1
|
De Paepe M, Tournier L, Moncaut E, Son O, Langella P, Petit MA. Carriage of λ Latent Virus Is Costly for Its Bacterial Host due to Frequent Reactivation in Monoxenic Mouse Intestine. PLoS Genet 2016; 12:e1005861. [PMID: 26871586 PMCID: PMC4752277 DOI: 10.1371/journal.pgen.1005861] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/22/2016] [Indexed: 01/21/2023] Open
Abstract
Temperate phages, the bacterial viruses able to enter in a dormant prophage state in bacterial genomes, are present in the majority of bacterial strains for which the genome sequence is available. Although these prophages are generally considered to increase their hosts’ fitness by bringing beneficial genes, studies demonstrating such effects in ecologically relevant environments are relatively limited to few bacterial species. Here, we investigated the impact of prophage carriage in the gastrointestinal tract of monoxenic mice. Combined with mathematical modelling, these experimental results provided a quantitative estimation of key parameters governing phage-bacteria interactions within this model ecosystem. We used wild-type and mutant strains of the best known host/phage pair, Escherichia coli and phage λ. Unexpectedly, λ prophage caused a significant fitness cost for its carrier, due to an induction rate 50-fold higher than in vitro, with 1 to 2% of the prophage being induced. However, when prophage carriers were in competition with isogenic phage susceptible bacteria, the prophage indirectly benefited its carrier by killing competitors: infection of susceptible bacteria led to phage lytic development in about 80% of cases. The remaining infected bacteria were lysogenized, resulting overall in the rapid lysogenization of the susceptible lineage. Moreover, our setup enabled to demonstrate that rare events of phage gene capture by homologous recombination occurred in the intestine of monoxenic mice. To our knowledge, this study constitutes the first quantitative characterization of temperate phage-bacteria interactions in a simplified gut environment. The high prophage induction rate detected reveals DNA damage-mediated SOS response in monoxenic mouse intestine. We propose that the mammalian gut, the most densely populated bacterial ecosystem on earth, might foster bacterial evolution through high temperate phage activity. Dormant bacterial viruses, or prophages, are found in the genomes of almost all bacteria, but their impact on bacterial host fitness is largely unknown. Through experiments in mice, supported by a mathematical model, we quantified the activity of Escherichia coli prophage λ in monoxenic mouse gut, as well as its impact on its carrier bacteria. λ carriage negatively impacted its hosts due to frequent reactivation, but indirectly benefited its host by killing susceptible bacterial competitors. The high prophage activity unraveled in this study reflects a constant rate of SOS response, resulting from DNA damage in monoxenic mouse intestine. Our results should motivate researchers to take the presence of prophages into account when studying the action of specific bacteria in the gastrointestinal tract of mammals.
Collapse
Affiliation(s)
- Marianne De Paepe
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail:
| | | | - Elisabeth Moncaut
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Son
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
2
|
Jardim SS, Schuch AP, Pereira CM, Loreto ELS. Effects of heat and UV radiation on the mobilization of transposon mariner-Mos1. Cell Stress Chaperones 2015; 20:843-51. [PMID: 26092118 PMCID: PMC4529857 DOI: 10.1007/s12192-015-0611-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 01/04/2023] Open
Abstract
There are many complex interactions between transposable elements (TEs) and host genomes. Environmental changes that induce stressful conditions help to contribute for increasing complexity of these interactions. The transposon mariner-Mos1 increases its mobilization under mild heat stress. It has putative heat shock elements (HSEs), which are probably activated by heat shock factors (HSFs). Ultraviolet radiation (UVC) is a stressor that has been suggested as able to activate heat shock protein genes (Hsp). In this study, we test the hypothesis that if UVC induces Hsp expression, as heat does, it could also promote mariner-Mos1 transposition and mobilization. The Drosophila simulans white-peach is a mutant lineage that indicates the mariner-Mos1 transposition phenotypically through the formation of mosaic eyes. This lineage was exposed to UVC or mild heat stress (28 °C) in order to evaluate the induction of mariner-Mos1 expression by RT-qPCR, as well as the mariner-Mos1 mobilization activity based on the count number of red spots in the eyes. The effects of both treatments on the developmental time of flies and cell cycle progression were also investigated. Both the analysis of eyes and mariner-Mos1 gene expression indicate that UVC radiation has no effect in mariner-Mos1 transposition, although heat increases the expression and mobilization of this TE soon after the treatment. However, the expression of Hsp70 gene increased after 24 h of UVC exposure, suggesting different pathway of activation. These results showed that heat promotes mariner-Mos1 mobilization, although UVC does not induce the expression or mobilization of this TE.
Collapse
Affiliation(s)
- Sinara Santos Jardim
- />Postgraduate Program in Animal Biodiversity, University of Santa Maria, Santa Maria, RS Brazil
| | - André Passaglia Schuch
- />Postgraduate Program in Animal Biodiversity, University of Santa Maria, Santa Maria, RS Brazil
| | - Camila Moura Pereira
- />Postgraduate Program in Animal Biodiversity, University of Santa Maria, Santa Maria, RS Brazil
| | - Elgion Lucio Silva Loreto
- />Postgraduate Program in Animal Biodiversity, University of Santa Maria, Santa Maria, RS Brazil
- />Department of Biochemistry and Molecular Biology, University of Santa Maria, Ave. Roraima, 1000, Building 16-A, 3210, Santa Maria, RS 97105-900 Brazil
| |
Collapse
|
3
|
Giorgi G, Marcantonio P, Bersani F, Gavoçi E, Del Re B. Effect of extremely low frequency magnetic field exposure on DNA transposition in relation to frequency, wave shape and exposure time. Int J Radiat Biol 2011; 87:601-8. [PMID: 21504343 DOI: 10.3109/09553002.2011.570855] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To examine the effect of extremely low frequency magnetic field (ELF-MF) exposure on transposon (Tn) mobility in relation to the exposure time, the frequency and the wave shape of the field applied. MATERIALS AND METHODS Two Escherichia coli model systems were used: (1) Cells unable to express β-galactosidase (LacZ(-)), containing a mini-transposon Tn10 element able to give ability to express β-galactosidase (LacZ(+)) upon its transposition; therefore in these cells transposition activity can be evaluated by analysing LacZ(+) clones; (2) cells carrying Fertility plasmid (F(+)), and a Tn5 element located on the chromosome; therefore in these cells transposition activity can be estimated by a bacterial conjugation assay. Cells were exposed to sinusoidal (SiMF) or pulsed-square wave (PMF) magnetic fields of various frequencies (20, 50, 75 Hz) and for different exposure times (15 and 90 min). RESULTS Both mini-Tn10 and Tn5 transposition decreased under SiMF and increased under PMF, as compared to sham exposure control. No significant difference was found between frequencies and between exposure times. CONCLUSIONS ELF-MF exposure affects transposition activity and the effects critically depend on the wave shape of the field, but not on the frequency and the exposure time, at least in the range observed.
Collapse
Affiliation(s)
- Gianfranco Giorgi
- Department of Evolutionary Experimental Biology, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
4
|
Affiliation(s)
- Guillaume Cambray,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Anne-Marie Guerout,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| |
Collapse
|
5
|
Pasternak C, Ton-Hoang B, Coste G, Bailone A, Chandler M, Sommer S. Irradiation-induced Deinococcus radiodurans genome fragmentation triggers transposition of a single resident insertion sequence. PLoS Genet 2010; 6:e1000799. [PMID: 20090938 PMCID: PMC2806898 DOI: 10.1371/journal.pgen.1000799] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 12/07/2009] [Indexed: 11/18/2022] Open
Abstract
Stress-induced transposition is an attractive notion since it is potentially important in creating diversity to facilitate adaptation of the host to severe environmental conditions. One common major stress is radiation-induced DNA damage. Deinococcus radiodurans has an exceptional ability to withstand the lethal effects of DNA-damaging agents (ionizing radiation, UV light, and desiccation). High radiation levels result in genome fragmentation and reassembly in a process which generates significant amounts of single-stranded DNA. This capacity of D. radiodurans to withstand irradiation raises important questions concerning its response to radiation-induced mutagenic lesions. A recent study analyzed the mutational profile in the thyA gene following irradiation. The majority of thyA mutants resulted from transposition of one particular Insertion Sequence (IS), ISDra2, of the many different ISs in the D. radiodurans genome. ISDra2 is a member of a newly recognised class of ISs, the IS200/IS605 family of insertion sequences.
Collapse
Affiliation(s)
- Cécile Pasternak
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| | - Bao Ton-Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique, Unité Mixte de Recherche 5100, Toulouse, France
| | - Geneviève Coste
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| | - Adriana Bailone
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| | - Michael Chandler
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique, Unité Mixte de Recherche 5100, Toulouse, France
| | - Suzanne Sommer
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| |
Collapse
|
6
|
Abstract
Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution.
Collapse
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
7
|
Aertsen A, Michiels CW. Mrr instigates the SOS response after high pressure stress in Escherichia coli. Mol Microbiol 2006; 58:1381-91. [PMID: 16313623 DOI: 10.1111/j.1365-2958.2005.04903.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The bacterial SOS response is not only a vital reply to DNA damage but also constitutes an essential mechanism for the generation of genetic variability that in turn fuels adaptation and resistance development in bacterial populations. Despite the extensive depiction of the SOS regulon itself, its activation by stresses different from typical DNA damaging treatments remains poorly characterized. Recently, we reported the RecA- and LexA-dependent induction of the SOS response in Escherichia coli MG1655 after exposure to high hydrostatic pressure (HP, approximately 100 MPa), a physical stress of which the cellular effects are not well known. We now found this HP mediated SOS response to depend on RecB and not on RecF, which is a strong indication for the involvement of double strand breaks. As the pressures used in this work are thermodynamically unable to break covalent bonds in DNA, we hypothesized the involvement of a cellular function or pathway in the formation of this lesion. A specialized screening allowed us to identify the cryptic type IV restriction endonuclease Mrr as the final effector of this pathway. The HP SOS response and its corresponding phenotypes could be entirely attributed to the HP triggered activation of Mrr restriction activity. Several spontaneously occurring alleles of mrr, incapable of triggering the HP-induced SOS response, were isolated and characterized. These results provide evidence for a specific pathway that transmits the perception of HP stress to induction of the SOS response and support a role for Mrr in bacterial stress physiology.
Collapse
Affiliation(s)
- Abram Aertsen
- Laboratory of Food Microbiology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, B-3001 Heverlee, Leuven, Belgium.
| | | |
Collapse
|
8
|
Matsui K, Narita M, Ishii H, Endo G. Participation of the recA determinant in the transposition of class II transposon mini-TnMERI1. FEMS Microbiol Lett 2005; 253:309-14. [PMID: 16243449 DOI: 10.1016/j.femsle.2005.09.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 09/20/2005] [Accepted: 09/30/2005] [Indexed: 12/01/2022] Open
Abstract
As an initial step to understand the mobile nature of class II mercury resistance transposon TnMERI1, the effect of the recA gene on translocation of mini-TnMERI1 was evaluated. A higher transposition frequency in the LE392 strain (2.4+/-1.2x10(-5)) than in the recA-deficient DH1 strain (1.2+/-0.8x10(-6)) indicated participation of the recA gene in mini-TnMERI1 transposition. Introduction of the recA gene into the DH1 strain complemented the transposition frequency at the same level as in LE392 and confirmed participation of the recA gene in transposition. However, treatment of cells by stress agents, including irradiation of up to 3000 Jm(-2) UV doses, did not alter the transposition frequency and suggested independence of RecA from the SOS stress response. Further analysis of transconjugants indicated participation of RecA in the resolution of the cointegrate structure of the transposon. These results suggested that RecA is a constitutive cellular factor that increases translocation of mini-TnMERI1 and may participate in dissemination of TnMERI1-like transposons.
Collapse
Affiliation(s)
- Kazuaki Matsui
- Laboratory of Environmental Biotechnology, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537, Japan.
| | | | | | | |
Collapse
|
9
|
Amy MT, Virlogeux-Payant I, Bottreau E, Mompart F, Pardon P, Velge P. Precise excision and secondary transposition of TnphoA in non-motile mutants of a Salmonella enterica serovar Enteritidis clinical isolate. FEMS Microbiol Lett 2005; 245:263-9. [PMID: 15837381 DOI: 10.1016/j.femsle.2005.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/09/2005] [Accepted: 03/10/2005] [Indexed: 10/25/2022] Open
Abstract
Mutagenesis with TnphoA has been widely used in many bacteria. Here, we report the excision and secondary transposition of this transposon in three non-motile (fliC, fliF and motB) mutants of Salmonella enterica serovar Enteritidis (S. Enteritidis). Isolation of motile revertants showed that they were kanamycin resistant and conserved a copy of TnphoA in their genome in an insertion site different from the initial one. They also expressed an intact flagella. Characterization of the motile revertant derived from the fliC mutant showed that TnphoA excised precisely from the fliC gene, resulting in an equivalent amount of FliC secreted protein in the revertant compared to that of the wild-type strain. These results show that TnphoA mutants should be used with care and underline the value of using transposon derivatives lacking the transposase gene.
Collapse
Affiliation(s)
- Mai Té Amy
- Institut National de la Recherche Agronomique, Centre de Tours-Nouzilly, Pathologie Infectieuse et Immunologie, 37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
10
|
Nagy Z, Chandler M. Regulation of transposition in bacteria. Res Microbiol 2004; 155:387-98. [PMID: 15207871 DOI: 10.1016/j.resmic.2004.01.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 01/20/2004] [Indexed: 11/30/2022]
Abstract
Mobile genetic elements (MGEs) play a central role in the evolution of bacterial genomes. Transposable elements (TE: transposons and insertion sequences) represent an important group of these elements. Comprehension of the dynamics of genome evolution requires an understanding of how the activity of TEs is regulated and how their activity responds to the physiology of the host cell. This article presents an overview of the large range of, often astute, regulatory mechanisms, which have been adopted by TEs. These include mechanisms intrinsic to the element at the level of gene expression, the presence of key checkpoints in the recombination pathway and the intervention of host proteins which provide a TE/host interface. The multiplicity and interaction of these mechanisms clearly illustrates the importance of limiting transposition activity and underlines the compromise that has been reached between TE activity and the host genome. Finally, we consider how TE activity can shape the host genome.
Collapse
MESH Headings
- Bacteria/genetics
- DNA Methylation
- DNA Repair/genetics
- DNA Transposable Elements/genetics
- DNA, Superhelical/genetics
- Evolution, Molecular
- Frameshifting, Ribosomal/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Genome, Bacterial
- Integration Host Factors/genetics
- Models, Genetic
- Promoter Regions, Genetic/genetics
- Protein Biosynthesis/genetics
- RNA Stability/genetics
- RNA, Antisense/genetics
- SOS Response, Genetics/genetics
Collapse
Affiliation(s)
- Zita Nagy
- Laboratoire de Microbiologie et de Génétique Moléculaire (CNRS), 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | | |
Collapse
|
11
|
Matic I, Taddei F, Radman M. Survival versus maintenance of genetic stability: a conflict of priorities during stress. Res Microbiol 2004; 155:337-41. [PMID: 15207865 DOI: 10.1016/j.resmic.2004.01.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 01/20/2004] [Indexed: 11/24/2022]
Abstract
Bacteria are constantly facing many different environmental assaults, which may be of such severity that numerous survivors have important alterations in their genetic material. Some genetic systems induced in response to such stresses, for example the SOS system and the sigmaS regulon, actively participate in the generation of genetic alterations. The key priority of those genetic systems during stress is to ensure survival. Therefore, the repair of lethal DNA lesions is an absolute necessity, while perfect restoration of original genetic information is not. Furthermore, the nature of DNA lesions might render error-free repair too costly, or even impossible for stressed bacterial cells. Although the majority of these genetic alterations are deleterious, the rare advantageous alterations may have long-term evolutionary consequences independently of whether the selection of molecular mechanisms involved in their generation is linked to survival strategies or not.
Collapse
Affiliation(s)
- Ivan Matic
- INSERM U571, Faculté de Médecine Necker-Enfants Malades, Université Paris V, 156 rue de Vaugirard, 75730 Paris Cedex 15, France.
| | | | | |
Collapse
|
12
|
|
13
|
Abstract
Insertion sequences (ISs) constitute an important component of most bacterial genomes. Over 500 individual ISs have been described in the literature to date, and many more are being discovered in the ongoing prokaryotic and eukaryotic genome-sequencing projects. The last 10 years have also seen some striking advances in our understanding of the transposition process itself. Not least of these has been the development of various in vitro transposition systems for both prokaryotic and eukaryotic elements and, for several of these, a detailed understanding of the transposition process at the chemical level. This review presents a general overview of the organization and function of insertion sequences of eubacterial, archaebacterial, and eukaryotic origins with particular emphasis on bacterial elements and on different aspects of the transposition mechanism. It also attempts to provide a framework for classification of these elements by assigning them to various families or groups. A total of 443 members of the collection have been grouped in 17 families based on combinations of the following criteria: (i) similarities in genetic organization (arrangement of open reading frames); (ii) marked identities or similarities in the enzymes which mediate the transposition reactions, the recombinases/transposases (Tpases); (iii) similar features of their ends (terminal IRs); and (iv) fate of the nucleotide sequence of their target sites (generation of a direct target duplication of determined length). A brief description of the mechanism(s) involved in the mobility of individual ISs in each family and of the structure-function relationships of the individual Tpases is included where available.
Collapse
Affiliation(s)
- J Mahillon
- Laboratoire de Génétique Microbienne, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
14
|
Abstract
A new mutagenesis assay system based on the phage 434 cI gene carried on a low-copy number plasmid was used to investigate the effect of UV light on intermolecular transposition of IS10. Inactivation of the target gene by IS10 insertion was detected by the expression of the tet gene from the phage 434 PR promoter, followed by Southern blot analysis of plasmids isolated from TetR colonies. UV irradiation of cells harboring the target plasmid and a donor plasmid carrying an IS10 element led to an increase of up to 28-fold in IS10 transposition. Each UV-induced transposition of IS10 was accompanied by fusion of the donor and acceptor plasmid into a cointegrate structure, due to coupled homologous recombination at the insertion site, similar to the situation in spontaneous IS10 transposition. UV radiation also induced transposition of IS10 from the chromosome to the target plasmid, leading almost exclusively to the integration of the target plasmid into the chromosome. UV induction of IS10 transposition did not depend on the umuC and uvrA gene product, but it was not observed in lexA3 and DeltarecA strains, indicating that the SOS stress response is involved in regulating UV-induced transposition. IS10 transposition, known to increase the fitness of Escherichia coli, may have been recruited under the SOS response to assist in increasing cell survival under hostile environmental conditions. To our knowledge, this is the first report on the induction of transposition by a DNA-damaging agent and the SOS stress response in bacteria.
Collapse
Affiliation(s)
- Z Eichenbaum
- Department of Biological Chemistry, Faculty of Biochemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
15
|
Aleshkin GI, Kadzhaev KV, Markov AP. High and low UV-dose responses in SOS-induction of the precise excision of transposons tn1, Tn5 and Tn10 in Escherichia coli. Mutat Res 1998; 401:179-91. [PMID: 9639701 DOI: 10.1016/s0027-5107(98)00007-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UV-inducible precise excision of transposons is a specific SOS-mutagenesis process. It deals with the deletion formation which has previously been demonstrated to involve direct or inverted IS-sequences of transposons. The process was used for revisiting the targeted and untargeted SOS-mutability and its relationship to the key genes for SOS-mutagenesis: the recA, lexA and umuDC. The precise excision of transposons Tn5 and Tn10 from the chromosomal insertion sites ade128 and cyc750 is induced in Escherichia coli K-12 and B cells, wild-type for DNA-repair, both by the low doses of UV-light ranging from 0.25 J m-2 to 2.5 J m-2 and the high doses within the range 5.0-40.0 J m-2. Precise excision of these transposons induced by the range of low doses incapable to induce targeted point mutations reveals its mostly untargeted nature. This process for the transposon Tn1 is not induced by UV-light within the range of doses 0.25-2.5 J m-2 while its induction is possible by UV-fluences ranging from 5.0 to 40.0 J m-2. A dose-response of the precise excision of Tn1 is similar to that of the UV-induced reversion of trpUAA point mutation that is targeted by nature and contrasts to the UV-inducible precise excision of Tn5 and Tn10. Both types of UV-inducible precise excision, demonstrated either by Tn1 or Tn5 and Tn10, are eliminated by mutations in the lexA, recA and umuDC genes indispensable for UV-induced SOS-mutability. The palindromic structures different for the transposons Tn1, Tn5 and Tn10 are discussed to be involved and affect the targeted and untargeted precise excision of transposons induced by UV-light.
Collapse
Affiliation(s)
- G I Aleshkin
- The Gamaleya Research Institute for Epidemiology and Microbiology of the Russian Academy of Medical Science, Gamaleya St. 18, 123098 Moscow, Russian Federation
| | | | | |
Collapse
|
16
|
Abstract
Besides an immediate cellular adaptation to stress, organisms can resist such challenges through changes in their genetic material. These changes can be due to mutation or acquisition of pre-evolved functions via horizontal transfer. In this chapter we will review evidence from bacterial genetics that suggests that the frequency of such events can increase in response to stress by activating mutagenic response (e.g. the SOS response) and by inhibiting antimutagenic activities (e.g. mismatch repair system, MRS). Natural selection, by favoring adaptations, can also select for the mechanism(s) that has/have generated the adaptive changes by hitchhiking. These mutator mechanisms can sometimes respond very specifically, though blindly, to the challenge of the environment. Such stress-induced increases in mutation rates enhance genetic polymorphism, which is the structural component of the barrier to genetic exchange. Since SOS and MRS are the enzymatic controls of this barrier, the modulation of these systems can lead to a burst of speciation.
Collapse
Affiliation(s)
- F Taddei
- Laboratoire de Mutagenèse, Institut Jacques Monod, Paris, France
| | | | | | | |
Collapse
|
17
|
Abstract
Barriers to chromosomal gene transfer between bacterial species control their genetic isolation. These barriers, such as different microhabitats, the host ranges of genetic exchange vectors and restriction-modification systems, limit gene exchange, but the major limitation is genomic sequence divergence. The mismatch-repair system inhibits interspecies recombination, the inducible SOS system stimulates interspecies recombination, while natural selection determines the effective recombination frequencies.
Collapse
Affiliation(s)
- I Matic
- Laboratoire de Mutagenese, Institut Jacques Monod, Paris, France.
| | | | | |
Collapse
|
18
|
Matic I. Les mécanismes du contrôle des échanges génétiques interspécifiques et de la variabilité génétique chez les bactéries. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0020-2452(96)81489-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
KARCHER SUSANJ. TRANSPOSON MUTAGENESIS OF Escherichia coli. Mol Biol 1995. [DOI: 10.1016/b978-012397720-5.50035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Mohammad T, Tessman I, Morrison H, Kennedy MA, Simmonds SW. Photosensitized inactivation of infectious DNA by urocanic acid, indoleacrylic acid and rhodium complexes. Photochem Photobiol 1994; 59:189-96. [PMID: 8165239 DOI: 10.1111/j.1751-1097.1994.tb05021.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Naked, infectious single-stranded (ss) and double-stranded (ds) DNA from phages S13 and G4 were irradiated with 308 nm UV radiation in the absence and presence of several photobiologically active compounds: E- and Z-urocanic acid (E- and Z-UA), their methyl esters (E- and Z-MU), E- and Z-indoleacrylic acid (E- and Z-IA), cis-dichloro-bis(1,10-phenanthroline)rhodium(III) chloride (cDCBPR) and tris(1,10-phenanthroline)rhodium (III) perchlorate (TPR). E-urocanic acid protects against cyclobutane pyrimidine dimer formation in ssDNA but concomitantly photosensitizes the formation of other lesions that inactivate ssDNA. Z-urocanic acid also protects ssDNA against such dimerization but without the associated sensitized damage. The methyl ester isomers behave similarly. There is no such differential activity observed for the IA isomers, both of which sensitize the inactivation of ssDNA. Photostationary state mixtures of both UA and IA efficiently sensitize the inactivation of dsDNA, and cDCBPR strongly protects ssDNA from UV damage, while TPR is a significant sensitizer. Both of these metal complexes sensitize the inactivation of dsDNA slightly. For all compounds, cyclobutane pyrimidine dimers were the predominant lethal lesions produced by sensitization of the dsDNA, but they were not the major lethal lesions created by sensitization of the ssDNA. In the case of dsDNA, both UA and IA created pyrimidine dimers with a high degree of potential for mutagenesis, as determined by an assay that monitors the frequency of mutations following the spontaneous deamination of cytosine in photodimers.
Collapse
Affiliation(s)
- T Mohammad
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | | | | | | | | |
Collapse
|
21
|
Levy MS, Balbinder E, Nagel R. Effect of mutations in SOS genes on UV-induced precise excision of Tn10 in Escherichia coli. Mutat Res 1993; 293:241-7. [PMID: 7679474 DOI: 10.1016/0921-8777(93)90075-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
UV treatment increases the frequency of Tn10 precise excision from different sites of the Escherichia coli chromosome. UV induction of Tn10 excision is not evidenced in a lexA3 (ind-) mutant carrying either a recA+ or a recA730 allele. High levels of RecA synthesized by a recA+ gene not repressible by LexA do not relieve the non-inducibility of Tn10 excision in a lexA3 (ind-) background. This indicates that the expression of an SOS gene different from recA is necessary for the induction of Tn10 excision. In contrast to UV induction of point mutations, this induction does not depend on a functional umuC gene since umuC::Tn5 mutants show increased levels of Tn10 excision from leu, thr or gal after irradiation. MucAB+ plasmid pKM101 which renders cells more UV-mutable for point mutations decreases UV-induced Tn10 excision. These results show that UV-induced Tn10 precise excision requires SOS induction and that it involves a pathway different from point mutagenesis.
Collapse
Affiliation(s)
- M S Levy
- CEFYBO, CONICET, Buenos Aires, Argentina
| | | | | |
Collapse
|
22
|
Kuan CT, Tessman I. Further evidence that transposition of Tn5 in Escherichia coli is strongly enhanced by constitutively activated RecA proteins. J Bacteriol 1992; 174:6872-7. [PMID: 1328165 PMCID: PMC207365 DOI: 10.1128/jb.174.21.6872-6877.1992] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have shown that excision and transposition of Tn5 in Escherichia coli are greatly increased by recA(Prtc) genes, which encode constitutively activated RecA proteins (C.-T. Kuan, S.-K. Liu, and I. Tessman, Genetics 128:45-57, 1991). Contrary results, showing a significant decrease in Tn5 transposition under SOS conditions, were subsequently reported (M. D. Weinreich, J. C. Makris, and W. S. Reznikoff, J. Bacteriol. 173:6910-6918, 1991). We have extended our studies to examine the following: (i) transposition of Tn5 from sites in the phoA, phoB, proC, trpD, and ilvD genes; (ii) the effect of gene transcription; (iii) the comparative effect of dinD+ and dinD(Def) alleles; (iv) the use of a mating-out assay of transposition; (v) the effect of a recA(Prtc) allele located at the normal chromosomal site; and (vi) the effect at 41.5 degrees C of the recA441(Prtc) allele. The new results fully confirm our previous conclusions, including the fact that the frequency of Tn5 transposition under constitutive SOS conditions is site dependent.
Collapse
Affiliation(s)
- C T Kuan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
23
|
Tessman I, Liu SK, Kennedy MA. Mechanism of SOS mutagenesis of UV-irradiated DNA: mostly error-free processing of deaminated cytosine. Proc Natl Acad Sci U S A 1992; 89:1159-63. [PMID: 1741372 PMCID: PMC48408 DOI: 10.1073/pnas.89.4.1159] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We measured the kinetics of growth and mutagenesis of UV-irradiated DNA of phages S13 and lambda that were undergoing SOS repair; the kinetics strongly suggest that most of SOS mutagenesis arises from the deamination of cytosine in cyclobutane pyrimidine dimers, producing C----T transitions. This occurs because the SOS mechanism bypasses T--T dimers promptly, while bypass of cytosine-containing dimers is delayed long enough for deamination to occur. The mutations are thus primarily the product of a faithful mechanism of lesion bypass by a DNA polymerase and are not, as had been generally thought, the product of an error-prone mechanism. All of these observations are explained by the A-rule, which is that adenine nucleotides are inserted noninstructionally opposite DNA lesions.
Collapse
Affiliation(s)
- I Tessman
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | |
Collapse
|
24
|
Weinreich MD, Makris JC, Reznikoff WS. Induction of the SOS response in Escherichia coli inhibits Tn5 and IS50 transposition. J Bacteriol 1991; 173:6910-8. [PMID: 1657870 PMCID: PMC209045 DOI: 10.1128/jb.173.21.6910-6918.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In response to DNA damage or the inhibition of normal DNA replication in Escherichia coli, a set of some 20 unlinked operons is induced through the RecA-mediated cleavage of the LexA repressor. We examined the effect of this SOS response on the transposition of Tn5 and determined that the frequency of transposition is reduced 5- to 10-fold in cells that constitutively express SOS functions, e.g., lexA(Def) strains. Furthermore, this inhibition is independent of recA function, is fully reversed by a wild-type copy of lexA, and is not caused by an alteration in the levels of the Tn5 transposase or inhibitor proteins. We isolated insertion mutations in a lexA(Def) background that reverse this transposition defect; all of these mapped to a new locus near 23 min on the E. coli chromosome.
Collapse
Affiliation(s)
- M D Weinreich
- Department of Biochemistry, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
25
|
Kuan CT, Tessman I. LexA protein of Escherichia coli represses expression of the Tn5 transposase gene. J Bacteriol 1991; 173:6406-10. [PMID: 1655708 PMCID: PMC208973 DOI: 10.1128/jb.173.20.6406-6410.1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The LexA protein of Escherichia coli represses expression of a variety of genes that, by definition, constitute the SOS regulon. Genetic evidence suggests that Tn5 transposition is also regulated by the product of the lexA gene (C.-T. Kuan, S.-K. Liu, and I. Tessman, Genetics 128:45-57, 1991). We now show that the LexA protein represses expression of the tnp gene, located in the IS50R component of Tn5, which encodes a transposase, and that LexA does not repress expression of the IS50R inh gene, which encodes an inhibitor of transposition. Elimination of LexA resulted in increased expression of the tnp gene by a factor of 2.7 +/- 0.4, as indicated by the activity of a lacZ gene fused to the tnp gene. LexA protein retarded the electrophoretic movement of a 101-bp segment of IS50R DNA that contained a putative LexA protein-binding site in the tnp promoter; the interaction between the LexA repressor and the promoter region of the tnp gene appears to be relatively weak. These features show that the IS50R tnp gene is a member of the SOS regulon.
Collapse
Affiliation(s)
- C T Kuan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|