arginine, reduced L-ornithine cooperativity. In the presence of spermidine, the L-ornithine saturation curve became increasingly sigmoidal, the Hill coefficient shifting from 2.5 in the absence of the inhibitor, to 3.5 in the presence of 20 mM spermidine. The L-arginine analog, L-homoarginine, was also a substrate of the succinyltransferase, and the saturation of the enzyme by this substrate was also cooperative. All these data confirmed the allosteric nature of the enzyme. Moreover, a mutant growing faster on L-ornithine than the parent strain had a modified succinyltransferase with a reduced L-ornithine cooperativity. The fate of L-homoarginine was different depending on whether the succinyltransferase was induced or not; excreted succinylhomoarginine was found in cultures induced for the transferase activity whereas guanidinovalerate was excreted in non-induced cultures. The 'waste' of succinyl CoA, which could not be regenerated from the excreted succinylhomoarginine, explained the inhibition exerted by L-homoarginine on growth when ornithine or arginine was used as the growth medium.
Collapse
Affiliation(s)
- C Tricot
- Laboratoire de Microbiologie, Faculté des Sciences, Université Libre de Bruxelles, Belgique
| | | | | | | | | |
Collapse
|
7
|
Russell MA, Darzins A. The pilE gene product of Pseudomonas aeruginosa, required for pilus biogenesis, shares amino acid sequence identity with the N-termini of type 4 prepilin proteins. Mol Microbiol 1994; 13:973-85. [PMID: 7854130 DOI: 10.1111/j.1365-2958.1994.tb00489.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new locus required for type 4 pilus biogenesis by Pseudomonas aeruginosa has been identified. A pilE mutant, designated MJ-6, was broadly resistant to pili-specific phages and unable to translocate across solid surfaces by the pilus-dependent mechanism of twitching motility (Twt-). Immunoblot analysis demonstrated that MJ-6 was devoid of pili (Pil-) but was unaffected in the production of unassembled pilin pools. Genetic studies aimed at localizing the pilE mutation on the P. aeruginosa PAO chromosome demonstrated a strong co-linkage between MJ-6 phage resistance and the proB marker located at 71 min. Cloning of the pilE gene was facilitated by the isolation and identification of a pro(B+)-containing plasmid from a PAO1 cosmid library. Upon introduction of the PAO1 proB+ cosmid clone into MJ-6, sensitivity to pili-specific phage, twitching motility and pilus production were restored. The nucleotide sequence of a 1 kb EcoRV-ClaI fragment containing the pilE region revealed a single complete open reading frame with characteristic P. aeruginosa codon bias. PilE, a protein with a molecular weight of 15,278, showed significant sequence identity to the pilin precursors of P. aeruginosa and to other type 4 prepilin proteins. The region of highest homology was localized to the N-terminal 40 amino acid residues. The putative PilE N-terminus contained a seven-residue basic leader sequence followed by a consensus cleavage site for prepilin peptidase and a largely hydrophobic region which contained tyrosine residues (Tyr-24 and Tyr-27) previously implicated in maintaining pilin subunit-subunit interactions. The requirement of PilE in pilus biogenesis was confirmed by demonstrating that chromosomal pilE insertion mutants were pilus- and twitching-motility deficient.
Collapse
Affiliation(s)
- M A Russell
- Department of Microbiology, Ohio State University, Columbus 43210
| | | |
Collapse
|
8
|
Darzins A. Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol Microbiol 1994; 11:137-53. [PMID: 7908398 DOI: 10.1111/j.1365-2958.1994.tb00296.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The type 4 pili of Pseudomonas aeruginosa are important cell-associated virulence factors that play a crucial role in mediating (i) bacterial adherence to, and colonization of, mucosal surfaces, (ii) a novel mode of flagella-independent surface translocation known as 'twitching motility', and (iii) the initial stages of the infection process for a number of bacteriophages. A new set of loci involved in pilus biogenesis and twitching motility was identified based on the ability of DNA sequences downstream of the pilG gene to complement the non-piliated (pil) strain, PAO6609. Sequence analysis of a 3.2 kb region directly downstream of pilG revealed the presence of three genes, which have been designated pilH, pilI, and pilJ. The predicted translation product of the pilH gene (13,272 Da), like PilG, exhibits significant amino acid identity with the enteric single-domain response regulator CheY. The putative PilI protein (19,933 Da) is 28% identical to the FrzA protein, a CheW homologue of the gliding bacterium Myxococcus xanthus, and the PilJ protein (72,523 Da) is 26% identical to the enteric methyl-accepting chemotaxis protein (MCP) Tsr. Mutants containing insertions in pilI and pilJ were severely impaired in their ability to produce pili and did not translocate across solid surfaces. The pilH mutant remained capable of pilus production and twitching motility, but displayed an altered motility pattern characterized by the presence of many doughnut-shaped swirls. Each of these pil mutants, however, produced zones that were at least as large as the parent in flagellar-mediated swarm assays. The sequence similarities between the putative pilG, H, I and J gene products and several established chemotaxis proteins, therefore, lend strong support to the hypothesis that these proteins are part of a signal-transduction network that controls P. aeruginosa pilus biosynthesis and twitching motility.
Collapse
Affiliation(s)
- A Darzins
- Department of Microbiology, Ohio State University, Columbus 43210
| |
Collapse
|
9
|
Darzins A. The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY. J Bacteriol 1993; 175:5934-44. [PMID: 8104179 PMCID: PMC206674 DOI: 10.1128/jb.175.18.5934-5944.1993] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Pseudomonas aeruginosa pilG gene, encoding a protein which is involved in pilus production, was cloned by phenotypic complementation of a unique, pilus-defective mutant of strain PAO1. This mutant, designated FA2, although resistant to the pilus-specific phage D3112 was sensitive to the pilus-specific phages B3 and F116L. In spite of the unusual phage sensitivity pattern, FA2 lacked the ability to produce functional polar pili (pil) and was incapable of twitching motility (twt). Genetic analysis revealed that the FA2 pil mutation, designated pilG1, mapped near the met-28 marker located at 20 min and was distinct from the previously described pilT mutation. This map location was confirmed by localization of a 6.2-kb EcoRI fragment that complemented FA2 on the SpeI and DpnI physical map of the P. aeruginosa PAO1 chromosome. A 700-bp region encompassing the pilG gene was sequenced, and a 405-bp open reading frame, with characteristic P. aeruginosa codon bias, was identified. The molecular weight of the protein predicted from the amino acid sequence of PilG, which was determined to be 14,717, corresponded very closely to that of a polypeptide with the apparent molecular weight of 15,000 detected after expression of pilG from the T7 promoter in Escherichia coli. Moreover, the predicted amino acid sequence of PilG showed significant homology to that of the enteric CheY protein, a single-domain response regulator. A chromosomal pilG insertion mutant, constructed by allele replacement of the wild-type gene, was not capable of pilus production or twitching motility but displayed normal flagellum-mediated motility. These results, therefore, suggest that PilG may be an important part of the signal transduction system involved in the elaboration of P. aeruginosa pili.
Collapse
Affiliation(s)
- A Darzins
- Department of Microbiology, Ohio State University, Columbus 43210
| |
Collapse
|
10
|
Farinha MA, Ronald SL, Kropinski AM, Paranchych W. Localization of the virulence-associated genes pilA, pilR, rpoN, fliA, fliC, ent, and fbp on the physical map of Pseudomonas aeruginosa PAO1 by pulsed-field electrophoresis. Infect Immun 1993; 61:1571-5. [PMID: 8454366 PMCID: PMC281404 DOI: 10.1128/iai.61.4.1571-1575.1993] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Seven virulence-associated genes have been placed on a genomic map of Pseudomonas aeruginosa PAO1, using pulsed-field electrophoresis, on the basis of the previous physical maps of Romling et al. (U. Romling, M. Duchene, D. Essar, D. Galloway, C. Guidi-Rontani, D. Hill, A. Lazdunski, R. Miller, K. Schleifer, D. Smith, H. Toschka, and B. Tummler, J. Bacteriol. 174:327-330, 1992; U. Romling, D. Grothues, W. Bautsch, and B. Tummler, EMBO J. 8:4081-4089, 1989) and Ratnaningsih et al. (E. Ratnaningsih, S. Dharmsthiti, V. Krishnapillai, A. Morgan, M. Sinclair, and B. W. Holloway, J. Gen. Microbiol. 136:2351-2357, 1990). The new locations for the outer membrane enterobactin iron-siderophore receptor ent gene (41 to 42 min) and the fliA gene (59 to 61 min), which encodes a minor sigma factor of RNA polymerase, are given. The pilA (the pilin structural gene), pilR (a pilin regulatory gene), and rpoN (encoding another minor sigma factor of RNA polymerase) genes map together at 71 to 75 min, locations correcting the previously reported values (V. Shortridge, M. Pato, A. Vasil, and M. Vasil, Infect. Immun. 59:3596-3603, 1990). The fbp gene (28 to 29 min), which encodes an outer membrane ferripyochelin-binding protein of low molecular weight, and the fliC gene (64 to 66 min), the flagellin structural gene, were determined to lie in the previously reported locations.
Collapse
Affiliation(s)
- M A Farinha
- Department of Microbiology, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
11
|
Govan JR, Martin DW, Deretic VP. Mucoid Pseudomonas aeruginosa and cystic fibrosis: the role of mutations in muc loci. FEMS Microbiol Lett 1992; 100:323-9. [PMID: 1478467 DOI: 10.1111/j.1574-6968.1992.tb14059.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mucoid alginate-producing mutants of Pseudomonas aeruginosa are major pathogens in debilitating chronic pulmonary infections in patients with cystic fibrosis. The mucoid phenotype results from alginate biosynthesis whose genes are arranged in at least three chromosomal loci. Structural genes are located at the 34-min region and regulatory genes at 9 min. A third cluster at the 70 min region contains muc mutations which affect transcription of a key structural gene, algD, in response to environmental stimuli. Control of mucoidy includes bacterial signal transduction systems, histone-like elements controlling nucleoid structure and, possibly, factors affecting superhelicity. Thus, the control of mucoidy in P. aeruginosa has become one of the focal systems for analysis of how bacterial pathogens adapt to the host environment.
Collapse
Affiliation(s)
- J R Govan
- Department of Medical Microbiology, Medical School, Edinburgh, Scotland, UK
| | | | | |
Collapse
|
12
|
Govan JR, Martin DW, Deretic VP. Mucoid Pseudomonas aeruginosa and cystic fibrosis: The role of mutations in muc loci. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05722.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Clepet C, Borne F, Krishnapillai V, Baird C, Patte JC, Cami B. Isolation, organization and expression of the Pseudomonas aeruginosa threonine genes. Mol Microbiol 1992; 6:3109-19. [PMID: 1333566 DOI: 10.1111/j.1365-2958.1992.tb01768.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three genes from Pseudomonas aeruginosa involved in threonine biosynthesis, hom, thrB and thrC, encoding homoserine dehydrogenase (HDH), homoserine kinase (HK) and threonine synthase (TS), respectively, have been cloned and sequenced. The hom and thrc genes lie at the thr locus of the P. aeruginosa chromosome map (31 min) and are likely to be organized in a bicistronic operon. The encoded proteins are quite similar to the Hom and TS proteins from other bacterial species. The thrB gene was located by pulsed-field gel electrophoresis experiments at 10 min on the chromosome map. The product of this gene does not share any similarity with other known ThrB proteins. No phenotype could be detected when the chromosomal thrB gene was inactivated by an insertion. Therefore the existence of isozymes for this activity is postulated. HDH activity was feedback inhibited by threonine; the expression of all three genes was constitutive. The overall organization of these three genes appears to differ from that in other bacterial species.
Collapse
Affiliation(s)
- C Clepet
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | | | | | |
Collapse
|
14
|
Itoh Y, Matsumoto H. Mutations affecting regulation of the anabolic argF and the catabolic aru genes in Pseudomonas aeruginosa PAO. MOLECULAR & GENERAL GENETICS : MGG 1992; 231:417-25. [PMID: 1538697 DOI: 10.1007/bf00292711] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nucleotide sequence required for a fully functional promoter and operator of the Pseudomonas aeruginosa argF gene (argFpo), the arginine-repressible gene for anabolic ornithine carbamoyltransferase, was defined within a 160 bp region. The streptomycin (Sm) resistance genes strAB of plasmid RSF1010 were fused to argFpo. This construct in P. aeruginosa strain PAO conferred resistance to Sm. Mutants of strain PAO were selected which were resistant to Sm in the presence of arginine due to constitutive expression of argFpo-strAB. These mutants were designated argR. They were unable to grow or grew poorly on arginine or ornithine as the sole carbon and nitrogen source. This growth defect (Aru-/Oru- phenotype) was correlated with a reduced level of N-succinylornithine aminotransferase, an enzyme participating in the major aerobic pathway for arginine and ornithine catabolism in this organism. The argR mutants were classified into four groups by transduction analysis and three argR mutations were mapped on the PAO chromosome. argR9901 and argR9902 were co-transducible with car-9 (at 1 min) and thus close to the oru-310 locus; argR9906 was localized in the oruI (= aru) gene cluster (67 min). Some aru mutants, which have been isolated previously and which produce very low amounts of all enzymes in the arginine succinyltransferase pathway, were unable to repress the argF gene in an arginine medium. Thus, P. aeruginosa PAO appears to have multiple genes that are involved in the regulation of both the anabolic argF and the catabolic aru genes.
Collapse
Affiliation(s)
- Y Itoh
- Division of Applied Microbiology, National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Ibaraki, Japan
| | | |
Collapse
|
15
|
Römling U, Duchéne M, Essar DW, Galloway D, Guidi-Rontani C, Hill D, Lazdunski A, Miller RV, Schleifer KH, Smith DW. Localization of alg, opr, phn, pho, 4.5S RNA, 6S RNA, tox, trp, and xcp genes, rrn operons, and the chromosomal origin on the physical genome map of Pseudomonas aeruginosa PAO. J Bacteriol 1992; 174:327-30. [PMID: 1729220 PMCID: PMC205714 DOI: 10.1128/jb.174.1.327-330.1992] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The genes encoding the rrn operons, the 4.5S and 6S RNAs, elements of protein secretion, and outer membrane proteins F and I, and regulatory as well as structural genes for exotoxin A, alkaline phosphatase, and alginate and tryptophan biosynthesis, were assigned on the SpeI/DpnI macrorestriction map of the Pseudomonas aeruginosa PAO chromosome. The zero point of the map was relocated to the chromosomal origin of replication.
Collapse
Affiliation(s)
- U Römling
- Abteilung Biophysikalische Chemie, Medizinische Hochschule, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shortridge VD, Pato ML, Vasil AI, Vasil ML. Physical mapping of virulence-associated genes in Pseudomonas aeruginosa by transverse alternating-field electrophoresis. Infect Immun 1991; 59:3596-603. [PMID: 1910008 PMCID: PMC258926 DOI: 10.1128/iai.59.10.3596-3603.1991] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The relative chromosomal locations of 20 virulence-associated genes in four clinical isolates of Pseudomonas aeruginosa were investigated by using transverse alternating-field electrophoresis. Each strain had a characteristic restriction pattern when digested with either SpeI or DraI and electrophoresed with 15-s pulses. All four strains had restriction fragments that hybridized with each of the gene probes used, although there were variations in fragment size. An SpeI physical map constructed by Ratnaningsih et al. (E. Ratnaningsih, S. Dharmsthiti, V. Krishnapillai, A. Morgan, M. Sinclair, and B. W. Holloway, J. Gen. Microbiol. 136:2351-2357, 1990) for one of these strains, PAO1, was used to identify the location of 11 previously unmapped genes. The physical locations of the remaining genes were found to be consistent with their genetically mapped loci. Whereas phospholipase C and alginate structural and regulatory genes were associated in three separate clusters in the early, middle, and late regions of the chromosome, no virulence cluster was identified. Our data suggest that the pathogenicity of P. aeruginosa results from the gradual acquisition of genes encoding various virulence determinants.
Collapse
Affiliation(s)
- V D Shortridge
- Department of Microbiology and Immunology, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | |
Collapse
|
17
|
Wolff JA, MacGregor CH, Eisenberg RC, Phibbs PV. Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO. J Bacteriol 1991; 173:4700-6. [PMID: 1906870 PMCID: PMC208147 DOI: 10.1128/jb.173.15.4700-4706.1991] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Independently controlled, inducible, catabolic genes in Pseudomonas aeruginosa are subject to strong catabolite repression control by intermediates of the tricarboxylic acid cycle. Mutants which exhibited a pleiotropic loss of catabolite repression control of multiple pathways were isolated. The mutations mapped in the 11-min region of the P. aeruginosa chromosome near argB and pyrE and were designated crc. Crc- mutants no longer showed repression of mannitol and glucose transport, glucose-6-phosphate dehydrogenase, glucokinase, Entner-Doudoroff dehydratase and aldolase, and amidase when grown in the presence of succinate plus an inducer. These activities were not expressed constitutively in Crc- mutants but exhibited wild-type inducible expression.
Collapse
Affiliation(s)
- J A Wolff
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond 23298
| | | | | | | |
Collapse
|
18
|
Galimand M, Gamper M, Zimmermann A, Haas D. Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa. J Bacteriol 1991; 173:1598-606. [PMID: 1900277 PMCID: PMC207308 DOI: 10.1128/jb.173.5.1598-1606.1991] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A mutant of Pseudomonas aeruginosa was characterized which could not grow anaerobically with nitrate as the terminal electron acceptor or with arginine as the sole energy source. In this anr mutant, nitrate reductase and arginine deiminase were not induced by oxygen limitation. The anr mutation was mapped in the 60-min region of the P. aeruginosa chromosome. A 1.3-kb chromosomal fragment from P. aeruginosa complemented the anr mutation and also restored anaerobic growth of an Escherichia coli fnr deletion mutant on nitrate medium, indicating that the 1.3-kb fragment specifies an FNR-like regulatory protein. The arcDABC operon, which encodes the arginine deiminase pathway enzymes of P. aeruginosa, was rendered virtually noninducible by a deletion or an insertion in the -40 region of the arc promoter. This -40 sequence (TTGAC....ATCAG) strongly resembled the consensus FNR-binding site (TTGAT....ATCAA) of E. coli. The cloned arc operon was expressed at low levels in E. coli; nevertheless, some FNR-dependent anaerobic induction could be observed. An FNR-dependent E. coli promoter containing the consensus FNR-binding site was expressed well in P. aeruginosa and was regulated by oxygen limitation. These findings suggest that P. aeruginosa and E. coli have similar mechanisms of anaerobic control.
Collapse
Affiliation(s)
- M Galimand
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | |
Collapse
|
19
|
|
20
|
Mohr CD, Deretic V. Gene-scrambling mutagenesis: generation and analysis of insertional mutations in the alginate regulatory region of Pseudomonas aeruginosa. J Bacteriol 1990; 172:6252-60. [PMID: 2121708 PMCID: PMC526807 DOI: 10.1128/jb.172.11.6252-6260.1990] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A novel method for random mutagenesis of targeted chromosomal regions in Pseudomona aeruginosa was developed. This method can be used with a cloned DNA fragment of indefinite size that contains a putative gene of interest. Cloned DNA is digested to produce small fragments that are then randomly reassembled into long DNA inserts by using cosmid vectors and lambda packaging reaction. This DNA is then transferred into P. aeruginosa and forced into the chromosome via homologous recombination, producing in a single step a random set of insertional mutants along a desired region of the chromosome. Application of this method to extend the analysis of the alginate regulatory region, using a cloned 6.2-kb fragment with the algR gene and the previously uncharacterized flanking regions, produced several insertional mutations. One mutation was obtained in algR, a known transcriptional regulatory of mucoidy in P. aeruginosa. The null mutation of algR was generated in a mucoid derivative of the standard genetic strain PAO responsive to different environmental factors. This mutation was used to demonstrate that the algR gene product was not essential for the regulation of its promoters. Additional insertions were obtained in regions downstream and upstream of algR. A mutation that did not affect mucoidy was generated in a gene located 1 kb upstream of algR. This gene was transcribed in the direction opposite that of algR transcription and encoded a polypeptide of 47 kDa. Partial nucleotide sequence analysis revealed strong homology of its predicted gene product with the human and yeast argininosuccinate lyases. An insertion downstream of algR produced a strain showing reduced induction of mucoidy in response to growth on nitrate as the nitrogen source.
Collapse
Affiliation(s)
- C D Mohr
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | |
Collapse
|
21
|
Ostroff RM, Vasil AI, Vasil ML. Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J Bacteriol 1990; 172:5915-23. [PMID: 2120196 PMCID: PMC526912 DOI: 10.1128/jb.172.10.5915-5923.1990] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa produces two secreted phospholipase C (PLC) enzymes. The expression of both PLCs is regulated by Pi. One of the PLCs is hemolytic, and one is nonhemolytic. Low-stringency hybridization studies suggested that the genes encoding these two PLCs shared DNA homology. This information was used to clone plcN, the gene encoding the 77-kilodalton nonhemolytic PLC, PLC-N. A fragment of plcN was used to mutate the chromosomal copy of plcN by the generation of a gene interruption mutation. This mutant produces 55% less total PLC activity than the wild type, confirming the successful cloning of plcN. plcN was sequenced and encodes a protein which is 40% identical to the hemolytic PLC (PLC-H). The majority of the homology lies within the NH2 two-thirds of the proteins, while the remaining third of the amino acid sequence of the two proteins shows very little homology. Both PLCs hydrolyze phosphatidylcholine; however, each enzyme has a distinct substrate specificity. PLC-H hydrolyzes sphingomyelin in addition to phosphatidylcholine, whereas PLC-N is active on phosphatidylserine as well as phosphatidylcholine. These studies suggest structure-function relationships between PLC activity and hemolysis.
Collapse
Affiliation(s)
- R M Ostroff
- Department of Microbiology and Immunology, University of Colorado Health Sciences Center, Denver 80262
| | | | | |
Collapse
|
22
|
Anba J, Bidaud M, Vasil ML, Lazdunski A. Nucleotide sequence of the Pseudomonas aeruginosa phoB gene, the regulatory gene for the phosphate regulon. J Bacteriol 1990; 172:4685-9. [PMID: 2115874 PMCID: PMC213304 DOI: 10.1128/jb.172.8.4685-4689.1990] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleotide sequence of Pseudomonas aeruginosa phoB was determined. The sequence data suggest that the PhoB polypeptide consists of 229 amino acid residues and has a predicted molecular weight of 25,708. In the regulatory region of the gene, a very well conserved phosphate box was found. The sequence data also predicted the presence of an open reading frame downstream of phoB, which could be phoR. The deduced amino acid sequence of phoB was significantly homologous to that of the Escherichia coli phoB gene product and to those of several known procaryotic transcriptional regulators such as PhoP, OmpR, VirG, Dye, NtrC, and AlgR.
Collapse
Affiliation(s)
- J Anba
- Laboratoire de Chimie Bactérienne, C.N.R.S. Marseille, France
| | | | | | | |
Collapse
|
23
|
Abstract
The biochemical mechanism by which alpha-L-guluronate (G) residues are incorporated into alginate by Pseudomonas aeruginosa is not understood. P. aeruginosa first synthesizes GDP-mannuronate, which is used to incorporate beta-D-mannuronate residues into the polymer. It is likely that the conversion of some beta-D-mannuronate residues to G occurs by the action of a C-5 epimerase at either the monomer (e.g., sugar-nucleotide) or the polymer level. This study describes the results of a molecular genetic approach to identify a gene involved in the formation or incorporation of G residues into alginate by P. aeruginosa. Mucoid P. aeruginosa FRD1 was chemically mutagenized, and mutants FRD462 and FRD465, which were incapable of incorporating G residues into alginate, were independently isolated. Assays using a G-specific alginate lyase from Klebsiella aerogenes and 1H-nuclear magnetic resonance analyses showed that G residues were absent in the alginates secreted by these mutants. 1H-nuclear magnetic resonance analyses also showed that alginate from wild-type P. aeruginosa contained no detectable blocks of G. The mutations responsible for defective incorporation of G residues into alginate in the mutants FRD462 and FRD465 were designated algG4 and algG7, respectively. Genetic mapping experiments revealed that algG was closely linked (greater than 90%) to argF, which lies at 34 min on the P. aeruginosa chromosome and is adjacent to a cluster of genes required for alginate biosynthesis. The clone pALG2, which contained 35 kilobases of P. aeruginosa DNA that included the algG and argF wild-type alleles, was identified from a P. aeruginosa gene bank by a screening method that involved gene replacement. A DNA fragment carrying algG was shown to complement algG4 and algG7 in trans. The algG gene was physically mapped on the alginate gene cluster by subcloning and Tn501 mutagenesis.
Collapse
Affiliation(s)
- C E Chitnis
- Department of Biophysics, University of California, Berkeley 94720
| | | |
Collapse
|
24
|
Tsygankov YD, Kazakova SM, Serebrijski IG. Genetic mapping of the obligate methylotroph Methylobacillus flagellatum: characteristics of prime plasmids and mapping of the chromosome in time-of-entry units. J Bacteriol 1990; 172:2747-54. [PMID: 2110149 PMCID: PMC208920 DOI: 10.1128/jb.172.5.2747-2754.1990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A pULB113 (RP4::mini-Mu cts) plasmid was used to generate a library of prime plasmids carrying fragments of the Methylobacillus flagellatum genome. The genes carried by these prime plasmids were identified by complementation after transfer to suitably marked Escherichia coli and Pseudomonas aeruginosa strains. The hybrid plasmids were used for complementation mapping with a range of E. coli, M. flagellatum, and P. aeruginosa mutants. A preliminary map of the M. flagellatum genome section with seven groups of linked markers was obtained. Three of seven groups contain an overlapping sequence of cloned genes and can be considered as one large group of linked genes. A high-frequency-of-recombination donor of M. flagellatum (strain MFK64) mobilized the chromosome in a polarized manner from a single transfer origin. The donor was used to construct a time-of-entry map of the M. flagellatum chromosome. This was achieved by determining the time of entry of six randomly dispersed markers, four of which are included in known groups of linked markers. The linear map of M. flagellatum reported here consists of 44 markers.
Collapse
Affiliation(s)
- Y D Tsygankov
- Institute of Genetics and Selection of Industrial Microorganisms, Moscow, USSR
| | | | | |
Collapse
|
25
|
Deretic V, Govan JR, Konyecsni WM, Martin DW. Mucoid Pseudomonas aeruginosa in cystic fibrosis: mutations in the muc loci affect transcription of the algR and algD genes in response to environmental stimuli. Mol Microbiol 1990; 4:189-96. [PMID: 2140147 DOI: 10.1111/j.1365-2958.1990.tb00586.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Increased levels of alginate biosynthesis cause mucoidy in Pseudomonas aeruginosa, a virulence factor of particular importance in cystic fibrosis. The algR gene product, which controls transcription of a key alginate biosynthetic gene, algD, is homologous to the activator members of the two-component, environmentally responsive systems (NtrC, OmpR, PhoB, ArcA, etc). In this report, we show that mutations in the muc loci, (muc-2, muc-22, and muc-23, in the standard genetic P. aeruginosa strain PAO, as well as a mapped muc allele in an isolate from a cystic fibrosis patient) affect transcription of algD and algR. This influence was strongly dependent on environmental factors. Regulation by nitrogen was observed in all strains examined, but the absolute transcriptional levels, determining the mucoid or nonmucoid status, were strain (muc allele)-dependent. Increased concentrations of NaCl in the medium, an osmolyte which is elevated in cystic fibrosis lung secretions, resulted in an increased algD transcription and mucoid phenotype in a muc-2 strain; the same conditions, however, produced a nonmucoid phenotype in the muc-23 background and abolished algD transcription. Mutations in the muc loci may cause mucoidy by deregulating the normal response of the alginate system to environmental stimuli.
Collapse
Affiliation(s)
- V Deretic
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | | | | | |
Collapse
|
26
|
|
27
|
de Smet MJ, Friedman MB, Gunsalus IC. Plasmid control of the Pseudomonas aeruginosa and Pseudomonas putida phenotypes and of linalool and p-cymene oxidation. J Bacteriol 1989; 171:5155-61. [PMID: 2504698 PMCID: PMC210330 DOI: 10.1128/jb.171.9.5155-5161.1989] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two Pseudomonas strains (PpG777 and PaG158) were derived from the parent isolate Pseudomonas incognita (putida). Strain PpG777 resembles the parental culture in growth on linalool as a source of carbon and slight growth on p-cymene, whereas PaG158 grows well on p-cymene, but not on linalool or other terpenes tested, and has a P. aeruginosa phenotype. Curing studies indicate that linalool metabolism is controlled by an extrachromosomal element whose loss forms a stable strain PaG158 with the p-cymene growth and P. aeruginosa phenotype characters. The plasmid can be transferred by PpG777 to both P. putida and P. aeruginosa strains. Surprisingly, the latter assume the P. putida phenotype. We conclude that the genetic potential to oxidize p-cymene is inherent in PpG777 but expression is repressed. Similarly, this observation implies that support of linalool oxidation effectively conceals the P. aeruginosa character.
Collapse
Affiliation(s)
- M J de Smet
- La Jolla Biological Laboratories, Salk Institute, San Diego, California 92138
| | | | | |
Collapse
|
28
|
Darzins A, Casadaban MJ. Mini-D3112 bacteriophage transposable elements for genetic analysis of Pseudomonas aeruginosa. J Bacteriol 1989; 171:3909-16. [PMID: 2544562 PMCID: PMC210142 DOI: 10.1128/jb.171.7.3909-3916.1989] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Small bacteriophage D3112 transposable elements deleted for most of the phage-lytic functions while retaining the sites required for transposition and packaging were constructed to facilitate genetic studies in Pseudomonas aeruginosa. These mini-D derivatives were constructed with the terminal 1.85 kilobases (kb) of the phage left end and 1.4 kb of the phage right end and either the Tn5 kanamycin resistance or the pSC101 (pBR322) tetracycline resistance determinant. Thermally induced lysates of strains lysogenic for both a mini-D element and D3112 cts (temperature-sensitive repressor) transduced P. aeruginosa PAO recipients to drug resistance at frequencies of between 10(-4) and 10(-5)/PFU of the helper phage. As for the parent plaque-forming D3112 phage, the mini-D171 element could insert itself into many different sites in the chromosome but the frequency of insertion into particular genes varied widely. Among 1,000 insertions, none resulted in auxotrophy but 10 resulted in pigment production. Insertions were also selected in a cloning plasmid with a transduction scheme. At least eight different insertion sites were found to have been used among 10 individual insertions. Transductants harboring these mini-D elements were immune to infection by D3112, since they contained the D3112 repressor gene in the left 1.85-kb terminal fragment. Chromosomal genes were transduced in a generalized fashion 100 to 1,000 times more frequently by the mini-D-D3112 cts lysates than by the D3112 cts phage alone. Mini-D171-D3112 cts lysates also yielded some transductants that retained the drug resistance marker of the mini-D element and which were unstable for the chromosomal transduced marker. This is consistent with the miniduction properties of Mu whereby transduced genes are flanked by two mini-D elements in the same orientation.
Collapse
Affiliation(s)
- A Darzins
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
29
|
Darzins A, Casadaban MJ. In vivo cloning of Pseudomonas aeruginosa genes with mini-D3112 transposable bacteriophage. J Bacteriol 1989; 171:3917-25. [PMID: 2544563 PMCID: PMC210143 DOI: 10.1128/jb.171.7.3917-3925.1989] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The transposition properties of the Pseudomonas aeruginosa mutator bacteriophage D3112 were exploited to develop an in vivo cloning system. Mini-D replicon derivatives of D3112 were constructed by incorporating broad host range plasmid replicons between short terminal D3112 sequences. These elements were made with small replication regions from the RK2, Sa, and pVS1 plasmids and selectable genes for tetracycline, carbenicillin, kanamycin, and gentamicin resistance. Some of the mini-D replicons also contain the RK2 oriT origin-of-transfer sequence, which allows them to be mobilized by conjugation to many different species of gram-negative bacteria. These elements were used to clone DNA by preparing lysates from P. aeruginosa cells harboring an inducible D3112 cts prophage and a mini-D replicon plasmid. These lysates were used to infect sensitive P. aeruginosa recipients and select recombinant plasmids as drug-resistant transductant colonies. These transductants form a gene library from which particular clones can be selected, such as by their ability to complement specific mutations. This system was used to clone nine different genes from the PAO chromosome. The ability of this system to precisely identify a gene was demonstrated by isolating clones of the argF+ and cys-59+ genes. Restriction maps of clones of these genes, which have different amounts of flanking DNA, located the positions of these genes. The sizes of the chromosomal DNA segments from 10 individual clones examined ranged from 6 to 21 kilobases (kb), with an average of about 10 kb. This is consistent with the approximately 40-kb DNA-packaging size of the D3112 phage.
Collapse
Affiliation(s)
- A Darzins
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
30
|
Berry A, DeVault JD, Chakrabarty AM. High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J Bacteriol 1989; 171:2312-7. [PMID: 2496102 PMCID: PMC209903 DOI: 10.1128/jb.171.5.2312-2317.1989] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic lung infection with mucoid, alginate-producing strains of Pseudomonas aeruginosa is a major cause of mortality in cystic fibrosis (CF) patients. Transcriptional activation of the P. aeruginosa algD gene, which encodes GDPmannose dehydrogenase, is essential for alginate synthesis. Activation of algD is dependent on the product of the algR gene. Sequence homology between the P. aeruginosa algR gene and the Escherichia coli ompR gene, which regulates the cellular response to changes in osmolarity of the growth medium, together with the abnormally high levels of Na+ and Cl- in respiratory tract fluid in CF patients suggested that high osmolarity in the lung of the CF patient might be a signal contributing to the induction of alginate synthesis (mucoidy) in infecting P. aeruginosa. In both mucoid and nonmucoid P. aeruginosa strains (containing a functional algR gene), transcriptional activation of algD increased as the osmolarity of the culture medium increased. The increased activation of algD at high osmolarity was not in itself sufficient to induce alginate synthesis in nonmucoid strains, however, suggesting that other environmental factors are involved in full activation of the alginate genes. The targets of AlgR and OmpR, the algD promoter and the ompC and ompF promoters, respectively, were found to have appreciable sequence homology in the -60 to -110 regions. In E. coli, OmpR was capable of activating the algD promoter nearly as well as AlgR, but in both cases, activation occurred only under conditions of high osmolarity.
Collapse
Affiliation(s)
- A Berry
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612
| | | | | |
Collapse
|
31
|
Vander Wauven C, Jann A, Haas D, Leisinger T, Stalon V. N2-succinylornithine in ornithine catabolism of Pseudomonas aeruginosa. Arch Microbiol 1988; 150:400-4. [PMID: 3144259 DOI: 10.1007/bf00408314] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Most Pseudomonas aeruginosa PAO mutants which were unable to utilize L-arginine as the sole carbon and nitrogen source (aru mutants) under aerobic conditions were also affected in L-ornithine utilization. These aru mutants were impaired in one or several enzymes involved in the conversion of N2-succinylornithine to glutamate and succinate, indicating that the latter steps of the arginine succinyltransferase pathway can be used for ornithine catabolism. Addition of aminooxyacetate, an inhibitor of the N2-succinylornithine 5-aminotransferase, to resting cells of P. aeruginosa in ornithine medium led to the accumulation of N2-succinylornithine. In crude extracts of P. aeruginosa an ornithine succinyltransferase (L-ornithine:succinyl-CoA N2-succinyltransferase) activity could be detected. An aru mutant having reduced arginine succinyltransferase activity also had correspondingly low levels of ornithine succinyltransferase. Thus, in P. aeruginosa, these two activities might be due to the same enzyme, which initiates aerobic arginine and ornithine catabolism.
Collapse
|
32
|
Flynn JL, Ohman DE. Use of a gene replacement cosmid vector for cloning alginate conversion genes from mucoid and nonmucoid Pseudomonas aeruginosa strains: algS controls expression of algT. J Bacteriol 1988; 170:3228-36. [PMID: 2838462 PMCID: PMC211274 DOI: 10.1128/jb.170.7.3228-3236.1988] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa can convert to a mucoid colony morphology by a genetic mechanism called alginate conversion; this results in the production of copious amounts of the exopolysaccharide alginate. The mucoid phenotype of P. aeruginosa is commonly associated with its ability to cause chronic pulmonary tract infections in patients with cystic fibrosis. In this study we isolated the cis-acting locus involved in alginate conversion, called algS, from both mucoid and nonmucoid isogenic strains. We then examined the role of algS in the control of algT, a trans-active gene required for alginate production in P. aeruginosa. We used a new cosmid cloning vector, called pEMR2, that permitted both the cloning of large DNA fragments and their subsequent gene replacement in P. aeruginosa. To verify the predicted properties of this vector, we isolated and tested a pEMR2 hisI+ clone. Using cloned algS-containing DNA and a method for gene replacement, we constructed isogenic strains of P. aeruginosa that had Tn501 adjacent to algS on the chromosome. Two pEMR2 clone banks containing genomic fragments from isogenic algS(On) (exhibiting the alginate production phenotype) and algS(Off) (exhibiting the non-alginate production phenotype) strains were constructed, and Tn501 served as an adjacent marker to select for clones containing the respective algS allele. The pEMR2 algS(On) and pEMR2 algS(Off) clones were shown to contain the indicated algS allele by gene replacement with the chromosome of strains that carried the opposite allele. To test whether algS controls the expression of the adjacent algT gene, we constructed a pLAFR1 algS(Off)T clone and showed it to be unable to complement an algT::Tn501 mutation in trans. In contrast, a pLAFR1 algS(On)T clone did complement algT::Tn501 in trans. Thus, algS appears to control the activation of algT expression, bringing about alginate conversion.
Collapse
Affiliation(s)
- J L Flynn
- Department of Microbiology and Immunology, University of California, Berkeley 94720
| | | |
Collapse
|
33
|
Clarke PH, Drew R. An experiment in enzyme evolution. Studies with Pseudomonas aeruginosa amidase. Biosci Rep 1988; 8:103-20. [PMID: 3136812 DOI: 10.1007/bf01116455] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The regulation of amidase synthesis in P. aeruginosa is under positive control. This review describes the experimental evolution of amidase and its regulator protein for the hydrolysis of novel substrates and experiments to elucidate the mechanism of the control system.
Collapse
Affiliation(s)
- P H Clarke
- Department of Biochemistry, University College London, UK
| | | |
Collapse
|
34
|
Cloning of genes from mucoid Pseudomonas aeruginosa which control spontaneous conversion to the alginate production phenotype. J Bacteriol 1988; 170:1452-60. [PMID: 2965141 PMCID: PMC210988 DOI: 10.1128/jb.170.4.1452-1460.1988] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Strains of Pseudomonas aeruginosa causing chronic pulmonary infections in patients with cystic fibrosis are known to convert to a mucoid form in vivo characterized by the production of the exopolysaccharide alginate. The alginate production trait is not stable, and mucoid strains frequently convert back to the nonmucoid form in vitro. The DNA involved in these spontaneous alginate conversions, referred to as algS, was shown here to map near hisI and pru markers on the chromosome of strain FRD, an isolate from a cystic fibrosis patient. Although cloning algS+ by trans-complementation was not possible, a clone (pJF5) was isolated that caused algS mutants to convert to the Alg+ phenotype at detectable frequencies (approximately 0.1%) in vitro. Gene replacement with transposon-marked pJF5 followed by mapping studies showed that pJF5 contained DNA transducibly close to algS in the chromosome. Another clone was identified called pJF15 which did contain algS+ from mucoid P. aeruginosa. The plasmid-borne algS+ locus could not complement spontaneous algS mutations in trans, but its cis-acting activity was readily observed after gene replacement with the algS mutant chromosome by using an adjacent transposon as the selectable marker. pJF15 also contained a trans-active gene called algT+ in addition to the cis-active gene algS+. The algT gene was localized on pJF15 by using deletion mapping and transposon mutagenesis. By using gene replacement, algT::Tn501 mutants of P. aeruginosa were constructed which were shown to be complemented in trans by pJF15. Both algS and algT were located on a DNA fragment approximately 3 kilobases in size. The algS gene may be a genetic switch which regulates the process of alginate conversion.
Collapse
|
35
|
Horn JM, Ohman DE. Transcriptional and translational analyses of recA mutant alleles in Pseudomonas aeruginosa. J Bacteriol 1988; 170:1637-50. [PMID: 2450868 PMCID: PMC211012 DOI: 10.1128/jb.170.4.1637-1650.1988] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recombinant plasmids containing the recA gene from Pseudomonas aeruginosa were used in complementation, transcriptional, and translational studies to examine the nature of rec-102 and rec-2, mutations which confer a recA-like mutant phenotype on P. aeruginosa PAO strains. For comparison, recA7::Tn501 mutants of strain PAO were constructed by gene replacement. The rec-2 and rec-102 alleles were shown to be recA alleles; plasmids containing the recA gene complemented the three rec mutant strains for defects associated with recA mutation. Northern blot analyses indicated that the recA gene in P. aeruginosa was transcribed as two distinct mRNAs of approximately 1.2 and 1.4 kilobases (kb). A plasmid encoding both transcripts of recA complemented all defects associated with the three recA mutations rec-2, rec-102, and recA7. However, a 2.4-kb subclone (pJH13) encoding only the smaller transcript of the recA gene was expressed differently in the three recA allele backgrounds and served as a tool to distinguish the nature of the rec-2 and rec-102 mutations in recA. A minicell analysis showed that a plasmid expressing both of the recA gene transcripts or one that expressed only the smaller transcript both produced the same 42-kilodalton recA protein. A chloramphenicol acetyltransferase gene fusion in the 3' end of the recA transcript showed that the recA gene of P. aeruginosa was induced following treatment with a DNA-damaging agent (methyl methanesulfonate). The recA7 mutant constructed here showed no recA-related transcript or protein under inducing conditions, and pJH13 in this host produced only low levels of the smaller recA transcript and low levels of recA protein. The rec-2 mutant produced a detectable transcript but no recA protein following induction. The presence of low levels of activated recA protein encoded by pJH13 in the rec-2 mutant resulted in wild-type transcriptional levels of chromosomally encoded recA, but no recA protein was detectable. Thus, the rec-2 allele of recA was normal with respect to induction of mRNA, but these transcripts were defective in either translation or synthesis of a stable protein. The rec-102 mutant also produced a detectable transcript and no recA protein following induction, but having pJH13 in the cell to produce low levels of activated recA protein resulted in overproduction of chromosomally encoded recA transcripts and active recA protein. Thus, the recA defect in the rec-102 mutant is apparently in the interaction between recA and a lexA-like repressor.
Collapse
Affiliation(s)
- J M Horn
- Department of Microbiology and Immunology, University of California, Berkeley 94720
| | | |
Collapse
|
36
|
Russell NJ, Gacesa P. Chemistry and biology of the alginate of mucoid strains of Pseudomonas aeruginosa in cystic fibrosis. Mol Aspects Med 1988; 10:1-91. [PMID: 3129631 DOI: 10.1016/0098-2997(88)90002-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- N J Russell
- Department of Biochemistry, University College, Cardiff, Wales, U.K
| | | |
Collapse
|