1
|
Da Lage JL. The Amylases of Insects. INTERNATIONAL JOURNAL OF INSECT SCIENCE 2018; 10:1179543318804783. [PMID: 30305796 PMCID: PMC6176531 DOI: 10.1177/1179543318804783] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 05/26/2023]
Abstract
Alpha-amylases are major digestive enzymes that act in the first step of maltopolysaccharide digestion. In insects, these enzymes have long been studied for applied as well as purely scientific purposes. In many species, amylases are produced by multiple gene copies. Rare species are devoid of Amy gene. They are predominantly secreted in the midgut but salivary expression is also frequent, with extraoral activity. Enzymological parameters are quite variable among insects, with visible trends according to phylogeny: Coleopteran amylases have acidic optimum activity, whereas dipteran amylases have neutral preference and lepidopteran ones have clear alkaline preference. The enzyme structure shows interesting variations shaped by evolutionary convergences, such as the recurrent loss of a loop involved in substrate handling. Many works have focused on the action of plant amylase inhibitors on pest insect amylases, in the frame of crop protection by transgenesis. It appears that sensitivity or resistance to inhibitors is finely tuned and very specific and that amylases and their inhibitors have coevolved. The multicopy feature of insect amylases appears to allow tissue-specific or stage-specific regulation, but also to broaden enzymological abilities, such as pH range, and to overcome plant inhibitory defenses.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- UMR 9191 Évolution, Génomes, Comportement, Écologie,
CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette,
France
| |
Collapse
|
2
|
Da Lage JL, Maczkowiak F, Cariou ML. Phylogenetic distribution of intron positions in alpha-amylase genes of bilateria suggests numerous gains and losses. PLoS One 2011; 6:e19673. [PMID: 21611157 PMCID: PMC3096672 DOI: 10.1371/journal.pone.0019673] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 04/03/2011] [Indexed: 11/19/2022] Open
Abstract
Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that "resets" of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- Laboratoire Evolution, génomes et spéciation, UPR 9034 CNRS, Gif sur Yvette, France.
| | | | | |
Collapse
|
3
|
Arguello JR, Connallon T. Gene duplication and ectopic gene conversion in Drosophila. Genes (Basel) 2011; 2:131-51. [PMID: 24710141 PMCID: PMC3924832 DOI: 10.3390/genes2010131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 01/26/2011] [Accepted: 02/27/2011] [Indexed: 11/26/2022] Open
Abstract
The evolutionary impact of gene duplication events has been a theme of Drosophila genetics dating back to the Morgan School. While considerable attention has been placed on the genetic novelties that duplicates are capable of introducing, and the role that positive selection plays in their early stages of duplicate evolution, much less attention has been given to the potential consequences of ectopic (non-allelic) gene conversion on these evolutionary processes. In this paper we consider the historical origins of ectopic gene conversion models and present a synthesis of the current Drosophila data in light of several primary questions in the field.
Collapse
Affiliation(s)
- J Roman Arguello
- Department of Molecular Biology and Genetics, Cornell University, 107 Biotechnology Building, Ithaca, NY 14853, USA.
| | - Tim Connallon
- Department of Molecular Biology and Genetics, Cornell University, 107 Biotechnology Building, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Gabriško M, Janeček Š. Characterization of Maltase Clusters in the Genus Drosophila. J Mol Evol 2010; 72:104-18. [DOI: 10.1007/s00239-010-9406-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 10/27/2010] [Indexed: 11/28/2022]
|
5
|
Abstract
Nonallelic gene conversion has been proposed as a major force in homogenizing the sequences of paralogous genes. In this work, we investigate the extent and characteristics of gene conversion among gene families in nine species of the genus Drosophila. We carried out a genome-wide study of 2855 gene families (including 17,742 genes) and determined that conversion events involved 2628 genes. The proportion of converted genes ranged across species from 1 to 9% when paralogs of all ages were included. Although higher levels of gene conversion were found among young gene duplicates, at most 1-2% of the coding sequences of these duplicates were affected by conversion. Using a second approach relying on gene family size changes and gene-tree/species-tree reconciliation methods, we estimate that only 1-15% of gene trees are misled by gene conversion, depending on the lineage considered. Several features of paralogous genes correlate with gene conversion, such as intra-/interchromosomal location, level of nucleotide divergence, and GC content, although we found no definitive evidence for biased substitution patterns. After considering species-specific differences in the age and distance between paralogs, we found a highly significant difference in the amount of gene conversion among species. In particular, members of the melanogaster group showed the lowest proportion of converted genes. Our data therefore suggest underlying differences in the mechanistic basis of gene conversion among species.
Collapse
|
6
|
Maczkowiak F, Da Lage JL. Origin and evolution of the Amyrel gene in the alpha-amylase multigene family of Diptera. Genetica 2007; 128:145-58. [PMID: 17028947 DOI: 10.1007/s10709-005-5578-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 11/30/2005] [Indexed: 10/24/2022]
Abstract
Alpha-amylase genes often form multigene families in living organisms. In Diptera, a remote paralog, Amyrel, had been discovered in Drosophila, where this gene is currently used as a population and phylogenetic marker. The putative encoded protein has about 40% divergence with the classical amylases. We have searched the presence of the paralog in other families of Diptera to track its origin and understand its evolution. Amyrel was detected in a number of families of Muscomorpha (Brachycera-Cyclorrapha), suggesting an origin much older than previously thought. It has not been found elsewhere to date, and it is absent from the Anopheles gambiae genome. The intron-exon structures of the genes found so far suggest that the ancestral gene (before the duplication which gave rise to Amyrel) had two introns, and that subsequent, repeated and independent loss of one or both introns occurred in some Muscomorpha families. It seems that the Amyrel protein has experienced specific amino acid substitutions in regions generally well conserved in amylases, raising the possibility of peculiar, functional adaptations of this protein.
Collapse
Affiliation(s)
- Frédérique Maczkowiak
- Populations, génétique et évolution, UPR 9034, CNRS, Gif sur Yvette, 91198, Cedex, France
| | | |
Collapse
|
7
|
Sugino H. Comparative genomic analysis of the mouse and rat amylase multigene family. FEBS Lett 2007; 581:355-60. [PMID: 17223109 DOI: 10.1016/j.febslet.2006.12.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 12/21/2006] [Accepted: 12/22/2006] [Indexed: 11/21/2022]
Abstract
The rat and mouse amylase gene families were characterized using sequence data from the UCSC genome assembly. We found that the rat genome contains one amylase-1 and two amylase-2 genes, lying close to one another on the same chromosome. Detailed analysis revealed at least six additional amylase pseudogenes in the rat genome in the region adjacent to the amylase-2 genes. In contrast, the mouse has one amylase-1 gene and five amylase-2 genes; the latter are tandemly and systematically arranged on the same chromosome and were generated by segmental duplication. Detailed analysis revealed that the mouse has two amylase pseudogenes, located 5' to the five amylase-2 segments. Thus, the amylase genes of mouse and rat tend to be amplified; the sequences of some of them are fixed while others have become pseudogenes during evolution. This is the second report of amylase genomic organization in mammals and the first in the rodents.
Collapse
Affiliation(s)
- Hidehiko Sugino
- Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Kartavtsev YP, Lee JS. Analysis of nucleotide diversity at the cytochrome b and cytochrome oxidase 1 genes at the population, species, and genus levels. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406040016] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Kopp A. Basal relationships in the Drosophila melanogaster species group. Mol Phylogenet Evol 2006; 39:787-98. [PMID: 16527496 DOI: 10.1016/j.ympev.2006.01.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 01/17/2006] [Accepted: 01/27/2006] [Indexed: 11/26/2022]
Abstract
The Drosophila melanogaster species group is a popular model for evolutionary studies due to its morphological and ecological diversity and its inclusion of the model species D. melanogaster. However, phylogenetic relationships among major lineages within this species group remain controversial. In this report, the phylogeny of 10 species representing each of the well-supported monophyletic clades in the melanogaster group was studied using the sequences of 14 loci that together comprise 9493 nucleotide positions. Combined Bayesian analysis using gene-specific substitution models produced a 100% credible set of two trees. In the strict consensus of these trees, the ananassae subgroup branches first in the melanogaster species group, followed by the montium subgroup. The remaining lineages form a monophyletic clade in which D. ficusphila and D. elegans branch first, followed by D. biarmipes, D. eugracilis, and the melanogaster subgroup. This strongly supported phylogeny resolves most basal relationships in the melanogaster species group, and provides a framework that can be extended in the future to encompass more species.
Collapse
Affiliation(s)
- Artyom Kopp
- Section of Evolution and Ecology, Center for Genetics and Development, Center for Population Biology, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
10
|
Abstract
Nested clade phylogeographical analysis (NCPA) has become a common tool in intraspecific phylogeography. To evaluate the validity of its inferences, NCPA was applied to actual data sets with 150 strong a priori expectations, the majority of which had not been analysed previously by NCPA. NCPA did well overall, but it sometimes failed to detect an expected event and less commonly resulted in a false positive. An examination of these errors suggested some alterations in the NCPA inference key, and these modifications reduce the incidence of false positives at the cost of a slight reduction in power. Moreover, NCPA does equally well in inferring events regardless of the presence or absence of other, unrelated events. A reanalysis of some recent computer simulations that are seemingly discordant with these results revealed that NCPA performed appropriately in these simulated samples and was not prone to a high rate of false positives under sampling assumptions that typify real data sets. NCPA makes a posteriori use of an explicit inference key for biological interpretation after statistical hypothesis testing. Alternatives to NCPA that claim that biological inference emerges directly from statistical testing are shown in fact to use an a priori inference key, albeit implicitly. It is argued that the a priori and a posteriori approaches to intraspecific phylogeography are complementary, not contradictory. Finally, cross-validation using multiple DNA regions is shown to be a powerful method of minimizing inference errors. A likelihood ratio hypothesis testing framework has been developed that allows testing of phylogeographical hypotheses, extends NCPA to testing specific hypotheses not within the formal inference key (such as the out-of-Africa replacement hypothesis of recent human evolution) and integrates intra- and interspecific phylogeographical inference.
Collapse
Affiliation(s)
- Alan R Templeton
- Department of Biology, Campus Box 1137, Washington University, St Louis, Missouri 63130-4899, USA.
| |
Collapse
|
11
|
Abstract
Pseudogenes have been defined as nonfunctional sequences of genomic DNA originally derived from functional genes. It is therefore assumed that all pseudogene mutations are selectively neutral and have equal probability to become fixed in the population. Rather, pseudogenes that have been suitably investigated often exhibit functional roles, such as gene expression, gene regulation, generation of genetic (antibody, antigenic, and other) diversity. Pseudogenes are involved in gene conversion or recombination with functional genes. Pseudogenes exhibit evolutionary conservation of gene sequence, reduced nucleotide variability, excess synonymous over nonsynonymous nucleotide polymorphism, and other features that are expected in genes or DNA sequences that have functional roles. We first review the Drosophila literature and then extend the discussion to the various functional features identified in the pseudogenes of other organisms. A pseudogene that has arisen by duplication or retroposition may, at first, not be subject to natural selection if the source gene remains functional. Mutant alleles that incorporate new functions may, nevertheless, be favored by natural selection and will have enhanced probability of becoming fixed in the population. We agree with the proposal that pseudogenes be considered as potogenes, i.e., DNA sequences with a potentiality for becoming new genes.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | |
Collapse
|
12
|
Zhang Z, Inomata N, Ohba T, Cariou ML, Yamazaki T. Codon bias differentiates between the duplicated amylase loci following gene duplication in Drosophila. Genetics 2002; 161:1187-96. [PMID: 12136021 PMCID: PMC1462165 DOI: 10.1093/genetics/161.3.1187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We examined the pattern of synonymous substitutions in the duplicated Amylase (Amy) genes (called the Amy1- and Amy3-type genes, respectively) in the Drosophila montium species subgroup. The GC content at the third synonymous codon sites of the Amy1-type genes was higher than that of the Amy3-type genes, while the GC content in the 5'-flanking region was the same in both genes. This suggests that the difference in the GC content at third synonymous sites between the duplicated genes is not due to the temporal or regional changes in mutation bias. We inferred the direction of synonymous substitutions along branches of a phylogeny. In most lineages, there were more synonymous substitutions from G/C (G or C) to A/T (A or T) than from A/T to G/C. However, in one lineage leading to the Amy1-type genes, which is immediately after gene duplication but before speciation of the montium species, synonymous substitutions from A/T to G/C were predominant. According to a simple model of synonymous DNA evolution in which major codons are selectively advantageous within each codon family, we estimated the selection intensity for specific lineages in a phylogeny on the basis of inferred patterns of synonymous substitutions. Our result suggested that the difference in GC content at synonymous sites between the two Amy-type genes was due to the change of selection intensity immediately after gene duplication but before speciation of the montium species.
Collapse
Affiliation(s)
- Ze Zhang
- Laboratory of Molecular Population Genetics, Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
13
|
Cariou ML, Silvain JF, Daubin V, Da Lage JL, Lachaise D. Divergence between Drosophila santomea and allopatric or sympatric populations of D. yakuba using paralogous amylase genes and migration scenarios along the Cameroon volcanic line. Mol Ecol 2001; 10:649-60. [PMID: 11298976 DOI: 10.1046/j.1365-294x.2001.01225.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have used two paralogous genes (Amyrel and Amy) of the amylase multigene family to reconstruct the phylogeny of the nine Drosophila melanogaster subgroup sister species, including D. santomea, the newly discovered endemic from São Tomé island. The evolutionary divergence of these genes is of special interest as it is suspected to result from physiological evolution via gene duplication. This paper describes the relationship between the geographical origin of the various strains and the patterns of mating and phylogeny, focusing on the evolution of D. santomea and its relationship to other species and their niches. The Amyrel and Amy data indicate that, contrary to expectations, the sympatric insular D. yakuba population is less closely related to D. santomea than allopatric mainland ones, suggesting that the extant insular D. yakuba population on São Tomé results from a recent secondary colonization. Data for sympatric and allopatric D. yakuba suggest that D. santomea arose from a mainland D. yakuba parental stock when montane habitats of the Cameroon volcanic line extended to lower altitudes during colder and less humid periods. Despite their different modes of evolution and different functions, the Amyrel and Amy genes provide remarkably consistent topologies and hence reflect the same history, that of the species.
Collapse
Affiliation(s)
- M L Cariou
- Laboratory Populations, Genetics & Evolution, CNRS, 91198 Gif-sur-Yvette Cedex, France.
| | | | | | | | | |
Collapse
|
14
|
Inomata N, Yamazaki T. Evolution of nucleotide substitutions and gene regulation in the amylase multigenes in Drosophila kikkawai and its sibling species. Mol Biol Evol 2000; 17:601-15. [PMID: 10742051 DOI: 10.1093/oxfordjournals.molbev.a026339] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In order to determine evolutionary changes in gene regulation and the nucleotide substitution pattern in a multigene family, the amylase multigenes were characterized in Drosophila kikkawai and its sibling species. The nucleotide substitution pattern was investigated. Drosophila kikkawai has four amylase genes. The Amy1 and Amy2 genes are a head-to-head duplication in the middle of the B arm of the second chromosome, while the Amy3 and Amy4 genes are a tail-to-tail duplication near the centromere of the same chromosome. In the sibling species of D. kikkawai (Drosophila bocki, Drosophila leontia, and Drosophila lini), sequencing of the Amy1, Amy2, Amy3, and Amy4 genes revealed that the Amy1 and Amy2 gene group diverged from Amy3 and Amy4 after duplication. In the Amy1 and Amy2 genes, the divergent evolution occurred in the flanking regions; in contrast, the coding regions have evolved in concerted fashion. The electrophoretic pattern of AMY isozymes was also examined. In D. kikkawai and its siblings, two or three electrophoretically different isozymes are encoded by the Amy1 and Amy2 genes (S isozyme) and by the Amy3 and Amy4 genes (F (M) isozymes). The S and F (M) isozymes show different patterns of band intensity when larvae and flies were fed in different media. Amy1 and Amy2, which encode the S isozyme, are more strikingly regulated than Amy3 and Amy4, which encode the F (M) isozyme. The GC content and codon usage bias were higher for the Amy1 and Amy2 genes than for the Amy3 and Amy4 genes. Although the ratio of synonymous and replacement substitutions within the Amy1 and Amy2 gene group was not significantly different from that within the Amy3 and Amy4 gene group, the synonymous substitution rate in the lineage of Amy1 and Amy2 was lower than that of Amy3 and Amy4. In conclusion, after the first duplication but before speciation of four species, the synonymous substitution rate between the two lineages and the electrophoretic pattern of the isozymes encoded by them changed, although we do not know whether there was any evolutionary relationship between the two.
Collapse
Affiliation(s)
- N Inomata
- Laboratory of Molecular Population Genetics, Department of Biology, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
15
|
Martin AP. Increasing Genomic Complexity by Gene Duplication and the Origin of Vertebrates. Am Nat 1999; 154:111-128. [DOI: 10.1086/303231] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Steinemann S, Steinemann M. The Amylase gene cluster on the evolving sex chromosomes of Drosophila miranda. Genetics 1999; 151:151-61. [PMID: 9872956 PMCID: PMC1460469 DOI: 10.1093/genetics/151.1.151] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
On the basis of chromosomal homology, the Amylase gene cluster in Drosophila miranda must be located on the secondary sex chromosome pair, neo-X (X2) and neo-Y, but is autosomally inherited in all other Drosophila species. Genetic evidence indicates no active amylase on the neo-Y chromosome and the X2-chromosomal locus already shows dosage compensation. Several lines of evidence strongly suggest that the Amy gene cluster has been lost already from the evolving neo-Y chromosome. This finding shows that a relatively new neo-Y chromosome can start to lose genes and hence gradually lose homology with the neo-X. The X2-chromosomal Amy1 is intact and Amy2 contains a complete coding sequence, but has a deletion in the 3'-flanking region. Amy3 is structurally eroded and hampered by missing regulatory motifs. Functional analysis of the X2-chromosomal Amy1 and Amy2 regions from D. miranda in transgenic D. melanogaster flies reveals ectopic AMY1 expression. AMY1 shows the same electrophoretic mobility as the single amylase band in D. miranda, while ectopic AMY2 expression is characterized by a different mobility. Therefore, only the Amy1 gene of the resident Amy cluster remains functional and hence Amy1 is the dosage compensated gene.
Collapse
Affiliation(s)
- S Steinemann
- Institut für Genetik, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | | |
Collapse
|
17
|
Abstract
Evolution of multigene families by gene duplication and subsequent diversification is analyzed assuming a haploid model without interchromosomal crossing over. Chromosomes with more different genes are assumed to have higher fitness. Advantageous and deleterious mutations and duplication/deletion also affect the evolution, as in previous studies. In addition, negative selection on the total number of genes (copy number selection) is incorporated in the model. First, a Markov chain approximation is used to obtain formulas for the average numbers of different alleles, genes without pseudogene mutations, and pseudogenes assuming that mutation rates and duplication/deletion rates are all very small. Computer simulation shows that the approximation works well if the products of population size with mutation and duplication/deletion rates are all small compared to 1. However, as they become large, the approximation underestimates gene numbers, especially the number of pseudogenes. Based on the approximation, the following was found: (1) Gene redundancy measured by the average number of redundant genes decreases as advantageous selection becomes stronger. (2) The number of different genes can be approximately described by a linear pure-birth process and thus has a coefficient of variation around 1. (3) The birth rate is an increasing function of population size without copy number selection, but not necessarily so otherwise. (4) Copy number selection drastically decreases the number of pseudogenes. Available data of mutation rates and duplication/deletion rates suggest much faster increases of gene numbers than those observed in the evolution of currently existing multigene families. Various explanations for this discrepancy are discussed based on our approximate analysis.
Collapse
Affiliation(s)
- H Tachida
- Department of Biology, Faculty of Science, Kyushu University 33, Fukuoka 812-8581, Japan.
| | | |
Collapse
|
18
|
Da Lage JL, Renard E, Chartois F, Lemeunier F, Cariou ML. Amyrel, a paralogous gene of the amylase gene family in Drosophila melanogaster and the Sophophora subgenus. Proc Natl Acad Sci U S A 1998; 95:6848-53. [PMID: 9618501 PMCID: PMC22658 DOI: 10.1073/pnas.95.12.6848] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We describe a gene from Drosophila melanogaster related to the alpha-amylase gene Amy. This gene, which exists as a single copy, was named Amyrel. It is strikingly divergent from Amy because the amino acid divergence is 40%. The coding sequence is interrupted by a short intron at position 655, which is unusual in amylase genes. Amyrel has also been cloned in Drosophila ananassae, Drosophila pseudoobscura, and Drosophila subobscura and is likely to be present throughout the Sophophora subgenus, but, to our knowledge, it has not been detected outside. Unexpectedly, there is a strong conservation of 5' and 3' flanking regions between Amyrel genes from different species, which is not the case for Amy and which suggests that selection acts on these regions. In contrast to the Amy genes, Amyrel is transcribed in larvae of D. melanogaster but not in adults. However, the protein has not been detected yet. Amyrel evolves about twice as fast as Amy in the several species studied. We suggest that this gene could result from a duplication of Amy followed by accelerated and selected divergence toward a new adaptation.
Collapse
Affiliation(s)
- J L Da Lage
- Populations, Génétique et Evolution, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette cedex, France.
| | | | | | | | | |
Collapse
|
19
|
Janecek S. alpha-Amylase family: molecular biology and evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1997; 67:67-97. [PMID: 9401418 DOI: 10.1016/s0079-6107(97)00015-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Grossman GL, Campos Y, Severson DW, James AA. Evidence for two distinct members of the amylase gene family in the yellow fever mosquito, Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1997; 27:769-781. [PMID: 9443377 DOI: 10.1016/s0965-1748(97)00063-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Genomic DNA fragments encoding a salivary gland-specific alpha-amylase gene, Amylase I (Amy I), and an additional amylase, Amylase II (AmyII) of the yellow fever mosquito, Aedes aegypti, were isolated and characterized. Two independently isolated DNA fragments, G34-F and G34-14A, encode polymorphic alleles of Amy I. A 3.2 kilobase (kb) EcoR I fragment of G34-F, F2, has been sequenced in its entirety and contains 832 base pairs (bp) of the 5'-end, non-coding and putative promoter regions that are adjacent to 2.4 kb of the Amy I coding region. One intron, 59 bp in length, is found towards the 3'-end of the clone. A third genomic clone, 3A, corresponding to Amy II, was sequenced and shown not to contain the primary DNA sequence that encodes the 260 amino acid region that uniquely characterizes the amino terminal end of the Amy I product. Amy I was assigned by restriction fragment length polymorphism (RFLP) mapping to chromosome 2 (23.0 cM) and Amy II to chromosome 1 (44.0 cM). Amy I and Amy II are highly polymorphic and there may be multiple linked copies at each locus. Comparisons between Amy I and Amy II are presented for the putative promoter and conceptual translation products. The identification of two distinct amylase genes and their separate linkage assignments provides evidence for a multigene family of alpha-amylases in Ae. aegypti.
Collapse
Affiliation(s)
- G L Grossman
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, USA
| | | | | | | |
Collapse
|
21
|
Da Lage JL, Wegnez M, Cariou ML. Distribution and evolution of introns in Drosophila amylase genes. J Mol Evol 1996; 43:334-47. [PMID: 8798339 DOI: 10.1007/bf02339008] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
While the two amylase genes of Drosophila melanogaster are intronless, the three genes of D. pseudoobscura harbor a short intron. This raises the question of the common structure of the Amy gene in Drosophila species. We have investigated the presence or absence of an intron in the amylase genes of 150 species of Drosophilids. Using polymerase chain reaction (PCR), we have amplified a region that surrounds the intron site reported in D. pseudoobscura and a few other species. The results revealed that most species contain an intron, with a variable size ranging from 50 to 750 bp, although the very majoritary size was around 60-80 bp. Several species belonging to different lineages were found to lack an intron. This loss of intervening sequence was likely due to evolutionarily independent and rather frequent events. Some other species had both types of genes: In the obscura group, and to a lesser extent in the ananassae subgroup, intronless copies had much diverged from intron-containing genes. Base composition of short introns was found to be variable and correlated with that of the surrounding exons, whereas long introns were all A-T rich. We have extended our study to non-Drosophilid insects. In species from other orders of Holometaboles, Lepidoptera and Hymenoptera, an intron was found at an identical position in the Amy gene, suggesting that the intron was ancestral.
Collapse
Affiliation(s)
- J L Da Lage
- UPR 9034: Populations, Génétique et Evolution, CNRS, 91198 Gif sur Yvette cedex, France
| | | | | |
Collapse
|
22
|
Inomata N, Yamazaki T. Adaptive evolution at the molecular level of the duplicatedAmy gene system inDrosophila. J Genet 1996. [DOI: 10.1007/bf02931756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
McKee BD, Satter MT. Structure of the Y chromosomal Su(Ste) locus in Drosophila melanogaster and evidence for localized recombination among repeats. Genetics 1996; 142:149-61. [PMID: 8770592 PMCID: PMC1206943 DOI: 10.1093/genetics/142.1.149] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The structure of the Suppressor of Stellate [Su(Ste)] locus on the Drosophila melanogaster Y chromosome was examined by restriction analysis of both native and cloned genomic DNA. The locus consists of short subarrays of tandem repeats separated by members of other moderately repeated families. Both size variants and restriction variants proved to be common. Most repeats fell into two size classes-2.8 and 2.5 kb-but other size variants were also observed. Restriction variants showed a strong tendency to cluster, both at the gross level where some variants were present in only one of three subintervals of the locus, and at the fine level, where repeats from the same phage clone were significantly more similar than repeats from different clones. Restriction variants were shared freely among repeats of different size classes; however, size variants appeared to be randomly distributed among phage clones. These data indicate that recombination among tandem Su(Ste) repeats occurs at much higher frequencies between close neighbors than distant ones. In addition, they suggest that gene conversion rather than sister chromatid exchange may be the primary recombinational mechanism for spreading variation among repeats at the Su(Ste) locus.
Collapse
Affiliation(s)
- B D McKee
- Department of Biology, University of Wisconsin, Eau Claire 54702, USA.
| | | |
Collapse
|
24
|
Da Lage JL, Klarenberg A, Cariou ML. Variation in sex-, stage- and tissue-specific expression of the amylase genes in Drosophila ananassae. Heredity (Edinb) 1996; 76 ( Pt 1):9-18. [PMID: 8575934 DOI: 10.1038/hdy.1996.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Expression of the amylase multigene family of Drosophila ananassae was investigated in third-instar larvae and adults. A developmental differentiation was found between the Amy1-2 and Amy3-4 gene clusters, the former being preferentially expressed in larvae, the latter in adults. During adult life, we observed a decrease in Amy1-2 expression in males of certain strans. We have raised some arguments for the existence of trans-active regulators, acting as repressors of Amy1-2 in adults. The putative repressors might exhibit a geographical polymorphism, with a fixed active form in Pacific regions and a polymorphic pattern in Africa, thus increasing the diversity observed in adult amylase phenotypes. A clear differentiation between the two gene clusters was also found in tissue-specific activity along the third-instar larval midgut. In the anterior midgut, only Amy1-2 is active, while both gene groups are expressed in the posterior midgut, with an additional subzonation within it.
Collapse
Affiliation(s)
- J L Da Lage
- UPR Population, Génétique et Evolution, CNRS, Gif sur Yvette, France
| | | | | |
Collapse
|
25
|
Inomata N, Kanda K, Cariou ML, Tachida H, Yamazaki T. Evolution of the response patterns to dietary carbohydrates and the developmental differentiation of gene expression of alpha-amylase in Drosophila. J Mol Evol 1995; 41:1076-84. [PMID: 8587106 DOI: 10.1007/bf00173189] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intraspecific variation of alpha-amylase activity in D. melanogaster and D. immigrans, which is distantly related to D. melanogaster, and interspecific variation of alpha-amylase activity in 18 Drosophila species were examined. The amount of intraspecific variation of alpha-amylase activities measured in terms of coefficient of variation in D. melanogaster and D. immigrans was one-half and one-tenth or less, respectively, of the interspecific variation in 18 Drosophila species. We also surveyed the response patterns of alpha-amylase activity to dietary carbohydrates at the larval and adult stages. The levels of alpha-amylase activity depended on both repression by dietary glucose (glucose repression) and induction by dietary starch (starch induction). In general, our data suggest that glucose repression was conserved among species at both stages while starch induction was mainly observed in larvae, although the degree of the response depended on species. In D. lebanonensis lebanonensis and D. serrata, larvae expressed electrophoretically different alpha-amylase variants (isozymes) from those of adult flies. These results may suggest that the regulatory systems responsible both for the response to environment and developmental expression are different among species in Drosophila.
Collapse
Affiliation(s)
- N Inomata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka prefecture, Japan
| | | | | | | | | |
Collapse
|
26
|
Wells RS. Sequence and evolution of the Drosophila pseudoobscura glycerol-3-phosphate dehydrogenase locus. J Mol Evol 1995; 41:886-93. [PMID: 8587133 DOI: 10.1007/bf00173168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Gpdh genomic region has been cloned and sequenced in Drosophila pseudoobscura. A total of 6.8 kb of sequence was obtained, encompassing all eight exons of the gene. The exons have been aligned with the sequence from D. melanogaster, and the rates of synonymous and nonsynonymous substitution have been compared to those of other genes sequenced in these two species. Gpdh has the lowest rate of nonsynonymous substitution yet seen in genes sequenced in both D. pseudoobscura and D. melanogaster. No insertion/deletion events were observed, and the overall architecture of the gene (i.e., intron sites, etc.) is conserved. An interesting amino acid reversal was noted between the D. melanogaster Fast allele and the D. pseudoobscura gene.
Collapse
Affiliation(s)
- R S Wells
- Museum of Comparative Zoology Laboratories, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
27
|
Shibata H, Yamazaki T. Molecular evolution of the duplicated Amy locus in the Drosophila melanogaster species subgroup: concerted evolution only in the coding region and an excess of nonsynonymous substitutions in speciation. Genetics 1995; 141:223-36. [PMID: 8536970 PMCID: PMC1206720 DOI: 10.1093/genetics/141.1.223] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
From the analysis of restriction maps of the Amy region in eight sibling species belonging to the Drosophila melanogaster species subgroup, we herein show that the patterns of duplication of the Amy gene are almost the same in all species. This indicates that duplication occurred before speciation within this species subgroup. From the nucleotide sequence data, we show a strong within-species similarity between the duplicated loci in the Amy coding region. This is in contrast to a strong similarity in the 5' and 3' flanking regions within each locus (proximal or distal) throughout the species subgroup. This means that concerted evolution occurred only in the Amy coding region and that differentiated evolution between the duplication occurred in the flanking regions. Moreover, when comparing the species, we also found a significant excess of nonsynonymous substitutions. In particular, all the fixed substitutions specific to D. erecta were found to be nonsynonymous. We thus conclude that adaptive protein evolution occurred in the lineage of D. erecta that is a "specialist" species for host plants and probably also occurs in the process of speciation in general.
Collapse
Affiliation(s)
- H Shibata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
28
|
Abstract
Although the chromosomal polymorphism for inversions in Drosophila pseudoobscura is one of the best studied systems in population genetics, the identity of the ancestral gene arrangement has remained unresolved for more than 50 years. There are more than 40 gene arrangements, and 4 of them (Standard, Hypothetical, Santa Cruz, and Tree Line) have been considered as candidates for the ancestral type. We propose a framework of competing hypotheses to distinguish among the alternatives. Two conclusions come from contrasting each hypothesis with the results from DNA sequencing and restriction mapping. First, not only Standard but also Hypothetical can be excluded as the ancestral gene arrangement. Second, although either Tree Line or Santa Cruz could be the ancestral type, the available data provide greater support for Santa Cruz.
Collapse
Affiliation(s)
- A Popadić
- Genetics Department, University of Georgia, Athens 30602-7223
| | | |
Collapse
|
29
|
Akashi H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 1994; 136:927-35. [PMID: 8005445 PMCID: PMC1205897 DOI: 10.1093/genetics/136.3.927] [Citation(s) in RCA: 505] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
I present evidence that natural selection biases synonymous codon usage to enhance the accuracy of protein synthesis in Drosophila melanogaster. Since the fitness cost of a translational misincorporation will depend on how the amino acid substitution affects protein function, selection for translational accuracy predicts an association between codon usage in DNA and functional constraint at the protein level. The frequency of preferred codons is significantly higher at codons conserved for amino acids than at nonconserved codons in 38 genes compared between D. melanogaster and Drosophila virilis or Drosophila pseudoobscura (Z = 5.93, P < 10(-6)). Preferred codon usage is also significantly higher in putative zinc-finger and homeodomain regions than in the rest of 28 D. melanogaster transcription factor encoding genes (Z = 8.38, P < 10(-6)). Mutational alternatives (within-gene differences in mutation rates, amino acid changes altering codon preference states, and doublet mutations at adjacent bases) do not appear to explain this association between synonymous codon usage and amino acid constraint.
Collapse
Affiliation(s)
- H Akashi
- Department of Ecology and Evolution, University of Chicago, Illinois 60637
| |
Collapse
|
30
|
Colby C, Williams SM. The distribution and spreading of rare variants in the histone multigene family of Drosophila melanogaster. Genetics 1993; 135:127-33. [PMID: 7901119 PMCID: PMC1205612 DOI: 10.1093/genetics/135.1.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We surveyed the distribution of rare variant restriction sites within and among histone gene arrays of Drosophila melanogaster using restriction fragment length polymorphism (RFLP) analysis. Seventy-three naturally occurring arrays were digested with restriction enzymes that had no recognition sites in the published histone sequence. Of the arrays surveyed, 68.5% had at least two nonconsensus restriction sites present as indicated by the presence of a small band or bands on the autoradiographs. These bands were almost always the length of a single repeat in the histone multigene family or a multiple of this length. In arrays with more than one band, intensity of the bands almost always decreased with increasing size. This shows that within these arrays variant restriction sites were predominantly located on adjacent repeats. If these bands are caused by spreading of variant sites, as is most likely, then variants spread along the array as an inverse function of distance. Overall, if a sequence spread it had a 92% probability of ending up in its nearest neighbor. This pattern may result from the noncontiguous nature of the histone family.
Collapse
Affiliation(s)
- C Colby
- Department of Biology, Boston University, Massachusetts 02215
| | | |
Collapse
|
31
|
Segarra C, Aguadé M. Nucleotide divergence of the rp49 gene region between Drosophila melanogaster and two species of the Obscura group of Drosophila. J Mol Evol 1993; 36:243-8. [PMID: 8483162 DOI: 10.1007/bf00160479] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A 2.1-kb SstI fragment including the rp49 gene and the 3' end of the delta-serendipity gene has been cloned and sequenced in Drosophila pseudoobscura. rp49 maps at region 62 on the tip of chromosome II of this species. Both the coding and flanking regions have been aligned and compared with those of D. subobscura. There is no evidence for heterogeneity in the rate of silent substitution between the rp49 coding region and the rate of substitutions in flanking regions, the overall silent divergence per site being 0.19. Noncoding regions also differ between both species by different insertions/deletions, some of which are related to repeated sequences. The rp49 region of D. pseudoobscura shows a strong codon bias similar to those of D. subobscura and D. melanogaster. Comparison of the rates of silent (Ks) and nonsilent (Ka) substitutions of the rp49 gene and other genes completely sequenced in D. pseudoobscura and D. melanogaster confirms previous results indicating that rp49 is evolving slowly both at silent and nonsilent sites. According to the data for the rp49 region, D. pseudoobscura and D. subobscura lineages would have diverged some 9 Myr ago, if one assumes a divergence time of 30 Myr for the melanogaster and obscura groups.
Collapse
Affiliation(s)
- C Segarra
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
32
|
Magoulas C, Loverre-Chyurlia A, Abukashawa S, Bally-Cuif L, Hickey DA. Functional conservation of a glucose-repressible amylase gene promoter from Drosophila virilis in Drosophila melanogaster. J Mol Evol 1993; 36:234-42. [PMID: 8483161 DOI: 10.1007/bf00160478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have demonstrated that the expression of the alpha-amylase gene is repressed by dietary glucose in Drosophila melanogaster. Here, we show that the alpha-amylase gene of a distantly related species, D. virilis, is also subject to glucose repression. Moreover, the cloned amylase gene of D. virilis is shown to be glucose repressible when it is transiently expressed in D. melanogaster larvae. This cross-species, functional conservation is mediated by a 330-bp promoter region of the D. virilis amylase gene. These results indicate that the promoter elements required for glucose repression are conserved between distantly related Drosophila species. A sequence comparison between the amylase genes of D. virilis and D. melanogaster shows that the promoter sequences diverge to a much greater degree than the coding sequences. The amylase promoters of the two species do, however, share small clusters of sequence similarity, suggesting that these conserved cis-acting elements are sufficient to control the glucose-regulated expression of the amylase gene in the genus Drosophila.
Collapse
Affiliation(s)
- C Magoulas
- Department of Biology, University of Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
33
|
Grossman GL, James AA. The salivary glands of the vector mosquito, Aedes aegypti, express a novel member of the amylase gene family. INSECT MOLECULAR BIOLOGY 1993; 1:223-232. [PMID: 7505701 DOI: 10.1111/j.1365-2583.1993.tb00095.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Several cDNA clones with similarity to alpha-amylases have been characterized from a library made from adult female salivary gland RNA isolated from the vector mosquito, Aedes aegypti. The corresponding gene, designated Amylase I (Amy I), is expressed specifically in the proximal-lateral lobes of the adult female salivary gland, a pattern overlapping that of another gene, Mal I, involved in carbohydrate metabolism. The deduced amino acid sequence of Amy I indicates that this gene encodes a protein, approximate M(r) = 81,500, that appears to be a novel member of the amylase gene family. The mosquito protein contains a putative signal peptide for secretion and several consensus sites for asparagine-linked glycosylation. The Amy I protein shows significant similarity to invertebrate and vertebrate amylases including the conservation of four reactive and substrate binding sites. However, the amino-terminal region of the Amy-I protein is unique to the mosquito. Similarity with the Drosophila melanogaster protein is evident only after the first 260 amino acids in the mosquito sequence. The identification of this gene and its expression pattern adds to the observed relationship between spatial-specific gene expression in the female salivary glands and the specific feeding mode of the adult mosquito.
Collapse
Affiliation(s)
- G L Grossman
- Department of Tropical Public Health, Harvard School of Public Health, Boston, Massachusetts
| | | |
Collapse
|
34
|
Moriyama EN, Gojobori T. Rates of synonymous substitution and base composition of nuclear genes in Drosophila. Genetics 1992; 130:855-64. [PMID: 1582562 PMCID: PMC1204934 DOI: 10.1093/genetics/130.4.855] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We compared the rates of synonymous (silent) substitution among various genes in a number of species of Drosophila. First, we found that even for a particular gene, the rate of synonymous substitution varied considerably with Drosophila lineages. Second, we showed a large variation in synonymous substitution rates among nuclear genes in Drosophila. These rates of synonymous substitution were correlated negatively with C content and positively with A content at the third codon positions. Nucleotide sequences were also compared between pseudogenes and their functional homologs. The C content of the pseudogenes was lower than that of the functional genes and the A content of the former was higher than that of the latter. Because the synonymous substitution for functional genes and the nucleotide substitution for pseudogenes are exempted from any selective constraint at the protein level, these observations could be explained by a biased pattern of mutation in the Drosophila nuclear genome. Such a bias in the mutation pattern may affect the molecular clock (local clock) of each nuclear gene of each species. Finally, we obtained the average rates of synonymous substitution for three gene groups in Drosophila; 11.0 x 10(-9), 17.5 x 10(-9) and 27.1 x 10(-9)/site/year.
Collapse
|
35
|
Da Lage JL, Lemeunier F, Cariou ML, David JR. Multiple amylase genes in Drosophila ananassae and related species. Genet Res (Camb) 1992; 59:85-92. [PMID: 1378417 DOI: 10.1017/s0016672300030299] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The number and organization of amylase genes in Drosophila ananassae were investigated through classical genetic methods and in situ and filter hybridizations. At least four genes may be active in D. ananassae, organized as two independent pairs of closely linked copies on the 2L and 3L chromosomal arms. Several other species of the D. ananassae subgroup were studied and show the same chromosomal locations, suggesting an ancient duplication event. However, the number of Amy copies seems to be higher in the D. ananassae multigene family, and there is a striking intraspecific molecular differentiation.
Collapse
Affiliation(s)
- J L Da Lage
- Laboratoire de biologie et génétique évolutives C.N.R.S., Gif sur Yvette, France
| | | | | | | |
Collapse
|
36
|
Aquadro CF, Weaver AL, Schaeffer SW, Anderson WW. Molecular evolution of inversions in Drosophila pseudoobscura: the amylase gene region. Proc Natl Acad Sci U S A 1991; 88:305-9. [PMID: 1702542 PMCID: PMC50799 DOI: 10.1073/pnas.88.1.305] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The amylase region of the third chromosome of Drosophila pseudoobscura has been cloned and localized to cytological band 73A. It is contained within a series of highly polymorphic inversions and serves as a convenient tool for a molecular evolutionary analysis of the inverted gene arrangements. Amylase in D. pseudoobscura is a family of three genes, and some chromosomes have deletions for one or two of them. Two overlapping clones covering 26 kilobases were isolated and used as probes to survey DNA restriction map polymorphism among 28 lines, representing five of the major inversion types found in natural populations, as well as single chromosomes from the closely related species Drosophila persimilis and Drosophila miranda. Restriction-site differences are considerably greater among the various gene arrangements than among chromosomes with the same gene arrangement. Clustering the restriction map haplotypes yielded a dendrogram concordant with the phylogeny generated independently from cytogenetic considerations. The inversion polymorphism is estimated to be about 2 million years old.
Collapse
Affiliation(s)
- C F Aquadro
- Laboratory of Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | | | | | | |
Collapse
|