1
|
Williams J, Venkatesan K, Ayariga JA, Jackson D, Wu H, Villafane R. A genetic analysis of an important hydrophobic interaction at the P22 tailspike protein N-terminal domain. Arch Virol 2018; 163:1623-1633. [DOI: 10.1007/s00705-018-3777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/16/2018] [Indexed: 10/17/2022]
|
2
|
Padilla-Meier GP, Gilcrease EB, Weigele PR, Cortines JR, Siegel M, Leavitt JC, Teschke CM, Casjens SR. Unraveling the role of the C-terminal helix turn helix of the coat-binding domain of bacteriophage P22 scaffolding protein. J Biol Chem 2012; 287:33766-80. [PMID: 22879595 DOI: 10.1074/jbc.m112.393132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many viruses encode scaffolding and coat proteins that co-assemble to form procapsids, which are transient precursor structures leading to progeny virions. In bacteriophage P22, the association of scaffolding and coat proteins is mediated mainly by ionic interactions. The coat protein-binding domain of scaffolding protein is a helix turn helix structure near the C terminus with a high number of charged surface residues. Residues Arg-293 and Lys-296 are particularly important for coat protein binding. The two helices contact each other through hydrophobic side chains. In this study, substitution of the residues of the interface between the helices, and the residues in the β-turn, by aspartic acid was used examine the importance of the conformation of the domain in coat binding. These replacements strongly affected the ability of the scaffolding protein to interact with coat protein. The severity of the defect in the association of scaffolding protein to coat protein was dependent on location, with substitutions at residues in the turn and helix 2 causing the most significant effects. Substituting aspartic acid for hydrophobic interface residues dramatically perturbs the stability of the structure, but similar substitutions in the turn had much less effect on the integrity of this domain, as determined by circular dichroism. We propose that the binding of scaffolding protein to coat protein is dependent on angle of the β-turn and the orientation of the charged surface on helix 2. Surprisingly, formation of the highly complex procapsid structure depends on a relatively simple interaction.
Collapse
Affiliation(s)
- G Pauline Padilla-Meier
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Cortines JR, Weigele PR, Gilcrease EB, Casjens SR, Teschke CM. Decoding bacteriophage P22 assembly: identification of two charged residues in scaffolding protein responsible for coat protein interaction. Virology 2011; 421:1-11. [PMID: 21974803 DOI: 10.1016/j.virol.2011.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/15/2011] [Accepted: 09/08/2011] [Indexed: 11/17/2022]
Abstract
Proper assembly of viruses must occur through specific interactions between capsid proteins. Many double-stranded DNA viruses and bacteriophages require internal scaffolding proteins to assemble their coat proteins into icosahedral capsids. The 303 amino acid bacteriophage P22 scaffolding protein is mostly helical, and its C-terminal helix-turn-helix (HTH) domain binds to the coat protein during virion assembly, directing the formation of an intermediate structure called the procapsid. The interaction between coat and scaffolding protein HTH domain is electrostatic, but the amino acids that form the protein-protein interface have yet to be described. In the present study, we used alanine scanning mutagenesis of charged surface residues of the C-terminal HTH domain of scaffolding protein. We have determined that P22 scaffolding protein residues R293 and K296 are crucial for binding to coat protein and that the neighboring charges are not essential but do modulate the affinity between the two proteins.
Collapse
Affiliation(s)
- Juliana R Cortines
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | |
Collapse
|
4
|
Abstract
Recent studies have established that the most abundant life form, that of phages, has had major influence on the biosphere, bacterial evolution, bacterial genome, and lateral gene transmission. Importantly the phages have served and continue to serve as valuable model systems. Such studies have led to a renewed interest and activity in the study of phages and their genomes. In order to determine the details of the involvement of phages in these important processes and activities, it is critical to assign specific functions to the phage gene products. The initial functional and gene assignments can be made by general mutagenesis of the phage genomes and of these specific gene products. A very informative mutagenic protocol that has found renewed interest is that using hydroxylamine. This mutagenic protocol has been used to obtain gene mutations involved in the lysogenic cycle of the Salmonella enterica serovar Anatum var. 15+ phage epsilon34 (hereafter phage epsilon34) and to isolate conditional lethal mutants of phage epsilon34. A similar protocol using plasmid is also described. A plate complementation method is presented to determine quickly the number of genes which are present in the population of mutations isolated from hydroxylamine mutagenesis.
Collapse
Affiliation(s)
- Robert Villafane
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
5
|
Nemecek D, Gilcrease EB, Kang S, Prevelige PE, Casjens S, Thomas GJ. Subunit conformations and assembly states of a DNA-translocating motor: the terminase of bacteriophage P22. J Mol Biol 2007; 374:817-36. [PMID: 17945256 PMCID: PMC2204089 DOI: 10.1016/j.jmb.2007.08.070] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/27/2007] [Accepted: 08/28/2007] [Indexed: 12/01/2022]
Abstract
Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42-kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an alpha/beta fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly alpha-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wild-type gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy, and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112-->Thr) that forms a 10-subunit ring, despite a subunit fold indistinguishable from wild type. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA-binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages.
Collapse
Affiliation(s)
- Daniel Nemecek
- School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
6
|
Buan NR, Suh SJ, Escalante-Semerena JC. The eutT gene of Salmonella enterica Encodes an oxygen-labile, metal-containing ATP:corrinoid adenosyltransferase enzyme. J Bacteriol 2004; 186:5708-14. [PMID: 15317775 PMCID: PMC516830 DOI: 10.1128/jb.186.17.5708-5714.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eutT gene of Salmonella enterica was cloned and overexpressed, and the function of its product was established in vivo and in vitro. The EutT protein has an oxygen-labile, metal-containing ATP:co(I)rrinoid adenosyltransferase activity associated with it. Functional redundancy between EutT and the housekeeping ATP:co(I)rrinoid adenosyltransferase CobA enzyme was demonstrated through phenotypic analyses of mutant strains. Lack of CobA and EutT blocked ethanolamine utilization. EutT was necessary and sufficient for growth of an S. enterica cobA eutT strain on ethanolamine as a carbon and energy or nitrogen source. A eutT+ gene provided in trans corrected the adenosylcobalamin-dependent transcription of a eut-lacZ operon fusion in a cobA strain. Cell extracts enriched for EutT protein contained strong, readily detectable ATP:co(I)rrinoid adenosyltransferase activity. The activity was only detected in extracts maintained under anoxic conditions, with complete loss of activity upon exposure to air or treatment with the Fe2+ ion chelator bathophenanthroline. While the involvement of another metal ion cannot be ruled out, the observed sensitivity to air and bathophenanthroline suggests involvement of Fe2+. We propose that the EutT protein is a unique metal-containing ATP:co(I)rrinoid adenosyltransferase. It is unclear whether the metal ion plays a structural or catalytic role.
Collapse
Affiliation(s)
- Nicole R Buan
- Department of Bacteriology, University of Wisconsin--Madison, Madison, Wisconsin 53726-4087, USA
| | | | | |
Collapse
|
7
|
Wu H, Sampson L, Parr R, Casjens S. The DNA site utilized by bacteriophage P22 for initiation of DNA packaging. Mol Microbiol 2002; 45:1631-46. [PMID: 12354230 DOI: 10.1046/j.1365-2958.2002.03114.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Virion proteins recognize their cognate nucleic acid for encapsidation into virions through recognition of a specific nucleotide sequence contained within that nucleic acid. Viruses like bacteriophage P22, which have partially circularly permuted, double-stranded virion DNAs, encapsidate DNA through processive series of packaging events in which DNA is recognized for packaging only once at the beginning of the series. Thus a single DNA recognition event programmes the encapsidation of multiple virion chromosomes. The protein product of P22 gene 3, a terminase component, is thought to be responsible for this recognition. The site on the P22 genome that is recognized by the gene 3 protein to initiate packaging series is called the pac site. We report here a strategy for assaying pac site activity in vivo, and the utilization of this system to identify and characterize the site genetically. It is an asymmetric site that spans 22 basepairs and is located near the centre of P22 gene 3.
Collapse
Affiliation(s)
- Hongyu Wu
- Department of Pathology, University of Utah Medical Center, Salt Lake City 84132, USA
| | | | | | | |
Collapse
|
8
|
Abstract
The sequence of the nonredundant region of the Salmonella enterica serovar Typhimurium temperate, serotype-converting bacteriophage P22 has been completed. The genome is 41,724 bp with an overall moles percent GC content of 47.1%. Numerous examples of potential integration host factor and C1-binding sites were identified in the sequence. In addition, five potential rho-independent terminators were discovered. Sixty-five genes were identified and annotated. While many of these had been described previously, we have added several new ones, including the genes involved in serotype conversion and late control. Two of the serotype conversion gene products show considerable sequence relatedness to GtrA and -B from Shigella phages SfII, SfV, and SfX. We have cloned the serotype-converting cassette (gtrABC) and demonstrated that it results in Salmonella serovar Typhimurium LT2 cells which express antigen O1. Many of the putative proteins show sequence relatedness to proteins from a great variety of other phages, supporting the hypothesis that this phage has evolved through the recombinational exchange of genetic information with other viruses.
Collapse
Affiliation(s)
- C Vander Byl
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
9
|
Tsang AW, Escalante-Semerena JC. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J Biol Chem 1998; 273:31788-94. [PMID: 9822644 DOI: 10.1074/jbc.273.48.31788] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cobB gene of Salmonella typhimurium LT2 has been isolated and genetically and biochemically characterized. cobB was located by genetic means to the 27-centisome region of the chromosome. Genetic crosses established the gene order to be cobB pepT phoQ, and the direction of cobB transcription was shown to be clockwise. The nucleotide sequence of cobB (711 base pairs) predicted a protein of 237 amino acids length with a molecular mass of 26.3 kDa, a mass consistent with the experimentally determined one of approximately 28 kDa. The cobB gene was defined genetically by deletions (10), insertions (5), and point mutations (15). The precise location of a Tn10d(Tc) element within cobB was established by sequencing. DNA sequence analysis of the region flanking cobB located it 81 base pairs 3' of the potABCD operon, with the potABCD operon and cobB being divergently transcribed. cobB was overexpressed to approximately 30% of the total soluble protein using a T7 overexpression system. In vitro activity assays showed that cell-free extracts enriched for CobB catalyzed the synthesis of the cobalamin biosynthetic intermediate N1-(5-phospho-alpha-D-ribosyl)-5, 6-dimethylbenzimidazole (also known as alpha-ribazole-5'-phosphate) from nicotinate mononucleotide and 5,6-dimethylbenzimidazole, the reaction known to be catalyzed by the CobT phosphoribosyltransferase enzyme (EC 2.4.2.21) (Trzebiatowski, J. R. and Escalante-Semerena, J. C. (1997) J. Biol. Chem. 272, 17662-17667). Computer analysis of the primary amino acid sequence of the CobB protein identified the sequences GAGISAESGIRTFR and YTQNID which are diagnostic of members of the SIR2 family of eucaryotic transcriptional regulators. Possible roles of CobB as a regulator are discussed within the context of the catabolism of propionate, a pathway known to require cobB function (Tsang, A. W. and Escalante-Semerena, J. C. (1996) J. Bacteriol. 178, 7016-7019).
Collapse
Affiliation(s)
- A W Tsang
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706-1567, USA
| | | |
Collapse
|
10
|
Abstract
The tailspike protein (TSP) of Salmonella typhimurium P22 bacteriophage is a multifunctional homotrimer, 6 copies of which are non-covalently attached to the capsid to form the virion tail in the last reaction of phage assembly. An antigenic peptide of foot-and-mouth disease virus (FMDV), aa 134-156 of protein VP1, has been joined to the carboxy terminus of TSP, and produced as a fusion protein in Escherichia coli directed by the trp promoter. The resulting fusion protein is soluble, stable, non-toxic, and can be easily purified by standard procedures. Moreover, both the endorhamnosidase and capsid assembly activities of the TSP are conserved, permitting the fusion protein to reconstitute infectious viruses by in vitro association with tailless particles. In both free TSP and P22 chimeric virions, the foreign peptide is solvent-exposed and highly antigenic, indicating that P22 TSP could be an appropriate carrier protein for multimeric peptide display.
Collapse
Affiliation(s)
- X Carbonell
- Institut de Biologia Fonamental, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | |
Collapse
|
11
|
Hammelman TA, O'Toole GA, Trzebiatowski JR, Tsang AW, Rank D, Escalante-Semerena JC. Identification of a new prp locus required for propionate catabolism in Salmonella typhimurium LT2. FEMS Microbiol Lett 1996; 137:233-9. [PMID: 8998991 DOI: 10.1111/j.1574-6968.1996.tb08111.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A new propionate (prp) locus of S. typhimurium was defined by mutation, was located to minute 8 of the chromosome, and was shown to be transcribed in the clockwise direction. A plasmid carrying the wild-type prp+ locus was isolated by complementation and its initial physical characterization is presented. Transcriptional regulation of prp was studied using MudI1734(lacZ+) operon fusions. Propionate stimulated prp transcription in a merodiploid strain containing prp+ and a prp::MudI1734 fusion, but failed to stimulate transcription of the same fusion in a haploid genetic background. prp transcription was reduced by a factor of 2 in strains deficient in the synthesis of the global regulatory protein FruR; fruR mutants failed to grow on propionate. Propionate blocked growth of prp mutants on medium containing succinate as carbon/energy source.
Collapse
Affiliation(s)
- T A Hammelman
- Department of Bacteriology, University of Wisconsin-Madison 53706-1567, USA
| | | | | | | | | | | |
Collapse
|
12
|
Rondon MR, Kazmierczak R, Escalante-Semerena JC. Glutathione is required for maximal transcription of the cobalamin biosynthetic and 1,2-propanediol utilization (cob/pdu) regulon and for the catabolism of ethanolamine, 1,2-propanediol, and propionate in Salmonella typhimurium LT2. J Bacteriol 1995; 177:5434-9. [PMID: 7559326 PMCID: PMC177348 DOI: 10.1128/jb.177.19.5434-5439.1995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcription of the cob/pdu regulon of Salmonella typhimurium is activated by the PocR regulatory protein in response to 1,2-propanediol (1,2-PDL) in the environment. Nutritional analysis and DNA sequencing confirmed that a strain defective in expression of the cob/pdu regulon in response to 1,2-PDL lacked a functional gshA gene. gshA encodes gamma-glutamylcysteine synthetase (L-glutamate:L-cysteine gamma-ligase [ADP forming]; EC 6.3.2.2), the enzyme that catalyzes the first step in the synthesis of glutathione (GSH). The DNA sequence of gshA was partially determined, and the location of gshA in the chromosome was established by two-factor crosses. P22 cotransduction of gshA with nearby markers showed 21% linkage to srl and 1% linkage to hyd; srl was 9% cotransducible with hyd. In light of these data, the gene order gshA srl hyd is suggested. The level of reduced thiols in the gshA strain was 87% lower than the levels measured in the wild-type strain in both aerobically and anaerobically grown cells. 1,2-PDL-dependent transcription of cob/pdu was studied by using M. Casadaban's Mu-lacZ fusions. In aerobically grown cells, transcription of a cbi-lacZ fusion (the cbi genes are the subset of cob genes that encode functions needed for the synthesis of the corrin ring) was 4-fold lower and transcription of a pdu-lacZ fusion was 10-fold lower in a gshA mutant than in the wild-type strain. Expression of the cob/pdu regulon in response to 1,2-PDL was restored when GSH was included in the medium. In anaerobically grown cells, cbi-lacZ transcription was only 0.4-fold lower than in the gshA+ strain; pdu-lacZ transcription was reduced only by 0.34-fold, despite the lower thiol levels in the mutant. cobA-lacZ transcription was used as negative control of gene whose transcription is not controlled by the PocR/1,2-PDL system; under both conditions, cobA transcription remained unaffected. The gshA mutant strain was unable to utilize 1,2-PDL, ethanolamine, or propionate as a carbon and energy source. The defect in ethanolamine utilization appears to be at the level of ethanolamine ammonia-lyase activity, not at the transcriptional level. Possible roles for GSH in ethanolamine, 1,2-PDL, and propionate catabolism are proposed and discussed.
Collapse
Affiliation(s)
- M R Rondon
- Department of Bacteriology, University of Wisconsin--Madison 53706-1567, USA
| | | | | |
Collapse
|
13
|
Danner M, Fuchs A, Miller S, Seckler R. Folding and assembly of phage P22 tailspike endorhamnosidase lacking the N-terminal, head-binding domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 215:653-61. [PMID: 8354271 DOI: 10.1111/j.1432-1033.1993.tb18076.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tryptic digestion of a thermal unfolding intermediate of the phage P22 tailspike endorhamnosidase produces an N-terminally shortened protein fragment comprising amino-acid residues 108-666 [Chen, B.-L. & King, J. (1991) Biochemistry 30, 6260-6269]. In the present work, the 60-kDa C-terminal fragment was purified to homogeneity from the tryptic digest by gel-fitration chromatography. As in the case for the whole tailspike protein (72 kDa), the purified fragment was found to remain stably folded as a highly soluble, SDS-resistant, enzymatically active trimer. However, its unfolding in the presence of guanidinium chloride was accelerated at least 10-fold compared to the complete, native tailspike protein. Shortened tailspike trimers reconstituted spontaneously and with high yield after diluting a solution containing acid-urea-unfolded fragment polypeptides with neutral buffer. Upon recombinant expression of the 60-kDa polypeptide in Escherichia coli, it also assembled efficiently and formed SDS-resistant trimers. The refolding and assembly pathway of the N-terminally shortened tailspike paralleled that of the complete protein with slightly, but significantly, accelerated folding reactions, at both the subunit and the trimer levels. As found for the complete tailspike protein, yields of refolding and assembly of the 60-kDa fragments into SDS-resistant trimers decreased with increasing temperature. The refolding yield of fragments derived from a temperature-sensitive mutant (Gly244-->Arg) tailspike protein was affected in similar fashion as shown for the whole protein. We conclude that the N-terminal domain (residues 1-107) is dispensable for folding and assembly of the P22 tailspike endorhamnosidase both in vitro and in vivo.
Collapse
Affiliation(s)
- M Danner
- Universität Regensburg, Institut für Biophysik und Physikalische Biochemie, Germany
| | | | | | | |
Collapse
|
14
|
Chen B, King J. Thermal unfolding pathway for the thermostable P22 tailspike endorhamnosidase. Biochemistry 1991; 30:6260-9. [PMID: 2059632 DOI: 10.1021/bi00239a026] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The conditions in which protein stability is biologically or industrially relevant frequently differ from those in which reversible denaturation is studied. The trimeric tailspike endorhamnosidase of phage P22 is a viral structural protein which exhibits high stability to heat, proteases, and detergents under a range of environmental conditions. Its intracellular folding pathway includes monomeric and trimeric folding intermediates and has been the subject of detailed genetic analysis. To understand the basis of tailspike thermostability, we have examined the kinetics of thermal and detergent unfolding. During thermal unfolding of the tailspike, a metastable unfolding intermediate accumulates which can be trapped in the cold or in the presence of SDS. This species is still trimeric, but has lost the ability to bind to virus capsids and, unlike the native trimer, is partially susceptible to protease digestion. Its N-terminal regions, containing about 110 residues, are unfolded whereas the central regions and the C-termini of the polypeptide chains are still in the folded state. Thus, the initiation step in thermal denaturation is the unfolding of the N-termini, but melting of the intermediate represents a second kinetic barrier in the denaturation process. This two-step unfolding is unusually slow at elevated temperature; for instance, in 2% SDS at 65 degrees C, the unfolding rate constant is 1.1 x 10(-3) s-1 for the transition from the native to the unfolding intermediate and 4.0 x 10(-5) s-1 for the transition from the intermediate to the unfolded chains. The sequential unfolding pathway explains the insensitivity of the apparent Tm to the presence of temperature-sensitive folding mutations [Sturtevant, J. M., Yu, M.-H., Haase-Pettingell, C., & King, J. (1989) J. Biol. Chem. 264, 10693-10698] which are located in the central region of the chain. The metastable unfolding intermediate has not been detected in the forward folding pathway occurring at lower temperatures. The early stage of the high-temperature thermal unfolding pathway is not the reverse of the late stage of the low-temperature folding pathway.
Collapse
Affiliation(s)
- B Chen
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
15
|
Casjens S, Eppler K, Sampson L, Parr R, Wyckoff E. Fine structure genetic and physical map of the gene 3 to 10 region of the bacteriophage P22 chromosome. Genetics 1991; 127:637-47. [PMID: 2029965 PMCID: PMC1204392 DOI: 10.1093/genetics/127.4.637] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanism by which dsDNA is packaged by viruses is not yet understood in any system. Bacteriophage P22 has been a productive system in which to study the molecular genetics of virus particle assembly and DNA packaging. Only five phage encoded proteins, the products of genes 3, 2, 1, 8 and 5, are required for packaging the virus chromosome inside the coat protein shell. We report here the construction of a detailed genetic and physical map of these genes, the neighboring gene 4 and a portion of gene 10, in which 289 conditional lethal amber, opal, temperature sensitive and cold sensitive mutations are mapped into 44 small (several hundred base pair) intervals of known sequence. Knowledge of missense mutant phenotypes and information on the location of these mutations allows us to begin the assignment of partial protein functions to portions of these genes. The map and mapping strains will be of use in the further genetic dissection of the P22 DNA packaging and prohead assembly processes.
Collapse
Affiliation(s)
- S Casjens
- Department of Cellular, Viral and Molecular Biology, University of Utah Medical Center, Salt Lake City 84132
| | | | | | | | | |
Collapse
|
16
|
Abstract
Within the amino acid sequences of polypeptide chains little is known of the distribution of sites and sequences critical for directing chain folding and assembly. Temperature-sensitive folding (tsf) mutations identifying such sites have been previously isolated and characterized in gene 9 of phage P22 encoding the tailspike endorhamnosidase. We report here the isolation of a set of second-site conformational suppressors which alleviate the defect in such folding mutants. The suppressors were selected for their ability to correct the defects of missense tailspike polypeptide chains, generated by growth of gene 9 amber mutants on Salmonella host strains inserting either tyrosine, serine, glutamine or leucine at the nonsense codons. Second-site suppressors were recovered for 13 of 22 starting sites. The suppressors of defects at six sites mapped within gene 9. (Suppressors for seven other sites were extragenic and distant from gene 9.) The missense polypeptide chains generated from all six suppressible sites displayed ts phenotypes. Temperature-sensitive alleles were isolated at these amber sites by pseudoreversion. The intragenic suppressors restored growth at the restrictive temperature of these presumptive tsf alleles. Characterization of protein maturation in cells infected with mutant phages carrying the intragenic suppressors indicates that the suppression is acting at the level of polypeptide chain folding and assembly.
Collapse
Affiliation(s)
- B Fane
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
17
|
Maurides PA, Schwarz JJ, Berget PB. Intragenic suppression of a capsid assembly-defective P22 tailspike mutation. Genetics 1990; 125:673-81. [PMID: 2144496 PMCID: PMC1204093 DOI: 10.1093/genetics/125.4.673] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The tailspike protein of bacteriophage P22 assembles with mature capsids during the final reaction in phage morphogenesis. The gene 9 mutation hmH3034 synthesizes a tailspike protein with a change at amino acid 100 from Asp to Asn. This mutant form of trimeric tailspike protein fails to assemble with capsids in vivo. By using in vitro quantitative tailspike-capsid assembly assays, this mutant tailspike trimer can be shown to assemble with capsids at very high tailspike concentrations. From these assays, we estimate that this single missense mutation decreases by 100-500-fold the affinity of the tailspike for capsids. Furthermore, hmH3034 tailspike protein has a structural defect which makes the mature tailspike trimers sensitive to SDS at room temperature and causes the trimers to "partially unfold." Spontaneously arising intragenic suppressors of the capsid assembly defect have been isolated. All of these suppressors are changes at amino acid 13 of the tailspike protein, which substitute His, Leu or Ser for the wild type amino acid Arg. These hmH3034/sup3034 mutants and the separated sup3034 mutants form fully functional tailspike proteins with assembly activities indistinguishable from wild type while retaining the SDS-sensitive structural defect. From the analysis of the hmH3034 mutant and its suppressors, we propose that in the wild-type tailspike protein, the Asp residue at position 100 and the Arg residue at position 13 form an intrachain or interchain salt bridge which stabilizes the amino terminus of the tailspike protein and that the unneutralized positive charge at amino acid 13 in the hmH3034 protein is the cause of the assembly defect of this protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P A Maurides
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890
| | | | | |
Collapse
|
18
|
Schwarz JJ, Berget PB. Characterization of bacteriophage P22 tailspike mutant proteins with altered endorhamnosidase and capsid assembly activities. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47226-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|