1
|
Pang S, Octavia S, Feng L, Liu B, Reeves PR, Lan R, Wang L. Genomic diversity and adaptation of Salmonella enterica serovar Typhimurium from analysis of six genomes of different phage types. BMC Genomics 2013; 14:718. [PMID: 24138507 PMCID: PMC3853940 DOI: 10.1186/1471-2164-14-718] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 10/11/2013] [Indexed: 12/28/2022] Open
Abstract
Background Salmonella enterica serovar Typhimurium (or simply Typhimurium) is the most common serovar in both human infections and farm animals in Australia and many other countries. Typhimurium is a broad host range serovar but has also evolved into host-adapted variants (i.e. isolated from a particular host such as pigeons). Six Typhimurium strains of different phage types (defined by patterns of susceptibility to lysis by a set of bacteriophages) were analysed using Illumina high-throughput genome sequencing. Results Variations between strains were mainly due to single nucleotide polymorphisms (SNPs) with an average of 611 SNPs per strain, ranging from 391 SNPs to 922 SNPs. There were seven insertions/deletions (indels) involving whole or partial gene deletions, four inactivation events due to IS200 insertion and 15 pseudogenes due to early termination. Four of these inactivated or deleted genes may be virulence related. Nine prophage or prophage remnants were identified in the six strains. Gifsy-1, Gifsy-2 and the sopE2 and sspH2 phage remnants were present in all six genomes while Fels-1, Fels-2, ST64B, ST104 and CP4-57 were variably present. Four strains carried the 90-kb plasmid pSLT which contains several known virulence genes. However, two strains were found to lack the plasmid. In addition, one strain had a novel plasmid similar to Typhi strain CT18 plasmid pHCM2. Conclusion The genome data suggest that variations between strains were mainly due to accumulation of SNPs, some of which resulted in gene inactivation. Unique genetic elements that were common between host-adapted phage types were not found. This study advanced our understanding on the evolution and adaptation of Typhimurium at genomic level.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | |
Collapse
|
2
|
Rapid quantification of sequence repeats to resolve the size, structure and contents of bacterial genomes. BMC Genomics 2013; 14:537. [PMID: 23924250 PMCID: PMC3751351 DOI: 10.1186/1471-2164-14-537] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The numerous classes of repeats often impede the assembly of genome sequences from the short reads provided by new sequencing technologies. We demonstrate a simple and rapid means to ascertain the repeat structure and total size of a bacterial or archaeal genome without the need for assembly by directly analyzing the abundances of distinct k-mers among reads. RESULTS The sensitivity of this procedure to resolve variation within a bacterial species is demonstrated: genome sizes and repeat structure of five environmental strains of E. coli from short Illumina reads were estimated by this method, and total genome sizes corresponded well with those obtained for the same strains by pulsed-field gel electrophoresis. In addition, this approach was applied to read-sets for completed genomes and shown to be accurate over a wide range of microbial genome sizes. CONCLUSIONS Application of these procedures, based solely on k-mer abundances in short read data sets, allows aspects of genome structure to be resolved that are not apparent from conventional short read assemblies. This knowledge of the repetitive content of genomes provides insights into genome evolution and diversity.
Collapse
|
3
|
Petrova M, Shcherbatova N, Gorlenko Z, Mindlin S. A new subgroup of the IS3 family and properties of its representative member ISPpy1. MICROBIOLOGY-SGM 2013; 159:1900-1910. [PMID: 23832000 DOI: 10.1099/mic.0.068676-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, we described a novel insertion element, ISPpy1, isolated from a permafrost strain of Psychrobacter maritimus. In this work, we demonstrated that ISPpy1 is a member of a novel subgroup of the IS3 family of insertion sequences (ISs) that was not identified and characterized previously. IS elements of this subgroup termed the ISPpy1 subgroup are broadly distributed among different taxa of Eubacteria, including Geobacteraceae, Chlorobiaceae, Desulfobacteraceae, Methylobacteriaceae, Nitrosomonadaceae and Cyanobacteria. While displaying characteristic features of the IS3-family elements, ISPpy1 subgroup elements exhibit some unusual features. In particular, most of them have longer terminal repeats with unconventional ends and frameshifting box with an atypical organization, and, unlike many other IS3-family elements, do not exhibit any distinct IS specificity. We studied the transposition and mutagenic properties of a representative member of this subgroup, ISPpy1 and showed that in contrast to the original P. maritimus host, in a heterologous host, Escherichia coli K-12, it is able to translocate with extremely high efficiency into the chromosome, either by itself or as a part of a composite transposon containing two ISPpy1 copies. The majority of transposants carry multiple chromosomal copies (up to 12) of ISPpy1. It was discovered that ISPpy1 is characterized by a marked mutagenic activity in E. coli: its chromosomal insertions generate various types of mutations, including auxotrophic, pleiotropic and rifampicin-resistance mutations. The distribution of IS elements of the novel subgroup among different bacteria, their role in the formation of composite transposons and the horizontal transfer of genes are examined and discussed.
Collapse
Affiliation(s)
- Mayya Petrova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Natalya Shcherbatova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Zhosephine Gorlenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Sofia Mindlin
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| |
Collapse
|
4
|
Abstract
Bacterial insertion sequences (ISs) are the simplest kinds of bacterial mobile DNA. Evolutionary studies need consistent IS annotation across many different genomes. We have developed an open-source software package, IScan, to identify bacterial ISs and their sequence elements—inverted and target direct repeats—in multiple genomes using multiple flexible search parameters. We applied IScan to 438 completely sequenced bacterial genomes and 20 IS families. The resulting data show that ISs within a genome are extremely similar, with a mean synonymous divergence of Ks = 0.033. Our analysis substantially extends previously available information, and suggests that most ISs have entered bacterial genomes recently. By implication, their population persistence may depend on horizontal transfer. We also used IScan's ability to analyze the statistical significance of sequence similarity among many IS inverted repeats. Although the inverted repeats of insertion sequences are evolutionarily highly flexible parts of ISs, we show that this ability can be used to enrich a dataset for ISs that are likely to be functional. Applied to the thousands of genomes that will soon be available, IScan could be used for many purposes, such as mapping the evolutionary history and horizontal transfer patterns of different ISs.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 27-J-54, CH-8057 Zurich, Switzerland.
| | | | | |
Collapse
|
5
|
Gassama-Sow A, Wane AA, Canu NA, Uzzau S, Kane AA, Rubino S. Characterization of virulence factors in the newly described Salmonella enterica serotype Keurmassar emerging in Senegal (sub-Saharan Africa). Epidemiol Infect 2006; 134:741-3. [PMID: 16420724 PMCID: PMC2870466 DOI: 10.1017/s0950268805005807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2005] [Indexed: 11/07/2022] Open
Abstract
From 2000 to 2001, nine strains of Salmonella enterica belonging to the new serotype Keurmassar have been isolated from human and poultry samples at the Senegalese National Salmonella and Shigella Reference Laboratory at the Pasteur Institute, in Dakar. All strains carried virulence factors including Salmonella Pathogenicity Islands (SPI)-1, -2, -3 and -5 encoded genes. Strains did not harbour virulence plasmid. Ribotyping analysis revealed a single clone identical to Salmonella Decatur isolated in Zimbabwe. These data suggest that strains are closely related, and may have been spread clonally. In this new serotype, insertion sequence IS200 is not present.
Collapse
Affiliation(s)
- A Gassama-Sow
- Laboratoire de Bactériologie Expérimentale, Institut Pasteur, Dakar, Sénégal.
| | | | | | | | | | | |
Collapse
|
6
|
Wagner A. Periodic Extinctions of Transposable Elements in Bacterial Lineages: Evidence from Intragenomic Variation in Multiple Genomes. Mol Biol Evol 2005; 23:723-33. [PMID: 16373392 DOI: 10.1093/molbev/msj085] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most previous work on the evolution of mobile DNA was limited by incomplete sequence information. Whole genome sequences allow us to overcome this limitation. I study the nucleotide diversity of prominent members of five insertion sequence families whose transposition activity is encoded by a single transposase gene. Eighteen among 376 completely sequenced bacterial genomes and plasmids carry between 3 and 20 copies of a given insertion sequence. I show that these copies generally show very low DNA divergence. Specifically, more than 68% of the transposase genes are identical within a genome. The average number of amino acid replacement substitutions at amino acid replacement sites is Ka = 0.013, that at silent sites is Ks = 0.1. This low intragenomic diversity stands in stark contrast to a much higher divergence of the same insertion sequences among distantly related genomes. Gene conversion among protein-coding genes is unlikely to account for this lack of diversity. The relation between transposition frequencies and silent substitution rates suggests that most insertion sequences in a typical genome are evolutionarily young and have been recently acquired. They may undergo periodic extinction in bacterial lineages. By implication, they are detrimental to their host in the long run. This is also suggested by the highly skewed and patchy distribution of insertion sequences among genomes. In sum, one can think of insertion sequences as slow-acting infectious diseases of cell lineages.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Biology, The University of New Mexico, USA.
| |
Collapse
|
7
|
Miché L, Faure D, Blot M, Cabanne-Giuli E, Balandreau J. Detection and activity of insertion sequences in environmental strains of Burkholderia. Environ Microbiol 2001; 3:766-73. [PMID: 11846770 DOI: 10.1046/j.1462-2920.2001.00251.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The presence of two insertion sequences, IS406 and IS407, was tested by polymerase chain reaction (PCR) amplification in 25 strains representing 15 Burkholderia species and the close relative Ralstonia pickettii. A total of 50% of the 25 strains contained at least one of the two insertion sequences (ISs) and a statistically significant correlation was found between the occurrences of IS406 and IS407. Moreover, PCR-RFLP studies of the amplified fragments showed that IS406 is largely conserved among all the strains tested, whereas IS407 is rather polymorphic. Transposition activity was studied in Burkholderia vietnamiensis TVV75, using the pGBG1 target plasmid. This entrapping plasmid permitted the isolation and characterization of three active IS, able to activate the plasmid-borne tetA gene after transposition. Sequencing permitted the identification of these mobile genetic elements as isoforms of IS402, IS407 and IS1416. PCR amplification products provided IS probes, which were used to determine the copy-numbers of IS402, IS407 and IS1416 in the genome of B. vietnamiensis TVV75, by Southern blotting. Copy numbers are 12, 3 and 11 respectively. To our knowledge, this is the first description of active insertion sequences in B. vietnamiensis.
Collapse
Affiliation(s)
- L Miché
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Université Claude Bernard Lyon 1, 69622 Villeurbanne cedex, France
| | | | | | | | | |
Collapse
|
8
|
Collighan RJ, Walker SL, Woodward MJ. Sequence analysis and distribution in Salmonella enterica serovars of IS3-like elements. Int J Med Microbiol 2000; 290:619-26. [PMID: 11200543 DOI: 10.1016/s1438-4221(00)80011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The genome of Salmonella enterica serovar Enteritidis was shown to possess three IS3-like insertion elements, designated IS1230A, B and C, and each was cloned and their respective deoxynucleotide sequences determined. Mutations in elements IS1230A and B resulted in frameshifts in the open reading frames that encoded a putative transposase to be inactive. IS1230C was truncated at nucleotide 774 relative to IS1230B and therefore did not possess the 3' terminal inverted repeat. The three IS1230 derivatives were closely related to each other based on nucleotide sequence similarity. IS1230A was located adjacent to the sef operon encoding SEF14 fimbriae located at minute 97 of the genome of S. Enteritidis. IS1230B was located adjacent to the umuDC operon at minute 42.5 on the genome, itself located near to one terminus of an 815-kb genome inversion of S. Enteritidis relative to S. Typhimurium. IS1230C was located next to attB, the bacteriophage P22 attachment site, and proB, encoding gamma-glutamyl phosphate reductase. A truncated 3' remnant of IS1230, designated IS1230T, was identified in a clinical isolate of S. Typhimurium DT193 strain 2391. This element was located next to attB adjacent to which were bacteriophage P22-like sequences. Southern hybridisation of total genomic DNA from eighteen phage types of S. Enteritidis and eighteen definitive types of S. Typhimurium showed similar, if not identical, restriction fragment profiles in the respective serovars when probed with IS1230A.
Collapse
Affiliation(s)
- R J Collighan
- Department of Bacterial Diseases, Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | | | | |
Collapse
|
9
|
Lai XH, Wang SY, Uhlin BE. Expression of cytotoxicity by potential pathogens in the standard Escherichia coli collection of reference (ECOR) strains. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 11):3295-3303. [PMID: 10589739 DOI: 10.1099/00221287-145-11-3295] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The standard Escherichia coli collection of reference (ECOR) strains was examined for ability to exert cytotoxicity towards mammalian cells. A group of strains with functional haemolysin expression caused strong cytotoxicity and detachment in J774 macrophage cells as measured by lactate dehydrogenase release and as observed under a microscope. The expression of haemolysin was monitored by using antisera recognizing the E. coli alpha-haemolysin, the HlyA protein, and by quantitative haemolysis assays. The presence of the hlyA gene, which may be part of a pathogenicity island, was also confirmed. These analyses revealed that different ECOR strains express quantitatively different levels of haemolysin. One putative enteroaggregative E. coli (EAEC) strain was also found in the ECOR collection. The EAEC strain was characterized by the clump formation assay, PCR amplification of the EAEC DNA probe sequence and confirmative sequence analysis of the amplified fragment. The EAEC heat-stable enterotoxin 1 gene, astA, was found in 14% (10/72) of the ECOR strains and a consensus sequence for astA was proposed by comparing these sequences with those from pathogens. The astA gene appeared to be plasmid-located. Based on evidence from the work of other laboratories and from the present findings, it is concluded that the ECOR collection contains strains that may represent pathogenic E. coli. It is noted that caution is necessary when handling or disposing of those potentially pathogenic ECOR strains.
Collapse
Affiliation(s)
- Xin-He Lai
- Department of Microbiology, Umeå University, Umeå S-90187, Sweden1
| | - Su-Yan Wang
- Department of Microbiology, Umeå University, Umeå S-90187, Sweden1
| | - Bernt Eric Uhlin
- Department of Microbiology, Umeå University, Umeå S-90187, Sweden1
| |
Collapse
|
10
|
Casadesús J, Naas T, Garzón A, Arini A, Torreblanca J, Arber W. Lack of hotspot targets: a constraint for IS30 transposition in Salmonella. Gene 1999; 238:231-9. [PMID: 10570999 DOI: 10.1016/s0378-1119(99)00256-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IS30 is an insertion element common in E. coli strains but rare or absent in Salmonella. Transfer of the IS30-flanked transposon Tn2700 to Salmonella typhimurium was assayed using standard delivery procedures of bacterial genetics (conjugation and transduction). Tn2700 'hops' were rare and required transposase overproduction, suggesting the existence of host constraints for IS30 activity. Sequencing of three Tn2700 insertions in the genome of S. typhimurium revealed that the transposon had been inserted into sites with a low homology to the IS30 consensus target, suggesting that inefficient Tn2700 transposition to the Salmonella genome might be caused by a lack of hotspot targets. This view was confirmed by the introduction of an IS30 'hot target sequence', whose sole presence permitted Tn2700 transposition without transposase overproduction. Detection of IS30-induced DNA rearrangements in S. typhimurium provided further evidence that the element undergoes similar activities in E. coli and S. typhimurium. Thus, hotspot absence may be the main (if not the only) limitation for IS30 activity in the latter species. If these observations faithfully reproduce the scenario of natural populations, establishment of IS30 in the Salmonella genome may have been prevented by a lack of DNA sequences closely related to the unusually long (24 bp) IS30 consensus target.
Collapse
Affiliation(s)
- J Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain.
| | | | | | | | | | | |
Collapse
|
11
|
Beuzón CR, Marqués S, Casadesús J. Repression of IS200 transposase synthesis by RNA secondary structures. Nucleic Acids Res 1999; 27:3690-5. [PMID: 10471738 PMCID: PMC148624 DOI: 10.1093/nar/27.18.3690] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The IS 200 transposase, a 16 kDa polypeptide encoded by the single open reading frame (ORF) of the insertion element, has been identified using an expression system based on T7 RNA polymerase. In wild-type IS 200, two sets of internal inverted repeats that generate RNA secondary structures provide two independent mechanisms for repression of transposase synthesis. The inverted repeat located near the left end of IS 200 is a transcriptional terminator that terminates read-through transcripts before they reach the IS 200 ORF. The terminator is functional in both directions and may terminate >80% of transcripts. Another control operates at the translational level: transposase synthesis is inhibited by occlusion of the ribosome-binding site (RBS) of the IS 200 ORF. The RBS (5'-AGGGG-3') is occluded by formation of a mRNA stem-loop structure whose 3' end is located only 3 nt upstream of the start codon. This mechanism reduces transposase synthesis approximately 10-fold. Primer extension experiments with AMV reverse transcriptase have provided evidence that this stem-loop RNA structure is actually formed. Tight repression of transposase synthesis, achieved through synergistic mechanisms of negative control, may explain the unusually low transposition frequency of IS 200.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Binding Sites
- Cloning, Molecular
- Codon, Initiator/genetics
- DNA Transposable Elements/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- Protein Biosynthesis/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Ribosomes/metabolism
- Salmonella/enzymology
- Salmonella/genetics
- Terminator Regions, Genetic/genetics
- Thermodynamics
- Transcription, Genetic/genetics
- Transposases/biosynthesis
- Transposases/chemistry
- Transposases/genetics
Collapse
Affiliation(s)
- C R Beuzón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain
| | | | | |
Collapse
|
12
|
Masui S, Kamoda S, Sasaki T, Ishikawa H. The first detection of the insertion sequence ISW1 in the intracellular reproductive parasite Wolbachia. Plasmid 1999; 42:13-9. [PMID: 10413661 DOI: 10.1006/plas.1999.1407] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wolbachia are maternally inherited intracellular rickettsia-like bacteria known to infect a wide range of arthropods. They are associated with a number of different reproductive phenotypes in their hosts, such as cytoplasmic incompatibility, parthenogenesis, and feminization. We report on a novel insertion sequence (IS), ISW1, which was identified in the region downstream of groEL of a Wolbachia strain, wTai. The 573-bp-long ISW1 sequence is the first IS element observed in this organism, displays significant similarity to IS200, and lacks terminal inverted repeats. There were more than 20 copies of ISW1 on the chromosome of wTai. Sequence analysis of nine distinct ISW1 copies and their flanking regions showed that the copies were identical and suggested that ISW1 has no preference for its insertion sites. Possible roles of ISW1 in the adaptation of Wolbachia to intracellular environments and in various reproductive alterations caused by this bacterium are discussed.
Collapse
Affiliation(s)
- S Masui
- Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | |
Collapse
|
13
|
Devalckenaere A, Odaert M, Trieu-Cuot P, Simonet M. Characterization of IS1541-like elements in Yersinia enterocolitica and Yersinia pseudotuberculosis. FEMS Microbiol Lett 1999; 176:229-33. [PMID: 10418150 DOI: 10.1111/j.1574-6968.1999.tb13666.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We characterized Yersinia enterocolitica and Yersinia pseudotuberculosis insertion sequences related to insertion sequence 1541, recently identified in Yersinia pestis. For each of the two species, two insertion sequence copies were cloned and sequenced. Genetic elements from Y. pseudotuberculosis were almost identical to insertion sequence 1541, whereas these from Y. enterocolitica were less related. Phylogenetic analysis of the putative transposases encoded by insertion sequences from the three pathogenic members of the genus Yersinia showed that they clustered with those encoded by Escherichia coli and Salmonella enterica elements belonging to the insertion sequence 200/insertion sequence 605 group. Insertion sequences originating from Y. pestis and Y. pseudotuberculosis constitute a monophyletic lineage distinct from that of Y. enterocolitica.
Collapse
Affiliation(s)
- A Devalckenaere
- Equipe Mixte INSERM-Université E99-19 and JE2225, Département de Pathogénèse des Maladies Infectieuses et Parasitaires, Institut de Biologie de Lille, France
| | | | | | | |
Collapse
|
14
|
Kersulyte D, Akopyants NS, Clifton SW, Roe BA, Berg DE. Novel sequence organization and insertion specificity of IS605 and IS606: chimaeric transposable elements of Helicobacter pylori. Gene 1998; 223:175-86. [PMID: 9858724 DOI: 10.1016/s0378-1119(98)00164-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
IS605, an insertion sequence (IS) that is unusual in containing homologs of genes for the single putative transposases of two other unrelated IS elements (IS200 and IS1341), was found in nearly one-third of a set of 238 independent isolates of the gastric pathogen Helicobacter pylori. Hybridization and PCR tests indicated that any strain carrying one of these ORFs also carried the other, which implies that both ORFs are in the same unit of transposition. The IS605 ends and target sites for insertion were identified by sequencing eight preexisting insertions in strain NCTC11638, corresponding empty sites in other strains, and new transpositions in E. coli of an IS605 derivative marked with a selectable chloramphenicol-resistance gene. These tests showed that IS605 is also unusual in: (1) having unique, not inverted repeat, ends; (2) not duplicating (or deleting) target sequences during transposition; and (3) inserting with its left (IS200-homolog) end next to 5'-TTTAA or 5'-TTTAAC. IS605 was implicated in at least two genome rearrangements in strain NCTC11638. A second member of the IS605 family, called IS606 (25% amino acid identity to IS605 in inferred proteins) was found in one-third of 38 H. pylori strains tested, many of which did not carry IS605. The features of these two chimaeric IS elements are discussed in terms of possible transposition mechanisms, IS element evolution, and effects of IS elements on genome organization and evolution in the microbes that they inhabit.
Collapse
Affiliation(s)
- D Kersulyte
- Departments of Molecular Microbiology and Genetics, Campus Box 8230, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
15
|
Thompson CJ, Daly C, Barrett TJ, Getchell JP, Gilchrist MJ, Loeffelholz MJ. Insertion element IS3-based PCR method for subtyping Escherichia coli O157:H7. J Clin Microbiol 1998; 36:1180-4. [PMID: 9574672 PMCID: PMC104795 DOI: 10.1128/jcm.36.5.1180-1184.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An Escherichia coli O157:H7 subtyping method based on PCR amplification of variable DNA sequences between the repetitive element IS3 was developed. Template DNA was prepared by boiling cells in Chelex. Two separate IS3 PCR amplifications were performed for each isolate: one with a single primer (primer IS3A) and one with two primers (primers IS3A and IS3B). The IS3 PCR subtyping method was applied to 35 epidemiologically related and unrelated E. coli O157:H7 isolates that had been previously characterized by pulsed-field gel electrophoresis (PFGE). PFGE identified 25 different subtypes (difference of one or more bands). PCR with single primer IS3A and primer pair IS3A-IS3B identified 6 and 14 different subtypes, respectively. By combining the results of the two PCR amplifications, 15 different IS3 PCR subtypes were identified. While not as sensitive as PFGE, IS3 PCR subtyping grouped all outbreak-related isolates. IS3 PCR banding patterns were reproducible between amplifications and between subcultures. IS3 PCR could serve as a simple, rapid screening method for the identification of unrelated E. coli O157:H7 isolates.
Collapse
Affiliation(s)
- C J Thompson
- State Hygienic Laboratory, University of Iowa, Iowa City 52242, USA
| | | | | | | | | | | |
Collapse
|
16
|
Odaert M, Devalckenaere A, Trieu-Cuot P, Simonet M. Molecular characterization of IS1541 insertions in the genome of Yersinia pestis. J Bacteriol 1998; 180:178-81. [PMID: 9422611 PMCID: PMC106867 DOI: 10.1128/jb.180.1.178-181.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The genome of Yersinia pestis, the causative agent of plague, contains at least 30 copies of an element, designated IS1541, which is structurally related to IS200 (85% identity). One such element is inserted within the chromosomal inv gene (M. Simonet, B. Riot, N. Fortineau, and P. Berche, Infect. Immun. 64:375-379, 1996). We characterized other IS1541 insertions by cloning 14 different Y. pestis 6/69M loci carrying a single copy of this insertion sequence (IS) into Escherichia coli and, for each element, sequencing 250 bp of both flanking regions. In no case was this IS element inserted into large open reading frames; however, in eight cases, it was detected downstream (17 to 139 bp) of genes thought to be transcribed monocistronically or which constituted the last gene of an operon, and in only one case was it detected upstream (37 bp) of the first gene of an operon. Sequence analysis revealed stem-loop structures (deltaG, < -10 kcal) resembling rho-independent transcription terminators in 8 of the 14 insertion sites. These motifs might constitute hot spots for insertion of this IS1541 element within the Y. pestis genome.
Collapse
Affiliation(s)
- M Odaert
- Laboratoire de Bactériologie-Hygiène, Faculté de Médecine Henri Warembourg, Lille, France
| | | | | | | |
Collapse
|
17
|
Burnens AP, Stanley J, Sack R, Hunziker P, Brodard I, Nicolet J. The flagellin N-methylase gene fliB and an adjacent serovar-specific IS200 element in Salmonella typhimurium. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 5):1539-1547. [PMID: 9168604 DOI: 10.1099/00221287-143-5-1539] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cloning and molecular genetic analysis of a locus mapping within the flagellar gene (fli) complex of Salmonella typhimurium is reported. A copy of the insertion element IS200 was located in a noncoding stretch of DNA upstream of the fliA gene. Comparative nucleotide sequence analysis showed that this copy of IS200 was 711 bp long and that its flanking regions contained no features common to other characterized insertion sites of this element. The element was located 37 bp downstream of an ORF whose product was shown by interspecific transfer and amino acid analysis to carry out N-methylation of selected lysine residues in Salmonella flagellin. The sequence and phenotype of this ORF identified it as fliB, encoding the only prokaryotic N-methylase acting on amino groups to have been characterized to date. It was found to be conserved among all clinically significant serovars of Salmonella. The IS200 insertion site is of particular interest since it was conserved in all but two rare evolutionary lines of S. typhimurium, and was absent from 85 Salmonella strains belonging to 37 other serovars. It is thus a phylogenetically significant marker at the serovar level.
Collapse
Affiliation(s)
- André P Burnens
- Institute for Veterinary Bacteriology, University of Berne, CH-3012 Berne, Switzerland
| | - John Stanley
- Molecular Biology Unit, Virus Reference Division, Central Public Health Laboratory, London NW9 5HT, UK
| | - Ragna Sack
- Institute for Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Peter Hunziker
- Institute for Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Isabelle Brodard
- Institute for Veterinary Bacteriology, University of Berne, CH-3012 Berne, Switzerland
| | - Jacques Nicolet
- Institute for Veterinary Bacteriology, University of Berne, CH-3012 Berne, Switzerland
| |
Collapse
|
18
|
Abstract
Sequence analysis of three IS200 elements (two from Salmonella typhimurium, one from Salmonella abortusovis) reveals a highly conserved structure, with a length of 707-708 bp and absence of terminal repeats. IS200 contains an open-reading-frame (ORF) which potentially encodes a peptide of 151 amino acids, with a putative ribosome-binding-site properly placed upstream of the ORF. A potential RNA stem-loop structure that might occlude the ribosome-binding-site of the ORF is also found. Another conserved trait is a potential RNA hairpin which resembles a Rho-independent transcription terminator, located near one end of IS200. The junctions between IS200 and host DNA sequences are A+T-rich. Upon insertion, IS200 duplicates 1-2 bp of host DNA sequences. The observation that IS200 elements characterized as 'hops' are roughly identical to those residing in the Salmonella genome suggests that IS200 transposition is unlikely to generate inactive copies. If such is the case and many or all IS200 elements are active, the extremely low frequency of IS200 transposition may reflect the normal behavior of the element.
Collapse
Affiliation(s)
- C R Beuzón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain
| | | |
Collapse
|
19
|
Boyd EF, Hartl DL. Recent horizontal transmission of plasmids between natural populations of Escherichia coli and Salmonella enterica. J Bacteriol 1997; 179:1622-7. [PMID: 9045822 PMCID: PMC178875 DOI: 10.1128/jb.179.5.1622-1627.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Seventy-one natural isolates obtained from a Salmonella reference collection were examined for the presence of plasmids closely related to the Escherichia coli F plasmid. The collection consists of several serovars of the S. enterica Typhimurium complex, subspecies I, to which 99% of pathogenic salmonellae belong. Molecular genetic techniques of DNA hybridization, along with PCR and DNA sequencing, were used to examine the occurrence, distribution, and genetic diversity of F-like plasmids among Salmonella strains. The F plasmid genes examined were finO, traD, traY, and repA, which map at dispersed positions on the F plasmid of E. coli. Comparative sequence analysis of each of the four genes in Salmonella plasmids showed them to be homologous (in some cases, virtually identical) to those found in F plasmids of E. coli natural isolates. Furthermore, the frequency of F-like plasmids in Salmonella strains was approximately the same as that observed in the E. coli Reference Collection. However, in Salmonella, the distribution was confined predominately to the serovars Typhimurium and Muenchen. The unexpected finding of a shared pool of F-like plasmids between S. enterica and E. coli demonstrates the significant role of conjugation in the histories of these important bacterial species.
Collapse
Affiliation(s)
- E F Boyd
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
20
|
Haack KR, Roth JR. Recombination between chromosomal IS200 elements supports frequent duplication formation in Salmonella typhimurium. Genetics 1995; 141:1245-52. [PMID: 8601470 PMCID: PMC1206863 DOI: 10.1093/genetics/141.4.1245] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Spontaneous tandem chromosomal duplications are common in populations of Escherichia coli and Salmonella typhimurium. They range in frequency for a given locus from 10(-2) to 10(-4) and probably form by RecA-dependent unequal sister strand exchanges between repetitive sequences in direct order. Certain duplications have been observed previously to confer a growth advantage under specific selective conditions. Tandem chromosomal duplications are unstable and are lost at high frequencies, representing a readily reversible source of genomic variation. Six copies of a small mobile genetic element IS200 are evenly distributed around the chromosome of S. typhimurium strain LT2. A survey of 120 independent chromosomal duplications (20 for each of six loci) revealed that recombination between IS200 elements accounted for the majority of the duplications isolated for three of the loci tested. Duplications of the his operon were almost exclusively due to recombination between repeated IS200 elements. These data add further support to the idea that mobile genetic elements provide sequence repeats that play an important role in recombinational chromosome rearrangements, which may contribute to adaptation of bacteria to stressful conditions.
Collapse
Affiliation(s)
- K R Haack
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
21
|
Abstract
A major goal of comparative genomics is an understanding of the forces which control gene order. This assumes that gene order is important, a supposition backed by the existence of genomic colinearity between many related species. In the bacterial chromosome, a polarity in the order of genes has been suggested, influenced by distance and orientation relative to the origin of DNA replication. We propose a model of the bacterial chromosome in which gene order is maintained by the adaptation of gene expression to local superhelical context. This force acts not directly at the genomic level but rather at the local gene level. A full understanding of gene-order conservation must therefore come from the bottom up.
Collapse
Affiliation(s)
- R L Charlebois
- Department of Biology, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
22
|
Abstract
We present edition VIII of the genetic map of Salmonella typhimurium LT2. We list a total of 1,159 genes, 1,080 of which have been located on the circular chromosome and 29 of which are on pSLT, the 90-kb plasmid usually found in LT2 lines. The remaining 50 genes are not yet mapped. The coordinate system used in this edition is neither minutes of transfer time in conjugation crosses nor units representing "phage lengths" of DNA of the transducing phage P22, as used in earlier editions, but centisomes and kilobases based on physical analysis of the lengths of DNA segments between genes. Some of these lengths have been determined by digestion of DNA by rare-cutting endonucleases and separation of fragments by pulsed-field gel electrophoresis. Other lengths have been determined by analysis of DNA sequences in GenBank. We have constructed StySeq1, which incorporates all Salmonella DNA sequence data known to us. StySeq1 comprises over 548 kb of nonredundant chromosomal genomic sequences, representing 11.4% of the chromosome, which is estimated to be just over 4,800 kb in length. Most of these sequences were assigned locations on the chromosome, in some cases by analogy with mapped Escherichia coli sequences.
Collapse
Affiliation(s)
- K E Sanderson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
23
|
Guédon G, Bourgoin F, Pébay M, Roussel Y, Colmin C, Simonet JM, Decaris B. Characterization and distribution of two insertion sequences, IS1191 and iso-IS981, in Streptococcus thermophilus: does intergeneric transfer of insertion sequences occur in lactic acid bacteria co-cultures? Mol Microbiol 1995; 16:69-78. [PMID: 7651138 DOI: 10.1111/j.1365-2958.1995.tb02392.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A chromosomal repeated sequence from Streptococcus thermophilus was identified as a new insertion sequence (IS), IS1191. This is the first IS element characterized in this species. This 1313 bp element has 28 bp imperfect terminal inverted repeats and is flanked by short direct repeats of 8 bp. The single large open reading frame of IS1191 encodes a 391-amino-acid protein which displays homologies with transposases encodes by IS1201 from Lactobacillus helveticus (44.5% amino-acid sequence identity) and by the other ISs of the IS256 family. One of the copies of IS1191 is inserted into a truncated iso-IS981 element. The nucleotide sequences of two truncated iso-IS981s from S. thermophilus and the sequence of IS981 element from Lactococcus lactis share more than 99% identity. The distribution of these insertion sequences in L. lactis and S. thermophilus strains suggests that intergeneric transfers occur during cocultures used in the manufacture of cheese.
Collapse
Affiliation(s)
- G Guédon
- Laboratoire de Génétique et Microbiologie, Associé INRA, Université de Nancy I, Faculté des Sciences, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Bisercić M, Ochman H. The ancestry of insertion sequences common to Escherichia coli and Salmonella typhimurium. J Bacteriol 1993; 175:7863-8. [PMID: 8253675 PMCID: PMC206963 DOI: 10.1128/jb.175.24.7863-7868.1993] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Despite very restricted gene exchange between Escherichia coli and Salmonella typhimurium, both species harbor several of the same classes of insertion sequences. To determine whether the present-day distribution of these transposable elements is due to common ancestry or to horizontal transfer, we determined the sequences of IS1 and IS200 from natural isolates of S. typhimurium and E. coli. One strain of S. typhimurium harbored an IS1 element identical to that originally recovered from E. coli, suggesting that the element was recently transferred between these two species. The level of sequence divergence between copies of IS200 from E. coli and S. typhimurium ranged from 9.5 to 10.7%, indicating that IS200, unlike IS1, has not been repeatedly transferred between these enteric species since E. coli and S. typhimurium diverged from a common ancestor. Levels of variability in IS1 and IS200 for strains of E. coli and S. typhimurium show that each class of insertion sequence has a characteristic pattern of transposition within and among host genomes.
Collapse
Affiliation(s)
- M Bisercić
- Department of Biology, University of Rochester, New York 14627
| | | |
Collapse
|
25
|
Sanderson KE, Sciore P, Liu SL, Hessel A. Location of IS200 on the genomic cleavage map of Salmonella typhimurium LT2. J Bacteriol 1993; 175:7624-8. [PMID: 8244931 PMCID: PMC206918 DOI: 10.1128/jb.175.23.7624-7628.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Locations of six Tn10s, closely linked to each of the six IS200s on the genomic cleavage map of Salmonella typhimurium LT2, were determined by digestion with XbaI and BlnI and separation of the fragments by pulsed-field gel electrophoresis; the locations were then further defined by P22-mediated joint transduction. The orientation of each IS200 with respect to its linked Tn10 was determined by Southern blotting. The locations of IS200-I, IS200-III, and IS200-V were confirmed to be close to sufD, melB, and purC, as previously indicated. IS200-II is jointly transduced with cysG. IS200-IV is near fliA; the linked Tn10 is inserted in fli, making the strain nonmotile. IS200-VI is jointly transduced with aspC but not with aroA. IS200 is transposed to a seventh site in some strains, while remaining in the other six locations described above. These data indicate that genome analysis by pulsed-field gel electrophoresis can locate the positions of Tn10s with accuracy sufficient to predict P22-mediated joint transduction.
Collapse
Affiliation(s)
- K E Sanderson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|