1
|
Dasgupta P, Halder S, Dari D, Nabeel P, Vajja SS, Nandy B. Evolution of a novel female reproductive strategy in Drosophila melanogaster populations subjected to long-term protein restriction. Evolution 2022; 76:1836-1848. [PMID: 35796749 DOI: 10.1111/evo.14560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/19/2022] [Indexed: 01/22/2023]
Abstract
Reproductive output is often constrained by availability of macronutrients, especially protein. Long-term protein restriction, therefore, is expected to select for traits maximizing reproduction even under nutritional challenge. We subjected four replicate populations of Drosophila melanogaster to a complete deprivation of yeast supplement, thereby mimicking a protein-restricted ecology. Following 24 generations, compared to their matched controls, females from experimental populations showed increased reproductive output early in life, both in presence and absence of yeast supplement. The observed increase in reproductive output was without associated alterations in egg size, development time, preadult survivorship, body mass at eclosion, and life span of the females. Further, selection was ineffective on lifelong cumulative fecundity. However, females from experiment regime were found to have a significantly faster rate of reproductive senescence following the attainment of the reproductive peak early in life. Therefore, adaptation to yeast deprivation ecology in our study involved a novel reproductive strategy whereby females attained higher reproductive output early in life followed by faster reproductive aging. To the best of our knowledge, this is one of the cleanest demonstrations of optimization of fitness by fine-tuning of reproductive schedule during adaptation to a prolonged nutritional deprivation.
Collapse
Affiliation(s)
- Purbasha Dasgupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Subhasish Halder
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Debapriya Dari
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Poolakkal Nabeel
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India.,Central University of Kerala, Tejaswini Hills,Periye, Kasaragod, Kerala, 671316, India
| | - Sai Samhitha Vajja
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India.,Current Address: Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, 462066, India
| | - Bodhisatta Nandy
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| |
Collapse
|
2
|
Del Duca S, Puglia AM, Calderone V, Bazzicalupo M, Fani R. Effect of Non-Lethal Selection on Spontaneous Revertants of Frameshift Mutations: The Escherichia coli hisF Case. Microorganisms 2022; 10:692. [PMID: 35456744 PMCID: PMC9032791 DOI: 10.3390/microorganisms10040692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 01/25/2023] Open
Abstract
Microorganisms possess the potential to adapt to fluctuations in environmental parameters, and their evolution is driven by the continuous generation of mutations. The reversion of auxotrophic mutations has been widely studied; however, little is known about the reversion of frameshift mutations resulting in amino acid auxotrophy and on the structure and functioning of the protein encoded by the revertant mutated gene. The aims of this work were to analyze the appearance of reverse mutations over time and under different selective pressures and to investigate revertant enzymes' three-dimensional structures and their correlation with a different growth ability. Escherichia coli FB182 strain, carrying the hisF892 single nucleotide deletion resulting in histidine auxotrophy, was subjected to different selective pressures, and revertant mutants were isolated and characterized. The obtained results allowed us to identify different indels of different lengths located in different positions in the hisF gene, and relations with the incubation time and the selective pressure applied were observed. Moreover, the structure of the different mutant proteins was consistent with the respective revertant ability to grow in absence of histidine, highlighting a correlation between the mutations and the catalytic activity of the mutated HisF enzyme.
Collapse
Affiliation(s)
- Sara Del Duca
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (S.D.D.); (M.B.)
| | - Anna Maria Puglia
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Vito Calderone
- Magnetic Resonance Center (CERM)/Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy;
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Marco Bazzicalupo
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (S.D.D.); (M.B.)
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (S.D.D.); (M.B.)
| |
Collapse
|
3
|
Mishima H, Watanabe H, Uchigasaki K, Shimoda S, Seki S, Kumagai T, Nochi T, Ando T, Yoneyama H. L-Alanine Prototrophic Suppressors Emerge from L-Alanine Auxotroph through Stress-Induced Mutagenesis in Escherichia coli. Microorganisms 2021; 9:microorganisms9030472. [PMID: 33668720 PMCID: PMC7996224 DOI: 10.3390/microorganisms9030472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
In Escherichia coli, L-alanine is synthesized by three isozymes: YfbQ, YfdZ, and AvtA. When an E. coli L-alanine auxotrophic isogenic mutant lacking the three isozymes was grown on L-alanine-deficient minimal agar medium, L-alanine prototrophic mutants emerged considerably more frequently than by spontaneous mutation; the emergence frequency increased over time, and, in an L-alanine-supplemented minimal medium, correlated inversely with L-alanine concentration, indicating that the mutants were derived through stress-induced mutagenesis. Whole-genome analysis of 40 independent L-alanine prototrophic mutants identified 16 and 18 clones harboring point mutation(s) in pyruvate dehydrogenase complex and phosphotransacetylase-acetate kinase pathway, which respectively produce acetyl coenzyme A and acetate from pyruvate. When two point mutations identified in L-alanine prototrophic mutants, in pta (D656A) and aceE (G147D), were individually introduced into the original L-alanine auxotroph, the isogenic mutants exhibited almost identical growth recovery as the respective cognate mutants. Each original- and isogenic-clone pair carrying the pta or aceE mutation showed extremely low phosphotransacetylase or pyruvate dehydrogenase activity, respectively. Lastly, extracellularly-added pyruvate, which dose-dependently supported L-alanine auxotroph growth, relieved the L-alanine starvation stress, preventing the emergence of L-alanine prototrophic mutants. Thus, L-alanine starvation-provoked stress-induced mutagenesis in the L-alanine auxotroph could lead to intracellular pyruvate increase, which eventually induces L-alanine prototrophy.
Collapse
Affiliation(s)
- Harutaka Mishima
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | - Hirokazu Watanabe
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | - Kei Uchigasaki
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | - So Shimoda
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | - Shota Seki
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | | | - Tomonori Nochi
- Laboratory of Functional Morphology, Department of Animal Biology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan;
| | - Tasuke Ando
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | - Hiroshi Yoneyama
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
- Correspondence:
| |
Collapse
|
4
|
Neves HI, Machado GT, Ramos TCDS, Yang HM, Yagil E, Spira B. Competition for nutritional resources masks the true frequency of bacterial mutants. BMC Biol 2020; 18:194. [PMID: 33317515 PMCID: PMC7737367 DOI: 10.1186/s12915-020-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/03/2020] [Indexed: 12/02/2022] Open
Abstract
Background It is widely assumed that all mutant microorganisms present in a culture are able to grow and form colonies, provided that they express the features required for selection. Unlike wild-type Escherichia coli, PHO-constitutive mutants overexpress alkaline phosphatase and hence can hydrolyze glycerol-2-phosphate (G2P) to glycerol and form colonies on plates having G2P as the sole carbon source. These mutations mostly occur in the pst operon. However, the frequency of PHO-constitutive colonies on the G2P selective plate is exceptionally low. Results We show that the rate in which spontaneous PHO-constitutive mutations emerge is about 8.0 × 10−6/generation, a relatively high rate, but the growth of most existing mutants is inhibited by their neighboring wild-type cells. This inhibition is elicited only by non-mutant viable bacteria that can take up and metabolize glycerol formed by the mutants. Evidence indicates that the few mutants that do form colonies derive from microclusters of mutants on the selective plate. A mathematical model that describes the fate of the wild-type and mutant populations under these circumstances supports these results. Conclusion This scenario in which neither the wild-type nor the majority of the mutants are able to grow resembles an unavoidable “tragedy of the commons” case which results in the collapse of the majority of the population. Cooperation between rare adjacent mutants enables them to overcome the competition and eventually form mutant colonies. The inhibition of PHO-constitutive mutants provides an example of mutant frequency masked by orders of magnitude due to a competition between mutants and their ancestral wild-type cells. Similar “tragedy of the commons-like” cases may occur in other settings and should be taken into consideration while estimating true mutant frequencies and mutation rates. Supplementary Information The online version contains supplementary material available at (doi:10.1186/s12915-020-00913-1).
Collapse
Affiliation(s)
- Henrique Iglesias Neves
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gabriella Trombini Machado
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Hyun Mo Yang
- Departamento de Matemática Aplicada, Instituto de Matemática, Estatística e Computação Científica, Campinas, SP, Brazil
| | - Ezra Yagil
- Departament of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Santiago-Alarcon D, Tapia-McClung H, Lerma-Hernández S, Venegas-Andraca SE. Quantum aspects of evolution: a contribution towards evolutionary explorations of genotype networks via quantum walks. J R Soc Interface 2020; 17:20200567. [PMID: 33171071 PMCID: PMC7729038 DOI: 10.1098/rsif.2020.0567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Quantum biology seeks to explain biological phenomena via quantum mechanisms, such as enzyme reaction rates via tunnelling and photosynthesis energy efficiency via coherent superposition of states. However, less effort has been devoted to study the role of quantum mechanisms in biological evolution. In this paper, we used transcription factor networks with two and four different phenotypes, and used classical random walks (CRW) and quantum walks (QW) to compare network search behaviour and efficiency at finding novel phenotypes between CRW and QW. In the network with two phenotypes, at temporal scales comparable to decoherence time TD, QW are as efficient as CRW at finding new phenotypes. In the case of the network with four phenotypes, the QW had a higher probability of mutating to a novel phenotype than the CRW, regardless of the number of mutational steps (i.e. 1, 2 or 3) away from the new phenotype. Before quantum decoherence, the QW probabilities become higher turning the QW effectively more efficient than CRW at finding novel phenotypes under different starting conditions. Thus, our results warrant further exploration of the QW under more realistic network scenarios (i.e. larger genotype networks) in both closed and open systems (e.g. by considering Lindblad terms).
Collapse
Affiliation(s)
- Diego Santiago-Alarcon
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología, A.C. Carr. Antigua a Coatepec 351, Col. El Haya, C.P. 91070, Xalapa, Veracruz, Mexico
| | - Horacio Tapia-McClung
- Centro de Investigación en Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho 5, Centro, Xalapa-Enríquez, Veracruz, Mexico
| | - Sergio Lerma-Hernández
- Facultad de Física, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Xalapa, Veracruz 91000, Mexico
| | - Salvador E. Venegas-Andraca
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Avenue Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
6
|
Pribis JP, García-Villada L, Zhai Y, Lewin-Epstein O, Wang AZ, Liu J, Xia J, Mei Q, Fitzgerald DM, Bos J, Austin RH, Herman C, Bates D, Hadany L, Hastings PJ, Rosenberg SM. Gamblers: An Antibiotic-Induced Evolvable Cell Subpopulation Differentiated by Reactive-Oxygen-Induced General Stress Response. Mol Cell 2019; 74:785-800.e7. [PMID: 30948267 PMCID: PMC6553487 DOI: 10.1016/j.molcel.2019.02.037] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/17/2019] [Accepted: 02/26/2019] [Indexed: 11/23/2022]
Abstract
Antibiotics can induce mutations that cause antibiotic resistance. Yet, despite their importance, mechanisms of antibiotic-promoted mutagenesis remain elusive. We report that the fluoroquinolone antibiotic ciprofloxacin (cipro) induces mutations by triggering transient differentiation of a mutant-generating cell subpopulation, using reactive oxygen species (ROS). Cipro-induced DNA breaks activate the Escherichia coli SOS DNA-damage response and error-prone DNA polymerases in all cells. However, mutagenesis is limited to a cell subpopulation in which electron transfer together with SOS induce ROS, which activate the sigma-S (σS) general-stress response, which allows mutagenic DNA-break repair. When sorted, this small σS-response-"on" subpopulation produces most antibiotic cross-resistant mutants. A U.S. Food and Drug Administration (FDA)-approved drug prevents σS induction, specifically inhibiting antibiotic-promoted mutagenesis. Further, SOS-inhibited cell division, which causes multi-chromosome cells, promotes mutagenesis. The data support a model in which within-cell chromosome cooperation together with development of a "gambler" cell subpopulation promote resistance evolution without risking most cells.
Collapse
Affiliation(s)
- John P Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Libertad García-Villada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yin Zhai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ohad Lewin-Epstein
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv, Israel
| | - Anthony Z Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77030, USA
| | - Jingjing Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qian Mei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
| | - Devon M Fitzgerald
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julia Bos
- Department of Physics, Princeton University, Princeton, NJ 08544-0708, USA; Lewis Sigler Institute, Princeton University, Princeton, NJ 08544-0708, USA
| | - Robert H Austin
- Lewis Sigler Institute, Princeton University, Princeton, NJ 08544-0708, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lilach Hadany
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv, Israel
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77030, USA; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
7
|
|
8
|
Oxygen and RNA in stress-induced mutation. Curr Genet 2018; 64:769-776. [PMID: 29294174 PMCID: PMC6028306 DOI: 10.1007/s00294-017-0801-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 01/29/2023]
Abstract
Mechanisms of mutation upregulated by stress responses have been described in several organisms from bacteria to human. These mechanisms might accelerate genetic change specifically when cells are maladapted to their environment. Stress-induced mutation mechanisms differ in their genetic requirements from mutation in growing cells, occurring by different mechanisms in different assay systems, but having in common a requirement for the induction of stress-responses. Here, we review progress in two areas relevant to stress-response-dependent mutagenic DNA break repair mechanisms in Escherichia coli. First, we review evidence that relates mutation to transcription. This connection might allow mutagenesis in transcribed regions, including those relevant to any stress being experienced, opening the possibility that mutations could be targeted to regions where mutation might be advantageous under conditions of a specific stress. We review the mechanisms by which replication initiated by transcription can lead to mutation. Second, we review recent findings that, although stress-induced mutation does not require exogenous DNA-damaging agents, it does require the presence of damaged bases in DNA. For starved E. coli, endogenous oxygen radicals cause these altered bases. We postulate that damaged bases stall the replisome, which, we suggest, is required for DNA-polymerase exchange, allowing the action of low-fidelity DNA polymerases that promote mutation.
Collapse
|
9
|
Gangloff S, Arcangioli B. DNA repair and mutations during quiescence in yeast. FEMS Yeast Res 2017; 17:fox002. [PMID: 28087675 DOI: 10.1093/femsyr/fox002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2017] [Indexed: 12/20/2022] Open
Abstract
Life is maintained through alternating phases of cell division and quiescence. The causes and consequences of spontaneous mutations have been extensively explored in proliferating cells, and the major sources include errors of DNA replication and DNA repair. The foremost consequences are genetic variations within a cell population that can lead to heritable diseases and drive evolution. While most of our knowledge on DNA damage response and repair has been gained through cells actively dividing, it remains essential to also understand how DNA damage is metabolized in cells which are not dividing. In this review, we summarize the current knowledge concerning the type of lesions that arise in non-dividing budding and fission yeast cells, as well as the pathways used to repair them. We discuss the contribution of these models to our current understanding of age-related pathologies.
Collapse
|
10
|
Razeto-Barry P, Vecchi D. Mutational randomness as conditional independence and the experimental vindication of mutational Lamarckism. Biol Rev Camb Philos Soc 2016; 92:673-683. [DOI: 10.1111/brv.12249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 11/29/2015] [Accepted: 12/06/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Pablo Razeto-Barry
- Instituto de Filosofía y Ciencias de la Complejidad, IFICC; Los Alerces 3024 Santiago Chile
- Universidad Diego Portales, Vicerrectoría Académica Manuel; Rodríguez Sur 415 Santiago Chile
- Universidad de Tarapacá; Arica Chile
| | - Davide Vecchi
- Instituto de Filosofía y Ciencias de la Complejidad, IFICC; Los Alerces 3024 Santiago Chile
- FCT Research Fellow, Centre for Philosophy of Sciences (CFCUL), Faculty of Sciences, University of Lisbon; Campo Grande Lisboa Portugal
- Departamento de Filosofía; Universidad de Santiago de Chile; Libertador Bernardo O'Higgins 3363 Santiago Chile
| |
Collapse
|
11
|
Abstract
Early research on the origins and mechanisms of mutation led to the establishment of the dogma that, in the absence of external forces, spontaneous mutation rates are constant. However, recent results from a variety of experimental systems suggest that mutation rates can increase in response to selective pressures. This chapter summarizes data demonstrating that,under stressful conditions, Escherichia coli and Salmonella can increase the likelihood of beneficial mutations by modulating their potential for genetic change.Several experimental systems used to study stress-induced mutagenesis are discussed, with special emphasison the Foster-Cairns system for "adaptive mutation" in E. coli and Salmonella. Examples from other model systems are given to illustrate that stress-induced mutagenesis is a natural and general phenomenon that is not confined to enteric bacteria. Finally, some of the controversy in the field of stress-induced mutagenesis is summarized and discussed, and a perspective on the current state of the field is provided.
Collapse
|
12
|
Abstract
The classical experiments of Luria and Delbrück showed convincingly that mutations exist before selection and do not contribute to the creation of mutations when selection is lethal. In contrast, when nonlethal selections are used,measuring mutation rates and separating the effects of mutation and selection are difficult and require methods to fully exclude growth after selection has been applied. Although many claims of stress-induced mutagenesis have been made, it is difficult to exclude the influence of growth under nonlethal selection conditions in accounting for the observed increases in mutant frequency. Instead, for many of the studied experimental systems the increase in mutant frequency can be explainedbetter by the ability of selection to detect small differences in growth rate caused by common small effect mutations. A verycommon mutant class,found in response to many different types of selective regimensin which increased gene dosage can resolve the problem, is gene amplification. In the well-studiedlac system of Cairns and Foster, the apparent increase in Lac+revertants can be explained by high-level amplification of the lac operon and the increased probability for a reversion mutation to occur in any one of the amplified copies. The associated increase in general mutation rate observed in revertant cells in that system is an artifact caused by the coincidental co-amplification of the nearby dinB gene (encoding the error-prone DNA polymerase IV) on the particular plasmid used for these experiments. Apart from the lac system, similar gene amplification processes have been described for adaptation to toxic drugs, growth in host cells, and various nutrient limitations.
Collapse
|
13
|
Maisnier-Patin S, Roth JR. The Origin of Mutants Under Selection: How Natural Selection Mimics Mutagenesis (Adaptive Mutation). Cold Spring Harb Perspect Biol 2015; 7:a018176. [PMID: 26134316 PMCID: PMC4484973 DOI: 10.1101/cshperspect.a018176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Selection detects mutants but does not cause mutations. Contrary to this dictum, Cairns and Foster plated a leaky lac mutant of Escherichia coli on lactose medium and saw revertant (Lac(+)) colonies accumulate with time above a nongrowing lawn. This result suggested that bacteria might mutagenize their own genome when growth is blocked. However, this conclusion is suspect in the light of recent evidence that revertant colonies are initiated by preexisting cells with multiple copies the conjugative F'lac plasmid, which carries the lac mutation. Some plated cells have multiple copies of the simple F'lac plasmid. This provides sufficient LacZ activity to support plasmid replication but not cell division. In nongrowing cells, repeated plasmid replication increases the likelihood of a reversion event. Reversion to lac(+) triggers exponential cell growth leading to a stable Lac(+) revertant colony. In 10% of these plated cells, the high-copy plasmid includes an internal tandem lac duplication, which provides even more LacZ activity—sufficient to support slow growth and formation of an unstable Lac(+) colony. Cells with multiple copies of the F'lac plasmid have an increased mutation rate, because the plasmid encodes the error-prone (mutagenic) DNA polymerase, DinB. Without DinB, unstable and stable Lac(+) revertant types form in equal numbers and both types arise with no mutagenesis. Amplification and selection are central to behavior of the Cairns-Foster system, whereas mutagenesis is a system-specific side effect or artifact caused by coamplification of dinB with lac. Study of this system has revealed several broadly applicable principles. In all populations, gene duplications are frequent stable genetic polymorphisms, common near-neutral mutant alleles can gain a positive phenotype when amplified under selection, and natural selection can operate without cell division when variability is generated by overreplication of local genome subregions.
Collapse
Affiliation(s)
- Sophie Maisnier-Patin
- Department of Microbiology and Molecular Genetic, University of California, Davis, California 95616
| | - John R Roth
- Department of Microbiology and Molecular Genetic, University of California, Davis, California 95616
| |
Collapse
|
14
|
A source of artifact in the lacZ reversion assay in Escherichia coli. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 784-785:23-30. [PMID: 26046973 DOI: 10.1016/j.mrgentox.2015.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/06/2015] [Accepted: 04/15/2015] [Indexed: 11/20/2022]
Abstract
The lacZ reversion assay in Escherichia coli measures point mutations that occur by specific base substitutions and frameshift mutations. The tester strains cannot use lactose as a carbon source (Lac(-)), and revertants are easily detected by growth on lactose medium (Lac(+)). Six strains identify the six possible base substitutions, and five strains measure +G, -G, -CG, +A and -A frameshifts. Strong mutagens give dose-dependent increases in numbers of revertants per plate and revertant frequencies. Testing compounds that are arguably nonmutagens or weakly mutagenic, we often noted statistically significant dose-dependent increases in revertant frequency that were not accompanied by an absolute increase in numbers of revertants. The increase in frequency was wholly ascribable to a declining number of viable cells owing to toxicity. Analysis of the conditions revealed that the frequency of spontaneous revertants is higher when there are fewer viable cells per plate. The phenomenon resembles "adaptive" or "stress" mutagenesis, whereby lactose revertants accumulate in Lac(-) bacteria under starvation conditions in the absence of catabolite repression. Adaptive mutation is observed after long incubation and might be expected to be irrelevant in a standard assay using 48-h incubation. However, we found that elevated revertant frequencies occur under typical assay conditions when the bacterial lawn is thin, and this can cause increases in revertant frequency that mimic chemical mutagenesis when treatments are toxic but not mutagenic. Responses that resemble chemical mutagenesis were observed in the absence of mutagenic treatment in strains that revert by different frameshift mutations. The magnitude of the artifact is affected by cell density, dilution, culture age, incubation time, catabolite repression and the age and composition of media. Although the specific reversion assay is effective for quickly distinguishing classes of mutations induced by potent mutagens, its utility for discerning effects of weak mutagens may be compromised by the artifact.
Collapse
|
15
|
Bordonaro M, Chiaro CR, May T. Experimental design to evaluate directed adaptive mutation in Mammalian cells. JMIR Res Protoc 2014; 3:e74. [PMID: 25491410 PMCID: PMC4275479 DOI: 10.2196/resprot.3860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We describe the experimental design for a methodological approach to determine whether directed adaptive mutation occurs in mammalian cells. Identification of directed adaptive mutation would have profound practical significance for a wide variety of biomedical problems, including disease development and resistance to treatment. In adaptive mutation, the genetic or epigenetic change is not random; instead, the presence and type of selection influences the frequency and character of the mutation event. Adaptive mutation can contribute to the evolution of microbial pathogenesis, cancer, and drug resistance, and may become a focus of novel therapeutic interventions. OBJECTIVE Our experimental approach was designed to distinguish between 3 types of mutation: (1) random mutations that are independent of selective pressure, (2) undirected adaptive mutations that arise when selective pressure induces a general increase in the mutation rate, and (3) directed adaptive mutations that arise when selective pressure induces targeted mutations that specifically influence the adaptive response. The purpose of this report is to introduce an experimental design and describe limited pilot experiment data (not to describe a complete set of experiments); hence, it is an early report. METHODS An experimental design based on immortalization of mouse embryonic fibroblast cells is presented that links clonal cell growth to reversal of an inactivating polyadenylation site mutation. Thus, cells exhibit growth only in the presence of both the countermutation and an inducing agent (doxycycline). The type and frequency of mutation in the presence or absence of doxycycline will be evaluated. Additional experimental approaches would determine whether the cells exhibit a generalized increase in mutation rate and/or whether the cells show altered expression of error-prone DNA polymerases or of mismatch repair proteins. RESULTS We performed the initial stages of characterizing our system and have limited preliminary data from several pilot experiments. Cell growth and DNA sequence data indicate that we have identified a cell clone that exhibits several suitable characteristics, although further study is required to identify a more optimal cell clone. CONCLUSIONS The experimental approach is based on a quantum biological model of basis-dependent selection describing a novel mechanism of adaptive mutation. This project is currently inactive due to lack of funding. However, consistent with the objective of early reports, we describe a proposed study that has not produced publishable results, but is worthy of report because of the hypothesis, experimental design, and protocols. We outline the project's rationale and experimental design, with its strengths and weaknesses, to stimulate discussion and analysis, and lay the foundation for future studies in this field.
Collapse
Affiliation(s)
- Michael Bordonaro
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, United States.
| | | | | |
Collapse
|
16
|
Tang NTN, Le L. Comparative Study on Sequence-Structure-Function Relationship of the Human Short-chain Dehydrogenases/Reductases Protein Family. Evol Bioinform Online 2014; 10:165-76. [PMID: 25374450 PMCID: PMC4213187 DOI: 10.4137/ebo.s17807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/10/2014] [Accepted: 08/16/2014] [Indexed: 11/05/2022] Open
Abstract
Human short-chain dehydrogenases/reductases (SDRs) protein family has been the subject of recent studies for its critical role in human metabolism. Studies also found that single nucleotide polymorphisms of the SDR protein family were responsible for a variety of genetic diseases, including type II diabetes. This study reports the effect of sequence variation on the structural and functional integrities of human SDR protein family using phylogenetics and correlated mutation analysis tools. Our results indicated that (i) tyrosine, serine, and lysine are signature protein residues that have direct contribution to the structural and functional stabilities of the SDR protein family, (ii) subgroups of SDR protein family have their own signature protein combination that represent their unique functionality, and (iii) mutations of the human SDR protein family showed high correlation in terms of evolutionary history. In combination, the results inferred that over evolutionary history, the SDR protein family was able to diverge itself in order to adapt with the changes in human nutritional demands. Our study reveals understanding of structural and functional scaffolds of specific SDR subgroups that may facilitate the design of specific inhibitor.
Collapse
Affiliation(s)
- Nu Thi Ngoc Tang
- Life Science Laboratory, Institute for Computational Science and Technology, Ho Chi MInh CIty, Vietnam
| | - Ly Le
- Life Science Laboratory, Institute for Computational Science and Technology, Ho Chi MInh CIty, Vietnam. ; School of Biotechnology, International University - Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
17
|
Abstract
The origin of mutations under selection has been intensively studied using the Cairns-Foster system, in which cells of an Escherichia coli lac mutant are plated on lactose and give rise to 100 Lac+ revertants over several days. These revertants have been attributed variously to stress-induced mutagenesis of nongrowing cells or to selective improvement of preexisting weakly Lac+ cells with no mutagenesis. Most revertant colonies (90%) contain stably Lac+ cells, while others (10%) contain cells with an unstable amplification of the leaky mutant lac allele. Evidence is presented that both stable and unstable Lac+ revertant colonies are initiated by preexisting cells with multiple copies of the F'lac plasmid, which carries the mutant lac allele. The tetracycline analog anhydrotetracycline (AnTc) inhibits growth of cells with multiple copies of the tetA gene. Populations with tetA on their F'lac plasmid include rare cells with an elevated plasmid copy number and multiple copies of both the tetA and lac genes. Pregrowth of such populations with AnTc reduces the number of cells with multiple F'lac copies and consequently the number of Lac+ colonies appearing under selection. Revertant yield is restored rapidly by a few generations of growth without AnTc. We suggest that preexisting cells with multiple F'lac copies divide very little under selection but have enough energy to replicate their F'lac plasmids repeatedly until reversion initiates a stable Lac+ colony. Preexisting cells whose high-copy plasmid includes an internal lac duplication grow under selection and produce an unstable Lac+ colony. In this model, all revertant colonies are initiated by preexisting cells and cannot be stress induced.
Collapse
|
18
|
|
19
|
Lada AG, Stepchenkova EI, Waisertreiger ISR, Noskov VN, Dhar A, Eudy JD, Boissy RJ, Hirano M, Rogozin IB, Pavlov YI. Genome-wide mutation avalanches induced in diploid yeast cells by a base analog or an APOBEC deaminase. PLoS Genet 2013; 9:e1003736. [PMID: 24039593 PMCID: PMC3764175 DOI: 10.1371/journal.pgen.1003736] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/05/2013] [Indexed: 11/23/2022] Open
Abstract
Genetic information should be accurately transmitted from cell to cell; conversely, the adaptation in evolution and disease is fueled by mutations. In the case of cancer development, multiple genetic changes happen in somatic diploid cells. Most classic studies of the molecular mechanisms of mutagenesis have been performed in haploids. We demonstrate that the parameters of the mutation process are different in diploid cell populations. The genomes of drug-resistant mutants induced in yeast diploids by base analog 6-hydroxylaminopurine (HAP) or AID/APOBEC cytosine deaminase PmCDA1 from lamprey carried a stunning load of thousands of unselected mutations. Haploid mutants contained almost an order of magnitude fewer mutations. To explain this, we propose that the distribution of induced mutation rates in the cell population is uneven. The mutants in diploids with coincidental mutations in the two copies of the reporter gene arise from a fraction of cells that are transiently hypersensitive to the mutagenic action of a given mutagen. The progeny of such cells were never recovered in haploids due to the lethality caused by the inactivation of single-copy essential genes in cells with too many induced mutations. In diploid cells, the progeny of hypersensitive cells survived, but their genomes were saturated by heterozygous mutations. The reason for the hypermutability of cells could be transient faults of the mutation prevention pathways, like sanitization of nucleotide pools for HAP or an elevated expression of the PmCDA1 gene or the temporary inability of the destruction of the deaminase. The hypothesis on spikes of mutability may explain the sudden acquisition of multiple mutational changes during evolution and carcinogenesis.
Collapse
Affiliation(s)
- Artem G. Lada
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Elena I. Stepchenkova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Saint Petersburg Branch of Vavilov Institute of General Genetics, St. Petersburg, Russia
- Department of Genetics, Saint Petersburg University, St. Petersburg, Russia
| | - Irina S. R. Waisertreiger
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vladimir N. Noskov
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Alok Dhar
- Department of Genetics, Cell Biology and Anatomy and Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - James D. Eudy
- Department of Genetics, Cell Biology and Anatomy and Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Robert J. Boissy
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Masayuki Hirano
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Genetics, Saint Petersburg University, St. Petersburg, Russia
| |
Collapse
|
20
|
Pathways of genetic adaptation: multistep origin of mutants under selection without induced mutagenesis in Salmonella enterica. Genetics 2012; 192:987-99. [PMID: 22887815 PMCID: PMC3522171 DOI: 10.1534/genetics.112.142158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In several bacterial systems, mutant cell populations plated on growth-restricting medium give rise to revertant colonies that accumulate over several days. One model suggests that nongrowing parent cells mutagenize their own genome and thereby create beneficial mutations (stress-induced mutagenesis). By this model, the first-order induction of new mutations in a nongrowing parent cell population leads to the delayed accumulation of visible colonies. In an alternative model (selection only), selective conditions allow preexisting small-effect mutants to initiate clones that grow and give rise to faster-growing mutants. By the selection-only model, the delay in appearance of revertant colonies reflects (1) the time required for initial clones to reach a size sufficient to allow the second mutation plus (2) the time required for growth of the improved subclone. We previously characterized a system in which revertant colonies accumulate slowly and contain cells with two mutations, one formed before plating and one after. This left open the question of whether mutation rates increase under selection. Here we measure the unselected formation rate and the growth contribution of each mutant type. When these parameters are used in a graphic model of revertant colony development, they demonstrate that no increase in mutation rate is required to explain the number and delayed appearance of two of the revertant types.
Collapse
|
21
|
Altenberg L. The evolution of dispersal in random environments and the principle of partial control. ECOL MONOGR 2012. [DOI: 10.1890/11-1136.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Abstract
Numerous empirical studies show that stress of various kinds induces a state of hypermutation in bacteria via multiple mechanisms, but theoretical treatment of this intriguing phenomenon is lacking. We used deterministic and stochastic models to study the evolution of stress-induced hypermutation in infinite and finite-size populations of bacteria undergoing selection, mutation, and random genetic drift in constant environments and in changing ones. Our results suggest that if beneficial mutations occur, even rarely, then stress-induced hypermutation is advantageous for bacteria at both the individual and the population levels and that it is likely to evolve in populations of bacteria in a wide range of conditions because it is favored by selection. These results imply that mutations are not, as the current view holds, uniformly distributed in populations, but rather that mutations are more common in stressed individuals and populations. Because mutation is the raw material of evolution, these results have a profound impact on broad aspects of evolution and biology.
Collapse
Affiliation(s)
- Yoav Ram
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | |
Collapse
|
23
|
Abstract
Populations adapt physiologically using regulatory mechanisms and genetically by means of mutations that improve growth. During growth under selection, genetic adaptation can be rapid. In several genetic systems, the speed of adaptation has been attributed to cellular mechanisms that increase mutation rates in response to growth limitation. An alternative possibility is that growth limitation serves only as a selective agent but acts on small-effect mutations that are common under all growth conditions. The genetic systems that initially suggested stress-induced mutagenesis have been analyzed without regard for multistep adaptation and some include features that make such analysis difficult. To test the selection-only model, a simpler system is examined, whose behavior was originally attributed to stress-induced mutagenesis (Yang et al. 2001, 2006). A population with a silent chromosomal lac operon gives rise to Lac+ revertant colonies that accumulate over 6 days under selection. Each colony contains a mixture of singly and doubly mutant cells. Evidence is provided that the colonies are initiated by pre-existing single mutants with a weak Lac+ phenotype. Under selection, these cells initiate slow-growing clones, in which a second mutation arises and improves growth of the resulting double mutant. The system shows no evidence of general mutagenesis during selection. Selection alone may explain rapid adaptation in this and other systems that give the appearance of mutagenesis.
Collapse
|
24
|
Effect of translesion DNA polymerases, endonucleases and RpoS on mutation rates in Salmonella typhimurium. Genetics 2010; 185:783-95. [PMID: 20421601 DOI: 10.1534/genetics.110.116376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that bacteria have evolved mechanisms to increase their mutation rate in response to various stresses and that the translesion DNA polymerase Pol IV under control of the LexA regulon and the alternative sigma factor RpoS are involved in regulating this mutagenesis. Here we examined in Salmonella enterica serovar Typhimurium LT2 the rates for four different types of mutations (rifampicin, nalidixic acid, and chlorate resistance and Lac(+) reversion) during various growth conditions and with different levels of four translesion DNA polymerases (Pol II, Pol IV, Pol V, and SamAB) and RpoS. Constitutive derepression of the LexA regulon by a lexA(def) mutation had no effect on Lac(+) reversion rates but increased the other three mutation rates up to 11-fold, and the contribution of the translesion DNA polymerases to this mutagenesis varied with the type of mutation examined. The increase in mutation rates in the lexA(def) mutant required the presence of the LexA-controlled UvrB protein and endonucleases UvrC and Cho. With regard to the potential involvement of RpoS in mutagenesis, neither an increase in RpoS levels conferred by artificial overexpression from a plasmid nor long-term stationary phase incubation or slow growth caused an increase in any of the four mutation rates measured, alone or in combination with overexpression of the translesion DNA polymerases. In conclusion, mutation rates are remarkably robust and no combination of growth conditions, induction of translesion DNA polymerases by inactivation of LexA, or increased RpoS expression could confer an increase in mutation rates higher than the moderate increase caused by derepression of the LexA regulon alone.
Collapse
|
25
|
Abstract
Adaptive mutation is a generic term for processes that allow individual cells of nonproliferating cell populations to acquire advantageous mutations and thereby to overcome the strong selective pressure of proliferation-limiting environmental conditions. Prerequisites for an occurrence of adaptive mutation are that the selective conditions are nonlethal and that a restart of proliferation may be accomplished by some genetic change in principle. The importance of adaptive mutation is derived from the assumption that it may, on the one hand, result in an accelerated evolution of microorganisms and, on the other, in multicellular organisms may contribute to a breakout of somatic cells from negative growth regulation, i.e., to cancerogenesis. Most information on adaptive mutation in eukaryotes has been gained with the budding yeast Saccharomyces cerevisiae. This review focuses comprehensively on adaptive mutation in this organism and summarizes our current understanding of this issue.
Collapse
Affiliation(s)
- Erich Heidenreich
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Gonzalez C, Hadany L, Ponder RG, Price M, Hastings PJ, Rosenberg SM. Mutability and importance of a hypermutable cell subpopulation that produces stress-induced mutants in Escherichia coli. PLoS Genet 2008; 4:e1000208. [PMID: 18833303 PMCID: PMC2543114 DOI: 10.1371/journal.pgen.1000208] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 08/25/2008] [Indexed: 01/03/2023] Open
Abstract
In bacterial, yeast, and human cells, stress-induced mutation mechanisms are induced in growth-limiting environments and produce non-adaptive and adaptive mutations. These mechanisms may accelerate evolution specifically when cells are maladapted to their environments, i.e., when they are are stressed. One mechanism of stress-induced mutagenesis in Escherichia coli occurs by error-prone DNA double-strand break (DSB) repair. This mechanism was linked previously to a differentiated subpopulation of cells with a transiently elevated mutation rate, a hypermutable cell subpopulation (HMS). The HMS could be important, producing essentially all stress-induced mutants. Alternatively, the HMS was proposed to produce only a minority of stress-induced mutants, i.e., it was proposed to be peripheral. We characterize three aspects of the HMS. First, using improved mutation-detection methods, we estimate the number of mutations per genome of HMS-derived cells and find that it is compatible with fitness after the HMS state. This implies that these mutants are not necessarily an evolutionary dead end, and could contribute to adaptive evolution. Second, we show that stress-induced Lac(+) mutants, with and without evidence of descent from the HMS, have similar Lac(+) mutation sequences. This provides evidence that HMS-descended and most stress-induced mutants form via a common mechanism. Third, mutation-stimulating DSBs introduced via I-SceI endonuclease in vivo do not promote Lac(+) mutation independently of the HMS. This and the previous finding support the hypothesis that the HMS underlies most stress-induced mutants, not just a minority of them, i.e., it is important. We consider a model in which HMS differentiation is controlled by stress responses. Differentiation of an HMS potentially limits the risks of mutagenesis in cell clones.
Collapse
Affiliation(s)
- Caleb Gonzalez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Graduate Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lilach Hadany
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Rebecca G. Ponder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mellanie Price
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Graduate Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
27
|
Laconi E, Doratiotto S, Vineis P. The microenvironments of multistage carcinogenesis. Semin Cancer Biol 2008; 18:322-9. [PMID: 18456510 DOI: 10.1016/j.semcancer.2008.03.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 03/25/2008] [Indexed: 12/19/2022]
Abstract
Overt neoplasia is often the result of a chronic disease process encompassing an extended segment of the lifespan of any species. A common pathway in the natural history of the disease is the appearance of focal proliferative lesions that are known to act as precursors for cancer development. It is becoming increasingly apparent that the emergence of such lesions is not a cell-autonomous phenomenon, but is heavily dependent on microenvironmental cues derived from the surrounding tissue. Specific alterations in the tissue microenvironment that can foster the selective growth of focal lesions are discussed herein. Furthermore, we argue that a fundamental property of focal lesions as it relates to their precancerous nature lies in their altered growth pattern as compared to the tissue where they reside. The resulting altered tissue architecture translates into the emergence of a unique tumor microenvironment inside these lesions, associated with altered blood vessels and/or blood supply which in turn can trigger biochemical and metabolic changes fueling tumor progression. A deeper understanding of the role(s) of tissue and tumor microenvironments in the pathogenesis of cancer is essential to design more effective strategies for the management of this disease.
Collapse
Affiliation(s)
- Ezio Laconi
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Patologia Sperimentale, Università di Cagliari, 09125 Cagliari, Italy.
| | | | | |
Collapse
|
28
|
Abstract
Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution.
Collapse
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
29
|
Roth JR, Kugelberg E, Reams AB, Kofoid E, Andersson DI. Origin of mutations under selection: the adaptive mutation controversy. Annu Rev Microbiol 2006; 60:477-501. [PMID: 16761951 DOI: 10.1146/annurev.micro.60.080805.142045] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Growth under selection causes new genotypes to predominate in a population. It is difficult to determine whether selection stimulates formation of new mutations or merely allows faster growth of mutants that arise independent of selection. In the practice of microbial genetics, selection is used to detect and enumerate pre-existing mutants; stringent conditions prevent growth of the parent and allow only the pre-existing mutants to grow. Used in this way, selection detects rare mutations that cause large, easily observable phenotypic changes. In natural populations, selection is imposed on growing cells and can detect the more common mutations that cause small growth improvements. As slightly improved clones expand, they can acquire additional mutational improvements. Selected sequential clonal expansions have huge power to produce new genotypes and have been suggested to underlie tumor progression. We suggest that the adaptive mutation controversy has persisted because the distinction between these two uses of selection has not been appreciated.
Collapse
Affiliation(s)
- John R Roth
- Microbiology Section, Division of Biological Sciences, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Carcinogenesis, at least for some types of cancer, can be interpreted as the consequence of selection of mutated cells similar to what, in the theory of evolution, occurs at the population level. Instead of considering a population of organisms, we can refer to a population of cells belonging to multicellular organisms. Many carcinogens are mutagens, and the observed geographic distribution of cancer is, at least in part, attributable to environmental mutagens. However, the rapid change in risk for some cancers after migration suggests that carcinogenesis involves--in addition to mutations--some late event that most probably consists of the selection of cells already carrying mutations. We review a few examples of such selective pressures: finasteride in prostate cancer, vitamin supplementation in smokers, acquired resistance to chemotherapy, peripheral resistance to insulin, and sunlight and mutations in melanoma. A disease model for such a hypothesis is represented by Paroxysmal Nocturnal Hemoglobinuria (PNH). Mutations can be present at birth, as in the case of PNH, and can have a frequency much higher than the occurrence of the corresponding disease (PNH or lymphocytic leukaemia in children). However, PNH does not require a mutator phenotype, only a mutant phenotype followed by selection. A characteristic feature of cancer, instead, is likely to be the development of the mutator phenotype. We propose a 'Darwinian' model of carcinogenesis. If the model is correct, it suggests that prevention is more complex than avoiding exposure to mutagens. Mutations and genetic instability can be already present at birth. Mutations can be selected in the course of life if they increase survival advantage of the cell under certain environmental circumstances. In addition, gene-environment interactions cannot be interpreted according to a simplified linear model (based on the 'analysis of variance' concept); experimental work suggests that a more comprehensive non-linear interpretation based on the idea of 'norm of reaction' is needed.
Collapse
Affiliation(s)
- Paolo Vineis
- Department of Epidemiology and Public Health, Imperial College London, St Mary's Campus, Norfolk Place, W2 1PG, London, UK.
| | | |
Collapse
|
31
|
Greenman C, Wooster R, Futreal PA, Stratton MR, Easton DF. Statistical analysis of pathogenicity of somatic mutations in cancer. Genetics 2006; 173:2187-98. [PMID: 16783027 PMCID: PMC1569711 DOI: 10.1534/genetics.105.044677] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recent large-scale sequencing studies have revealed that cancer genomes contain variable numbers of somatic point mutations distributed across many genes. These somatic mutations most likely include passenger mutations that are not cancer causing and pathogenic driver mutations in cancer genes. Establishing a significant presence of driver mutations in such data sets is of biological interest. Whereas current techniques from phylogeny are applicable to large data sets composed of singly mutated samples, recently exemplified with a p53 mutation database, methods for smaller data sets containing individual samples with multiple mutations need to be developed. By constructing distinct models of both the mutation process and selection pressure upon the cancer samples, exact statistical tests to examine this problem are devised. Tests to examine the significance of selection toward missense, nonsense, and splice site mutations are derived, along with tests assessing variation in selection between functional domains. Maximum-likelihood methods facilitate parameter estimation, including levels of selection pressure and minimum numbers of pathogenic mutations. These methods are illustrated with 25 breast cancers screened across the coding sequences of 518 kinase genes, revealing 90 base substitutions in 71 genes. Significant selection pressure upon truncating mutations was established. Furthermore, an estimated minimum of 29.8 mutations were pathogenic.
Collapse
Affiliation(s)
- Chris Greenman
- Cancer Genome Project, Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
32
|
Barash D, Sikorski J, Perry EB, Nevo E, Nudler E. Adaptive Mutations In RNA-Based Regulatory Mechanisms: Computational and Experimental Investigations. Isr J Ecol Evol 2006. [DOI: 10.1560/ijee_52_3-4_263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent discoveries of RNA-based regulatory mechanisms have prompted substantial interest in how they formed and the extent to which varying environmental conditions have influenced their evolution. One class of RNA-based regulatory mechanism that has been found in bacteria is the riboswitch, regulating the biosynthesis of certain vitamins by an RNA genetic control element that senses small molecules and responds with a structural change that affects transcription termination or translation initiation without the participation of proteins. By taking the thiamin pyrophosphate (TPP)-riboswitch inBacillus subtilisas a model system, we wish to examine whether beneficial mutations may exist at the level of RNA that will cause an improvement in organism fitness. By computationally analyzing the difference in primary and secondary structure of theB. subtilisTPP-riboswitch collected from the xeric "African" south-facing slope (SFS) vs. the mesic, "European", north-facing slope (NFS) in "Evolution Canyon" III at Nahal Shaharut, southern Israel, we wish to experimentally study the environmental effect on transcription termination in these RNA-based regulatory mechanisms that are believed to be of ancient origin in the evolutionary time scale. Computational results, so far, indicate that specific mutations affect the riboswitch conformation by causing a global rearrangement. We would like to check whether such mutations could be adaptive mutations that may have a beneficial fitness effect, taking the TPP-riboswitch as a model system at the micro-scale. Empirical results so far indicate that in the promoter region of the TPP-riboswitch, all mutations increase nucleotide GC content in the xeric SFS, whereas in the mesic NFS they increase AT content. Preliminary examination of termination efficiency of strains found exclusively on one slope or the other, reveal increased termination efficiency in the presence of TPP and at more moderate temperatures, but only a suggestion of greater termination efficiency from strains found on both slopes. We expect that further results will shed light on the mutational differences of TPP-riboswitch sequences found on opposite slopes of "Evolution Canyon" III at Nahal Shaharut, potentially leading to interesting discoveries that relate to the topic of adaptive, nonrandom mutations.
Collapse
Affiliation(s)
- Danny Barash
- Institute of Evolution, University of Haifa
- Department of Computer Science, Ben-Gurion University of the Negev
| | - Johannes Sikorski
- Institute of Evolution, University of Haifa
- Deutsche Sammlung von Mikroorganismen und Zellkulturen GMbH (DSMZ)
| | | | | | - Evgeny Nudler
- Department of Biochemistry, New York University Medical School,
| |
Collapse
|
33
|
Saumaa S, Tarassova K, Tark M, Tover A, Tegova R, Kivisaar M. Involvement of DNA mismatch repair in stationary-phase mutagenesis during prolonged starvation of Pseudomonas putida. DNA Repair (Amst) 2006; 5:505-14. [PMID: 16414311 DOI: 10.1016/j.dnarep.2005.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/05/2005] [Accepted: 12/05/2005] [Indexed: 11/21/2022]
Abstract
One of the popular ideas is that decline in methyl-directed mismatch repair (MMR) in carbon-starved bacteria might facilitate occurrence of stationary-phase mutations. We compared the frequency of accumulation of stationary-phase mutations in carbon-starved Pseudomonas putida wild-type and MMR-defective strains and found that knockout of MMR system increased significantly emergence of base substitutions in starving P. putida. At the same time, the appearance of 1-bp deletion mutations was less affected by MMR in this bacterium. The spectrum of base substitution mutations which occurred in starving populations of P. putida wild-type strain was distinct from mutation spectrum identified in MMR-defective strains. The spectrum of base substitutions differed also in this case when mutants emerged in starved populations of MutS or MutL-defective strains were comparatively analyzed. Based on our results we suppose that other mechanisms than malfunctioning of MMR system in resting cells might be considered to explain the accumulation of stationary-phase mutations in P. putida. To further characterize populations of P. putida starved on selective plates, we stained bacteria with LIVE/DEAD kit in situ on agar plates. We found that although the overall number of colony forming units (CFU) did not decline in long-term-starved populations, these populations were very heterogeneous on the plates and contained many dead cells. Our results imply that slow growth of subpopulation of cells at the expenses of dead cells on selective plates might be important for the generation of stationary-phase mutations in P. putida. Additionally, the different survival patterns of P. putida on the same selective plates hint that competitive interactions taking place under conditions of prolonged starvation of microbial populations on semi-solid surfaces might be more complicated than previously assumed.
Collapse
Affiliation(s)
- Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
34
|
Badyaev AV. Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation. Proc Biol Sci 2005; 272:877-86. [PMID: 16024341 PMCID: PMC1564094 DOI: 10.1098/rspb.2004.3045] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extreme environments are closely associated with phenotypic evolution, yet the mechanisms behind this relationship are poorly understood. Several themes and approaches in recent studies significantly further our understanding of the importance that stress-induced variation plays in evolution. First, stressful environments modify (and often reduce) the integration of neuroendocrinological, morphological and behavioural regulatory systems. Second, such reduced integration and subsequent accommodation of stress-induced variation by developmental systems enables organismal 'memory' of a stressful event as well as phenotypic and genetic assimilation of the response to a stressor. Third, in complex functional systems, a stress-induced increase in phenotypic and genetic variance is often directional, channelled by existing ontogenetic pathways. This accounts for similarity among individuals in stress-induced changes and thus significantly facilitates the rate of adaptive evolution. Fourth, accumulation of phenotypically neutral genetic variation might be a common property of locally adapted and complex organismal systems, and extreme environments facilitate the phenotypic expression of this variance. Finally, stress-induced effects and stress-resistance strategies often persist for several generations through maternal, ecological and cultural inheritance. These transgenerational effects, along with both the complexity of developmental systems and stressor recurrence, might facilitate genetic assimilation of stress-induced effects. Accumulation of phenotypically neutral genetic variance by developmental systems and phenotypic accommodation of stress-induced effects, together with the inheritance of stress-induced modifications, ensure the evolutionary persistence of stress-response strategies and provide a link between individual adaptability and evolutionary adaptation.
Collapse
|
35
|
Abstract
Biomass conversion to ethanol as a liquid fuel by the thermophilic and anaerobic clostridia offers a potential partial solution to the problem of the world's dependence on petroleum for energy. Coculture of a cellulolytic strain and a saccharolytic strain of Clostridium on agricultural resources, as well as on urban and industrial cellulosic wastes, is a promising approach to an alternate energy source from an economic viewpoint. This review discusses the need for such a process, the cellulases of clostridia, their presence in extracellular complexes or organelles (the cellulosomes), the binding of the cellulosomes to cellulose and to the cell surface, cellulase genetics, regulation of their synthesis, cocultures, ethanol tolerance, and metabolic pathway engineering for maximizing ethanol yield.
Collapse
Affiliation(s)
- Arnold L Demain
- Charles A. Dana Research Institute for Scientists Emeriti, HS-330, Drew University, Madison, NJ 07940, USA.
| | | | | |
Collapse
|
36
|
Lolle SJ, Victor JL, Young JM, Pruitt RE. Genome-wide non-mendelian inheritance of extra-genomic information in Arabidopsis. Nature 2005; 434:505-9. [PMID: 15785770 DOI: 10.1038/nature03380] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 01/21/2005] [Indexed: 11/08/2022]
Abstract
A fundamental tenet of classical mendelian genetics is that allelic information is stably inherited from one generation to the next, resulting in predictable segregation patterns of differing alleles. Although several exceptions to this principle are known, all represent specialized cases that are mechanistically restricted to either a limited set of specific genes (for example mating type conversion in yeast) or specific types of alleles (for example alleles containing transposons or repeated sequences). Here we show that Arabidopsis plants homozygous for recessive mutant alleles of the organ fusion gene HOTHEAD (HTH) can inherit allele-specific DNA sequence information that was not present in the chromosomal genome of their parents but was present in previous generations. This previously undescribed process is shown to occur at all DNA sequence polymorphisms examined and therefore seems to be a general mechanism for extra-genomic inheritance of DNA sequence information. We postulate that these genetic restoration events are the result of a template-directed process that makes use of an ancestral RNA-sequence cache.
Collapse
Affiliation(s)
- Susan J Lolle
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907-2054, USA
| | | | | | | |
Collapse
|
37
|
Foster PL. Stress responses and genetic variation in bacteria. Mutat Res 2005; 569:3-11. [PMID: 15603749 PMCID: PMC2729700 DOI: 10.1016/j.mrfmmm.2004.07.017] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/30/2004] [Accepted: 07/20/2004] [Indexed: 11/28/2022]
Abstract
Under stressful conditions mechanisms that increase genetic variation can bestow a selective advantage. Bacteria have several stress responses that provide ways in which mutation rates can be increased. These include the SOS response, the general stress response, the heat-shock response, and the stringent response, all of which impact the regulation of error-prone polymerases. Adaptive mutation appears to be process by which cells can respond to selective pressure specifically by producing mutations. In Escherichia coli strain FC40 adaptive mutation involves the following inducible components: (i) a recombination pathway that generates mutations; (ii) a DNA polymerase that synthesizes error-containing DNA; and (iii) stress responses that regulate cellular processes. In addition, a subpopulation of cells enters into a state of hypermutation, giving rise to about 10% of the single mutants and virtually all of the mutants with multiple mutations. These bacterial responses have implications for the development of cancer and other genetic disorders in higher organisms.
Collapse
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
38
|
Affiliation(s)
- S Brenner
- Medical Research Council Molecular Genetics, Hills Road, Cambridge CB2 2QH, UK
| |
Collapse
|
39
|
The exceptionally high rate of spontaneous mutations in the polymerase delta proofreading exonuclease-deficient Saccharomyces cerevisiae strain starved for adenine. BMC Genet 2004; 5:34. [PMID: 15617571 PMCID: PMC544876 DOI: 10.1186/1471-2156-5-34] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 12/23/2004] [Indexed: 12/20/2022] Open
Abstract
Background Mutagenesis induced in the yeast Saccharomyces cerevisiae by starvation for nutrilites is a well-documented phenomenon of an unknown mechanism. We have previously shown that the polymerase delta proofreading activity controls spontaneous mutagenesis in cells starved for histidine. To obtain further information, we compared the effect of adenine starvation on mutagenesis in wild-type cells and, in cells lacking the proofreading activity of polymerase delta (phenotype Exo-, mutation pol3-01). Results Ade+ revertants accumulated at a very high rate on adenine-free plates so that their frequency on day 16 after plating was 1.5 × 10-4 for wild-type and 1.0 × 10-2 for the Exo- strain. In the Exo- strain, all revertants arising under adenine starvation are suppressors of the original mutation, most possessed additional nutritional requirements, and 50% of them were temperature sensitive. Conclusions Adenine starvation is highly mutagenic in yeast. The deficiency in the polymerase delta proofreading activity in strains with the pol3-01 mutation leads to a further 66-fold increase of the rate of mutations. Our data suggest that adenine starvation induces genome-wide hyper-mutagenesis in the Exo- strain.
Collapse
|
40
|
Hastings PJ, Slack A, Petrosino JF, Rosenberg SM. Adaptive amplification and point mutation are independent mechanisms: evidence for various stress-inducible mutation mechanisms. PLoS Biol 2004; 2:e399. [PMID: 15550983 PMCID: PMC529313 DOI: 10.1371/journal.pbio.0020399] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 09/20/2004] [Indexed: 11/22/2022] Open
Abstract
“Adaptive mutation” denotes a collection of processes in which cells respond to growth-limiting environments by producing compensatory mutants that grow well, apparently violating fundamental principles of evolution. In a well-studied model, starvation of stationary-phase lac− Escherichia coli cells on lactose medium induces Lac+ revertants at higher frequencies than predicted by usual mutation models. These revertants carry either a compensatory frameshift mutation or a greater than 20-fold amplification of the leaky lac allele. A crucial distinction between alternative hypotheses for the mechanisms of adaptive mutation hinges on whether these amplification and frameshift mutation events are distinct, or whether amplification is a molecular intermediate, producing an intermediate cell type, in colonies on a pathway to frameshift mutation. The latter model allows the evolutionarily conservative idea of increased mutations (per cell) without increased mutation rate (by virtue of extra gene copies per cell), whereas the former requires an increase in mutation rate, potentially accelerating evolution. To resolve these models, we probed early events leading to rare adaptive mutations and report several results that show that amplification is not the precursor to frameshift mutation but rather is an independent adaptive outcome. (i) Using new high-resolution selection methods and stringent analysis of all cells in very young (micro)colonies (500–10,000 cells), we find that most mutant colonies contain no detectable lac-amplified cells, in contrast with previous reports. (ii) Analysis of nascent colonies, as young as the two-cell stage, revealed mutant Lac+ cells with no lac-amplified cells present. (iii) Stringent colony-fate experiments show that microcolonies of lac-amplified cells grow to form visible colonies of lac-amplified, not mutant, cells. (iv) Mutant cells do not overgrow lac-amplified cells in microcolonies fast enough to mask the lac-amplified cells. (v) lac-amplified cells are not SOS-induced, as was proposed to explain elevated mutation in a sequential model. (vi) Amplification, and not frameshift mutation, requires DNA polymerase I, demonstrating that mutation is separable from amplification, and also illuminating the amplification mechanism. We conclude that amplification and mutation are independent outcomes of adaptive genetic change. We suggest that the availability of alternative pathways for genetic/evolutionary adaptation and clonal expansion under stress may be exploited during processes ranging from the evolution of drug resistance to cancer progression. Cells can respond to stress by apparently increasing their mutation rate. This study provides evidence that there is more than one pathway by which cells achieve such a response
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| | | | | | | |
Collapse
|
41
|
Lombardo MJ, Aponyi I, Rosenberg SM. General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli. Genetics 2004; 166:669-80. [PMID: 15020458 PMCID: PMC1470735 DOI: 10.1534/genetics.166.2.669] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial cells under growth-limiting stress can generate mutations by mechanisms distinct from those in rapidly growing cells. These mechanisms might be specific stress responses that increase mutation rates, potentially altering rates of evolution, or might reflect non-stress-specific processes in rare growing cells. In an Escherichia coli model system, both frameshift reversion mutations and gene amplifications occur as apparent starvation-induced mutations. Whereas frameshift reversion ("point mutation") requires recombination proteins, the SOS response, and error-prone DNA polymerase IV (DinB), amplification requires neither SOS nor pol IV. We report that both point mutation and amplification require the stationary-phase and general stress response transcription factor RpoS (sigmaS). Growth-dependent mutation does not. Alternative interpretations are excluded. The results imply, first, that point mutation and amplification are stress responses that occur in differentiated stationary-phase (not rare growing) cells and, second, that transient genetic instability, producing both point mutation and genome rearrangement, may be a previously unrecognized component of the RpoS-dependent general stress response.
Collapse
Affiliation(s)
- Mary-Jane Lombardo
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | | | |
Collapse
|
42
|
Pettersson ME, Andersson DI, Roth JR, Berg OG. The amplification model for adaptive mutation: simulations and analysis. Genetics 2004; 169:1105-15. [PMID: 15489536 PMCID: PMC1449099 DOI: 10.1534/genetics.104.030338] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been proposed that the lac revertants arising under selective conditions in the Cairns experiment do not arise by stress-induced mutagenesis of stationary phase cells as has been previously assumed. Instead, these revertants may arise within growing clones initiated by cells with a preexisting duplication of the weakly functional lac allele used in this experiment. It is proposed that spontaneous stepwise increases in lac copy number (amplification) allow a progressive improvement in growth. Reversion is made more likely primarily by the resultant increase in the number of mutational targets--more cells with more lac copies. The gene amplification model requires no stress-induced variation in the rate or target specificity of mutation and thus does not violate neo-Darwinian theory. However, it does require that a multistep process of amplification, reversion, and amplification segregation be completed within approximately 20 generations of growth. This work examines the proposed amplification model from a theoretical point of view, formalizing it into a mathematical framework and using this to determine what would be required for the process to occur within the specified period. The analysis assumes no stress-induced change in mutation rate and describes only the growth improvement occurring during the process of amplification and subsequent elimination of excess mutant lac copies. The dynamics of the system are described using Monte Carlo simulations and numerical integration of the deterministic equations governing the system. The results imply that the amplification model can account for the behavior of the system using biologically reasonable parameter values and thus can, in principle, explain Cairnsian adaptive mutation.
Collapse
Affiliation(s)
- Mats E Pettersson
- Department of Molecular Evolution, Uppsala University EBC, SE-75236 Uppsala, Sweden
| | | | | | | |
Collapse
|
43
|
Rosenberg SM, Hastings PJ. Adaptive point mutation and adaptive amplification pathways in the Escherichia coli Lac system: stress responses producing genetic change. J Bacteriol 2004; 186:4838-43. [PMID: 15262914 PMCID: PMC451650 DOI: 10.1128/jb.186.15.4838-4843.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, BCM-S809A Mail Stop BCM225, Houston, TX 77030-3411, USA.
| | | |
Collapse
|
44
|
Cairns J, Foster PL. The risk of lethals for hypermutating bacteria in stationary phase. Genetics 2004; 165:2317-8; author reply 2319-21. [PMID: 14738105 PMCID: PMC1462888 DOI: 10.1093/genetics/165.4.2317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third St., Bloomington, IN 47405, USA.
| |
Collapse
|
46
|
Roth JR, Andersson DI. Adaptive mutation: how growth under selection stimulates Lac(+) reversion by increasing target copy number. J Bacteriol 2004; 186:4855-60. [PMID: 15262920 PMCID: PMC451646 DOI: 10.1128/jb.186.15.4855-4860.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- John R Roth
- University of California Davis, Microbiology Section, One Shields Ave., Davis, CA 95616, USA.
| | | |
Collapse
|
47
|
Amzallag GN. Adaptive changes in bacteria: a consequence of nonlinear transitions in chromosome topology? J Theor Biol 2004; 229:361-9. [PMID: 15234203 DOI: 10.1016/j.jtbi.2004.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Revised: 01/11/2004] [Accepted: 04/06/2004] [Indexed: 10/26/2022]
Abstract
Adaptive changes in bacteria are generally considered to result from random mutations selected by the environment. This interpretation is challenged by the non-randomness of genomic changes observed following ageing or starvation in bacterial colonies. A theory of adaptive targeting of sequences for enzymes involved in DNA transactions is proposed here. It is assumed that the sudden leakage of cAMP consecutive to starvation induces a rapid drop in the ATP/ADP ratio that inactivates the homeostasis in control of the level of DNA supercoiling. This phase change enables the emergence of local modifications in chromosome topology in relation to the missing metabolites, a first stage in expression of an adaptive status in which DNA transactions are induced. The nonlinear perspective proposed here is homologous to that already suggested for adaptation of pluricellular organisms during their development. In both cases, phases of robustness in regulation networks for genetic expression are interspaced by critical periods of breakdown of the homeostatic regulations during which, through isolation of nodes from a whole network, specific changes with adaptive value may locally occur.
Collapse
Affiliation(s)
- G N Amzallag
- The Judea Center for Research and Development, Carmel 90404, Israel.
| |
Collapse
|
48
|
Roth JR, Andersson DI. Amplification–mutagenesis—how growth under selection contributes to the origin of genetic diversity and explains the phenomenon of adaptive mutation. Res Microbiol 2004; 155:342-51. [PMID: 15207866 DOI: 10.1016/j.resmic.2004.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 01/20/2004] [Indexed: 11/30/2022]
Abstract
The behavior of a particular bacterial genetic system has been interpreted as evidence that selective stress induces general mutagenesis or even preferentially directs mutations to sites that improve growth (adaptive mutation). It has been proposed that changes in mutability are a programmed response to stress in non-growing cells. In contrast, the amplification-mutagenesis model suggests that stress has no direct effect on the mutation rate and that mutations arise in cells growing under strong selection. In this model, stress serves only as a selective pressure that favors cells with multiple copies of a growth-limiting gene. Mutations are made more probable because more target copies are added to the selection plate-more cells with more mutational targets per cell. The amplification-mutagenesis process involves standard genetic events and therefore should apply to all biological systems. Idiosyncrasies of the particular system described here accelerate this process, allowing an evolutionary series of events to be completed in only a few days.
Collapse
Affiliation(s)
- John R Roth
- Section of Microbiology, University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
49
|
Kivisaar M. Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress. Environ Microbiol 2004; 5:814-27. [PMID: 14510835 DOI: 10.1046/j.1462-2920.2003.00488.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microorganisms are exposed to constantly changing environmental conditions. In a growth-restricting environment (e.g. during starvation), mutants arise that are able to take over the population by a process known as stationary phase mutation. Genetic adaptation of a microbial population under environmental stress involves mechanisms that lead to an elevated mutation rate. Under stressful conditions, DNA synthesis may become more erroneous because of the induction of error-prone DNA polymerases, resulting in a situation in which DNA repair systems are unable to cope with increasing amounts of DNA lesions. Transposition may also increase genetic variation. One may ask whether the rate of mutation under stressful conditions is elevated as a result of malfunctioning of systems responsible for accuracy or are there specific mechanisms that regulate the rate of mutations under stress. Evidence for the presence of mutagenic pathways that have probably been evolved to control the mutation rate in a cell will be discussed.
Collapse
Affiliation(s)
- Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia.
| |
Collapse
|
50
|
Lombardo MJ, Aponyi I, Rosenberg SM. General Stress Response Regulator RpoS in Adaptive Mutation and Amplification in Escherichia coli. Genetics 2004. [DOI: 10.1093/genetics/166.2.669] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Microbial cells under growth-limiting stress can generate mutations by mechanisms distinct from those in rapidly growing cells. These mechanisms might be specific stress responses that increase mutation rates, potentially altering rates of evolution, or might reflect non-stress-specific processes in rare growing cells. In an Escherichia coli model system, both frameshift reversion mutations and gene amplifications occur as apparent starvation-induced mutations. Whereas frameshift reversion (“point mutation”) requires recombination proteins, the SOS response, and error-prone DNA polymerase IV (DinB), amplification requires neither SOS nor pol IV. We report that both point mutation and amplification require the stationary-phase and general stress response transcription factor RpoS (σS). Growth-dependent mutation does not. Alternative interpretations are excluded. The results imply, first, that point mutation and amplification are stress responses that occur in differentiated stationary-phase (not rare growing) cells and, second, that transient genetic instability, producing both point mutation and genome rearrangement, may be a previously unrecognized component of the RpoS-dependent general stress response.
Collapse
Affiliation(s)
- Mary-Jane Lombardo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3411
| | - Ildiko Aponyi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3411
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3411
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030-3411
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030-3411
| |
Collapse
|