1
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
2
|
Scarpin MR, Simmons CH, Brunkard JO. Translating across kingdoms: target of rapamycin promotes protein synthesis through conserved and divergent pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7016-7025. [PMID: 35770874 PMCID: PMC9664230 DOI: 10.1093/jxb/erac267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
mRNA translation is the growth rate-limiting step in genome expression. Target of rapamycin (TOR) evolved a central regulatory role in eukaryotes as a signaling hub that monitors nutrient availability to maintain homeostasis and promote growth, largely by increasing the rate of translation initiation and protein synthesis. The dynamic pathways engaged by TOR to regulate translation remain debated even in well-studied yeast and mammalian models, however, despite decades of intense investigation. Recent studies have firmly established that TOR also regulates mRNA translation in plants through conserved mechanisms, such as the TOR-LARP1-5'TOP signaling axis, and through pathways specific to plants. Here, we review recent advances in our understanding of the regulation of mRNA translation in plants by TOR.
Collapse
Affiliation(s)
- M Regina Scarpin
- Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
- Department of Plant and Microbial Biology, University of California, Berkeley,CA, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, USA
| | - Carl H Simmons
- Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
3
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
4
|
Colombo S, Longoni E, Gnugnoli M, Busti S, Martegani E. Fast detection of PKA activity in Saccharomyces cerevisiae cell population using AKAR fluorescence resonance energy transfer probes. Cell Signal 2022; 92:110262. [DOI: 10.1016/j.cellsig.2022.110262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 11/03/2022]
|
5
|
Faca VM, Sanford EJ, Tieu J, Comstock W, Gupta S, Marshall S, Yu H, Smolka MB. Maximized quantitative phosphoproteomics allows high confidence dissection of the DNA damage signaling network. Sci Rep 2020; 10:18056. [PMID: 33093574 PMCID: PMC7582137 DOI: 10.1038/s41598-020-74939-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The maintenance of genomic stability relies on DNA damage sensor kinases that detect DNA lesions and phosphorylate an extensive network of substrates. The Mec1/ATR kinase is one of the primary sensor kinases responsible for orchestrating DNA damage responses. Despite the importance of Mec1/ATR, the current network of its identified substrates remains incomplete due, in part, to limitations in mass spectrometry-based quantitative phosphoproteomics. Phosphoproteomics suffers from lack of redundancy and statistical power for generating high confidence datasets, since information about phosphopeptide identity, site-localization, and quantitation must often be gleaned from a single peptide-spectrum match (PSM). Here we carefully analyzed the isotope label swapping strategy for phosphoproteomics, using data consistency among reciprocal labeling experiments as a central filtering rule for maximizing phosphopeptide identification and quantitation. We demonstrate that the approach allows drastic reduction of false positive quantitations and identifications even from phosphopeptides with a low number of spectral matches. Application of this approach identifies new Mec1/ATR-dependent signaling events, expanding our understanding of the DNA damage signaling network. Overall, the proposed quantitative phosphoproteomic approach should be generally applicable for investigating kinase signaling networks with high confidence and depth.
Collapse
Affiliation(s)
- Vitor Marcel Faca
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Biochemistry and Immunology and Cell-Based Therapy Center, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Ethan J Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jennifer Tieu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - William Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shagun Gupta
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shannon Marshall
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
6
|
Rocha VPC, Dacher M, Young SA, Kolokousi F, Efstathiou A, Späth GF, Soares MBP, Smirlis D. Leishmania dual-specificity tyrosine-regulated kinase 1 (DYRK1) is required for sustaining Leishmania stationary phase phenotype. Mol Microbiol 2020; 113:983-1002. [PMID: 31975452 DOI: 10.1111/mmi.14464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 01/05/2023]
Abstract
Although the multiplicative and growth-arrested states play key roles in Leishmania development, the regulators of these transitions are largely unknown. In an attempt to gain a better understanding of these processes, we characterised one member of a family of protein kinases with dual specificity, LinDYRK1, which acts as a stasis regulator in other organisms. LinDYRK1 overexpressing parasites displayed a decrease in proliferation and in cell cycle re-entry of arrested cells. Parasites lacking LinDYRK1 displayed distinct fitness phenotypes in logarithmic and stationary growth phases. In logarithmic growth phase, LinDYRK1-/- parasites proliferated better than control lines, supporting a role of this kinase in stasis, while in stationary growth phase, LinDYRK1-/- parasites had important defects as they rounded up, accumulated vacuoles and lipid bodies and displayed subtle but consistent differences in lipid composition. Moreover, they expressed less metacyclic-enriched transcripts, displayed increased sensitivity to complement lysis and a significant reduction in survival within peritoneal macrophages. The distinct LinDYRK1-/- growth phase phenotypes were mirrored by the distinct LinDYRK1 localisations in logarithmic (mainly in flagellar pocket area and endosomes) and late stationary phase (mitochondrion). Overall, this work provides first evidence for the role of a DYRK family member in sustaining promastigote stationary phase phenotype and infectivity.
Collapse
Affiliation(s)
- Vinícius Pinto Costa Rocha
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, Brazil
| | - Mariko Dacher
- Unité de Parasitologie Moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| | - Simon Alan Young
- Biomedical Sciences Research Complex, School of Biology, The University of St. Andrews, St. Andrews, UK
| | - Foteini Kolokousi
- Molecular Parasitology Laboratory, Microbiology Department, Hellenic Pasteur Institute, Athens, Greece
| | - Antonia Efstathiou
- Molecular Parasitology Laboratory, Microbiology Department, Hellenic Pasteur Institute, Athens, Greece
| | - Gerald Frank Späth
- Unité de Parasitologie Moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| | - Milena Botelho Pereira Soares
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, Brazil
| | - Despina Smirlis
- Molecular Parasitology Laboratory, Microbiology Department, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
7
|
Das R, Melo JA, Thondamal M, Morton EA, Cornwell AB, Crick B, Kim JH, Swartz EW, Lamitina T, Douglas PM, Samuelson AV. The homeodomain-interacting protein kinase HPK-1 preserves protein homeostasis and longevity through master regulatory control of the HSF-1 chaperone network and TORC1-restricted autophagy in Caenorhabditis elegans. PLoS Genet 2017; 13:e1007038. [PMID: 29036198 PMCID: PMC5658188 DOI: 10.1371/journal.pgen.1007038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/26/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022] Open
Abstract
An extensive proteostatic network comprised of molecular chaperones and protein clearance mechanisms functions collectively to preserve the integrity and resiliency of the proteome. The efficacy of this network deteriorates during aging, coinciding with many clinical manifestations, including protein aggregation diseases of the nervous system. A decline in proteostasis can be delayed through the activation of cytoprotective transcriptional responses, which are sensitive to environmental stress and internal metabolic and physiological cues. The homeodomain-interacting protein kinase (hipk) family members are conserved transcriptional co-factors that have been implicated in both genotoxic and metabolic stress responses from yeast to mammals. We demonstrate that constitutive expression of the sole Caenorhabditis elegans Hipk homolog, hpk-1, is sufficient to delay aging, preserve proteostasis, and promote stress resistance, while loss of hpk-1 is deleterious to these phenotypes. We show that HPK-1 preserves proteostasis and extends longevity through distinct but complementary genetic pathways defined by the heat shock transcription factor (HSF-1), and the target of rapamycin complex 1 (TORC1). We demonstrate that HPK-1 antagonizes sumoylation of HSF-1, a post-translational modification associated with reduced transcriptional activity in mammals. We show that inhibition of sumoylation by RNAi enhances HSF-1-dependent transcriptional induction of chaperones in response to heat shock. We find that hpk-1 is required for HSF-1 to induce molecular chaperones after thermal stress and enhances hormetic extension of longevity. We also show that HPK-1 is required in conjunction with HSF-1 for maintenance of proteostasis in the absence of thermal stress, protecting against the formation of polyglutamine (Q35::YFP) protein aggregates and associated locomotory toxicity. These functions of HPK-1/HSF-1 undergo rapid down-regulation once animals reach reproductive maturity. We show that HPK-1 fortifies proteostasis and extends longevity by an additional independent mechanism: induction of autophagy. HPK-1 is necessary for induction of autophagosome formation and autophagy gene expression in response to dietary restriction (DR) or inactivation of TORC1. The autophagy-stimulating transcription factors pha-4/FoxA and mxl-2/Mlx, but not hlh-30/TFEB or the nuclear hormone receptor nhr-62, are necessary for extended longevity resulting from HPK-1 overexpression. HPK-1 expression is itself induced by transcriptional mechanisms after nutritional stress, and post-transcriptional mechanisms in response to thermal stress. Collectively our results position HPK-1 at a central regulatory node upstream of the greater proteostatic network, acting at the transcriptional level by promoting protein folding via chaperone expression, and protein turnover via expression of autophagy genes. HPK-1 therefore provides a promising intervention point for pharmacological agents targeting the protein homeostasis system as a means of preserving robust longevity. Aging is the gradual and progressive decline of vitality. A hallmark of aging is the decay of protective mechanisms that normally preserve the robustness and resiliency of cells and tissues. Proteostasis is the term that applies specifically to those mechanisms that promote stability of the proteome, the collection of polypeptides that cells produce, by a combination of chaperone-assisted folding and degradation of misfolded or extraneous proteins. We have identified hpk-1 (encoding a homeodomain-interacting protein kinase) in the nematode C. elegans as an important transcriptional regulatory component of the proteostasis machinery. HPK-1 promotes proteostasis by linking two distinct mechanisms: first by stimulating chaperone gene expression via the heat shock transcription factor (HSF-1), and second by stimulating autophagy gene expression in opposition to the target of rapamycin (TOR) kinase signaling pathway. HPK-1 therefore provides an attractive target for interventions to preserve physiological resiliency during aging by preserving the overall health of the proteome.
Collapse
Affiliation(s)
- Ritika Das
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Justine A. Melo
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Elizabeth A. Morton
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Adam B. Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Beresford Crick
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Joung Heon Kim
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Elliot W. Swartz
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Todd Lamitina
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Peter M. Douglas
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Berber S, Wood M, Llamosas E, Thaivalappil P, Lee K, Liao BM, Chew YL, Rhodes A, Yucel D, Crossley M, Nicholas HR. Homeodomain-Interacting Protein Kinase (HPK-1) regulates stress responses and ageing in C. elegans. Sci Rep 2016; 6:19582. [PMID: 26791749 PMCID: PMC4726358 DOI: 10.1038/srep19582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/15/2015] [Indexed: 11/22/2022] Open
Abstract
Proteins of the Homeodomain-Interacting Protein Kinase (HIPK) family regulate an array of processes in mammalian systems, such as the DNA damage response, cellular proliferation and apoptosis. The nematode Caenorhabditis elegans has a single HIPK homologue called HPK-1. Previous studies have implicated HPK-1 in longevity control and suggested that this protein may be regulated in a stress-dependent manner. Here we set out to expand these observations by investigating the role of HPK-1 in longevity and in the response to heat and oxidative stress. We find that levels of HPK-1 are regulated by heat stress, and that HPK-1 contributes to survival following heat or oxidative stress. Additionally, we show that HPK-1 is required for normal longevity, with loss of HPK-1 function leading to a faster decline of physiological processes that reflect premature ageing. Through microarray analysis, we have found that HPK-1-regulated genes include those encoding proteins that serve important functions in stress responses such as Phase I and Phase II detoxification enzymes. Consistent with a role in longevity assurance, HPK-1 also regulates the expression of age-regulated genes. Lastly, we show that HPK-1 functions in the same pathway as DAF-16 to regulate longevity and reveal a new role for HPK-1 in development.
Collapse
Affiliation(s)
- Slavica Berber
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Mallory Wood
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Estelle Llamosas
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | | | - Karen Lee
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Bing Mana Liao
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Yee Lian Chew
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Aaron Rhodes
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Duygu Yucel
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Australia
| | - Hannah R Nicholas
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Lv X, Zhang W, Chen G, Liu W. Trichoderma reesei Sch9 and Yak1 regulate vegetative growth, conidiation, and stress response and induced cellulase production. J Microbiol 2015; 53:236-42. [PMID: 25636423 DOI: 10.1007/s12275-015-4639-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 11/28/2022]
Abstract
Protein kinases are key players in controlling many basic cellular processes in almost all the organisms via mediating signal transduction processes. In the present study, we characterized the cellulolytic Trichoderma reesei orthologs of Saccharomyces cerevisiae Sch9 and Yak1 by sequence alignment and functional analysis. The T. reesei Trsch9Δ and Tryak1Δ mutant strains displayed a decreased growth rate on different carbon sources and produced less conidia. The absence of these two kinases also resulted in different but abnormal polarized apical growth as well as sensitivity to various stresses. In addition, disruption of the genes Trsch9 or Tryak1 resulted in perturbation of cell wall integrity. Interestingly, while the induced production of cellulases was slightly compromised in the Trsch9Δ strain, the extracellular production of cellulases was significantly improved in the absence of Yak1. The results indicate that TrSch9 and TrYak1 play an important role in filamentous growth, stress response and induced production of cellulases in T. reesei.
Collapse
Affiliation(s)
- Xinxing Lv
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100, Shandong, P. R. China
| | | | | | | |
Collapse
|
10
|
Suwunnakorn S, Cooper CR, Kummasook A, Vanittanakom N. Role of the yakA gene in morphogenesis and stress response in Penicillium marneffei. Microbiology (Reading) 2014; 160:1929-1939. [DOI: 10.1099/mic.0.080689-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Penicillium marneffei is a thermally dimorphic fungus and a highly significant pathogen of immunocompromised individuals living in or having travelled in south-east Asia. At 25 °C, P. marneffei grows filamentously. Under the appropriate conditions, these filaments (hyphae) produce conidiophores bearing chains of conidia. Yet, when incubated at 37 °C, or upon infecting host tissue, P. marneffei grows as a yeast that divides by binary fission. Previously, an Agrobacterium-mediated transformation system was used to randomly mutagenize P. marneffei, resulting in the isolation of a mutant defective in normal patterns of morphogenesis and conidiogenesis. The interrupted gene was identified as yakA. In the current study, we demonstrate that the yakA mutant produced fewer conidia at 25 °C than the wild-type and a complemented strain. In addition, disruption of the yakA gene resulted in early conidial germination and perturbation of cell wall integrity. The yakA mutant exhibited abnormal chitin distribution while growing at 25 °C, but not at 37 °C. Interestingly, at both temperatures, the yakA mutant possessed increased chitin content, which was accompanied by amplified transcription of two chitin synthase genes, chsB and chsG. Moreover, the expression of yakA was induced during post-exponential-phase growth as well as by heat shock. Thus, yakA is required for normal patterns of development, cell wall integrity, chitin deposition, appropriate chs expression and heat stress response in P. marneffei.
Collapse
Affiliation(s)
- Sumanun Suwunnakorn
- Center for Applied Chemical Biology and Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chester R. Cooper
- Center for Applied Chemical Biology and Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
| | - Aksarakorn Kummasook
- Division of Clinical Microbiology, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Nongnuch Vanittanakom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
11
|
Yang DH, Maeng S, Bahn YS. Msi1-Like (MSIL) Proteins in Fungi. MYCOBIOLOGY 2013; 41:1-12. [PMID: 23610533 PMCID: PMC3627964 DOI: 10.5941/myco.2013.41.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 03/11/2013] [Indexed: 05/23/2023]
Abstract
Msi1-like (MSIL) proteins, which are eukaryote-specific and contain a series of WD40 repeats, have pleiotropic roles in chromatin assembly, DNA damage repair, and regulation of nutrient/stress-sensing signaling pathways. In the fungal kingdom, the functions of MSIL proteins have been studied most intensively in the budding yeast model Saccharomyces cerevisiae, an ascomycete. Yet their functions are largely unknown in other fungi. Recently, an MSIL protein, Msl1, was discovered and functionally characterized in the pathogenic yeast Cryptococcus neoformans, a basidiomycete. Interestingly, MSIL proteins appear to have redundant and unique roles in both fungi, suggesting that MSIL proteins may have evolutionarily divergent roles in different parts of the fungal kingdom. In this review, we will describe the current findings regarding the role of MSIL proteins in fungi and discuss future directions for research on this topic.
Collapse
Affiliation(s)
- Dong-Hoon Yang
- Department of Biotechnology, Center for Fungal Pathogenesis, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
12
|
Fernández-García P, Peláez R, Herrero P, Moreno F. Phosphorylation of yeast hexokinase 2 regulates its nucleocytoplasmic shuttling. J Biol Chem 2012; 287:42151-64. [PMID: 23066030 PMCID: PMC3516761 DOI: 10.1074/jbc.m112.401679] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/27/2012] [Indexed: 11/06/2022] Open
Abstract
Nucleocytoplasmic shuttling of Hxk2 induced by glucose levels has been reported recently. Here we present evidence that indicates that Hxk2 nucleocytoplasmic traffic is regulated by phosphorylation and dephosphorylation at serine 14. Moreover, we identified the protein kinase Snf1 and the protein phosphatase Glc7-Reg1 as novel regulatory partners for the nucleocytoplasmic shuttling of Hxk2. Functional studies revealed that, in contrast to the wild-type protein, the dephosphorylation-mimicking mutant of Hxk2 retains its nuclear localization in low glucose conditions, and the phosphomimetic mutant of Hxk2 retains its cytoplasmic localization in high glucose conditions. Interaction experiments of Hxk2 with Kap60 and Xpo1 indicated that nuclear import of the S14D mutant of Hxk2 is severely decreased but that the export is significantly enhanced. Conversely, nuclear import of the S14A mutant of Hxk2 was significantly enhanced, although the export was severely decreased. The interaction of Hxk2 with Kap60 and Xpo1 was found to occur in the dephosphorylated and phosphorylated states of the protein, respectively. In addition, we found that Hxk2 is a substrate for Snf1. Mutational analysis indicated that serine 14 is a major in vitro and in vivo phosphorylation site for Snf1. We also provide evidence that dephosphorylation of Hxk2 at serine 14 is a protein phosphatase Glc7-Reg1-dependent process. Taken together, this study establishes a functional link between Hxk2, Reg1, and Snf1 signaling, which involves the regulation of Hxk2 nucleocytoplasmic shuttling by phosphorylation-dephosphorylation of serine 14.
Collapse
Affiliation(s)
- Paula Fernández-García
- From the Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Rafael Peláez
- From the Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Pilar Herrero
- From the Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Fernando Moreno
- From the Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
13
|
Livas D, Almering MJ, Daran JM, Pronk JT, Gancedo JM. Transcriptional responses to glucose in Saccharomyces cerevisiae strains lacking a functional protein kinase A. BMC Genomics 2011; 12:405. [PMID: 21827659 PMCID: PMC3166949 DOI: 10.1186/1471-2164-12-405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/09/2011] [Indexed: 11/10/2022] Open
Abstract
Background The pattern of gene transcripts in the yeast Saccharomyces cerevisiae is strongly affected by the presence of glucose. An increased activity of protein kinase A (PKA), triggered by a rise in the intracellular concentration of cAMP, can account for many of the effects of glucose on transcription. In S. cerevisiae three genes, TPK1, TPK2, and TPK3, encode catalytic subunits of PKA. The lack of viability of tpk1 tpk2 tpk3 triple mutants may be suppressed by mutations such as yak1 or msn2/msn4. To investigate the requirement for PKA in glucose control of gene expression, we have compared the effects of glucose on global transcription in a wild-type strain and in two strains devoid of PKA activity, tpk1 tpk2 tpk3 yak1 and tpk1 tpk2 tpk3 msn2 msn4. Results We have identified different classes of genes that can be induced -or repressed- by glucose in the absence of PKA. Representative examples are genes required for glucose utilization and genes involved in the metabolism of other carbon sources, respectively. Among the genes responding to glucose in strains devoid of PKA some are also controlled by a redundant signalling pathway involving PKA activation, while others are not affected when PKA is activated through an increase in cAMP concentration. On the other hand, among genes that do not respond to glucose in the absence of PKA, some give a full response to increased cAMP levels, even in the absence of glucose, while others appear to require the cooperation of different signalling pathways. We show also that, for a number of genes controlled by glucose through a PKA-dependent pathway, the changes in mRNA levels are transient. We found that, in cells grown in gluconeogenic conditions, expression of a small number of genes, mainly connected with the response to stress, is reduced in the strains lacking PKA. Conclusions In S. cerevisiae, the transcriptional responses to glucose are triggered by a variety of pathways, alone or in combination, in which PKA is often involved. Redundant signalling pathways confer a greater robustness to the response to glucose, while cooperative pathways provide a greater flexibility.
Collapse
Affiliation(s)
- Daniela Livas
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | | | | | | |
Collapse
|
14
|
Schaap P. Evolution of developmental cyclic adenosine monophosphate signaling in the Dictyostelia from an amoebozoan stress response. Dev Growth Differ 2011; 53:452-62. [PMID: 21585352 PMCID: PMC3909795 DOI: 10.1111/j.1440-169x.2011.01263.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 10/27/2022]
Abstract
The Dictyostelid social amoebas represent one of nature's several inventions of multicellularity. Though normally feeding as single cells, nutrient stress triggers the collection of amoebas into colonies that form delicately shaped fruiting structures in which the cells differentiate into spores and up to three cell types to support the spore mass. Cyclic adenosine monophosphate (cAMP) plays a very dominant role in controlling morphogenesis and cell differentiation in the model species Dictyostelium discoideum. As a secreted chemoattractant cAMP coordinates cell movement during aggregation and fruiting body morphogenesis. Secreted cAMP also controls gene expression at different developmental stages, while intracellular cAMP is extensively used to transduce the effect of other stimuli that control the developmental program. In this review, I present an overview of the different roles of cAMP in the model D. discoideum and I summarize studies aimed to resolve how these roles emerged during Dictyostelid evolution.
Collapse
Affiliation(s)
- Pauline Schaap
- College of Life Sciences, University of Dundee, MSI/WTB/JBC Complex, Dow Street, Dundee DD15EH, UK.
| |
Collapse
|
15
|
Lee P, Paik SM, Shin CS, Huh WK, Hahn JS. Regulation of yeast Yak1 kinase by PKA and autophosphorylation-dependent 14-3-3 binding. Mol Microbiol 2010; 79:633-46. [PMID: 21255108 DOI: 10.1111/j.1365-2958.2010.07471.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Yak1 is a member of an evolutionarily conserved family of Ser/Thr protein kinases known as dual-specificity Tyr phosphorylation-regulated kinases (DYRKs). Yak1 was originally identified as a growth antagonist, which functions downstream of Ras/PKA signalling pathway. It has been known that Yak1 is phosphorylated by PKA in vitro and is translocated to the nucleus upon nutrient deprivation. However, the regulatory mechanisms for Yak1 activity and localization are largely unknown. In the present study, we investigated the role of PKA and Bmh1, a yeast 14-3-3 protein, in regulation of Yak1. We demonstrate that PKA-dependent phosphorylation of Yak1 on Ser295 and two minor sites inhibits nuclear localization of Yak1. We also show that intramolecular autophosphorylation on at least four Ser/Thr residues in the non-catalytic N-terminal domain is required for full kinase activity of Yak1. The most potent autophosphorylation site, Thr335, plays an essential role for Bmh1 binding in collaboration with a yet unidentified second binding site in the N-terminal domain. Bmh1 binding decreases the catalytic activity of Yak1 without affecting its subcellular localization. Since the binding of 14-3-3 proteins to Yak1 coincides with PKA activity, such regulatory mechanisms might allow cytoplasmic retention of an inactive form of Yak1 under high glucose conditions.
Collapse
Affiliation(s)
- Peter Lee
- School of Chemical and Biological Engineering Interdisciplinary Program for Bioengineering School of Biological Sciences, Seoul National University, 599 Gwanak-gu, Gwanak-ro, Seoul 151-744, Korea
| | | | | | | | | |
Collapse
|
16
|
Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010; 87:829-45. [DOI: 10.1007/s00253-010-2594-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/29/2010] [Accepted: 03/29/2010] [Indexed: 12/18/2022]
|
17
|
Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 2010; 56:1-32. [PMID: 20054690 DOI: 10.1007/s00294-009-0287-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 12/27/2022]
Abstract
Cells of all living organisms contain complex signal transduction networks to ensure that a wide range of physiological properties are properly adapted to the environmental conditions. The fundamental concepts and individual building blocks of these signalling networks are generally well-conserved from yeast to man; yet, the central role that growth factors and hormones play in the regulation of signalling cascades in higher eukaryotes is executed by nutrients in yeast. Several nutrient-controlled pathways, which regulate cell growth and proliferation, metabolism and stress resistance, have been defined in yeast. These pathways are integrated into a signalling network, which ensures that yeast cells enter a quiescent, resting phase (G0) to survive periods of nutrient scarceness and that they rapidly resume growth and cell proliferation when nutrient conditions become favourable again. A series of well-conserved nutrient-sensory protein kinases perform key roles in this signalling network: i.e. Snf1, PKA, Tor1 and Tor2, Sch9 and Pho85-Pho80. In this review, we provide a comprehensive overview on the current understanding of the signalling processes mediated via these kinases with a particular focus on how these individual pathways converge to signalling networks that ultimately ensure the dynamic translation of extracellular nutrient signals into appropriate physiological responses.
Collapse
|
18
|
Abstract
Unicellular fungi thrive in diverse niches around the world, and many of these niches present unique and stressful challenges that must be contended with by their inhabitants. Numerous studies have investigated the genomic expression responses to environmental stress in 'model' ascomycete fungi, including Saccharomyces cerevisiae, Candida albicans and Schizosaccharomyces pombe. This review presents a comparative-genomics perspective on the environmental stress response, a common response to diverse stresses. Implications for the role of this response, based on its presence or absence in fungi from disparate ecological niches, are discussed.
Collapse
Affiliation(s)
- Audrey P Gasch
- Laboratory of Genetics and Genome Center of Wisconsin, University of Wisconsin Madison, Madison, WI 53706, USA.
| |
Collapse
|
19
|
Goyard S, Knechtle P, Chauvel M, Mallet A, Prévost MC, Proux C, Coppée JY, Schwarz P, Schwartz P, Dromer F, Park H, Filler SG, Janbon G, d'Enfert C. The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans. Mol Biol Cell 2008; 19:2251-66. [PMID: 18321992 DOI: 10.1091/mbc.e07-09-0960] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Members of the dual-specificity tyrosine-phosphorylated and regulated kinase (DYRK) family perform a variety of functions in eukaryotes. We used gene disruption, targeted pharmacologic inhibition, and genome-wide transcriptional profiling to dissect the function of the Yak1 DYRK in the human fungal pathogen Candida albicans. C. albicans strains with mutant yak1 alleles showed defects in the yeast-to-hypha transition and in maintaining hyphal growth. They also could not form biofilms. Despite their in vitro filamentation defect, C. albicans yak1Delta/yak1Delta mutants remained virulent in animal models of systemic and oropharyngeal candidiasis. Transcriptional profiling showed that Yak1 was necessary for the up-regulation of only a subset of hypha-induced genes. Although downstream targets of the Tec1 and Bcr1 transcription factors were down-regulated in the yak1Delta/yak1Delta mutant, TEC1 and BCR1 were not. Furthermore, 63% of Yak1-dependent, hypha-specific genes have been reported to be negatively regulated by the transcriptional repressor Tup1 and inactivation of TUP1 in the yak1Delta/yak1Delta mutant restored filamentation, suggesting that Yak1 may function upstream of Tup1 in governing hyphal emergence and maintenance.
Collapse
Affiliation(s)
- Sophie Goyard
- Unité Biologie et Pathogénicité Fongiques, Institut National de la Recherche Agronomique USC2019, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ren M, Santhanam A, Lee P, Caplan A, Garrett S. Alteration of the protein kinase binding domain enhances function of the Saccharomyces cerevisiae molecular chaperone Cdc37. EUKARYOTIC CELL 2007; 6:1363-72. [PMID: 17573546 PMCID: PMC1951142 DOI: 10.1128/ec.00165-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cdc37 is a molecular chaperone that has a general function in the biogenesis of protein kinases. We identified mutations within the putative "protein kinase binding domain" of Cdc37 that alleviate the conditional growth defect of a strain containing a temperature-sensitive allele, tpk2(Ts), of the cyclic AMP-dependent protein kinase (PKA). These dominant mutations alleviate the temperature-sensitive growth defect by elevating PKA activity, as judged by their effects on PKA-regulated processes, localization and phosphorylation of the PKA effector Msn2, as well as in vitro PKA activity. Although the tpk2(Ts) growth defect is also alleviated by Cdc37 overproduction, the CDC37 dominant mutants contain wild-type Cdc37 protein levels. In addition, Saccharomyces cerevisiae Ste11 protein kinase has an elevated physical interaction with the altered Cdc37 protein. These results implicate specific amino-terminal residues in the interaction between Cdc37 and client protein kinases and provide further genetic and biochemical support for a model in which Cdc37 functions as a molecular chaperone for protein kinases.
Collapse
Affiliation(s)
- Min Ren
- Graduate School of Biomedical Sciences, Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, 225 Warren St., Newark, NJ 07101, USA
| | | | | | | | | |
Collapse
|
21
|
Cardona F, Carrasco P, Pérez-Ortín JE, del Olmo ML, Aranda A. A novel approach for the improvement of stress resistance in wine yeasts. Int J Food Microbiol 2007; 114:83-91. [PMID: 17187885 DOI: 10.1016/j.ijfoodmicro.2006.10.043] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 07/14/2006] [Accepted: 10/08/2006] [Indexed: 11/16/2022]
Abstract
During wine production yeast cells are affected by several stress conditions that could affect their viability and fermentation efficiency. In this work we describe a novel genetic manipulation strategy designed to improve stress resistance in wine yeasts. This strategy involves modifying the expression of the transcription factor MSN2, which plays an important role in yeast stress responses. The promoter in one of the genomic copies of this gene has been replaced by the promoter of the SPI1 gene, encoding for a cell wall protein of unknown function. SPI1 is expressed at late phases of growth and is regulated by Msn2p. This modification allows self-induction of MSN2 expression. MSN2 gene transcription, Msn2p protein levels and cell viability increase under several stress conditions in the genetically modified strain. The expression of stress response genes regulated by Msn2p also increases under these situations. Cells containing this promoter change are able to carry out vinifications at 15 and 30 degrees C with higher fermentation rates during the first days of the process compared to the control strain.
Collapse
Affiliation(s)
- Fernando Cardona
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Dr. Moliner, 50. E-46100, Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
22
|
Pratt ZL, Drehman BJ, Miller ME, Johnston SD. Mutual interdependence of MSI1 (CAC3) and YAK1 in Saccharomyces cerevisiae. J Mol Biol 2007; 368:30-43. [PMID: 17321547 PMCID: PMC1861849 DOI: 10.1016/j.jmb.2007.01.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/16/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
The MSI1 (CAC3) gene of Saccharomyces cerevisiae has been implicated in diverse cellular functions, including suppression of the RAS/cAMP/protein kinase A signaling pathway, chromatin assembly and transcriptional co-repression. Seeking to identify the molecular mechanisms by which Msi1p carries out these distinct activities, a novel genetic interaction was uncovered with YAK1, which encodes a kinase that antagonizes the RAS/cAMP pathway. MSI1 was capable of efficiently suppressing the heat shock sensitivity caused by deletion of yak1. Surprisingly, the YAK1 gene is required for Msi1p to associate with Cac1p in the yeast two-hybrid system. A new activity of Msi1p was identified: the ability to activate transcription of a reporter gene when tethered near the promoter, but only in the absence of fermentable carbon sources. This transcriptional activation function was diminished substantially by the loss of YAK1. Furthermore, MSI1 influences YAK1 function; over-expression of YAK1 decreased the growth rate, but only in the presence of a functional MSI1 gene. Finally, it is shown that YAK1 antagonizes nuclear accumulation of Msi1p in non-fermenting cells. Taken together, these data demonstrate a novel interaction between Msi1p and Yak1p in which each protein influences the activity of the other.
Collapse
Affiliation(s)
- Zachary L. Pratt
- Department of Biology, North Central College, 30 N. Brainard St., Naperville, IL 60540, USA Phone: 630-637-5188. Fax: 630-637-5180.
| | - Bethany J. Drehman
- Department of Biology, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - Mary E. Miller
- Department of Biology, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - Stephen D. Johnston
- Department of Biology, North Central College, 30 N. Brainard St., Naperville, IL 60540, USA Phone: 630-637-5188. Fax: 630-637-5180.
| |
Collapse
|
23
|
Prusty R, Keil RL. SCH9, a putative protein kinase from Saccharomyces cerevisiae, affects HOT1 -stimulated recombination. Mol Genet Genomics 2004; 272:264-74. [PMID: 15349770 DOI: 10.1007/s00438-004-1049-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
HOT1 is a mitotic recombination hotspot derived from yeast rDNA. To further study HOT1 function, trans-acting H OT1 recombination mutants (hrm) that alter hotspot activity were isolated. hrm2-1 mutants have decreased HOT1 activity and grow slowly. The HRM2 gene was cloned and found to be identical to SCH9, a gene that affects a growth-control mechanism that is partially redundant with the cAMP-dependent protein kinase A (PKA) pathway. Deletion of SCH9 decreases HOT1 and rDNA recombination but not other mitotic exchange. Although high levels of RNA polymerase I transcription initiated at HOT1 are required for its recombination-stimulating activity, sch9 mutations do not affect transcription initiated within HOT1. Thus, transcription is necessary but not sufficient for HOT1 activity. TPK1, which encodes a catalytic subunit of PKA, is a multicopy suppressor of the recombination and growth defects of sch9 mutants, suggesting that increased PKA activity compensates for SCH9 loss. RAS2( val19), which codes for a hyperactive RAS protein and increases PKA activity, suppresses both phenotypic defects of sch9 mutants. In contrast to TPK1 and RAS2(val19), the gene for split zinc finger protein 1 (SFP1) on a multicopy vector suppresses only the growth defects of sch9 mutants, indicating that growth and HOT1 functions of Sch9p are separable. Sch9p may affect signal transduction pathways which regulate proteins that are specifically required for HOT1-stimulated exchange.
Collapse
Affiliation(s)
- R Prusty
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA
| | | |
Collapse
|
24
|
Yamaji K, Hara S, Mizoguchi H. Influence of Ras function on ethanol stress response of sake yeast. J Biosci Bioeng 2003; 96:474-80. [PMID: 16233558 DOI: 10.1016/s1389-1723(03)70134-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Accepted: 08/25/2003] [Indexed: 11/17/2022]
Abstract
Reporter assay and Northern hybridization analysis revealed that the deletion of the RAS2 gene induced the expression of stress-responsive genes such as YAK1, CTT1, HSP12, and TSA2 in the laboratory yeast YNN27, but not in the sake yeast UT-1, suggesting that the Ras-cAMP-PKA signaling pathway does not play a very important part in the regulation of transcription of general stress-responsive genes in sake yeasts. However, these analyses showed that ethanol induces other stress-response element (STRE)-driven genes in the strain UT-1, with the exception of YAK1 which encodes a growth inhibitory protein, implying an ethanol-specific response. The good growth of the sake yeast in the presence of ethanol could be partially explained by YAK1 mRNA levels being unaffected by ethanol. Although the ras2 disruption of strain UT-1 did not potentiate ethanol tolerance, the disruptant could grow well in the presence of ethanol, and acquired ethanol tolerance, as is the case with the wild-type strain. These results suggest that specific stress responses of the sake yeast, which are different from those of the laboratory yeast, result in high ethanol tolerance and hence good growth in the presence of ethanol.
Collapse
Affiliation(s)
- Kohei Yamaji
- General Research Laboratory of Kiku-Masamune Sake Brewing Co. Ltd., 1-8-6 Uozaki-nishimachi, Higashinada-ku, Kobe 658-0026, Japan
| | | | | |
Collapse
|
25
|
Batlle M, Lu A, Green DA, Xue Y, Hirsch JP. Krh1p and Krh2p act downstream of the Gpa2p G(alpha) subunit to negatively regulate haploid invasive growth. J Cell Sci 2003; 116:701-10. [PMID: 12538771 DOI: 10.1242/jcs.00266] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast G(alpha) subunit Gpa2p and its coupled receptor Gpr1p function in a signaling pathway that is required for the transition to pseudohyphal and invasive growth. A two-hybrid screen using a constitutively active allele of GPA2 identified the KRH1 gene as encoding a potential binding partner of Gpa2p. Strains containing deletions of KRH1 and its homolog KRH2 were hyper-invasive and displayed a high level of expression of FLO11, a gene involved in pseudohyphal and invasive growth. Therefore, KRH1 and KRH2 encode negative regulators of the invasive growth pathway. Cells containing krh1Delta krh2Delta mutations also displayed increased sensitivity to heat shock and decreased sporulation efficiency, indicating that Krh1p and Krh2p regulate multiple processes controlled by the cAMP/PKA pathway. The krh1Delta krh2Delta mutations suppressed the effect of a gpa2Delta mutation on FLO11 expression and eliminated the effect of a constitutively active GPA2 allele on induction of FLO11 and heat shock sensitivity, suggesting that Krh1p and Krh2p act downstream of Gpa2p. The Sch9p kinase was not required for the signal generated by deletion of KRH1 and KRH2; however, the cAMP-dependent kinase Tpk2p was required for generation of this signal. These results support a model in which activation of Gpa2p relieves the inhibition exerted by Krh1p and Krh2p on components of the cAMP/PKA signaling pathway.
Collapse
Affiliation(s)
- Montserrat Batlle
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
26
|
Winderickx J, Holsbeeks I, Lagatie O, Giots F, Thevelein J, de Winde H. From feast to famine; adaptation to nutrient availability in yeast. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/3-540-45611-2_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
27
|
Mao J, Maye P, Kogerman P, Tejedor FJ, Toftgard R, Xie W, Wu G, Wu D. Regulation of Gli1 transcriptional activity in the nucleus by Dyrk1. J Biol Chem 2002; 277:35156-61. [PMID: 12138125 DOI: 10.1074/jbc.m206743200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To investigate the cellular role of dual specificity Yak1-related kinase (Dyrk) 1, a nuclear localized dual specificity protein kinase, we examined its effect on transcriptional regulation using reporter gene assays. We found that Dyrk1 can substantially enhance Gli1-dependent, but not LEF-1-, c-Jun-, or Elk-dependent, gene transcription. In part, Dyrk1 does this through retaining Gli1 in the nucleus. However, we also demonstrate that Dyrk1 can enhance the transcriptional activity of Gli1-AHA, a nuclear export mutant, suggesting that Dyrk1 may be more directly involved in regulating the transcriptional activity of Gli1. In addition, Dyrk1 acted synergistically with Sonic hedgehog (Shh) to induce gene transcription and differentiation in mouse C3H10T1/2 cells. The failure of Shh to stimulate Dyrk1 kinase activity suggests that Dyrk1 may not be directly regulated by the Shh signaling pathway but functionally interacts with it. Thus, Gli1 transcriptional activity may be subjected to further regulation in the cell nucleus by a pathway distinct from Shh signaling, one mediated by Dyrk1.
Collapse
Affiliation(s)
- Junhao Mao
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Taminato A, Bagattini R, Gorjão R, Chen G, Kuspa A, Souza GM. Role for YakA, cAMP, and protein kinase A in regulation of stress responses of Dictyostelium discoideum cells. Mol Biol Cell 2002; 13:2266-75. [PMID: 12134067 PMCID: PMC117311 DOI: 10.1091/mbc.01-11-0555] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Dictyostelium protein kinase YakA is required for the growth-to-development transition. During growth YakA controls the cell cycle, regulating the intervals between cell divisions. When starved for nutrients Dictyostelium cells arrest growth and undergo changes in gene expression, decreasing vegetative mRNAs and inducing the expression of pkaC. YakA is an effector of these changes, being necessary for the decrease of vegetative mRNA expression and the increase of protein kinase A (PKA) activity that will ultimately regulate expression of adenylyl cyclase, cAMP synthesis, and the induction of development. We report a role for this kinase in the response to nitrosoative or oxidative stress of Dictyostelium cells. Hydrogen peroxide and sodium nitroprusside arrest the growth of cells and trigger cAMP synthesis and activation of PKA in a manner similar to the well-established response to nutrient starvation. We have found that yakA null cells are hypersensitive to nitrosoative/oxidative stress and that a second-site mutation in pkaC suppresses this sensitivity. The response to different stresses has been investigated and YakA, cAMP, and PKA have been identified as components of the pathway that regulate the growth arrest that follows treatment with compounds that generate reactive oxygen species. The effect of different types of stress was evaluated in Dictyostelium and the YakA/PKA pathway was also implicated in the response to heat stress.
Collapse
Affiliation(s)
- Alexandre Taminato
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil 05508-900
| | | | | | | | | | | |
Collapse
|
29
|
van Es S, Weening KE, Devreotes PN. The protein kinase YakA regulates g-protein-linked signaling responses during growth and development of Dictyostelium. J Biol Chem 2001; 276:30761-5. [PMID: 11410593 DOI: 10.1074/jbc.m103365200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A genetic screen for Dictyostelium mutants that phenotypically resemble cells lacking the G-protein beta-subunit yielded the protein kinase YakA. Like gbeta-null cells, yakA-null cells fail to enter development and display slow growth on bacterial lawns. We created a temperature-sensitive yakA mutant and showed that YakA activity is required not only at the onset but also during development. The yakA-null cells have strong defects in folic acid-induced responses, such as actin polymerization and cGMP accumulation, indicating that they play a role in G-protein-mediated signaling responses. We propose that YakA acts downstream of G-proteins, because cAMP receptors still couple to G-proteins in the yakA mutant. In addition, the previously observed growth arrest induced by overexpression of YakA also occurs in gbeta mutants. We localized YakA-GFP to the cytosol suggesting that YakA may be a functional homolog of its mammalian counterparts Dyrk2 and Dyrk3, a subclass of dual-specificity Yak-related kinases (Dyrk) with unknown function.
Collapse
Affiliation(s)
- S van Es
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
30
|
Hofmann TG, Mincheva A, Lichter P, Dröge W, Schmitz ML. Human homeodomain-interacting protein kinase-2 (HIPK2) is a member of the DYRK family of protein kinases and maps to chromosome 7q32-q34. Biochimie 2000; 82:1123-7. [PMID: 11120354 DOI: 10.1016/s0300-9084(00)01196-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we identified the human serine/threonine kinase HIPK2 as a novel member of the DYRK kinase subfamily. Alignment of several DYRK family proteins including the kinases minibrain, MJAK, PKY, the Dictyostelium kinase YakA and Saccharomyces YAK1 allowed the identification of several evolutionary conserved DYRK consensus motifs within the kinase domain. A lysine residue conserved between all DYRK kinase family members was found to be essential for the kinase function of HIPK2. Human HIPK2 was mapped to chromosome 7q32-q34 and murine HIPK2 to chromosome 6B, the homologue to human chromosome 7.
Collapse
Affiliation(s)
- T G Hofmann
- German Cancer Research Center, Division of Immunochemistry (G0200), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
31
|
Shang E, Wang X, Huang J, Yoshida W, Kuroiwa A, Wolgemuth DJ. Murine Myak, a member of a family of yeast YAK1-related genes, is highly expressed in hormonally modulated epithelia in the reproductive system and in the embryonic central nervous system. Mol Reprod Dev 2000; 55:372-8. [PMID: 10694743 DOI: 10.1002/(sici)1098-2795(200004)55:4<372::aid-mrd3>3.0.co;2-a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We have cloned a mouse homologue (designated Myak) of the yeast protein kinase YAK1. The 1210 aa open reading frame contains a putative protein kinase domain, nuclear localization sequences and PEST sequences. Myak appears to be a member of a growing family of YAK1-related genes that include Drosophila and human Minibrain as well as a recently identified rat gene ANPK that encode a steroid hormone receptor interacting protein. RNA blot analysis revealed that Myak is expressed at low levels ubiquitously but at high levels in reproductive tissues, including testis, epididymis, ovary, uterus, and mammary gland, as well as in brain and kidney. In situ hybridization analysis on selected tissues revealed that Myak is particularly abundant in the hormonally modulated epithelia of the epididymis, mammary gland, and uterus, in round spermatids in the testis, and in the corpora lutea in the ovary. Myak is also highly expressed in the aqueduct of the adult brain and in the brain and spinal cord of day 12.5 embryos.
Collapse
Affiliation(s)
- E Shang
- The Center for Reproductive Sciences, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
32
|
Thevelein JM, de Winde JH. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 1999; 33:904-18. [PMID: 10476026 DOI: 10.1046/j.1365-2958.1999.01538.x] [Citation(s) in RCA: 484] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cAMP-protein kinase A (PKA) pathway in the yeast Saccharomyces cerevisiae plays a major role in the control of metabolism, stress resistance and proliferation, in particular in connection with the available nutrient conditions. Extensive information has been obtained on the core section of the pathway, i.e. Cdc25, Ras, adenylate cyclase, PKA, and on components interacting directly with this core section, such as the Ira proteins, Cap/Srv2 and the two cAMP phosphodiesterases. Recent work has now started to reveal upstream regulatory components and downstream targets of the pathway. A G-protein-coupled receptor system (Gpr1-Gpa2) acts upstream of adenylate cyclase and is required for glucose activation of cAMP synthesis in concert with a glucose phosphorylation-dependent mechanism. Although a genuine signalling role for the Ras proteins remains unclear, they appear to mediate at least part of the potent stimulation of cAMP synthesis by intracellular acidification. Recently, several new targets of the PKA pathway have been discovered. These include the Msn2 and Msn4 transcription factors mediating part of the induction of STRE-controlled genes by a variety of stress conditions, the Rim15 protein kinase involved in stationary phase induction of a similar set of genes and the Pde1 low-affinity cAMP phosphodiesterase, which specifically controls agonist-induced cAMP signalling. A major issue that remains to be resolved is the precise connection between the cAMP-PKA pathway and other nutrient-regulated components involved in the control of growth and of phenotypic characteristics correlated with growth, such as the Sch9 and Yak1 protein kinases. Cln3 appears to play a crucial role in the connection between the availability of certain nutrients and Cdc28 kinase activity, but it remains to be clarified which nutrient-controlled pathways control Cln3 levels.
Collapse
Affiliation(s)
- J M Thevelein
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit Leuven, Kardinaal Mercierlaan 92, B-3001 Leuven-Heverlee, Flanders, Belgium.
| | | |
Collapse
|
33
|
Souza GM, da Silva AM, Kuspa A. Starvation promotes Dictyostelium development by relieving PufA inhibition of PKA translation through the YakA kinase pathway. Development 1999; 126:3263-74. [PMID: 10375515 DOI: 10.1242/dev.126.14.3263] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When nutrients are depleted, Dictyostelium cells undergo cell cycle arrest and initiate a developmental program that ensures survival. The YakA protein kinase governs this transition by regulating the cell cycle, repressing growth-phase genes and inducing developmental genes. YakA mutants have a shortened cell cycle and do not initiate development. A suppressor of yakA that reverses most of the developmental defects of yakA- cells, but none of their growth defects was identified. The inactivated gene, pufA, encodes a member of the Puf protein family of translational regulators. Upon starvation, pufA- cells develop precociously and overexpress developmentally important proteins, including the catalytic subunit of cAMP-dependent protein kinase, PKA-C. Gel mobility-shift assays using a 200-base segment of PKA-C's mRNA as a probe reveals a complex with wild-type cell extracts, but not with pufA- cell extracts, suggesting the presence of a potential PufA recognition element in the PKA-C mRNA. PKA-C protein levels are low at the times of development when this complex is detectable, whereas when the complex is undetectable PKA-C levels are high. There is also an inverse relationship between PufA and PKA-C protein levels at all times of development in every mutant tested. Furthermore, expression of the putative PufA recognition elements in wild-type cells causes precocious aggregation and PKA-C overexpression, phenocopying a pufA mutation. Finally, YakA function is required for the decline of PufA protein and mRNA levels in the first 4 hours of development. We propose that PufA is a translational regulator that directly controls PKA-C synthesis and that YakA regulates the initiation of development by inhibiting the expression of PufA. Our work also suggests that Puf protein translational regulation evolved prior to the radiation of metazoan species.
Collapse
Affiliation(s)
- G M Souza
- Dept. Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | | | | |
Collapse
|
34
|
Jaspersen SL, Charles JF, Tinker-Kulberg RL, Morgan DO. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol Biol Cell 1998; 9:2803-17. [PMID: 9763445 PMCID: PMC25555 DOI: 10.1091/mbc.9.10.2803] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exit from mitosis requires the inactivation of mitotic cyclin-dependent kinase-cyclin complexes, primarily by ubiquitin-dependent cyclin proteolysis. Cyclin destruction is regulated by a ubiquitin ligase known as the anaphase-promoting complex (APC). In the budding yeast Saccharomyces cerevisiae, members of a large class of late mitotic mutants, including cdc15, cdc5, cdc14, dbf2, and tem1, arrest in anaphase with a phenotype similar to that of cells expressing nondegradable forms of mitotic cyclins. We addressed the possibility that the products of these genes are components of a regulatory network that governs cyclin proteolysis. We identified a complex array of genetic interactions among these mutants and found that the growth defect in most of the mutants is suppressed by overexpression of SPO12, YAK1, and SIC1 and is exacerbated by overproduction of the mitotic cyclin Clb2. When arrested in late mitosis, the mutants exhibit a defect in cyclin-specific APC activity that is accompanied by high Clb2 levels and low levels of the anaphase inhibitor Pds1. Mutant cells arrested in G1 contain normal APC activity. We conclude that Cdc15, Cdc5, Cdc14, Dbf2, and Tem1 cooperate in the activation of the APC in late mitosis but are not required for maintenance of that activity in G1.
Collapse
Affiliation(s)
- S L Jaspersen
- Department of Physiology, University of California, San Francisco, California 94143-0444, USA
| | | | | | | |
Collapse
|
35
|
Reinders A, Bürckert N, Boller T, Wiemken A, De Virgilio C. Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Dev 1998; 12:2943-55. [PMID: 9744870 PMCID: PMC317170 DOI: 10.1101/gad.12.18.2943] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/1998] [Accepted: 07/10/1998] [Indexed: 11/24/2022]
Abstract
The Saccharomyces cerevisiae protein kinase Rim15p was identified previously as a stimulator of meiotic gene expression. Here, we show that loss of Rim15p causes an additional pleiotropic phenotype in cells grown to stationary phase on rich medium; this phenotype includes defects in trehalose and glycogen accumulation, in transcriptional derepression of HSP12, HSP26, and SSA3, in induction of thermotolerance and starvation resistance, and in proper G1 arrest. These phenotypes are commonly associated with hyperactivity of the Ras/cAMP pathway. Tests of epistasis suggest that Rim15p may act in this pathway downstream of the cAMP-dependent protein kinase (cAPK). Accordingly, deletion of RIM15 suppresses the growth defect of a temperature-sensitive adenylate-cyclase mutant and, most importantly, renders cells independent of cAPK activity. Conversely, overexpression of RIM15 suppresses phenotypes associated with a mutation in the regulatory subunit of cAPK, exacerbates the growth defect of strains compromised for cAPK activity, and partially induces a starvation response in logarithmically growing wild-type cells. Biochemical analyses reveal that cAPK-mediated in vitro phosphorylation of Rim15p strongly inhibits its kinase activity. Taken together, these results place Rim15p immediately downstream and under negative control of cAPK and define a positive regulatory role of Rim15p for entry into both meiosis and stationary phase.
Collapse
Affiliation(s)
- A Reinders
- Botanisches Institut der Universität, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Souza GM, Lu S, Kuspa A. YakA, a protein kinase required for the transition from growth to development in Dictyostelium. Development 1998; 125:2291-302. [PMID: 9584128 DOI: 10.1242/dev.125.12.2291] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When Dictyostelium cells starve they arrest their growth and induce the expression of genes necessary for development. We have identified and characterized a protein kinase, YakA, that is essential for the proper regulation of both events. Amino acid sequence and functional similarities indicate that YakA is a homolog of Yak1p, a growth-regulating protein kinase in S. cerevisiae. Purified YakA expressed in E. coli is able to phosphorylate myelin basic protein. YakA-null cells are smaller and their cell cycle is accelerated relative to wild-type cells. When starved, YakA-null cells fail to decrease the expression of the growth-stage gene cprD, and do not induce the expression of genes required for the earliest stages of development. YakA mRNA levels increase during exponential growth and reach a maximum at the point of starvation, consistent with a role in mediating starvation responses. YakA mRNA also accumulates when cells are grown in medium conditioned by cells grown to high density, suggesting that yakA expression is under the control of an extracellular signal that accumulates during growth. Expression of yakA from a conditional promoter causes cell-cycle arrest in nutrient-rich medium and promotes developmental events, such as the expression of genes required for cAMP signaling. YakA appears to regulate the transition from growth to development in Dictyostelium.
Collapse
Affiliation(s)
- G M Souza
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
37
|
Begley DA, Berkenpas MB, Sampson KE, Abraham I. Identification and sequence of human PKY, a putative kinase with increased expression in multidrug-resistant cells, with homology to yeast protein kinase Yak1. Gene 1997; 200:35-43. [PMID: 9373137 DOI: 10.1016/s0378-1119(97)00350-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously shown that several protein kinases are present in higher activity levels in multidrug resistant cell lines, such as KB-V1. We have now isolated a gene that codes for a putative protein kinase, PKY, of over 130 kDa that is expressed at higher levels in multidrug-resistant cells. RNA from KB-V1 multidrug-resistant cells was reverse-transcribed and amplified by using primers derived from consensus regions of serine threonine kinases and amplified fragments were used to recover overlapping clones from a KB-V1 cDNA library. An open reading frame of 3648 bp of DNA sequence predicting 1215 aa, has been identified. This cDNA hybridizes to a mRNA of about 7 kb which is expressed at high levels in human heart and muscle tissue and overexpressed in drug-resistant KB-V1 and HL60/ADR cells. Because its closest homolog is the yeast serine/threonine kinase, Yak1, we have called this gene PKY. PKY is also related to the protein kinase family that includes Cdks, Gsk-3, and MAPK proline-directed protein kinases. This protein represents the first of its type known in mammals and may be involved in growth control pathways similar to those described for Yak1, as well as possibly playing a role in multidrug resistance.
Collapse
Affiliation(s)
- D A Begley
- Cell Biology and Inflammation Research, Pharmacia and Upjohn, Inc., Kalamazoo, MI 49001, USA
| | | | | | | |
Collapse
|
38
|
Varela JCS, Mager WH. Response of Saccharomyces cerevisiae to changes in external osmolarity. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 4):721-731. [PMID: 8936301 DOI: 10.1099/00221287-142-4-721] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Joäo C S Varela
- Department of Biochemistry and Molecular Biology, Institute for Molecular Biological Sciences, BioCentrum Amsterdam, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Willem H Mager
- Department of Biochemistry and Molecular Biology, Institute for Molecular Biological Sciences, BioCentrum Amsterdam, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
39
|
Ward MP, Gimeno CJ, Fink GR, Garrett S. SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol 1995; 15:6854-63. [PMID: 8524252 PMCID: PMC230940 DOI: 10.1128/mcb.15.12.6854] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Yeast cyclic AMP (cAMP)-dependent protein kinase (PKA) activity is essential for growth and cell cycle progression. Dependence on PKA function can be partially relieved by overexpression of a gene, SOK2, whose product has significant homology with several fungal transcription factors (StuA from Aspergillus nidulans and Phd1 from Saccharomyces cerevisiae) that are associated with cellular differentiation and development. Deletion of SOK2 is not lethal but exacerbates the growth defect of strains compromised for PKA activity. Alterations in Sok2 protein production also affect the expression of genes involved in several other PKA-regulated processes, including glycogen accumulation (GAC1) and heat shock resistance (SSA3). These results suggest SOK2 plays a general regulatory role in the PKA signal transduction pathway. Expression of the PKA catalytic subunit genes is unaltered by deletion or overexpression of SOK2. Because homozygous sok2/sok2 diploid strains form pseudohyphae at an accelerated rate, the Sok2 protein may inhibit the switch from unicellular to filamentous growth, a process that is dependent on cAMP. Thus, the product of SOK2 may act downstream of PKA to regulate the expression of genes important in growth and development.
Collapse
Affiliation(s)
- M P Ward
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
40
|
Suppression of a yeast cyclic AMP-dependent protein kinase defect by overexpression of SOK1, a yeast gene exhibiting sequence similarity to a developmentally regulated mouse gene. Mol Cell Biol 1994. [PMID: 8065298 DOI: 10.1128/mcb.14.9.5619] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae cyclic AMP-dependent protein kinase (A kinase) activity is essential for growth and cell cycle progression. Dependence on A kinase function can be partially relieved by the inactivation of a second kinase encoded by the gene YAK1. We have isolated two new genes, SOK1 and SOK2 (suppressor of kinase), as gene dosage suppressors of the conditional growth defect of several temperature-sensitive A kinase mutants. Overexpression of SOK1, like lesions in YAK1, also restores growth to a strain (tpk1 tpk2 tpk3) lacking all A kinase activity. The SOK1 gene is not essential, but a sok1::HIS3 disruption abrogates suppression of an A kinase defect by yak1. These results suggest that Yak1 and Sok1 define a linear pathway that is partially redundant with that of the A kinase. Activation of Sok1, by SOK1 overexpression or by inactivation of the negative regulator Yak1, renders a cell independent of A kinase function. The implications of such a model are particularly intriguing in light of the nuclear localization pattern of the overexpressed Sok1 protein and the primary sequence homology between SOK1 and a recently described, developmentally regulated mouse gene.
Collapse
|
41
|
Ward MP, Garrett S. Suppression of a yeast cyclic AMP-dependent protein kinase defect by overexpression of SOK1, a yeast gene exhibiting sequence similarity to a developmentally regulated mouse gene. Mol Cell Biol 1994; 14:5619-27. [PMID: 8065298 PMCID: PMC359086 DOI: 10.1128/mcb.14.9.5619-5627.1994] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Saccharomyces cerevisiae cyclic AMP-dependent protein kinase (A kinase) activity is essential for growth and cell cycle progression. Dependence on A kinase function can be partially relieved by the inactivation of a second kinase encoded by the gene YAK1. We have isolated two new genes, SOK1 and SOK2 (suppressor of kinase), as gene dosage suppressors of the conditional growth defect of several temperature-sensitive A kinase mutants. Overexpression of SOK1, like lesions in YAK1, also restores growth to a strain (tpk1 tpk2 tpk3) lacking all A kinase activity. The SOK1 gene is not essential, but a sok1::HIS3 disruption abrogates suppression of an A kinase defect by yak1. These results suggest that Yak1 and Sok1 define a linear pathway that is partially redundant with that of the A kinase. Activation of Sok1, by SOK1 overexpression or by inactivation of the negative regulator Yak1, renders a cell independent of A kinase function. The implications of such a model are particularly intriguing in light of the nuclear localization pattern of the overexpressed Sok1 protein and the primary sequence homology between SOK1 and a recently described, developmentally regulated mouse gene.
Collapse
Affiliation(s)
- M P Ward
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
42
|
Maarse AC, Blom J, Keil P, Pfanner N, Meijer M. Identification of the essential yeast protein MIM17, an integral mitochondrial inner membrane protein involved in protein import. FEBS Lett 1994; 349:215-21. [PMID: 8050569 DOI: 10.1016/0014-5793(94)00669-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We analyzed four Saccharomyces cerevisiae mutants defective in mitochondrial protein import and found that they are complemented by a novel gene encoding a 17 kDa protein. The protein is integrally located in the mitochondrial inner membrane and is termed MIM17. It shows significant homology to MIM23/Mas6p, a previously identified mitochondrial inner membrane protein required for the import of preproteins. Like MIM23, the precursor of MIM17 is synthesized without a presequence. A deletion of MIM17 is lethal. MIM17 thus joins the small group of mitochondrial proteins that are essential for the viability of yeast. We propose that MIM17 is an essential component of the preprotein import machinery of the mitochondrial inner membrane.
Collapse
Affiliation(s)
- A C Maarse
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|