1
|
Lichty JD, Mane H, Yarmey VR, Miguel AS. Amyloid β induces hormetic-like effects through major stress pathways in a C. elegans model of Alzheimer's Disease. PLoS One 2025; 20:e0315810. [PMID: 40273133 PMCID: PMC12021181 DOI: 10.1371/journal.pone.0315810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/02/2024] [Indexed: 04/26/2025] Open
Abstract
Amyloid β (Aβ) is a peptide known for its characteristic aggregates in Alzheimer's Disease and its ability to induce a wide range of detrimental effects in various model systems. However, Aβ has also been shown to induce some beneficial effects, such as antimicrobial properties against pathogens. In this work, we explore the influence of Aβ in stress resistance in a C. elegans model of Alzheimer's Disease. We found that C. elegans that express human Aβ exhibit increased resistance to heat and anoxia, but not to oxidative stress. This beneficial effect of Aβ was driven from Aβ in neurons, where the level of induction of Aβ expression correlated with stress resistance levels. Transcriptomic analysis revealed that this selective stress resistance was mediated by the Heat Shock Protein (HSPs) family of genes. Furthermore, neuropeptide signaling was necessary for Aβ to induce stress resistance, suggesting neuroendocrine signaling plays a major role in activating organismal stress response pathways. These results highlight the potential beneficial role of Aβ in cellular function, as well as its complex effects on cellular and organismal physiology that must be considered when using C. elegans as a model for Alzheimer's Disease.
Collapse
Affiliation(s)
- James D. Lichty
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Hrishikesh Mane
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Victoria R. Yarmey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, North Carolina, United States of America
| | - Adriana San Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
2
|
Seetharaman A, Galagali H, Linarte E, Liu MHX, Cohen JD, Chetal K, Sadreyev R, Tate AJ, Montgomery TA, Ruvkun G. Decreased SynMuv B gene activity in response to viral infection leads to activation of the antiviral RNAi pathway in C. elegans. PLoS Biol 2025; 23:e3002748. [PMID: 39879188 PMCID: PMC11778786 DOI: 10.1371/journal.pbio.3002748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
RNA interference (RNAi) mediates antiviral defense in many eukaryotes. Caenorhabditis elegans mutants that disable RNAi are more sensitive to viral infection. Many mutants that enhance RNAi have also been identified; these mutations may reveal genes that are normally down-regulated in antiviral defense. About one-third of the score of mutants that enhance RNAi are in synMuv B genes, identified 30 years ago in unrelated screens for increased growth factor signaling. Many synMuv B genes encode dREAM complex chromatin-regulatory proteins found in nearly all animals and plants. We show that mRNAs which are highly induced in synMuv B mutants are congruent with those induced by Orsay RNA virus infection, suggesting that the enhanced RNAi of synMuv B mutants may also be triggered by down-regulation of synMuvB gene activity in an Orsay virus infection of wild type. The multivulval (Muv) phenotype of synMuv B mutants requires the presence of a second nematode-specific synMuv A gene mutation, but the enhanced RNAi of synMuv B mutants does not require a second synMuv A mutation. To test if Orsay viral infection down-regulates synMuv B gene activity, we infected a single synMuv A mutant with Orsay virus and found that a Muv phenotype could be induced. Thus, decreased synMuv B gene activity is part of the normal C. elegans viral defense response. In support of the model that decreased syn- Muv B gene activity enhances antiviral response, we found that synMuv B mutants have 50 to 100× lower viral RNA levels during an Orsay virus infection than wild type. Thus down-regulation of synMuv B activity to enhance RNAi is a key component in the defense response to viral infection. Small RNA deep sequencing analysis of dREAM complex mutants revealed siRNA profiles indicative of such a response. Thus, the pan-eukaryotic synMuv B genes constitute an element in C. elegans antiviral defense which is conserved across many eukaryotes where it also may act in viral defense. The enhanced RNAi and conservation of the dREAM complex mutants suggests new therapeutic avenues to boost antiviral defenses.
Collapse
Affiliation(s)
- Ashwin Seetharaman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Himani Galagali
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth Linarte
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, Massachusetts, United States of America
| | - Mona H. X. Liu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jennifer D. Cohen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alex J. Tate
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Taiowa A. Montgomery
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Wang E, Jiang Y, Zhao C. Structural and physiological functions of Caenorhabditis elegans epidermis. Heliyon 2024; 10:e38680. [PMID: 39397934 PMCID: PMC11471208 DOI: 10.1016/j.heliyon.2024.e38680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Research on the skin is continuously evolving, and it is imperative to select a streamlined and efficient research model. Caenorhabditis elegans is a free-leaving nematode whose epidermis serves as the primary barrier epithelium, composed of a collagen matrix. Differentiation of the epidermis begins in the middle of embryonic development, including polarization of the cytoskeleton and formation of cell junctions. Cuticle secretion is one of the main developmental and physiological features of the epidermis. Mutations in the collagen genes of individual worms lead to cuticle defects, thereby changing the shape of the animals. The complete genome sequence of C. elegans indicates that more than 170 different collagen genes may be related to this structure. Collagen is a structural protein that plays an important role in the development of extracellular matrix. Different collagen genes are expressed at different stages of matrix synthesis, which may help form specific interactions between different collagens. The differentiated epidermis also plays a key role in the transmission of hormonal signals, fat storage, and ion homeostasis and is closely related to the development and function of the nervous system. The epidermis also provides passive and active defenses against pathogens that penetrate the skin and can repair wounds. In addition, age-dependent epidermal degeneration is a prominent feature of aging and may affect aging and lifespan. This review we highlight recent findings of the structure and related physiological functions of the cuticle of C. elegans. In contrast to previous studies, we offer novel insights into the utilization of C. elegans as valuable models for skin-related investigations. It also encourages the use of C. elegans as a skin model, and its high-throughput screening properties facilitate the acceleration of fundamental research in skin-related diseases.
Collapse
Affiliation(s)
- Enhui Wang
- Beijing Qingyan Boshi Health Management Co., Ltd, No.8, Hangfeng Road, Fengtai District, Beijing, China
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd, No.8, Hangfeng Road, Fengtai District, Beijing, China
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd, No.8, Hangfeng Road, Fengtai District, Beijing, China
| |
Collapse
|
4
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
5
|
Seetharaman A, Galagali H, Linarte E, Liu MHX, Cohen JD, Chetal K, Sadreyev R, Tate AJ, Montgomery TA, Ruvkun G. Caenorhabditis elegans SynMuv B gene activity is down-regulated during a viral infection to enhance RNA interference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603258. [PMID: 39071373 PMCID: PMC11275910 DOI: 10.1101/2024.07.12.603258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Small RNA pathways regulate eukaryotic antiviral defense. Many of the Caenorhabditis elegans mutations that were identified based on their enhanced RNAi, the synMuv B genes, also emerged from unrelated genetic screens for increased growth factor signaling. The dozen synMuv B genes encode homologues of the mammalian dREAM complex found in nearly all animals and plants, which includes the lin-35 /retinoblastoma oncogene. We show that a set of highly induced mRNAs in synMuv B mutants is congruent with mRNAs induced by Orsay RNA virus infection of C. elegans . In wild type animals, a combination of a synMuv A mutation and a synMuv B mutation are required for the Muv phenotype of increased growth factor signaling. But we show that Orsay virus infection of a single synMuv A mutant can induce a Muv phenotype, unlike the uninfected single synMuv A mutant. This suggests that decreased synMuv B activity, which activates the antiviral RNAi pathway, is a defense response to viral infection. Small RNA deep sequencing analysis of various dREAM complex mutants uncovers distinct siRNA profiles indicative of such an siRNA response. We conclude that the synMuv B mutants maintain an antiviral readiness state even in the absence of actual infection. The enhanced RNAi and conservation of the dREAM complex mutants suggests new therapeutic avenues to boost antiviral defenses.
Collapse
|
6
|
Martin CG, Bent JS, Hill T, Topalidou I, Singhvi A. Epithelial UNC-23 limits mechanical stress to maintain glia-neuron architecture in C. elegans. Dev Cell 2024; 59:1668-1688.e7. [PMID: 38670103 PMCID: PMC11233253 DOI: 10.1016/j.devcel.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
For an organ to maintain correct architecture and function, its diverse cellular components must coordinate their size and shape. Although cell-intrinsic mechanisms driving homotypic cell-cell coordination are known, it is unclear how cell shape is regulated across heterotypic cells. We find that epithelial cells maintain the shape of neighboring sense-organ glia-neuron units in adult Caenorhabditis elegans (C. elegans). Hsp co-chaperone UNC-23/BAG2 prevents epithelial cell shape from deforming, and its loss causes head epithelia to stretch aberrantly during animal movement. In the sense-organ glia, amphid sheath (AMsh), this causes progressive fibroblast growth factor receptor (FGFR)-dependent disruption of the glial apical cytoskeleton. Resultant glial cell shape alteration causes concomitant shape change in glia-associated neuron endings. Epithelial UNC-23 maintenance of glia-neuron shape is specific both spatially, within a defined anatomical zone, and temporally, in a developmentally critical period. As all molecular components uncovered are broadly conserved across central and peripheral nervous systems, we posit that epithelia may similarly regulate glia-neuron architecture cross-species.
Collapse
Affiliation(s)
- Cecilia G Martin
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James S Bent
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tyler Hill
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Irini Topalidou
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Adams JRG, Pooranachithra M, Jyo EM, Zheng SL, Goncharov A, Crew JR, Kramer JM, Jin Y, Ernst AM, Chisholm AD. Nanoscale patterning of collagens in C. elegans apical extracellular matrix. Nat Commun 2023; 14:7506. [PMID: 37980413 PMCID: PMC10657453 DOI: 10.1038/s41467-023-43058-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
Apical extracellular matrices (aECMs) are complex extracellular compartments that form important interfaces between animals and their environment. In the adult C. elegans cuticle, layers are connected by regularly spaced columnar structures known as struts. Defects in struts result in swelling of the fluid-filled medial cuticle layer ('blistering', Bli). Here we show that three cuticle collagens BLI-1, BLI-2, and BLI-6, play key roles in struts. BLI-1 and BLI-2 are essential for strut formation whereas activating mutations in BLI-6 disrupt strut formation. BLI-1, BLI-2, and BLI-6 precisely colocalize to arrays of puncta in the adult cuticle, corresponding to struts, initially deposited in diffuse stripes adjacent to cuticle furrows. They eventually exhibit tube-like morphology, with the basal ends of BLI-containing struts contact regularly spaced holes in the cuticle. Genetic interaction studies indicate that BLI strut patterning involves interactions with other cuticle components. Our results reveal strut formation as a tractable example of precise aECM patterning at the nanoscale.
Collapse
Affiliation(s)
- Jennifer R G Adams
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Erin M Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sherry Li Zheng
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alexandr Goncharov
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jennifer R Crew
- Northwestern University School of Medicine, Department of Cell and Molecular Biology, Chicago, IL, 60611, USA
| | - James M Kramer
- Northwestern University School of Medicine, Department of Cell and Molecular Biology, Chicago, IL, 60611, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andreas M Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrew D Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
8
|
Reich H, Savage-Dunn C. Signaling circuits and the apical extracellular matrix in aging: connections identified in the nematode Caenorhabditis elegans. Am J Physiol Cell Physiol 2023; 325:C1201-C1211. [PMID: 37721005 PMCID: PMC10861026 DOI: 10.1152/ajpcell.00195.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Numerous conserved signaling pathways play critical roles in aging, including insulin/IGF-1, TGF-β, and Wnt pathways. Some of these pathways also play prominent roles in the formation and maintenance of the extracellular matrix. The nematode Caenorhabditis elegans has been an enduringly productive system for the identification of conserved mechanisms of biological aging. Recent studies in C. elegans highlight the regulatory circuits between conserved signaling pathways and the extracellular matrix, revealing a bidirectional relationship between these factors and providing a platform to address how regulation of and by the extracellular matrix can impact lifespan and organismal health during aging. These discoveries provide new opportunities for clinical advances and novel therapeutic strategies.
Collapse
Affiliation(s)
- Hannah Reich
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
- PhD Program in Biology, The Graduate Center, City University of New York, New York, New York, United States
| |
Collapse
|
9
|
Johnson LC, Vo AA, Clancy JC, Myles KM, Pooranachithra M, Aguilera J, Levenson MT, Wohlenberg C, Rechtsteiner A, Ragle JM, Chisholm AD, Ward JD. NHR-23 activity is necessary for C. elegans developmental progression and apical extracellular matrix structure and function. Development 2023; 150:dev201085. [PMID: 37129010 PMCID: PMC10233720 DOI: 10.1242/dev.201085] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Nematode molting is a remarkable process where animals must repeatedly build a new apical extracellular matrix (aECM) beneath a previously built aECM that is subsequently shed. The nuclear hormone receptor NHR-23 (also known as NR1F1) is an important regulator of C. elegans molting. NHR-23 expression oscillates in the epidermal epithelium, and soma-specific NHR-23 depletion causes severe developmental delay and death. Tissue-specific RNAi suggests that nhr-23 acts primarily in seam and hypodermal cells. NHR-23 coordinates the expression of factors involved in molting, lipid transport/metabolism and remodeling of the aECM. NHR-23 depletion causes dampened expression of a nas-37 promoter reporter and a loss of reporter oscillation. The cuticle collagen ROL-6 and zona pellucida protein NOAH-1 display aberrant annular localization and severe disorganization over the seam cells after NHR-23 depletion, while the expression of the adult-specific cuticle collagen BLI-1 is diminished and frequently found in patches. Consistent with these localization defects, the cuticle barrier is severely compromised when NHR-23 is depleted. Together, this work provides insight into how NHR-23 acts in the seam and hypodermal cells to coordinate aECM regeneration during development.
Collapse
Affiliation(s)
- Londen C. Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A. Vo
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John C. Clancy
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Krista M. Myles
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Aguilera
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Max T. Levenson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Chloe Wohlenberg
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew D. Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
10
|
Dockendorff TC, Estrem B, Reed J, Simmons JR, Zadegan SB, Zagoskin MV, Terta V, Villalobos E, Seaberry EM, Wang J. The nematode Oscheius tipulae as a genetic model for programmed DNA elimination. Curr Biol 2022; 32:5083-5098.e6. [PMID: 36379215 PMCID: PMC9729473 DOI: 10.1016/j.cub.2022.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Programmed DNA elimination (PDE) is a notable exception to the paradigm of genome integrity. In metazoa, PDE often occurs coincident with germline to somatic cell differentiation. During PDE, portions of genomic DNA are lost, resulting in reduced somatic genomes. Prior studies have described the sequences lost, as well as chromosome behavior, during metazoan PDE. However, a system for studying the mechanisms and consequences of PDE in metazoa is lacking. Here, we present a functional and genetic model for PDE in the free-living Rhabditidae nematode Oscheius tipulae, a family that also includes Caenorhabditis elegans. O. tipulae was recently suggested to eliminate DNA. Using staged embryos and DNA FISH, we showed that O. tipulae PDE occurs during embryogenesis at the 8-16 cell stages. We identified a conserved motif, named Sequence For Elimination (SFE), for all 12 break sites on the six chromosomes at the junctions of retained and eliminated DNA. SFE mutants exhibited a "fail-to-eliminate" phenotype only at the modified sites. END-seq revealed that breaks can occur at multiple positions within the SFE, with extensive end resection followed by telomere addition to both retained and eliminated ends. We identified many functional SFEs at the chromosome ends through END-seq in the wild-type embryos, genome sequencing of SFE mutants, and comparative genomics of 23 wild isolates. We suggest that these alternative SFEs provide flexibility in the sequences eliminated and a fail-safe mechanism for PDE. These studies establish O. tipulae as a new, attractive model for studying the mechanisms and consequences of PDE in a metazoan.
Collapse
Affiliation(s)
- Thomas C Dockendorff
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brandon Estrem
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jordan Reed
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - James R Simmons
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sobhan Bahrami Zadegan
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Maxim V Zagoskin
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Vincent Terta
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eduardo Villalobos
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Erin M Seaberry
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
11
|
Vicencio J, Sánchez-Bolaños C, Moreno-Sánchez I, Brena D, Vejnar CE, Kukhtar D, Ruiz-López M, Cots-Ponjoan M, Rubio A, Melero NR, Crespo-Cuadrado J, Carolis C, Pérez-Pulido AJ, Giráldez AJ, Kleinstiver BP, Cerón J, Moreno-Mateos MA. Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes. Nat Commun 2022; 13:2601. [PMID: 35552388 PMCID: PMC9098488 DOI: 10.1038/s41467-022-30228-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 04/22/2022] [Indexed: 01/21/2023] Open
Abstract
The requirement for Cas nucleases to recognize a specific PAM is a major restriction for genome editing. SpCas9 variants SpG and SpRY, recognizing NGN and NRN PAMs, respectively, have contributed to increase the number of editable genomic sites in cell cultures and plants. However, their use has not been demonstrated in animals. Here we study the nuclease activity of SpG and SpRY by targeting 40 sites in zebrafish and C. elegans. Delivered as mRNA-gRNA or ribonucleoprotein (RNP) complexes, SpG and SpRY were able to induce mutations in vivo, albeit at a lower rate than SpCas9 in equivalent formulations. This lower activity was overcome by optimizing mRNA-gRNA or RNP concentration, leading to mutagenesis at regions inaccessible to SpCas9. We also found that the CRISPRscan algorithm could help to predict SpG and SpRY targets with high activity in vivo. Finally, we applied SpG and SpRY to generate knock-ins by homology-directed repair. Altogether, our results expand the CRISPR-Cas targeting genomic landscape in animals.
Collapse
Affiliation(s)
- Jeremy Vicencio
- Modeling human diseases in C. elegans Group; Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Carlos Sánchez-Bolaños
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Ismael Moreno-Sánchez
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - David Brena
- Modeling human diseases in C. elegans Group; Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Dmytro Kukhtar
- Modeling human diseases in C. elegans Group; Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Miguel Ruiz-López
- Modeling human diseases in C. elegans Group; Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Mariona Cots-Ponjoan
- Modeling human diseases in C. elegans Group; Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Alejandro Rubio
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Natalia Rodrigo Melero
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Jesús Crespo-Cuadrado
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Carlo Carolis
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Antonio J Pérez-Pulido
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Antonio J Giráldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, 06510, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Julián Cerón
- Modeling human diseases in C. elegans Group; Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
| | - Miguel A Moreno-Mateos
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain.
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain.
| |
Collapse
|
12
|
Tsutsui K, Kim HS, Yoshikata C, Kimura K, Kubota Y, Shibata Y, Tian C, Liu J, Nishiwaki K. Repulsive guidance molecule acts in axon branching in Caenorhabditis elegans. Sci Rep 2021; 11:22370. [PMID: 34785759 PMCID: PMC8595726 DOI: 10.1038/s41598-021-01853-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
Repulsive guidance molecules (RGMs) are evolutionarily conserved proteins implicated in repulsive axon guidance. Here we report the function of the Caenorhabditis elegans ortholog DRAG-1 in axon branching. The axons of hermaphrodite-specific neurons (HSNs) extend dorsal branches at the region abutting the vulval muscles. The drag-1 mutants exhibited defects in HSN axon branching in addition to a small body size phenotype. DRAG-1 expression in the hypodermal cells was required for the branching of the axons. Although DRAG-1 is normally expressed in the ventral hypodermis excepting the vulval region, its ectopic expression in vulval precursor cells was sufficient to induce the branching. The C-terminal glycosylphosphatidylinositol anchor of DRAG-1 was important for its function, suggesting that DRAG-1 should be anchored to the cell surface. Genetic analyses suggested that the membrane receptor UNC-40 acts in the same pathway with DRAG-1 in HSN branching. We propose that DRAG-1 expressed in the ventral hypodermis signals via the UNC-40 receptor expressed in HSNs to elicit branching activity of HSN axons.
Collapse
Affiliation(s)
- Kaname Tsutsui
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Hon-Song Kim
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Chizu Yoshikata
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Kenji Kimura
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Yukihiko Kubota
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Yukimasa Shibata
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Kiyoji Nishiwaki
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan.
| |
Collapse
|
13
|
Mao K, Breen P, Ruvkun G. Mitochondrial dysfunction induces RNA interference in C. elegans through a pathway homologous to the mammalian RIG-I antiviral response. PLoS Biol 2020; 18:e3000996. [PMID: 33264285 PMCID: PMC7735679 DOI: 10.1371/journal.pbio.3000996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/14/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
RNA interference (RNAi) is an antiviral pathway common to many eukaryotes that detects and cleaves foreign nucleic acids. In mammals, mitochondrially localized proteins such as mitochondrial antiviral signaling (MAVS), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated protein 5 (MDA5) mediate antiviral responses. Here, we report that mitochondrial dysfunction in Caenorhabditis elegans activates RNAi-directed silencing via induction of a pathway homologous to the mammalian RIG-I helicase viral response pathway. The induction of RNAi also requires the conserved RNA decapping enzyme EOL-1/DXO. The transcriptional induction of eol-1 requires DRH-1 as well as the mitochondrial unfolded protein response (UPRmt). Upon mitochondrial dysfunction, EOL-1 is concentrated into foci that depend on the transcription of mitochondrial RNAs that may form double-stranded RNA (dsRNA), as has been observed in mammalian antiviral responses. Enhanced RNAi triggered by mitochondrial dysfunction is necessary for the increase in longevity that is induced by mitochondrial dysfunction. Surveillance of mitochondrial dysfunction in the nematode Caenorhabditis elegans triggers the activation of an RNA interference pathway to mediate antiviral defense, in a manner homologous to the mammalian RIG-I helicase viral response pathway.
Collapse
Affiliation(s)
- Kai Mao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Breen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Noble LM, Miah A, Kaur T, Rockman MV. The Ancestral Caenorhabditis elegans Cuticle Suppresses rol-1. G3 (BETHESDA, MD.) 2020; 10:2385-2395. [PMID: 32423919 PMCID: PMC7341120 DOI: 10.1534/g3.120.401336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/09/2020] [Indexed: 12/30/2022]
Abstract
Genetic background commonly modifies the effects of mutations. We discovered that worms mutant for the canonical rol-1 gene, identified by Brenner in 1974, do not roll in the genetic background of the wild strain CB4856. Using linkage mapping, association analysis and gene editing, we determined that N2 carries an insertion in the collagen gene col-182 that acts as a recessive enhancer of rol-1 rolling. From population and comparative genomics, we infer the insertion is derived in N2 and related laboratory lines, likely arising during the domestication of Caenorhabditis elegans, and breaking a conserved protein. The ancestral version of col-182 also modifies the phenotypes of four other classical cuticle mutant alleles, and the effects of natural genetic variation on worm shape and locomotion. These results underscore the importance of genetic background and the serendipity of Brenner's choice of strain.
Collapse
Affiliation(s)
- Luke M Noble
- Institut de Biologie, École Normale Supérieure, CNRS 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Asif Miah
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, 10003
| | - Taniya Kaur
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, 10003
| | - Matthew V Rockman
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, 10003
| |
Collapse
|
15
|
Mesbahi H, Pho KB, Tench AJ, Leon Guerrero VL, MacNeil LT. Cuticle Collagen Expression Is Regulated in Response to Environmental Stimuli by the GATA Transcription Factor ELT-3 in Caenorhabditis elegans. Genetics 2020; 215:483-495. [PMID: 32229533 PMCID: PMC7268988 DOI: 10.1534/genetics.120.303125] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
The nematode Caenorhabditis elegans is protected from the environment by the cuticle, an extracellular collagen-based matrix that encloses the animal. Over 170 cuticular collagens are predicted in the C. elegans genome, but the role of each individual collagen is unclear. Stage-specific specialization of the cuticle explains the need for some collagens; however, the large number of collagens suggests that specialization of the cuticle may also occur in response to other environmental triggers. Missense mutations in many collagen genes can disrupt cuticle morphology, producing a helically twisted body causing the animal to move in a stereotypical pattern described as rolling. We find that environmental factors, including diet, early developmental arrest, and population density can differentially influence the penetrance of rolling in these mutants. These effects are in part due to changes in collagen gene expression that are mediated by the GATA family transcription factor ELT-3 We propose a model by which ELT-3 regulates collagen gene expression in response to environmental stimuli to promote the assembly of a cuticle specialized to a given environment.
Collapse
Affiliation(s)
- Hiva Mesbahi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Kim B Pho
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Andrea J Tench
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Victoria L Leon Guerrero
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
- Farncombe Family Digestive Health Research Institute, McMaster University, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
16
|
Madaan U, Faure L, Chowdhury A, Ahmed S, Ciccarelli EJ, Gumienny TL, Savage-Dunn C. Feedback regulation of BMP signaling by Caenorhabditis elegans cuticle collagens. Mol Biol Cell 2020; 31:825-832. [PMID: 32049594 PMCID: PMC7185965 DOI: 10.1091/mbc.e19-07-0390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cellular responsiveness to environment, including changes in extracellular matrix (ECM), is critical for normal processes such as development and wound healing, but can go awry, as in oncogenesis and fibrosis. One type of molecular pathway contributing to this responsiveness is the BMP signaling pathway. Owing to their broad and potent functions, BMPs and their pathways are regulated at multiple levels. In Caenorhabditis elegans, the BMP ligand DBL-1 is a regulator of body size. We previously showed that DBL-1/BMP signaling determines body size through transcriptional regulation of cuticle collagen genes. We now identify feedback regulation of DBL-1/BMP through analysis of four DBL-1–regulated collagen genes. Inactivation of any of these genes reduces DBL-1/BMP signaling, measured by a pathway activity reporter. Furthermore, depletion of these collagens reduces GFP::DBL-1 fluorescence and acts unexpectedly at the level of dbl-1 transcription. We conclude that cuticle, a specialized ECM, impinges on DBL-1/BMP expression and signaling. Interestingly, the feedback regulation of DBL-1/BMP signaling by collagens is likely to be contact independent due to physical separation of the cuticle from DBL-1–expressing cells in the ventral nerve cord. Our results provide an entry point into a novel regulatory mechanism for BMP signaling, with broader implications for mechanical regulation of gene expression.
Collapse
Affiliation(s)
- Uday Madaan
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367.,PhD Program in Biology, The Graduate Center, City University of New York, NY 10016
| | - Lionel Faure
- Department of Biology, Texas Woman's University, Denton, TX 76204
| | - Albar Chowdhury
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367
| | - Shahrear Ahmed
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367
| | - Emma J Ciccarelli
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367.,PhD Program in Biology, The Graduate Center, City University of New York, NY 10016
| | - Tina L Gumienny
- Department of Biology, Texas Woman's University, Denton, TX 76204
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367.,PhD Program in Biology, The Graduate Center, City University of New York, NY 10016
| |
Collapse
|
17
|
Castelletto ML, Gang SS, Hallem EA. Recent advances in functional genomics for parasitic nematodes of mammals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb206482. [PMID: 32034038 DOI: 10.1242/jeb.206482] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human-parasitic nematodes infect over a quarter of the world's population and are a major cause of morbidity in low-resource settings. Currently available treatments have not been sufficient to eliminate infections in endemic areas, and drug resistance is an increasing concern, making new treatment options a priority. The development of new treatments requires an improved understanding of the basic biology of these nematodes. Specifically, a better understanding of parasitic nematode development, reproduction and behavior may yield novel drug targets or new opportunities for intervention such as repellents or traps. Until recently, our ability to study parasitic nematode biology was limited because few tools were available for their genetic manipulation. This is now changing as a result of recent advances in the large-scale sequencing of nematode genomes and the development of new techniques for their genetic manipulation. Notably, skin-penetrating gastrointestinal nematodes in the genus Strongyloides are now amenable to transgenesis, RNAi and CRISPR/Cas9-mediated targeted mutagenesis, positioning the Strongyloides species as model parasitic nematode systems. A number of other mammalian-parasitic nematodes, including the giant roundworm Ascaris suum and the tissue-dwelling filarial nematode Brugia malayi, are also now amenable to transgenesis and/or RNAi in some contexts. Using these tools, recent studies of Strongyloides species have already provided insight into the molecular pathways that control the developmental decision to form infective larvae and that drive the host-seeking behaviors of infective larvae. Ultimately, a mechanistic understanding of these processes could lead to the development of new avenues for nematode control.
Collapse
Affiliation(s)
- Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Spencer S Gang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92161, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
The in-silico characterization of the Caenorhabditis elegans matrisome and proposal of a novel collagen classification. Matrix Biol Plus 2019; 1:100001. [PMID: 33543001 PMCID: PMC7852208 DOI: 10.1016/j.mbplus.2018.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/07/2023] Open
Abstract
Proteins are the building blocks of life. While proteins and their localization within cells and sub-cellular compartments are well defined, the proteins predicted to be secreted to form the extracellular matrix - or matrisome - remain elusive in the model organism C. elegans. Here, we used a bioinformatic approach combining gene orthology and protein structure analysis and an extensive curation of the literature to define the C. elegans matrisome. Similar to the human genome, we found that 719 out of ~20,000 genes (~4%) of the C. elegans genome encodes matrisome proteins, including 181 collagens, 35 glycoproteins, 10 proteoglycans, and 493 matrisome-associated proteins. We report that 173 out of the 181 collagen genes are unique to nematodes and are predicted to encode cuticular collagens, which we are proposing to group into five clusters. To facilitate the use of our lists and classification by the scientific community, we developed an automated annotation tool to identify ECM components in large datasets. We also established a novel database of all C. elegans collagens (CeColDB). Last, we provide examples of how the newly defined C. elegans matrisome can be used for annotations and gene ontology analyses of transcriptomic, proteomic, and RNAi screening data. Because C. elegans is a widely used model organism for high throughput genetic and drug screens, and to study biological and pathological processes, the conserved matrisome genes may aid in identifying potential drug targets. In addition, the nematode-specific matrisome may be exploited for targeting parasitic infection of man and crops. Pipeline combining gene- and protein-sequence analysis to predict the C. elegans matrisome The in-silicoC. elegans matrisome comprises 719 genes. The 185 C. elegans collagen-domain-containing proteins are classified into 4 groups. The 173 cuticular collagens are further classified into 5 clusters based on their domain organization. The C. elegans Matrisome Annotator is an online tool to identify matrisome genes and proteins in large datasets.
Collapse
|
19
|
Liposome-based transfection enhances RNAi and CRISPR-mediated mutagenesis in non-model nematode systems. Sci Rep 2019; 9:483. [PMID: 30679624 PMCID: PMC6345965 DOI: 10.1038/s41598-018-37036-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 11/28/2018] [Indexed: 11/09/2022] Open
Abstract
Nematodes belong to one of the most diverse animal phyla. However, functional genomic studies in nematodes, other than in a few species, have often been limited in their reliability and success. Here we report that by combining liposome-based technology with microinjection, we were able to establish a wide range of genomic techniques in the newly described nematode genus Auanema. The method also allowed heritable changes in dauer larvae of Auanema, despite the immaturity of the gonad at the time of the microinjection. As proof of concept for potential functional studies in other nematode species, we also induced RNAi in the free-living nematode Pristionchus pacificus and targeted the human parasite Strongyloides stercoralis.
Collapse
|
20
|
Wu Y, Masurat F, Preis J, Bringmann H. Sleep Counteracts Aging Phenotypes to Survive Starvation-Induced Developmental Arrest in C. elegans. Curr Biol 2018; 28:3610-3624.e8. [PMID: 30416057 PMCID: PMC6264389 DOI: 10.1016/j.cub.2018.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/11/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022]
Abstract
Sleep is ancient and fulfills higher brain functions as well as basic vital processes. Little is known about how sleep emerged in evolution and what essential functions it was selected for. Here, we investigated sleep in Caenorhabditis elegans across developmental stages and physiological conditions to find out when and how sleep in a simple animal becomes essential for survival. We found that sleep in worms occurs during most stages and physiological conditions and is typically induced by the sleep-active RIS neuron. Food quality and availability determine sleep amount. Extended starvation, which induces developmental arrest in larvae, presents a major sleep trigger. Conserved nutrient-sensing regulators of longevity and developmental arrest, AMP-activated kinase and FoxO, act in parallel to induce sleep during extended food deprivation. These metabolic factors can act in multiple tissues to signal starvation to RIS. Although sleep does not appear to be essential for a normal adult lifespan, it is crucial for survival of starvation-induced developmental arrest in larvae. Rather than merely saving energy for later use, sleep counteracts the progression of aging phenotypes, perhaps by allocating resources. Thus, sleep presents a protective anti-aging program that is induced by nutrient-sensing longevity pathways to survive starvation-induced developmental arrest. All organisms are threatened with the possibility of experienced famine in their life, which suggests that the molecular coupling of starvation, development, aging, and sleep was selected for early in the evolution of nervous systems and may be conserved in other species, including humans. C. elegans sleep across most physiological conditions, including developmental arrest The sleep-active RIS neuron generally induces physiological sleep Insulin and sirtuin signaling control AMPK and FoxO to induce sleep during starvation Sleep is required to survive developmental arrest and counteracts aging phenotypes
Collapse
Affiliation(s)
- Yin Wu
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Florentin Masurat
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jasmin Preis
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henrik Bringmann
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
21
|
Analyzing the locomotory gaitprint of Caenorhabditis elegans on the basis of empirical mode decomposition. PLoS One 2017; 12:e0181469. [PMID: 28742107 PMCID: PMC5524362 DOI: 10.1371/journal.pone.0181469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/30/2017] [Indexed: 01/09/2023] Open
Abstract
The locomotory gait analysis of the microswimmer, Caenorhabditis elegans, is a commonly adopted approach for strain recognition and examination of phenotypic defects. Gait is also a visible behavioral expression of worms under external stimuli. This study developed an adaptive data analysis method based on empirical mode decomposition (EMD) to reveal the biological cues behind intricate motion. The method was used to classify the strains of worms according to their gaitprints (i.e., phenotypic traits of locomotion). First, a norm of the locomotory pattern was created from the worm of interest. The body curvature of the worm was decomposed into four intrinsic mode functions (IMFs). A radar chart showing correlations between the predefined database and measured worm was then obtained by dividing each IMF into three parts, namely, head, mid-body, and tail. A comprehensive resemblance score was estimated after k-means clustering. Simulated data that use sinusoidal waves were generated to assess the feasibility of the algorithm. Results suggested that temporal frequency is the major factor in the process. In practice, five worm strains, including wild-type N2, TJ356 (zIs356), CL2070 (dvIs70), CB0061 (dpy-5), and CL2120 (dvIs14), were investigated. The overall classification accuracy of the gaitprint analyses of all the strains reached nearly 89%. The method can also be extended to classify some motor neuron-related locomotory defects of C. elegans in the same fashion.
Collapse
|
22
|
D’Souza SA, Rajendran L, Bagg R, Barbier L, van Pel DM, Moshiri H, Roy PJ. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans. PLoS Genet 2016; 12:e1006010. [PMID: 27123983 PMCID: PMC4849719 DOI: 10.1371/journal.pgen.1006010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/05/2016] [Indexed: 11/25/2022] Open
Abstract
The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle’s plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue. In most animals, the physical meeting of the pre- and post-synaptic membranes of the neuromuscular junction occurs via axonal extension towards the muscle. In nematodes, however, motor axons do not extend towards the muscle and instead form a dorsal and ventral cord with relatively few branches. To make the physical connection, the body wall muscles extend membrane projections called muscle arms to the motor axons within the dorsal and ventral cords. Through previous genetic and biochemical analyses with the nematode C. elegans, we identified a neuronally-expressed muscle arm chemoattractant (MADD-4) and its muscle-expressed co-receptor complex (UNC-40/EVA-1). Here, we report our discovery of madd-3, which encodes a LAMMER kinase that is expressed in muscles to regulate muscle arm extension. Genetic analyses revealed that MADD-3 may inhibit a p38 MAP kinase pathway whose normal function is to decrease the abundance of the EVA-1 receptor. In the presence of MADD-3, the activity of the p38 pathway is relatively low, and EVA-1 levels are consequently relatively high. Without MADD-3, the p38 pathway is freed to decrease the abundance of EVA-1. The relationships that we have uncovered between MADD-3, the p38 Map Kinase pathway, and the EVA-1 receptor provide one explanation for the muscle arm defects observed in madd-3 mutants.
Collapse
Affiliation(s)
- Serena A. D’Souza
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- The Collaborative Programme in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
| | - Luckshi Rajendran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Bagg
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Louis Barbier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Derek M. van Pel
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Houtan Moshiri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Roy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- The Collaborative Programme in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
23
|
Ward JD. Rendering the Intractable More Tractable: Tools from Caenorhabditis elegans Ripe for Import into Parasitic Nematodes. Genetics 2015; 201:1279-94. [PMID: 26644478 PMCID: PMC4676526 DOI: 10.1534/genetics.115.182717] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022] Open
Abstract
Recent and rapid advances in genetic and molecular tools have brought spectacular tractability to Caenorhabditis elegans, a model that was initially prized because of its simple design and ease of imaging. C. elegans has long been a powerful model in biomedical research, and tools such as RNAi and the CRISPR/Cas9 system allow facile knockdown of genes and genome editing, respectively. These developments have created an additional opportunity to tackle one of the most debilitating burdens on global health and food security: parasitic nematodes. I review how development of nonparasitic nematodes as genetic models informs efforts to import tools into parasitic nematodes. Current tools in three commonly studied parasites (Strongyloides spp., Brugia malayi, and Ascaris suum) are described, as are tools from C. elegans that are ripe for adaptation and the benefits and barriers to doing so. These tools will enable dissection of a huge array of questions that have been all but completely impenetrable to date, allowing investigation into host-parasite and parasite-vector interactions, and the genetic basis of parasitism.
Collapse
Affiliation(s)
- Jordan D Ward
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| |
Collapse
|
24
|
Taffoni C, Pujol N. Mechanisms of innate immunity in C. elegans epidermis. Tissue Barriers 2015; 3:e1078432. [PMID: 26716073 PMCID: PMC4681281 DOI: 10.1080/21688370.2015.1078432] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/17/2015] [Accepted: 07/24/2015] [Indexed: 01/26/2023] Open
Abstract
The roundworm C. elegans has been successfully used for more than 50 y as a genetically tractable invertebrate model in diverse biological fields such as neurobiology, development and interactions. C. elegans feeds on bacteria and can be naturally infected by a wide range of microorganisms, including viruses, bacteria and fungi. Most of these pathogens infect C. elegans through its gut, but some have developed ways to infect the epidermis. In this review, we will mainly focus on epidermal innate immunity, in particular the signaling pathways and effectors activated upon wounding and fungal infection that serve to protect the host. We will discuss the parallels that exist between epidermal innate immune responses in nematodes and mammals.
Collapse
Affiliation(s)
- Clara Taffoni
- Center d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2 ; Inserm; Marseille, France
| | - Nathalie Pujol
- Center d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2 ; Inserm; Marseille, France
| |
Collapse
|
25
|
Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics 2014; 198:837-46. [PMID: 25161212 DOI: 10.1534/genetics.114.169730] [Citation(s) in RCA: 591] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Facilitated by recent advances using CRISPR/Cas9, genome editing technologies now permit custom genetic modifications in a wide variety of organisms. Ideally, modified animals could be both efficiently made and easily identified with minimal initial screening and without introducing exogenous sequence at the locus of interest or marker mutations elsewhere. To this end, we describe a coconversion strategy, using CRISPR/Cas9 in which screening for a dominant phenotypic oligonucleotide-templated conversion event at one locus can be used to enrich for custom modifications at another unlinked locus. After the desired mutation is identified among the F1 progeny heterozygous for the dominant marker mutation, F2 animals that have lost the marker mutation are picked to obtain the desired mutation in an unmarked genetic background. We have developed such a coconversion strategy for Caenorhabditis elegans, using a number of dominant phenotypic markers. Examining the coconversion at a second (unselected) locus of interest in the marked F1 animals, we observed that 14-84% of screened animals showed homologous recombination. By reconstituting the unmarked background through segregation of the dominant marker mutation at each step, we show that custom modification events can be carried out recursively, enabling multiple mutant animals to be made. While our initial choice of a coconversion marker [rol-6(su1006)] was readily applicable in a single round of coconversion, the genetic properties of this locus were not optimal in that CRISPR-mediated deletion mutations at the unselected rol-6 locus can render a fraction of coconverted strains recalcitrant to further rounds of similar mutagenesis. An optimal marker in this sense would provide phenotypic distinctions between the desired mutant/+ class and alternative +/+, mutant/null, null/null, and null/+ genotypes. Reviewing dominant alleles from classical C. elegans genetics, we identified one mutation in dpy-10 and one mutation in sqt-1 that meet these criteria and demonstrate that these too can be used as effective conversion markers. Coconversion was observed using a variety of donor molecules at the second (unselected) locus, including oligonucleotides, PCR products, and plasmids. We note that the coconversion approach described here could be applied in any of the variety of systems where suitable coconversion markers can be identified from previous intensive genetic analyses of gain-of-function alleles.
Collapse
|
26
|
Tian C, Shi H, Xiong S, Hu F, Xiong WC, Liu J. The neogenin/DCC homolog UNC-40 promotes BMP signaling via the RGM protein DRAG-1 in C. elegans. Development 2013; 140:4070-80. [PMID: 24004951 DOI: 10.1242/dev.099838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The deleted in colorectal cancer (DCC) homolog neogenin functions in both netrin- and repulsive guidance molecule (RGM)-mediated axon guidance and in bone morphogenetic protein (BMP) signaling. How neogenin functions in mediating BMP signaling is not well understood. We show that the sole C. elegans DCC/neogenin homolog UNC-40 positively modulates a BMP-like pathway by functioning in the signal-receiving cells at the ligand/receptor level. This function of UNC-40 is independent of its role in netrin-mediated axon guidance, but requires its association with the RGM protein DRAG-1. We have identified the key residues in the extracellular domain of UNC-40 that are crucial for UNC-40-DRAG-1 interaction and UNC-40 function. Surprisingly, the extracellular domain of UNC-40 is sufficient to promote BMP signaling, in clear contrast to the requirement of its intracellular domain in mediating axon guidance. Mouse neogenin lacking the intracellular domain is also capable of mediating BMP signaling. These findings reveal an unexpected mode of action for neogenin regulation of BMP signaling.
Collapse
Affiliation(s)
- Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
27
|
Cai L, Phong BL, Fisher AL, Wang Z. Regulation of fertility, survival, and cuticle collagen function by the Caenorhabditis elegans eaf-1 and ell-1 genes. J Biol Chem 2011; 286:35915-35921. [PMID: 21880729 DOI: 10.1074/jbc.m111.270454] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
EAF2, an androgen-regulated protein, interacts with members of the ELL (eleven-nineteen lysine-rich leukemia) transcription factor family and also acts as a tumor suppressor. Although these proteins control transcriptional elongation and perhaps modulate the effects of other transcription factors, the mechanisms of their actions remain largely unknown. To gain new insights into the biology of the EAF2 and ELL family proteins, we used Caenorhabditis elegans as a model to explore the in vivo roles of their worm orthologs. Through the use of transgenic worms, RNAi, and an eaf-1 mutant, we found that both genes are expressed in multiple cell types throughout the worm life cycle and that they play important roles in fertility, survival, and body size regulation. ELL-1 and EAF-1 likely contribute to these activities in part through modulating cuticle synthesis, given that we observed a disrupted cuticle structure in ell-1 RNAi-treated or eaf-1 mutant worms. Consistent with disruption of cuticle structure, loss of either ELL-1 or EAF-1 suppressed the rol phenotype of specific collagen mutants, possibly through the control of dpy-3, dpy-13, and sqt-3 collagen gene expression. Furthermore, we also noted the regulation of collagen expression by ELL overexpression in PC3 human prostate cancer cells. Together, these results reveal important roles for the eaf-1 and ell-1 genes in the regulation of extracellular matrix components.
Collapse
Affiliation(s)
- Liquan Cai
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania 15232
| | - Binh L Phong
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania 15232
| | - Alfred L Fisher
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
| | - Zhou Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania 15232.
| |
Collapse
|
28
|
Fernando T, Flibotte S, Xiong S, Yin J, Yzeiraj E, Moerman DG, Meléndez A, Savage-Dunn C. C. elegans ADAMTS ADT-2 regulates body size by modulating TGFβ signaling and cuticle collagen organization. Dev Biol 2011; 352:92-103. [PMID: 21256840 DOI: 10.1016/j.ydbio.2011.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 01/05/2011] [Accepted: 01/13/2011] [Indexed: 01/26/2023]
Abstract
Organismal growth and body size are influenced by both genetic and environmental factors. We have utilized the strong molecular genetic techniques available in the nematode Caenorhabditis elegans to identify genetic determinants of body size. In C. elegans, DBL-1, a member of the conserved family of secreted growth factors known as the Transforming Growth Factor β superfamily, is known to play a major role in growth control. The mechanisms by which other determinants of body size function, however, is less well understood. To identify additional genes involved in body size regulation, a genetic screen for small mutants was previously performed. One of the genes identified in that screen was sma-21. We now demonstrate that sma-21 encodes ADT-2, a member of the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family of secreted metalloproteases. ADAMTS proteins are believed to remodel the extracellular matrix and may modulate the activity of extracellular signals. Genetic interactions suggest that ADT-2 acts in parallel with or in multiple size regulatory pathways. We demonstrate that ADT-2 is required for normal levels of expression of a DBL-1-responsive transcriptional reporter. We further demonstrate that adt-2 regulatory sequences drive expression in glial-like and vulval cells, and that ADT-2 activity is required for normal cuticle collagen fibril organization. We therefore propose that ADT-2 regulates body size both by modulating TGFβ signaling activity and by maintaining normal cuticle structure.
Collapse
Affiliation(s)
- Thilini Fernando
- Department of Biology, Queens College, and The Graduate School and University Center, City University of New York, Flushing, NY 11367, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Xu X, Ahn JH, Tam P, Yu EJ, Batra S, Cram EJ, Lee M. Analysis of conserved residues in the betapat-3 cytoplasmic tail reveals important functions of integrin in multiple tissues. Dev Dyn 2010; 239:763-72. [PMID: 20063417 DOI: 10.1002/dvdy.22205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Integrin cytoplasmic tails contain motifs that link extracellular information to cell behavior such as cell migration and contraction. To investigate the cell functions mediated by the conserved motifs, we created mutations in the Caenorhabditis elegans betapat-3 cytoplasmic tail. The beta1D (799FK800), NPXY, tryptophan (784W), and threonine (797TT798) motifs were disrupted to identify their functions in vivo. Animals expressing integrins with disrupted NPXY motifs were viable, but displayed distal tip cell migration and ovulation defects. The conserved threonines were required for gonad migration and contraction as well as tail morphogenesis, whereas disruption of the beta1D and tryptophan motifs produced only mild defects. To abolish multiple conserved motifs, a beta1C-like variant, which results in a frameshift, was constructed. The betapat-3(beta1C) transgenic animals showed cold-sensitive larval arrests and defective muscle structure and gonad migration and contraction. Our study suggests that the conserved NPXY and TT motifs play important roles in the tissue-specific function of integrin.
Collapse
Affiliation(s)
- Xiaojian Xu
- Department of Biology, Baylor University, Waco, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Genetics of extracellular matrix remodeling during organ growth using the Caenorhabditis elegans pharynx model. Genetics 2010; 186:969-82. [PMID: 20805556 DOI: 10.1534/genetics.110.120519] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The organs of animal embryos are typically covered with an extracellular matrix (ECM) that must be carefully remodeled as these organs enlarge during post-embryonic growth; otherwise, their shape and functions may be compromised. We previously described the twisting of the Caenorhabditis elegans pharynx (here called the Twp phenotype) as a quantitative mutant phenotype that worsens as that organ enlarges during growth. Mutations previously known to cause pharyngeal twist affect membrane proteins with large extracellular domains (DIG-1 and SAX-7), as well as a C. elegans septin (UNC-61). Here we show that two novel alleles of the C. elegans papilin gene, mig-6(et4) and mig-6(sa580), can also cause the Twp phenotype. We also show that overexpression of the ADAMTS protease gene mig-17 can suppress the pharyngeal twist in mig-6 mutants and identify several alleles of other ECM-related genes that can cause or influence the Twp phenotype, including alleles of fibulin (fbl-1), perlecan (unc-52), collagens (cle-1, dpy-7), laminins (lam-1, lam-3), one ADAM protease (sup-17), and one ADAMTS protease (adt-1). The Twp phenotype in C. elegans is easily monitored using light microscopy, is quantitative via measurements of the torsion angle, and reveals that ECM components, metalloproteinases, and ECM attachment molecules are important for this organ to retain its correct shape during post-embryonic growth. The Twp phenotype is therefore a promising experimental system to study ECM remodeling and diseases.
Collapse
|
31
|
Tian C, Sen D, Shi H, Foehr ML, Plavskin Y, Vatamaniuk OK, Liu J. The RGM protein DRAG-1 positively regulates a BMP-like signaling pathway in Caenorhabditis elegans. Development 2010; 137:2375-84. [PMID: 20534671 DOI: 10.1242/dev.051615] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The bone morphogenetic protein (BMP) signaling pathway regulates multiple developmental and homeostatic processes. Mutations in the pathway can cause a variety of somatic and hereditary disorders in humans. Multiple levels of regulation, including extracellular regulation, ensure proper spatiotemporal control of BMP signaling in the right cellular context. We have identified a modulator of the BMP-like Sma/Mab pathway in C. elegans called DRAG-1. DRAG-1 is the sole member of the repulsive guidance molecule (RGM) family of proteins in C. elegans, and is crucial in regulating body size and mesoderm development. Using a combination of molecular genetic and biochemical analyses, we demonstrate that DRAG-1 is a membrane-associated protein that functions at the ligand-receptor level to modulate the Sma/Mab pathway in a cell-type-specific manner. We further show that DRAG-1 positively modulates this BMP-like pathway by using a novel Sma/Mab-responsive reporter. Our work provides a direct link between RGM proteins and BMP signaling in vivo and a simple and genetically tractable system for mechanistic studies of RGM protein regulation of BMP pathways.
Collapse
Affiliation(s)
- Chenxi Tian
- Department of Molecular Biology and Genetics, 439 Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Kim TH, Kim DH, Nam HW, Park SY, Shim J, Cho JW. Tyrosylprotein sulfotransferase regulates collagen secretion in Caenorhabditis elegans. Mol Cells 2010; 29:413-8. [PMID: 20229090 DOI: 10.1007/s10059-010-0049-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022] Open
Abstract
The sulfation of tyrosine residues is an important post-translational modification involved in the regulation of protein function. We examined the activity of worm tyrosylprotein sulfotransferase (TPST-1) on a typical cuticle collagen, ROL-6, in C. elegans. We verified that TPST-1 sulfates three tyrosine residues of ROL-6 in vitro. We found that these tyrosine residues are important for the secretion of ROL-6::GFP. Mutant ROL-6::GFP proteins that contain more than two substitutions of the target tyrosine residues are severely deficient in cuticle localization. Consistently, knock down of tpst-1 blocked the cuticle localization of ROL-6::GFP. Therefore, the sulfation of ROL-6 by TPST-1 is critical for the proper localization of ROL-6. We also confirmed that worm TPST-1 is localized to the trans-Golgi network (TGN). Our results indicate that TPST-1 regulates cuticle organization by promoting the transport of ROL-6 from the TGN to the cuticle.
Collapse
Affiliation(s)
- Tai Hoon Kim
- Department of Biology, Yonsei University, Seoul, 120-749, Korea
| | | | | | | | | | | |
Collapse
|
33
|
Caenorhabditis elegans genomic response to soil bacteria predicts environment-specific genetic effects on life history traits. PLoS Genet 2009; 5:e1000503. [PMID: 19503598 PMCID: PMC2684633 DOI: 10.1371/journal.pgen.1000503] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 05/04/2009] [Indexed: 11/19/2022] Open
Abstract
With the post-genomic era came a dramatic increase in high-throughput technologies, of which transcriptional profiling by microarrays was one of the most popular. One application of this technology is to identify genes that are differentially expressed in response to different environmental conditions. These experiments are constructed under the assumption that the differentially expressed genes are functionally important in the environment where they are induced. However, whether differential expression is predictive of functional importance has yet to be tested. Here we have addressed this expectation by employing Caenorhabditis elegans as a model for the interaction of native soil nematode taxa and soil bacteria. Using transcriptional profiling, we identified candidate genes regulated in response to different bacteria isolated in association with grassland nematodes or from grassland soils. Many of the regulated candidate genes are predicted to affect metabolism and innate immunity suggesting similar genes could influence nematode community dynamics in natural systems. Using mutations that inactivate 21 of the identified genes, we showed that most contribute to lifespan and/or fitness in a given bacterial environment. Although these bacteria may not be natural food sources for C. elegans, we show that changes in food source, as can occur in environmental disturbance, can have a large effect on gene expression, with important consequences for fitness. Moreover, we used regression analysis to demonstrate that for many genes the degree of differential gene expression between two bacterial environments predicted the magnitude of the effect of the loss of gene function on life history traits in those environments. Transcriptional profiling is often used to identify genes that are differentially regulated in response to different environments. These experiments assume that genes differentially expressed in response to different environments are functionally important and, furthermore, that the degree of differential gene expression is predictive of the magnitude of functional importance. In genetic experiments, function is inferred from analyzing the phenotypes of removing, reducing or altering gene function. However, to date, there has not been a specific test of how well the degree of differential gene expression between two (or more) environments is predictive of gene function. Here we identified C. elegans genes that were differentially expressed in response to different bacterial environments and determined the phenotypic differences of life history traits between these environments using mutant strains that compromised gene function. We found that differential gene expression is indeed predictive of functional importance of the identified genes in different environments. This observation has important implications for interpreting the results of transcriptional profiling experiments of populations of organisms in their native environments, where in many cases the genetic tools to disrupt gene function have not yet been fully developed or interfering with gene functions in nature may not be feasible.
Collapse
|
34
|
Schlager B, Wang X, Braach G, Sommer RJ. Molecular cloning of a dominant roller mutant and establishment of DNA-mediated transformation in the nematode Pristionchus pacificus. Genesis 2009; 47:300-4. [PMID: 19298013 DOI: 10.1002/dvg.20499] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report the molecular cloning of a dominant Roller mutant of Pristionchus pacificus, which encodes a cuticle collagen. We use the mutant locus as a marker to develop transgenic technique by generating complex arrays and present flourescent-protein based transcriptional reporter constructs for P. pacificus.
Collapse
Affiliation(s)
- Benjamin Schlager
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | | | | | | |
Collapse
|
35
|
Winter AD, McCormack G, Page AP. Protein disulfide isomerase activity is essential for viability and extracellular matrix formation in the nematode Caenorhabditis elegans. Dev Biol 2007; 308:449-61. [PMID: 17586485 DOI: 10.1016/j.ydbio.2007.05.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 05/21/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
Protein disulfide isomerase (PDI) is a multifunctional protein required for many aspects of protein folding and transit through the endoplasmic reticulum. A conserved family of three PDIs has been functionally analysed using genetic mutants of the model organism Caenorhabditis elegans. PDI-1 and PDI-3 are individually non-essential, whereas PDI-2 is required for normal post-embryonic development. In combination, all three genes are synergistically essential for embryonic development in this nematode. Mutations in pdi-2 result in severe body morphology defects, uncoordinated movement, adult sterility, abnormal molting and aberrant collagen deposition. Many of these phenotypes are consistent with a role in collagen biogenesis and extracellular matrix formation. PDI-2 is required for the normal function of prolyl 4-hydroxylase, a key collagen-modifying enzyme. Site-directed mutagenesis indicates that the independent catalytic activity of PDI-2 may also perform an essential developmental function. PDI-2 therefore performs two critical roles during morphogenesis. The role of PDI-2 in collagen biogenesis can be restored following complementation of the mutant with human PDI.
Collapse
Affiliation(s)
- Alan D Winter
- Institute of Comparative Medicine, Veterinary Faculty, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | | | | |
Collapse
|
36
|
Craig H, Isaac RE, Brooks DR. Unravelling the moulting degradome: new opportunities for chemotherapy? Trends Parasitol 2007; 23:248-53. [PMID: 17459772 DOI: 10.1016/j.pt.2007.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/26/2007] [Accepted: 04/05/2007] [Indexed: 01/26/2023]
Abstract
Replacement of the nematode cuticle with a newly synthesized cuticle (a process known as moulting) occurs four times during larval development. Therefore, the key components of this essential developmental process represent attractive targets for new chemotherapeutic strategies. Recent advances in understanding the molecular genetics of nematode moulting should stimulate and facilitate development of novel drugs that target the essential molecules of the moulting cycle. In particular, we argue that further understanding of the moulting degradome and its key peptidase members offers an important opportunity for the development of novel antinematode agents.
Collapse
Affiliation(s)
- Hannah Craig
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | | | | |
Collapse
|
37
|
Stein KK, Davis ES, Hays T, Golden A. Components of the spindle assembly checkpoint regulate the anaphase-promoting complex during meiosis in Caenorhabditis elegans. Genetics 2006; 175:107-23. [PMID: 17057243 PMCID: PMC1774991 DOI: 10.1534/genetics.106.059105] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temperature-sensitive mutations in subunits of the Caenorhabditis elegans anaphase-promoting complex (APC) arrest at metaphase of meiosis I at the restrictive temperature. Embryos depleted of the APC co-activator FZY-1 by RNAi also arrest at this stage. To identify regulators and potential substrates of the APC, we performed a genetic suppressor screen with a weak allele of the APC subunit MAT-3/CDC23/APC8, whose defects are specific to meiosis. Twenty-seven suppressors that resulted in embryonic viability and larval development at the restrictive temperature were isolated. We have identified the molecular lesions in 18 of these suppressors, which correspond to five genes. In addition to a single intragenic suppressor, we found mutations in the APC co-activator fzy-1 and in three spindle assembly checkpoint genes, mdf-1, mdf-2, and mdf-3/san-1, orthologs of Mad1, Mad2, and Mad3, respectively. Reduction-of-function alleles of mdf-2 and mdf-3 suppress APC mutants and exhibit pleiotropic phenotypes in an otherwise wild-type background. Analysis of a single separation-of-function allele of mdf-1 suggests that MDF-1 has a dual role during development. These studies provide evidence that components of the spindle assembly checkpoint may regulate the metaphase-to-anaphase transition in the absence of spindle damage during C. elegans meiosis.
Collapse
Affiliation(s)
- Kathryn K Stein
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
38
|
Papathanasiou P, Goodnow CC. Connecting mammalian genome with phenome by ENU mouse mutagenesis: gene combinations specifying the immune system. Annu Rev Genet 2006; 39:241-62. [PMID: 16053407 DOI: 10.1146/annurev.genet.39.110304.095817] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human and mouse genome sequences bring closer the goal of understanding how characteristics of adult mammalian physiology and pathology are encoded by DNA. Here we review the challenge of understanding how genes specify mammalian traits, with particular focus on the cells and behavior of the immune system. Summarized is the emerging experience, advantages, and limitations of using ethylnitrosourea (ENU) to modify the mouse genome and select informative variants by phenotypic screens, yielding two main conclusions. First, ENU-induced variation provides an eminently feasible route to understanding how the genome encodes important mammalian processes without any prior assumptions about genes, their chromosomal locations, or expression patterns. Second, ENU alleles match those arising by natural variation. By changing individual protein domains or splice products, these alleles reveal separate gene functions specified through protein combinations.
Collapse
Affiliation(s)
- Peter Papathanasiou
- Australian Cancer Research Foundation Genetics Laboratory and Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601 Australia.
| | | |
Collapse
|
39
|
Watanabe M, Mitani N, Ishii N, Miki K. A mutation in a cuticle collagen causes hypersensitivity to the endocrine disrupting chemical, bisphenol A, in Caenorhabditis elegans. Mutat Res 2005; 570:71-80. [PMID: 15680404 DOI: 10.1016/j.mrfmmm.2004.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 09/13/2004] [Accepted: 10/07/2004] [Indexed: 11/29/2022]
Abstract
A novel mutant gene, bis-1 (bisphenol A sensitive) has been isolated in the nematode, Caenorhabditis elegans, that affects the response to endocrine disrupting chemicals (EDC). The bis-1(nx3) allele is hypersensitive to bisphenol A (BPA), is allelic to a collagen gene (col-121), and is expressed in hypodermal cells. Among the collagen mutants so far studied, bis-1(nx3), dpy-2(e8), dpy-7(e88) and dpy-10(e128) showed BPA sensitivity. The isolated mutant may work as a useful tool for the assay of EDC toxicity since the physiological effect of the collagen mutation (glycine substitution) indicates an increased sensitivity to BPA.
Collapse
Affiliation(s)
- Masahito Watanabe
- Department of Cell Biology, Japanese Institute of Pearl Science, 4-28 Amanuma, Hiratsuka, Kanagawa 254-0031, Japan
| | | | | | | |
Collapse
|
40
|
Kim TH, Hwang SB, Jeong PY, Lee J, Cho JW. Requirement of tyrosylprotein sulfotransferase-A for proper cuticle formation in the nematode C. elegans. FEBS Lett 2005; 579:53-8. [PMID: 15620690 DOI: 10.1016/j.febslet.2004.11.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 11/09/2004] [Accepted: 11/10/2004] [Indexed: 11/28/2022]
Abstract
Tyrosine O-sulfation is one of the post-translational modification processes that occur to membrane proteins and secreted proteins in eukaryotes. Tyrosylprotein sulfotransferase (TPST) is responsible for this modification, and in this report, we describe the expression pattern and the biological role of TPST-A in the nematode Caenorhabditis elegans. We found that TPST-A was mainly expressed in the hypodermis, especially in the seam cells. Reduction of TPST-A activity by RNAi caused severe defects in cuticle formation, indicating that TPST-A is involved in the cuticle formation in the nematode. We found that RNAi of TPST-A suppressed the roller phenotype caused by mutations in the rol-6 collagen gene, suggesting that sulfation of collagen proteins may be important for proper organization of the extracellular cuticle matrix. The TPST-A RNAi significantly decreased the dityrosine level in the worms, raising the possibility that the sulfation process may be a pre-requisite for the collagen tyrosine cross-linking.
Collapse
Affiliation(s)
- Tai Hoon Kim
- Department of Biology, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | | | | | |
Collapse
|
41
|
Page AP, Winter AD. Enzymes involved in the biogenesis of the nematode cuticle. ADVANCES IN PARASITOLOGY 2003; 53:85-148. [PMID: 14587697 DOI: 10.1016/s0065-308x(03)53003-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nematodes include species that are significant parasites of man, his domestic animals and crops, and cause chronic debilitating diseases in the developing world; such as lymphatic filariasis and river blindness caused by filarial species. Around one third of the World's population harbour parasitic nematodes; no vaccines exist for prevention of infection, limited effective drugs are available and drug resistance is an ever-increasing problem. A critical structure of the nematode is the protective cuticle, a collagen-rich extracellular matrix (ECM) that forms the exoskeleton, and is critical for viability. This resilient structure is synthesized sequentially five times during nematode development and offers protection from the environment, including the hosts' immune response. The detailed characterization of this complex structure; it's components, and the means by which they are synthesized, modified, processed and assembled will identify targets that may be exploited in the future control of parasitic nematodes. This review will focus on the nematode cuticle. This structure is predominantly composed of collagens, a class of proteins that are modified by a range of co- and post-translational modifications prior to assembly into higher order complexes or ECMs. The collagens and their associated enzymes have been comprehensively characterized in vertebrate systems and some of these studies will be addressed in this review. Conversely, the biosynthesis of this class of essential structural proteins has not been studied in such detail in the nematodes. As with all morphogenetic, functional and developmental studies in the Nematoda phylum, the free-living species Caenorhabditis elegans has proven to be invaluable in the characterization of the cuticle and the cuticle collagen gene family, and is now proving to be an excellent model in the study of cuticle collagen biosynthetic enzymes. This model system will be the main focus of this review.
Collapse
Affiliation(s)
- Antony P Page
- Wellcome Centre for Molecular Parasitology, The Anderson College, The University of Glasgow, Glasgow G11 6NU, UK
| | | |
Collapse
|
42
|
Newton SE, Meeusen ENT. Progress and new technologies for developing vaccines against gastrointestinal nematode parasites of sheep. Parasite Immunol 2003; 25:283-96. [PMID: 12969446 DOI: 10.1046/j.1365-3024.2003.00631.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the identification of highly effective native antigens for vaccination against Haemonchus contortus, particularly 'hidden' antigens derived from the intestine of adult worms, to date similar efficacy has not been shown with recombinant antigens. In addition, progress towards identification of protective antigens from other sheep gastrointestinal (GI) nematode species is limited. Coupled with this is an incomplete understanding of the mechanism of natural immunity to GI nematodes, making selection of appropriate immunization strategies and adjuvants for evaluation of candidate 'natural' antigens problematic. The current explosion in new high-throughput technologies, arising from human studies, for analysis of the genome, transcriptome, proteome and glycome offers the opportunity to gain a better understanding of the molecular pathways underlying pathogen biology, the host immune system and the host-pathogen interaction. An overview is provided on how these technologies can be applied to parasite research and how they may aid in overcoming some of the current problems in development of commercial vaccines against GI nematode parasites.
Collapse
Affiliation(s)
- S E Newton
- Victorian Institute of Animal Science, 475 Mickleham Road, Attwood, Victoria, 3049, Australia
| | | |
Collapse
|
43
|
McMahon L, Muriel JM, Roberts B, Quinn M, Johnstone IL. Two sets of interacting collagens form functionally distinct substructures within a Caenorhabditis elegans extracellular matrix. Mol Biol Cell 2003; 14:1366-78. [PMID: 12686594 PMCID: PMC153107 DOI: 10.1091/mbc.e02-08-0479] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Revised: 12/09/2002] [Accepted: 12/23/2002] [Indexed: 11/11/2022] Open
Abstract
A ubiquitous feature of collagens is protein interaction, the trimerization of monomers to form a triple helix followed by higher order interactions during the formation of the mature extracellular matrix. The Caenorhabditis elegans cuticle is a complex extracellular matrix consisting predominantly of cuticle collagens, which are encoded by a family of approximately 154 genes. We identify two discrete interacting sets of collagens and show that they form functionally distinct matrix substructures. We show that mutation in or RNA-mediated interference of a gene encoding a collagen belonging to one interacting set affects the assembly of other members of that set, but not those belonging to the other set. During cuticle synthesis, the collagen genes are expressed in a distinct temporal series, which we hypothesize exists to facilitate partner finding and the formation of appropriate interactions between encoded collagens. Consistent with this hypothesis, we find for the two identified interacting sets that the individual members of each set are temporally coexpressed, whereas the two sets are expressed approximately 2 h apart during matrix synthesis.
Collapse
Affiliation(s)
- Laura McMahon
- The Wellcome Centre for Molecular Parasitology, The University of Glasgow, Anderson College, Glasgow G11 6NU, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Suzuki Y, Morris GA, Han M, Wood WB. A cuticle collagen encoded by the lon-3 gene may be a target of TGF-beta signaling in determining Caenorhabditis elegans body shape. Genetics 2002; 162:1631-9. [PMID: 12524338 PMCID: PMC1462364 DOI: 10.1093/genetics/162.4.1631] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The signaling pathway initiated by the TGF-beta family member DBL-1 in Caenorhabditis elegans controls body shape in a dose-dependent manner. Loss-of-function (lf) mutations in the dbl-1 gene cause a short, small body (Sma phenotype), whereas overexpression of dbl-1 causes a long body (Lon phenotype). To understand the cellular mechanisms underlying these phenotypes, we have isolated suppressors of the Sma phenotype resulting from a dbl-1(lf) mutation. Two of these suppressors are mutations in the lon-3 gene, of which four additional alleles are known. We show that lon-3 encodes a collagen that is a component of the C. elegans cuticle. Genetic and reporter-gene expression analyses suggest that lon-3 is involved in determination of body shape and is post-transcriptionally regulated by the dbl-1 pathway. These results support the possibility that TGF-beta signaling controls C. elegans body shape by regulating cuticle composition.
Collapse
Affiliation(s)
- Yo Suzuki
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | |
Collapse
|
45
|
Nyström J, Shen ZZ, Aili M, Flemming AJ, Leroi A, Tuck S. Increased or decreased levels of Caenorhabditis elegans lon-3, a gene encoding a collagen, cause reciprocal changes in body length. Genetics 2002; 161:83-97. [PMID: 12019225 PMCID: PMC1462080 DOI: 10.1093/genetics/161.1.83] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Body length in C. elegans is regulated by a member of the TGFbeta family, DBL-1. Loss-of-function mutations in dbl-1, or in genes encoding components of the signaling pathway it activates, cause worms to be shorter than wild type and slightly thinner (Sma). Overexpression of dbl-1 confers the Lon phenotype characterized by an increase in body length. We show here that loss-of-function mutations in dbl-1 and lon-1, respectively, cause a decrease or increase in the ploidy of nuclei in the hypodermal syncytial cell, hyp7. To learn more about the regulation of body length in C. elegans we carried out a genetic screen for new mutations causing a Lon phenotype. We report here the cloning and characterization of lon-3. lon-3 is shown to encode a putative cuticle collagen that is expressed in hypodermal cells. We show that, whereas putative null mutations in lon-3 (or reduction of lon-3 activity by RNAi) causes a Lon phenotype, increasing lon-3 gene copy number causes a marked reduction in body length. Morphometric analyses indicate that the lon-3 loss-of-function phenotype resembles that caused by overexpression of dbl-1. Furthermore, phenotypes caused by defects in dbl-1 or lon-3 expression are in both cases suppressed by a null mutation in sqt-1, a second cuticle collagen gene. However, whereas loss of dbl-1 activity causes a reduction in hypodermal endoreduplication, the reduction in body length associated with overexpression of lon-3 occurs in the absence of defects in hypodermal ploidy.
Collapse
|
46
|
Satyal SH, Schmidt E, Kitagawa K, Sondheimer N, Lindquist S, Kramer JM, Morimoto RI. Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2000; 97:5750-5. [PMID: 10811890 PMCID: PMC18505 DOI: 10.1073/pnas.100107297] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expansion of polyglutamine repeats in several unrelated proteins causes neurodegenerative diseases with distinct but related pathologies. To provide a model system for investigating common pathogenic features, we have examined the behavior of polyglutamine expansions expressed in Caenorhabditis elegans. The expression of polyglutamine repeats as green fluorescent protein (GFP)-fusion proteins in body wall muscle cells causes discrete cytoplasmic aggregates that appear early in embryogenesis and correlates with a delay in larval to adult development. The heat shock response is activated idiosyncratically in individual cells in a polyglutamine length-dependent fashion. The toxic effect of polyglutamine expression and the formation of aggregates can be reversed by coexpression of the yeast chaperone Hsp104. The altered homeostasis associated with polyglutamine aggregates causes both the sequestration of an otherwise soluble protein with shorter arrays of glutamine repeats and the relocalization of a nuclear glutamine-rich protein. These observations of induced aggregation and relocalization have implications for disorders involving protein aggregation.
Collapse
Affiliation(s)
- S H Satyal
- Department of Biochemistry, Molecular Biology, and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Collagen is a structural protein used in the generation of a wide variety of animal extracellular matrices. The exoskeleton of the free-living nematode, Caenorhabditis elegans, is a complex collagen matrix that is tractable to genetic research. Mutations in individual cuticle collagen genes can cause exoskeletal defects that alter the shape of the animal. The complete sequence of the C. elegans genome indicates upwards of 150 distinct collagen genes that probably contribute to this structure. During the synthesis of this matrix, individual collagen genes are expressed in distinct temporal periods, which might facilitate the formation of specific interactions between distinct collagens.
Collapse
Affiliation(s)
- I L Johnstone
- Wellcome Centre for Molecular Parasitology, Anderson College, University of Glasgow, UK.
| |
Collapse
|
48
|
Abstract
The Caenorhabditis elegans oocyte is a highly amenable system for forward and reverse genetic analysis of receptor-mediated endocytosis. We describe the use of transgenic strains expressing a vitellogenin::green fluorescent protein (YP170::GFP) fusion to monitor yolk endocytosis by the C. elegans oocyte in vivo. This YP170::GFP reporter was used to assay the functions of C. elegans predicted proteins homologous to vertebrate endocytosis factors using RNA-mediated interference. We show that the basic components and pathways of endocytic trafficking are conserved between C. elegans and vertebrates, and that this system can be used to test the endocytic functions of any new gene. We also used the YP170::GFP assay to identify rme (receptor-mediated endocytosis) mutants. We describe a new member of the low-density lipoprotein receptor superfamily, RME-2, identified in our screens for endocytosis defective mutants. We show that RME-2 is the C. elegans yolk receptor.
Collapse
Affiliation(s)
- B Grant
- Columbia University College of Physicians and Surgeons, Department of Biochemistry and Molecular Biophysics, New York, New York 10032, USA.
| | | |
Collapse
|
49
|
Petalcorin MI, Oka T, Koga M, Ogura K, Wada Y, Ohshima Y, Futai M. Disruption of clh-1, a chloride channel gene, results in a wider body of Caenorhabditis elegans. J Mol Biol 1999; 294:347-55. [PMID: 10610763 DOI: 10.1006/jmbi.1999.3241] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned the clh-1 gene coding for a putative ClC chloride channel in Caenorhabditis elegans. The gene product exhibited a high degree of homology with human ClC-1 and ClC-2. The clh-1 gene was predominantly expressed in the hypodermis, including seam cells. Null mutations of clh-1 caused a significantly wider body and an abnormal alae structure. High osmolarity in the culture medium restored the normal body width of the clh-1 mutants. These results suggest that the clh-1 gene contributes to maintenance of the body width through regulation of osmolarity.
Collapse
Affiliation(s)
- M I Petalcorin
- Division of Biological Sciences Institute of Scientific and Industrial Research, Osaka University, CREST of the Japan Science and Technology Corporation, Osaka, 567-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Yang J, Kramer JM. Proteolytic processing of Caenorhabditis elegans SQT-1 cuticle collagen is inhibited in right roller mutants whereas cross-linking is inhibited in left roller mutants. J Biol Chem 1999; 274:32744-9. [PMID: 10551833 DOI: 10.1074/jbc.274.46.32744] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sqt-1 gene encodes a C. elegans cuticle collagen that when defective can cause dramatic alterations of organismal morphology. Specific antisera were used to examine the assembly of wild-type and mutant SQT-1 in the cuticle. Wild-type SQT-1 chains associate into dimer, tetramer, and higher oligomers that are cross-linked by non-reducible, presumably tyrosine-derived, covalent bonds. The SQT-1 pattern differs from the bulk of cuticle collagens which are found in trimer and larger forms. sqt-1 mutations that cause left-handed helical twisting of animals remove a conserved carboxyl-domain cysteine and inhibit formation of these non-reducible bonds. SQT-1 monomers accumulate and novel trimer-sized products form. A conserved tyrosine immediately adjacent to the affected cysteine suggests that disulfide bond formation is required for this tyrosine to form a cross-link. sqt-1 mutations that cause right-handed helical twisting affect conserved arginines in a predicted cleavage site for a subtilisin-like protease. These mutant SQT-1 molecules retain residues on the amino side of the predicted cleavage site and are larger than wild-type by the amount expected if cleavage failed to occur. The conservation of this site in all nematode cuticle collagens indicates that they are all synthesized as procollagens that are processed by subtilisin-like proteases.
Collapse
Affiliation(s)
- J Yang
- Department of Cell Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|