1
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Marie L, Kimble MT, Symington LS. Genetic reporters to detect and quantify homologous recombination in yeast. Methods Cell Biol 2022; 182:35-48. [PMID: 38359986 DOI: 10.1016/bs.mcb.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Homologous recombination is a conserved process that cells use to repair damaged DNA. Many genetic assays have been developed in Saccharomyces cerevisiae to measure and characterize different types of recombination events, as well as identify proteins acting in such recombination events. Here, we describe two intrachromosomal reporters that utilize ade2 heteroalleles, whereby homologous recombination can be detected by colony color and adenine prototrophy. We detail the use of these reporters to measure recombination frequency, as well as to characterize the types of recombination events.
Collapse
Affiliation(s)
- Léa Marie
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Michael T Kimble
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States; Program in Biological Sciences, Columbia University, New York, NY, United States
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
3
|
Novarina D, Rosas Bringas FR, Rosas Bringas OG, Chang M. High-throughput replica-pinning approach to screen for yeast genes controlling low-frequency events. STAR Protoc 2022; 3:101082. [PMID: 35059655 PMCID: PMC8760548 DOI: 10.1016/j.xpro.2021.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Saccharomyces cerevisiae is a leading model system for genome-wide screens, but low-frequency events (e.g., point mutations, recombination events) are difficult to detect with existing approaches. Here, we describe a high-throughput screening technique to detect low-frequency events using high-throughput replica pinning of high-density arrays of yeast colonies. This approach can be used to screen genes that control any process involving low-frequency events for which genetically selectable reporters are available, e.g., spontaneous mutations, recombination, and transcription errors. For complete details on the use and execution of this protocol, please refer to (Novarina et al., 2020a, 2020b).
Collapse
Affiliation(s)
- Daniele Novarina
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Fernando R. Rosas Bringas
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Omar G. Rosas Bringas
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
4
|
Marie L, Symington LS. Mechanism for inverted-repeat recombination induced by a replication fork barrier. Nat Commun 2022; 13:32. [PMID: 35013185 PMCID: PMC8748988 DOI: 10.1038/s41467-021-27443-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
Replication stress and abundant repetitive sequences have emerged as primary conditions underlying genomic instability in eukaryotes. To gain insight into the mechanism of recombination between repeated sequences in the context of replication stress, we used a prokaryotic Tus/Ter barrier designed to induce transient replication fork stalling near inverted repeats in the budding yeast genome. Our study reveals that the replication fork block stimulates a unique recombination pathway dependent on Rad51 strand invasion and Rad52-Rad59 strand annealing activities, Mph1/Rad5 fork remodelers, Mre11/Exo1/Dna2 resection machineries, Rad1-Rad10 nuclease and DNA polymerase δ. Furthermore, we show recombination at stalled replication forks is limited by the Srs2 helicase and Mus81-Mms4/Yen1 nucleases. Physical analysis of the replication-associated recombinants revealed that half are associated with an inversion of sequence between the repeats. Based on our extensive genetic characterization, we propose a model for recombination of closely linked repeats that can robustly generate chromosome rearrangements. Replication stress and abundant repetitive sequences have emerged as primary conditions underlying genomic instability in eukaryotes. Here the authors use a prokaryotic Tus/Ter barrier designed to induce transient replication fork stalling near inverted repeats in the budding yeast genome to support a model for recombination of closely linked repeats at stalled replication forks.
Collapse
Affiliation(s)
- Léa Marie
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA. .,Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
5
|
Protein innovation through template switching in the Saccharomyces cerevisiae lineage. Sci Rep 2021; 11:22558. [PMID: 34799587 PMCID: PMC8604942 DOI: 10.1038/s41598-021-01736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/27/2021] [Indexed: 11/08/2022] Open
Abstract
DNA polymerase template switching between short, non-identical inverted repeats (IRs) is a genetic mechanism that leads to the homogenization of IR arms and to IR spacer inversion, which cause multinucleotide mutations (MNMs). It is unknown if and how template switching affects gene evolution. In this study, we performed a phylogenetic analysis to determine the effect of template switching between IR arms on coding DNA of Saccharomyces cerevisiae. To achieve this, perfect IRs that co-occurred with MNMs between a strain and its parental node were identified in S. cerevisiae strains. We determined that template switching introduced MNMs into 39 protein-coding genes through S. cerevisiae evolution, resulting in both arm homogenization and inversion of the IR spacer. These events in turn resulted in nonsynonymous substitutions and up to five neighboring amino acid replacements in a single gene. The study demonstrates that template switching is a powerful generator of multiple substitutions within codons. Additionally, some template switching events occurred more than once during S. cerevisiae evolution. Our findings suggest that template switching constitutes a general mutagenic mechanism that results in both nonsynonymous substitutions and parallel evolution, which are traditionally considered as evidence for positive selection, without the need for adaptive explanations.
Collapse
|
6
|
Su J, Xu R, Mongia P, Toyofuku N, Nakagawa T. Fission yeast Rad8/HLTF facilitates Rad52-dependent chromosomal rearrangements through PCNA lysine 107 ubiquitination. PLoS Genet 2021; 17:e1009671. [PMID: 34292936 PMCID: PMC8297803 DOI: 10.1371/journal.pgen.1009671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 11/19/2022] Open
Abstract
Gross chromosomal rearrangements (GCRs), including translocation, deletion, and inversion, can cause cell death and genetic diseases such as cancer in multicellular organisms. Rad51, a DNA strand exchange protein, suppresses GCRs by repairing spontaneous DNA damage through a conservative way of homologous recombination, gene conversion. On the other hand, Rad52 that catalyzes single-strand annealing (SSA) causes GCRs using homologous sequences. However, the detailed mechanism of Rad52-dependent GCRs remains unclear. Here, we provide genetic evidence that fission yeast Rad8/HLTF facilitates Rad52-dependent GCRs through the ubiquitination of lysine 107 (K107) of PCNA, a DNA sliding clamp. In rad51Δ cells, loss of Rad8 eliminated 75% of the isochromosomes resulting from centromere inverted repeat recombination, showing that Rad8 is essential for the formation of the majority of isochromosomes in rad51Δ cells. Rad8 HIRAN and RING finger mutations reduced GCRs, suggesting that Rad8 facilitates GCRs through 3’ DNA-end binding and ubiquitin ligase activity. Mms2 and Ubc4 but not Ubc13 ubiquitin-conjugating enzymes were required for GCRs. Consistent with this, mutating PCNA K107 rather than the well-studied PCNA K164 reduced GCRs. Rad8-dependent PCNA K107 ubiquitination facilitates Rad52-dependent GCRs, as PCNA K107R, rad8, and rad52 mutations epistatically reduced GCRs. In contrast to GCRs, PCNA K107R did not significantly change gene conversion rates, suggesting a specific role of PCNA K107 ubiquitination in GCRs. PCNA K107R enhanced temperature-sensitive growth defects of DNA ligase I cdc17-K42 mutant, implying that PCNA K107 ubiquitination occurs when Okazaki fragment maturation fails. Remarkably, K107 is located at the interface between PCNA subunits, and an interface mutation D150E bypassed the requirement of PCNA K107 and Rad8 ubiquitin ligase for GCRs. These data suggest that Rad8-dependent PCNA K107 ubiquitination facilitates Rad52-dependent GCRs by changing the PCNA clamp structure. Gross chromosomal rearrangements (GCRs), including translocation, can alter gene dosage and activity, resulting in genetic diseases such as cancer. However, GCRs can occur by some enzymes, including Rad52 recombinase, and result in chromosomal evolution. Therefore, GCRs are not only pathological but also physiological phenomena from an evolutionary point of view. However, the detailed mechanism of GCRs remains unclear. Here, using fission yeast, we show that the homolog of human HLTF, Rad8 causes GCRs through noncanonical ubiquitination of proliferating cellular nuclear antigen (PCNA) at a lysine 107 (K107). Rad51, a DNA strand exchange protein, suppresses the formation of isochromosomes whose arms mirror each another and chromosomal truncation. We found that, like Rad52, Rad8 is required for isochromosome formation but not chromosomal truncation in rad51Δ cells, showing a specific role of Rad8 in homology-mediated GCRs. Mutations in Rad8 ubiquitin E3 ligase RING finger domain, Mms2-Ubc4 ubiquitin-conjugating enzymes, and PCNA K107 reduced GCRs in rad51Δ cells, suggesting that Rad8-Mms2-Ubc4-dependent PCNA K107 ubiquitination facilitates GCRs. PCNA trimers form a DNA sliding clamp. The K107 residue is located at the PCNA-PCNA interface, and an interface mutation D150E restored GCRs in PCNA K107R mutant cells. This study provides genetic evidence that Rad8-dependent PCNA K107 ubiquitination facilitates GCRs by changing the PCNA clamp structure.
Collapse
Affiliation(s)
- Jie Su
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Piyusha Mongia
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Naoko Toyofuku
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
- * E-mail:
| |
Collapse
|
7
|
Al-Zain AM, Symington LS. The dark side of homology-directed repair. DNA Repair (Amst) 2021; 106:103181. [PMID: 34311272 DOI: 10.1016/j.dnarep.2021.103181] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
DNA double strand breaks (DSB) are cytotoxic lesions that can lead to genome rearrangements and genomic instability, which are hallmarks of cancer. The two main DSB repair pathways are non-homologous end joining and homologous recombination (HR). While HR is generally highly accurate, it has the potential for rearrangements that occur directly or through intermediates generated during the repair process. Whole genome sequencing of cancers has revealed numerous types of structural rearrangement signatures that are often indicative of repair mediated by sequence homology. However, it can be challenging to delineate repair mechanisms from sequence analysis of rearrangement end products from cancer genomes, or even model systems, because the same rearrangements can be generated by different pathways. Here, we review homology-directed repair pathways and their consequences. Exploring those pathways can lead to a greater understanding of rearrangements that occur in cancer cells.
Collapse
Affiliation(s)
- Amr M Al-Zain
- Program in Biological Sciences, Columbia University, New York, NY, 10027, United States; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, United States
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, United States; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, 10032, United States.
| |
Collapse
|
8
|
Intrachromosomal Recombination in Yeast. Methods Mol Biol 2020. [PMID: 32840781 DOI: 10.1007/978-1-0716-0644-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Spontaneous and induced mitotic recombinations are driven by lesions such as single-strand nicks and gaps and double-strand breaks in the genome. For regions of the genome that are not repetitive, spontaneous recombination rates are too low to be detected by simple screening and require reporters where a recombination product can be selected. This chapter describes commonly used types of reporters where a gene is duplicated as direct repeats and both copies are mutated with different mutations, rendering the cell defective for the gene and auxotrophic for the gene product. Recombination between the two defective copies can result in a wild-type gene and a prototrophic phenotype for the cell. Methods to use these types of reporters to determine recombination rates between the two gene copies are described, and their use in monitoring both increased and decreased recombinations is discussed.
Collapse
|
9
|
Liu J, François JM, Capp JP. Gene Expression Noise Produces Cell-to-Cell Heterogeneity in Eukaryotic Homologous Recombination Rate. Front Genet 2019; 10:475. [PMID: 31164905 PMCID: PMC6536703 DOI: 10.3389/fgene.2019.00475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/03/2019] [Indexed: 11/13/2022] Open
Abstract
Variation in gene expression among genetically identical individual cells (called gene expression noise) directly contributes to phenotypic diversity. Whether such variation can impact genome stability and lead to variation in genotype remains poorly explored. We addressed this question by investigating whether noise in the expression of genes affecting homologous recombination (HR) activity either directly (RAD52) or indirectly (RAD27) confers cell-to-cell heterogeneity in HR rate in Saccharomyces cerevisiae. Using cell sorting to isolate subpopulations with various expression levels, we show that spontaneous HR rate is highly heterogeneous from cell-to-cell in clonal populations depending on the cellular amount of proteins affecting HR activity. Phleomycin-induced HR is even more heterogeneous, showing that RAD27 expression variation strongly affects the rate of recombination from cell-to-cell. Strong variations in HR rate between subpopulations are not correlated to strong changes in cell cycle stage. Moreover, this heterogeneity occurs even when simultaneously sorting cells at equal expression level of another gene involved in DNA damage response (BMH1) that is upregulated by DNA damage, showing that the initiating DNA damage is not responsible for the observed heterogeneity in HR rate. Thus gene expression noise seems mainly responsible for this phenomenon. Finally, HR rate non-linearly scales with Rad27 levels showing that total amount of HR cannot be explained solely by the time- or population-averaged Rad27 expression. Altogether, our data reveal interplay between heterogeneity at the gene expression and genetic levels in the production of phenotypic diversity with evolutionary consequences from microbial to cancer cell populations.
Collapse
Affiliation(s)
- Jian Liu
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Institut National des Sciences Appliquées de Toulouse, UMR CNRS 5504, UMR INRA 792, Université de Toulouse, Toulouse, France
| | - Jean-Marie François
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Institut National des Sciences Appliquées de Toulouse, UMR CNRS 5504, UMR INRA 792, Université de Toulouse, Toulouse, France
| | - Jean-Pascal Capp
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Institut National des Sciences Appliquées de Toulouse, UMR CNRS 5504, UMR INRA 792, Université de Toulouse, Toulouse, France
| |
Collapse
|
10
|
Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SAE, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:1-64. [PMID: 30652105 PMCID: PMC6334234 DOI: 10.15698/mic2019.01.664] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L. Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Giedrė Bačinskaja
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jun Che
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Devon M. Fitzgerald
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Belén Gómez-González
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Léa Marie
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Qian Mei
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Judith Miné-Hattab
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France
- Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France
| | - Alicja Piotrowska
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | | | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | | | - Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jun Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Andrés Aguilera
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA USA
- Program in Genetics, Tufts University, Boston, MA, USA
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC USA
| | | | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah AE Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Sang Eun Lee
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Kyle M. Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Zawadzki
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
11
|
Shinohara T, Arai N, Iikura Y, Kasagi M, Masuda-Ozawa T, Yamaguchi Y, Suzuki-Nagata K, Shibata T, Mikawa T. Nonfilament-forming RecA dimer catalyzes homologous joint formation. Nucleic Acids Res 2018; 46:10855-10869. [PMID: 30285153 PMCID: PMC6237804 DOI: 10.1093/nar/gky877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023] Open
Abstract
Homologous recombination is essential to genome maintenance, and also to genome diversification. In virtually all organisms, homologous recombination depends on the RecA/Rad51-family recombinases, which catalyze ATP-dependent formation of homologous joints—critical intermediates in homologous recombination. RecA/Rad51 binds first to single-stranded (ss) DNA at a damaged site to form a spiral nucleoprotein filament, after which double-stranded (ds) DNA interacts with the filament to search for sequence homology and to form consecutive base pairs with ssDNA (‘pairing’). How sequence homology is recognized and what exact role filament formation plays remain unknown. We addressed the question of whether filament formation is a prerequisite for homologous joint formation. To this end we constructed a nonpolymerizing (np) head-to-tail-fused RecA dimer (npRecA dimer) and an npRecA monomer. The npRecA dimer bound to ssDNA, but did not form continuous filaments upon binding to DNA; it formed beads-on-string structures exclusively. Although its efficiency was lower, the npRecA dimer catalyzed the formation of D-loops (a type of homologous joint), whereas the npRecA monomer was completely defective. Thus, filament formation contributes to efficiency, but is not essential to sequence-homology recognition and pairing, for which a head-to-tail dimer form of RecA protomer is required and sufficient.
Collapse
Affiliation(s)
- Takeshi Shinohara
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Naoto Arai
- Department of Applied Biological Science, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Yukari Iikura
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Motochika Kasagi
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tokiha Masuda-Ozawa
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yuuki Yamaguchi
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kayo Suzuki-Nagata
- RIKEN Quantitative Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takehiko Shibata
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
- To whom correspondence should be addressed. Takehiko Shibata. Tel: +81 3 3950 2534; . Correspondence may also be addressed to Tsutomu Mikawa. Tel: +81 45 633 8013;
| | - Tsutomu Mikawa
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Quantitative Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- To whom correspondence should be addressed. Takehiko Shibata. Tel: +81 3 3950 2534; . Correspondence may also be addressed to Tsutomu Mikawa. Tel: +81 45 633 8013;
| |
Collapse
|
12
|
Claussin C, Porubský D, Spierings DCJ, Halsema N, Rentas S, Guryev V, Lansdorp PM, Chang M. Genome-wide mapping of sister chromatid exchange events in single yeast cells using Strand-seq. eLife 2017; 6:e30560. [PMID: 29231811 PMCID: PMC5734873 DOI: 10.7554/elife.30560] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Homologous recombination involving sister chromatids is the most accurate, and thus most frequently used, form of recombination-mediated DNA repair. Despite its importance, sister chromatid recombination is not easily studied because it does not result in a change in DNA sequence, making recombination between sister chromatids difficult to detect. We have previously developed a novel DNA template strand sequencing technique, called Strand-seq, that can be used to map sister chromatid exchange (SCE) events genome-wide in single cells. An increase in the rate of SCE is an indicator of elevated recombination activity and of genome instability, which is a hallmark of cancer. In this study, we have adapted Strand-seq to detect SCE in the yeast Saccharomyces cerevisiae. We provide the first quantifiable evidence that most spontaneous SCE events in wild-type cells are not due to the repair of DNA double-strand breaks.
Collapse
Affiliation(s)
- Clémence Claussin
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - David Porubský
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - Diana CJ Spierings
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - Nancy Halsema
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | | | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - Peter M Lansdorp
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
- Terry Fox LaboratoryBC Cancer AgencyVancouverCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| |
Collapse
|
13
|
Zafar F, Okita AK, Onaka AT, Su J, Katahira Y, Nakayama JI, Takahashi TS, Masukata H, Nakagawa T. Regulation of mitotic recombination between DNA repeats in centromeres. Nucleic Acids Res 2017; 45:11222-11235. [PMID: 28977643 PMCID: PMC5737691 DOI: 10.1093/nar/gkx763] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
Centromeres that are essential for faithful segregation of chromosomes consist of unique DNA repeats in many eukaryotes. Although recombination is under-represented around centromeres during meiosis, little is known about recombination between centromere repeats in mitotic cells. Here, we compared spontaneous recombination that occurs between ade6B/ade6X inverted repeats integrated at centromere 1 (cen1) or at a non-centromeric ura4 locus in fission yeast. Remarkably, distinct mechanisms of homologous recombination (HR) were observed in centromere and non-centromere regions. Rad51-dependent HR that requires Rad51, Rad54 and Rad52 was predominant in the centromere, whereas Rad51-independent HR that requires Rad52 also occurred in the arm region. Crossovers between inverted repeats (i.e. inversions) were under-represented in the centromere as compared to the arm region. While heterochromatin was dispensable, Mhf1/CENP–S, Mhf2/CENP–X histone-fold proteins and Fml1/FANCM helicase were required to suppress crossovers. Furthermore, Mhf1 and Fml1 were found to prevent gross chromosomal rearrangements mediated by centromere repeats. These data uncovered the regulation of mitotic recombination between DNA repeats in centromeres and its physiological role in maintaining genome integrity.
Collapse
Affiliation(s)
- Faria Zafar
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akiko K Okita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Atsushi T Onaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Jie Su
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhiro Katahira
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 44-8585, Japan
| | - Tatsuro S Takahashi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hisao Masukata
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
14
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
15
|
Epistasis analysis between homologous recombination genes in Saccharomyces cerevisiae identifies multiple repair pathways for Sgs1, Mus81-Mms4 and RNase H2. Mutat Res 2011; 714:33-43. [PMID: 21741981 DOI: 10.1016/j.mrfmmm.2011.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/06/2011] [Accepted: 06/23/2011] [Indexed: 11/21/2022]
Abstract
The DNA repair genes SGS1 and MUS81 of Saccharomyces cerevisiae are thought to control alternative pathways for the repair of toxic recombination intermediates based on the fact that sgs1Δ mus81Δ synthetic lethality is suppressed in the absence of homologous recombination (HR). Although these genes appear to functionally overlap in yeast and other model systems, the specific pathways controlled by SGS1 and MUS81 are poorly defined. Epistasis analyses based on DNA damage sensitivity previously indicated that SGS1 functioned primarily downstream of RAD51, and that MUS81 was independent of RAD51. To further define these genetic pathways, we carried out a systematic epistasis analysis between the RAD52-epistasis group genes and SGS1, MUS81, and RNH202, which encodes a subunit of RNase H2. Based on synthetic-fitness interactions and DNA damage sensitivities, we find that RAD52 is epistatic to MUS81 but not SGS1. In contrast, RAD54, RAD55 and RAD57 are epistatic to SGS1, MUS81 and RNH202. As expected, SHU2 is epistatic to SGS1, while both SHU1 and SHU2 are epistatic to MUS81. Importantly, loss of any RNase H2 subunit on its own resulted in increased recombination using a simple marker-excision assay. RNase H2 is thus needed to maintain genome stability consistent with the sgs1Δ rnh202Δ synthetic fitness defect. We conclude that SGS1 and MUS81 act in parallel pathways downstream of RAD51 and RAD52, respectively. The data further indicate these pathways share common components and display complex interactions.
Collapse
|
16
|
Chan JE, Kolodner RD. A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements. PLoS Genet 2011; 7:e1002089. [PMID: 21637792 PMCID: PMC3102749 DOI: 10.1371/journal.pgen.1002089] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 04/02/2011] [Indexed: 11/19/2022] Open
Abstract
Ty elements are high copy number, dispersed repeated sequences in the Saccharomyces cerevisiae genome known to mediate gross chromosomal rearrangements (GCRs). Here we found that introduction of Ty912, a previously identified Ty1 element, onto the non-essential terminal region of the left arm of chromosome V led to a 380-fold increase in the rate of accumulating GCRs in a wild-type strain. A survey of 48 different mutations identified those that either increased or decreased the rate of Ty-mediated GCRs and demonstrated that suppression of Ty-mediated GCRs differs from that of both low copy repeat sequence- and single copy sequence-mediated GCRs. The majority of the Ty912-mediated GCRs observed were monocentric nonreciprocal translocations mediated by RAD52-dependent homologous recombination (HR) between Ty912 and a Ty element on another chromosome arm. The remaining Ty912-mediated GCRs appeared to involve Ty912-mediated formation of unstable dicentric translocation chromosomes that were resolved by one or more Ty-mediated breakage-fusion-bridge cycles. Overall, the results demonstrate that the Ty912-mediated GCR assay is an excellent model for understanding mechanisms and pathways that suppress genome rearrangements mediated by high copy number repeat sequences, as well as the mechanisms by which such rearrangements occur.
Collapse
Affiliation(s)
- Jason E. Chan
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Departments of Medicine and Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Moores–UCSD Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Institute of Genomic Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Departments of Medicine and Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Moores–UCSD Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Institute of Genomic Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Branzei D. Ubiquitin family modifications and template switching. FEBS Lett 2011; 585:2810-7. [PMID: 21539841 DOI: 10.1016/j.febslet.2011.04.053] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/21/2011] [Accepted: 04/21/2011] [Indexed: 12/21/2022]
Abstract
Homologous recombination plays an important role in the maintenance of genome integrity. Arrested forks and DNA lesions trigger strand annealing events, called template switching, which can provide for accurate damage bypass, but can also lead to chromosome rearrangements. Advances have been made in understanding the underlying mechanisms for these events and in elucidating the factors involved. Ubiquitin- and SUMO-mediated modification pathways have emerged as key players in regulating damage-induced template switching. Here I review the biological significance of template switching at the nexus of DNA replication and recombination, and the role of ubiquitin-like modifications in mediating and controlling this process.
Collapse
Affiliation(s)
- Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
18
|
Mott C, Symington LS. RAD51-independent inverted-repeat recombination by a strand-annealing mechanism. DNA Repair (Amst) 2011; 10:408-15. [PMID: 21317047 DOI: 10.1016/j.dnarep.2011.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/05/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
Recombination between inverted repeats is RAD52 dependent, but reduced only modestly in the rad51Δ mutant. RAD59 is required for RAD51-independent inverted-repeat recombination, but no clear mechanism for how recombination occurs in the absence of RAD51 has emerged. Because Rad59 is thought to function as an accessory factor for the single-strand annealing activity of Rad52 one possible mechanism for spontaneous recombination could be by strand annealing between repeats at a stalled replication fork. Here we demonstrate the importance of the Rad52 single-strand annealing activity for generating recombinants by showing suppression of the rad52Δ, rad51Δ rad52Δ and rad52Δ rad59Δ inverted-repeat recombination defects by the rfa1-D228Y mutation. In addition, formation of recombinants in the rad51Δ mutant was sensitive to the distance between the inverted repeats, consistent with a replication-based mechanism. Deletion of RAD5 or RAD18, which are required for error-free post-replication repair, reduced the recombination rate in the rad59Δ mutant, but not in wild type. These data are consistent with RAD51-independent recombinants arising by a faulty template switch mechanism that is distinct from nascent strand template switching.
Collapse
Affiliation(s)
- Christina Mott
- Department of Microbiology & Immunology, Columbia University Medical Center, 701 W. 168th St, New York, NY 10032, USA
| | | |
Collapse
|
19
|
Gómez-González B, Ruiz JF, Aguilera A. Genetic and molecular analysis of mitotic recombination in Saccharomyces cerevisiae. Methods Mol Biol 2011; 745:151-72. [PMID: 21660694 DOI: 10.1007/978-1-61779-129-1_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many systems have been developed for the study of mitotic homologous recombination (HR) in the yeast Saccharomyces cerevisiae at both genetic and molecular levels. Such systems are of great use for the analysis of different features of HR as well as of the effect of mutations, transcription, etc., on HR. Here we describe a selection of plasmid- and chromosome-borne DNA repeat assays, as well as plasmid-chromosome recombination systems, which are useful for the analysis of spontaneous and DSB-induced recombination. They can easily be used in diploid and, most importantly, in haploid yeast cells, which is a great advantage to analyze the effect of recessive mutations on HR. Such systems were designed for the analysis of a number of different HR features, which include the frequency and length of the gene conversion events, the frequency of reciprocal exchanges, the proportion of gene conversion versus reciprocal exchange, or the molecular analysis of sister chromatid exchange.
Collapse
Affiliation(s)
- Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-CSIC, Sevilla, Spain.
| | | | | |
Collapse
|
20
|
Altmannova V, Eckert-Boulet N, Arneric M, Kolesar P, Chaloupkova R, Damborsky J, Sung P, Zhao X, Lisby M, Krejci L. Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acids Res 2010; 38:4708-21. [PMID: 20371517 PMCID: PMC2919706 DOI: 10.1093/nar/gkq195] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Homologous recombination (HR) plays a vital role in DNA metabolic processes including meiosis, DNA repair, DNA replication and rDNA homeostasis. HR defects can lead to pathological outcomes, including genetic diseases and cancer. Recent studies suggest that the post-translational modification by the small ubiquitin-like modifier (SUMO) protein plays an important role in mitotic and meiotic recombination. However, the precise role of SUMOylation during recombination is still unclear. Here, we characterize the effect of SUMOylation on the biochemical properties of the Saccharomyces cerevisiae recombination mediator protein Rad52. Interestingly, Rad52 SUMOylation is enhanced by single-stranded DNA, and we show that SUMOylation of Rad52 also inhibits its DNA binding and annealing activities. The biochemical effects of SUMO modification in vitro are accompanied by a shorter duration of spontaneous Rad52 foci in vivo and a shift in spontaneous mitotic recombination from single-strand annealing to gene conversion events in the SUMO-deficient Rad52 mutants. Taken together, our results highlight the importance of Rad52 SUMOylation as part of a 'quality control' mechanism regulating the efficiency of recombination and DNA repair.
Collapse
Affiliation(s)
- Veronika Altmannova
- Department of Biology, Masaryk University, Kamenice 5/A7, 625 00 Brno, National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA, Loschmidt Laboratories, Institute of Experimental Biology, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nadine Eckert-Boulet
- Department of Biology, Masaryk University, Kamenice 5/A7, 625 00 Brno, National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA, Loschmidt Laboratories, Institute of Experimental Biology, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Milica Arneric
- Department of Biology, Masaryk University, Kamenice 5/A7, 625 00 Brno, National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA, Loschmidt Laboratories, Institute of Experimental Biology, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peter Kolesar
- Department of Biology, Masaryk University, Kamenice 5/A7, 625 00 Brno, National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA, Loschmidt Laboratories, Institute of Experimental Biology, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Radka Chaloupkova
- Department of Biology, Masaryk University, Kamenice 5/A7, 625 00 Brno, National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA, Loschmidt Laboratories, Institute of Experimental Biology, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jiri Damborsky
- Department of Biology, Masaryk University, Kamenice 5/A7, 625 00 Brno, National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA, Loschmidt Laboratories, Institute of Experimental Biology, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patrick Sung
- Department of Biology, Masaryk University, Kamenice 5/A7, 625 00 Brno, National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA, Loschmidt Laboratories, Institute of Experimental Biology, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaolan Zhao
- Department of Biology, Masaryk University, Kamenice 5/A7, 625 00 Brno, National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA, Loschmidt Laboratories, Institute of Experimental Biology, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Michael Lisby
- Department of Biology, Masaryk University, Kamenice 5/A7, 625 00 Brno, National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA, Loschmidt Laboratories, Institute of Experimental Biology, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lumir Krejci
- Department of Biology, Masaryk University, Kamenice 5/A7, 625 00 Brno, National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA, Loschmidt Laboratories, Institute of Experimental Biology, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA,*To whom correspondence should be addressed. Tel: +420 549493767; Fax: +420 549492556;
| |
Collapse
|
21
|
de Mayolo AA, Sunjevaric I, Reid R, Mortensen UH, Rothstein R, Lisby M. The rad52-Y66A allele alters the choice of donor template during spontaneous chromosomal recombination. DNA Repair (Amst) 2009; 9:23-32. [PMID: 19892607 DOI: 10.1016/j.dnarep.2009.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/30/2009] [Accepted: 10/03/2009] [Indexed: 11/30/2022]
Abstract
Spontaneous mitotic recombination is a potential source of genetic changes such as loss of heterozygosity and chromosome translocations, which may lead to genetic disease. In this study we have used a rad52 hyper-recombination mutant, rad52-Y66A, to investigate the process of spontaneous heteroallelic recombination in the yeast Saccharomyces cerevisiae. We find that spontaneous recombination has different genetic requirements, depending on whether the recombination event occurs between chromosomes or between chromosome and plasmid sequences. The hyper-recombination phenotype of the rad52-Y66A mutation is epistatic with deletion of MRE11, which is required for establishment of DNA damage-induced cohesion. Moreover, single-cell analysis of strains expressing YFP-tagged Rad52-Y66A reveals a close to wild-type frequency of focus formation, but with foci lasting 6 times longer. This result suggests that spontaneous DNA lesions that require recombinational repair occur at the same frequency in wild-type and rad52-Y66A cells, but that the recombination process is slow in rad52-Y66A cells. Taken together, we propose that the slow recombinational DNA repair in the rad52-Y66A mutant leads to a by-pass of the window-of-opportunity for sister chromatid recombination normally promoted by MRE11-dependent damage-induced cohesion thereby causing a shift towards interchromosomal recombination.
Collapse
Affiliation(s)
- Adriana Antúnez de Mayolo
- Department of Genetics & Development, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
22
|
Chromosomal translocations caused by either pol32-dependent or pol32-independent triparental break-induced replication. Mol Cell Biol 2009; 29:5441-54. [PMID: 19651902 DOI: 10.1128/mcb.00256-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Double-strand breaks (DSBs) are harmful DNA lesions that can generate chromosomal rearrangements or chromosome losses if not properly repaired. Despite their association with a number of genetic diseases and cancer, the mechanisms by which DSBs cause rearrangements remain unknown. Using a newly developed experimental assay for the analysis of translocations occurring between two chromosomes in Saccharomyces cerevisiae, we found that a single DSB located on one chromosome uses a short homologous sequence found in a third chromosome as a bridge to complete DSB repair, leading to chromosomal translocations. Such translocations are dramatically reduced when the short homologous sequence on the third chromosome is deleted. Translocations rely on homologous recombination (HR) proteins, such as Rad51, Rad52, and Rad59, as well as on the break-induced replication-specific protein Pol32 and on Srs2, but not on Ku70. Our results indicate that a single chromosomal DSB efficiently searches for short homologous sequences throughout the genome for its repair, leading to triparental translocations between heterologous chromosomes. Given the abundance of repetitive DNA in eukaryotic genomes, the results of this study open the possibility that HR rather than nonhomologous end joining may be a major source of chromosomal translocations.
Collapse
|
23
|
Agmon N, Pur S, Liefshitz B, Kupiec M. Analysis of repair mechanism choice during homologous recombination. Nucleic Acids Res 2009; 37:5081-92. [PMID: 19553188 PMCID: PMC2731894 DOI: 10.1093/nar/gkp495] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Double-strand breaks (DSBs) occur frequently during cell growth. Due to the presence of repeated sequences in the genome, repair of a single DSB can result in gene conversion, translocation, deletion or tandem duplication depending on the mechanism and the sequence chosen as partner for the recombinational repair. Here, we study how yeast cells repair a single, inducible DSB when there are several potential donors to choose from, in the same chromosome and elsewhere in the genome. We systematically investigate the parameters that affect the choice of mechanism, as well as its genetic regulation. Our results indicate that intrachromosomal homologous sequences are always preferred as donors for repair. We demonstrate the occurrence of a novel tri-partite repair product that combines ectopic gene conversion and deletion. In addition, we show that increasing the distance between two repeated sequences enhances the dependence on Rad51 for colony formation after DSB repair. This is due to a role of Rad51 in the recovery from the checkpoint signal induced by the DSB. We suggest a model for the competition between the different homologous recombination pathways. Our model explains how different repair mechanisms are able to compensate for each other during DSB repair.
Collapse
Affiliation(s)
- Neta Agmon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | |
Collapse
|
24
|
Downing B, Morgan R, VanHulle K, Deem A, Malkova A. Large inverted repeats in the vicinity of a single double-strand break strongly affect repair in yeast diploids lacking Rad51. Mutat Res 2008; 645:9-18. [PMID: 18755201 DOI: 10.1016/j.mrfmmm.2008.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/23/2008] [Accepted: 07/25/2008] [Indexed: 11/18/2022]
Abstract
DNA double-strand breaks (DSBs) are critical lesions that can lead to cell death or chromosomal rearrangements. Rad51 is necessary for most mitotic and meiotic DSB repair events, although a number of RAD51-independent pathways exist. Previously, we described DSB repair in rad51Delta yeast diploids that was stimulated by a DNA region termed "facilitator of break-induced replication" (FBI) located approximately 30kb from the site of an HO-induced DSB. Here, we demonstrate that FBI is a large inverted DNA repeat that channels the repair of DSBs into the single-strand annealing-gross chromosomal rearrangements (SSA-GCR) pathway. Further, analysis of DSB repair in rad54Delta cells allowed us to propose that the SSA-GCR repair pathway is suppressed in the presence of Rad51p. Therefore, an additional role of Rad51 might be to protect eukaryotic genomes from instabilities by preventing chromosomal rearrangements.
Collapse
Affiliation(s)
- Brandon Downing
- Department of Biology, School of Science, IUPUI, Indianapolis, IN 46202-5132, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Rad51 requires a number of other proteins, including the Rad51 paralogs, for efficient recombination in vivo. Current evidence suggests that the yeast Rad51 paralogs, Rad55 and Rad57, are important in formation or stabilization of the Rad51 nucleoprotein filament. To gain further insights into the function of the Rad51 paralogs, reporters were designed to measure spontaneous or double-strand break (DSB)-induced sister or nonsister recombination. Spontaneous sister chromatid recombination (SCR) was reduced 6000-fold in the rad57 mutant, significantly more than in the rad51 mutant. Although the DSB-induced recombination defect of rad57 was suppressed by overexpression of Rad51, elevated temperature, or expression of both mating-type alleles, the rad57 defect in spontaneous SCR was not strongly suppressed by these same factors. In addition, the UV sensitivity of the rad57 mutant was not strongly suppressed by MAT heterozygosity, even though Rad51 foci were restored under these conditions. This lack of suppression suggests that Rad55 and Rad57 have different roles in the recombinational repair of stalled replication forks compared with DSB repair. Furthermore, these data suggest that most spontaneous SCR initiates from single-stranded gaps formed at stalled replication forks rather than DSBs.
Collapse
|
26
|
Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1. Mol Cell Biol 2007; 28:897-906. [PMID: 18039855 DOI: 10.1128/mcb.00524-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its "mediators," including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Delta mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Delta mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Delta and rad52Delta mutants, but not in a rad51Delta rad52Delta double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Delta mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Delta mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.
Collapse
|
27
|
Human SNM1A suppresses the DNA repair defects of yeast pso2 mutants. DNA Repair (Amst) 2007; 7:230-8. [PMID: 18006388 DOI: 10.1016/j.dnarep.2007.09.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 11/21/2022]
Abstract
Pso2/Snm1 plays a key role in the repair of DNA interstrand cross-links in yeast. Human cells possess three orthologues of Pso2; SNM1A, SNM1B/Apollo and SNM1C/Artemis. Studies using mammalian cells disrupted or depleted for these genes have yielded equivocal evidence that any of these is a true functional homologues of the yeast gene. Here we show that ectopic expression of only one of the three human orthologues, hSNM1A, effectively suppresses the sensitivity of yeast pso2 (snm1) disruptants to cross-linking agents. Two other phenotypes of the pso2 mutants are also partially rescued by ectopic expression of hSNM1A, namely the double-strand repair break defect observed during cross-link processing in pso2 cells, as well as the spontaneous intrachromatid recombination defect of pso2 msh2 double mutants. Finally, we show that recombinant hSNM1A is a 5'-exonuclease, as also recently reported for the yeast Pso2 protein. Together our data suggest that hSnm1A is a functional homologue of yeast Pso2/Snm1.
Collapse
|
28
|
Cortés-Ledesma F, Tous C, Aguilera A. Different genetic requirements for repair of replication-born double-strand breaks by sister-chromatid recombination and break-induced replication. Nucleic Acids Res 2007; 35:6560-70. [PMID: 17905819 PMCID: PMC2095809 DOI: 10.1093/nar/gkm488] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Homologous recombination (HR) is the major mechanism used to repair double-strand breaks (DSBs) that result from replication, but a study of repair of DSBs specifically induced during S-phase is lacking. Using an inverted-repeat assay in which a DSB is generated by the encountering of the replication fork with nicks, we can physically detect repair by sister-chromatid recombination (SCR) and intra-chromatid break-induced replication (IC-BIR). As expected, both events depend on Rad52, but, in contrast to previous data, both require Rad59, suggesting a prominent role of Rad59 in repair of replication-born DSBs. In the absence of Rad51, SCR is severely affected while IC-BIR increases, a phenotype that is also observed in the absence of Rad54 but not of its paralog Rdh54/Tid1. These data are consistent with SCR occurring by Rad51-dependent mechanisms assisted by Rad54, and indicate that in the absence of strand exchange-dependent SCR, breaks can be channeled to IC-BIR, which works efficiently in the absence of Rad51. Our study provides molecular evidence for inversions between repeats occurring by BIR followed by single-strand annealing (SSA) in the absence of strand exchange.
Collapse
Affiliation(s)
| | | | - Andrés Aguilera
- *To whom correspondence should be addressed. +34 954 468 372+34 954 461 664
| |
Collapse
|
29
|
Wu Y, Siino JS, Sugiyama T, Kowalczykowski SC. The DNA Binding Preference of RAD52 and RAD59 Proteins. J Biol Chem 2006; 281:40001-9. [PMID: 17040915 DOI: 10.1074/jbc.m608071200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We examined the double-stranded DNA (dsDNA) binding preference of the Saccharomyces cerevisiae Rad52 protein and its homologue, the Rad59 protein. In nuclease protection assays both proteins protected an internal sequence and the dsDNA ends equally well. Similarly, using electrophoretic mobility shift assays, we found the affinity of both Rad52 and Rad59 proteins for DNA ends to be comparable with their affinity for internal sequences. The protein-DNA complexes were also directly visualized using atomic force microscopy. Both proteins formed discrete complexes, which were primarily found (90-94%) at internal dsDNA sites. We also measured the DNA end binding behavior of human Rad52 protein and found a slight preference for dsDNA ends. Thus, these proteins have no strong preference for dsDNA ends over internal sites, which is inconsistent with their function at a step of dsDNA break repair that precedes DNA processing. Therefore, we conclude that S. cerevisiae Rad52 and Rad59 proteins and their eukaryotic counterparts function by binding to single-stranded DNA formed as intermediates of recombination rather than by binding to the unprocessed DNA double-strand break.
Collapse
Affiliation(s)
- Yun Wu
- Section of Microbiology, Center for Genetics and Development, University of California, Davis, California 95616-8665, USA
| | | | | | | |
Collapse
|
30
|
Fung CW, Fortin GS, Peterson SE, Symington LS. The rad51-K191R ATPase-defective mutant is impaired for presynaptic filament formation. Mol Cell Biol 2006; 26:9544-54. [PMID: 17030607 PMCID: PMC1698519 DOI: 10.1128/mcb.00599-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The nucleoprotein filament formed by Rad51 polymerization on single-stranded DNA is essential for homologous pairing and strand exchange. ATP binding is required for Rad51 nucleoprotein filament formation and strand exchange, but ATP hydrolysis is not required for these functions in vitro. Previous studies have shown that a yeast strain expressing the rad51-K191R allele is sensitive to ionizing radiation, suggesting an important role for ATP hydrolysis in vivo. The recruitment of Rad51-K191R to double-strand breaks is defective in vivo, and this phenotype can be suppressed by elimination of the Srs2 helicase, an antagonist of Rad51 filament formation. The phenotype of the rad51-K191R strain is also suppressed by overexpression of Rad54. In vitro, the Rad51-K191R protein exhibits a slight decrease in binding to DNA, consistent with the defect in presynaptic filament formation. However, the rad51-K191R mutation is dominant in heterozygous diploids, indicating that the defect is not due simply to reduced affinity for DNA. We suggest the Rad51-K191R protein either forms an altered filament or is defective in turnover, resulting in a reduced pool of free protein available for DNA binding.
Collapse
Affiliation(s)
- Cindy W Fung
- Graduate Program in Cellular, Molecular and Biophysical Studies, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|
31
|
Schmidt KH, Wu J, Kolodner RD. Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom's syndrome protein. Mol Cell Biol 2006; 26:5406-20. [PMID: 16809776 PMCID: PMC1592713 DOI: 10.1128/mcb.00161-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 02/24/2006] [Accepted: 04/28/2006] [Indexed: 11/20/2022] Open
Abstract
Sgs1 is a RecQ family DNA helicase required for genome stability in Saccharomyces cerevisiae whose human homologs BLM, WRN, and RECQL4 are mutated in Bloom's, Werner, and Rothmund Thomson syndromes, respectively. Sgs1 and mismatch repair (MMR) are inhibitors of recombination between similar but divergent (homeologous) DNA sequences. Here we show that SGS1, but not MMR, is critical for suppressing spontaneous, recurring translocations between diverged genes in cells with mutations in the genes encoding the checkpoint proteins Mec3, Rad24, Rad9, or Rfc5, the chromatin assembly factors Cac1 or Asf1, and the DNA helicase Rrm3. The S-phase checkpoint kinase and telomere maintenance factor Tel1, a homolog of the human ataxia telangiectasia (ATM) protein, prevents these translocations, whereas the checkpoint kinase Mec1, a homolog of the human ATM-related protein, and the Rad53 checkpoint kinase are not required. The translocation structures observed suggest involvement of a dicentric intermediate and break-induced replication with multiple cycles of DNA template switching.
Collapse
Affiliation(s)
- Kristina H Schmidt
- Department of Biology, University of South Florida, 4202 E. Fowler Avenue, SCA110, Tampa, FL 33620, USA.
| | | | | |
Collapse
|
32
|
Thorpe PH, Marrero VA, Savitzky MH, Sunjevaric I, Freeman TC, Rothstein R. Cells expressing murine RAD52 splice variants favor sister chromatid repair. Mol Cell Biol 2006; 26:3752-63. [PMID: 16648471 PMCID: PMC1488992 DOI: 10.1128/mcb.26.10.3752-3763.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The RAD52 gene is essential for homologous recombination in the yeast Saccharomyces cerevisiae. RAD52 is the archetype in an epistasis group of genes essential for DNA damage repair. By catalyzing the replacement of replication protein A with Rad51 on single-stranded DNA, Rad52 likely promotes strand invasion of a double-stranded DNA molecule by single-stranded DNA. Although the sequence and in vitro functions of mammalian RAD52 are conserved with those of yeast, one difference is the presence of introns and consequent splicing of the mammalian RAD52 pre-mRNA. We identified two novel splice variants from the RAD52 gene that are expressed in adult mouse tissues. Expression of these splice variants in tissue culture cells elevates the frequency of recombination that uses a sister chromatid template. To characterize this dominant phenotype further, the RAD52 gene from the yeast Saccharomyces cerevisiae was truncated to model the mammalian splice variants. The same dominant sister chromatid recombination phenotype seen in mammalian cells was also observed in yeast. Furthermore, repair from a homologous chromatid is reduced in yeast, implying that the choice of alternative repair pathways may be controlled by these variants. In addition, a dominant DNA repair defect induced by one of the variants in yeast is suppressed by overexpression of RAD51, suggesting that the Rad51-Rad52 interaction is impaired.
Collapse
Affiliation(s)
- Peter H Thorpe
- Department of Genetics and Development, Columbia University Medical Center, HHSC 1608, 701 West 168th St., New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
33
|
Ii M, Brill SJ. Roles of SGS1, MUS81, and RAD51 in the repair of lagging-strand replication defects in Saccharomyces cerevisiae. Curr Genet 2005; 48:213-25. [PMID: 16193328 PMCID: PMC1828632 DOI: 10.1007/s00294-005-0014-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 07/08/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
Yeast cells lacking the SGS1 DNA helicase and the MUS81 structure-specific endonuclease display a synthetic lethality that is suppressed by loss of the RAD51 recombinase. This epistatic interaction suggests that the primary function of SGS1 or MUS81, or both genes, is downstream of RAD51. To identify RAD51-independent functions of SGS1 and MUS81, a synthetic-lethal screen was performed on the sgs1 mus81 rad51triple mutant. We found that mutation of RNH202, which encodes a subunit of the hetero-trimeric RNase H2, generates a profound synthetic-sickness in this background. RNase H2 is thought to play a non-essential role in Okazaki fragment maturation. Cells lacking RNH202 showed synthetic growth defects when combined with either mus81 or sgs1 alone. But, whereas the loss of RAD51 had little effect on rnh202 sgs1 double mutants, it strongly inhibited the growth of rnh202 mus81 cells. These data indicate that the primary function of SGS1, but not MUS81, is downstream of RAD51. SGS1 must have some RAD51-independent function, however, since the growth of rnh202 mus81 rad51cells was further compromised by the loss of SGS1. Consistent with these results, we show that rnh202 cells display a sensitivity to DNA-damaging agents that is exacerbated in the absence of RAD51 or MUS81. These data support a model in which defects in lagging-strand replication are repaired by the Mus81 endonuclease or through a pathway dependent on Rad51 and Sgs1.
Collapse
Affiliation(s)
- Miki Ii
- Department of Molecular Biology and Biochemistry, Rutgers University, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
34
|
de Vries FAT, Zonneveld JBM, van Duijn-Goedhart A, Roodbergen M, Boei J, van Buul PPW, Essers J, van Steeg H, van Zeeland AA, van Benthem J, Pastink A. Inactivation of RAD52 aggravates RAD54 defects in mice but not in Schizosaccharomyces pombe. DNA Repair (Amst) 2005; 4:1121-8. [PMID: 16009599 DOI: 10.1016/j.dnarep.2005.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/12/2005] [Accepted: 06/02/2005] [Indexed: 01/09/2023]
Abstract
RAD52 and RAD54 genes from Saccharomyces cerevisiae are required for double-strand break repair through homologous recombination and show epistatic interactions i.e., single and double mutant strains are equally sensitive to DNA damaging agents. In here we combined mutations in RAD52 and RAD54 homologs in Schizosaccharomyces pombe and mice. The analysis of mutant strains in S. pombe demonstrated nearly identical sensitivities of rhp54, rad22A and rad22B double and triple mutants to X-rays, cis-diamminedichloroplatinum and hydroxyurea. In this respect, the fission yeast homologs of RAD54 and RAD52 closely resemble their counterparts in S. cerevisiae. To verify if inactivation of RAD52 affects the DNA damage sensitivities of RAD54 deficient mice, several endpoints were studied in double mutant mice and in bone marrow cells derived from these animals. Haemopoietic depression in bone marrow and the formation of micronuclei after in vivo exposure to mitomycine C (MMC) was not increased in either single or double mutant mice in comparison to wildtype animals. The induction of sister chromatid exchanges in splenocytes was slightly reduced in the RAD54 mutant. A similar reduction was detected in the double mutant. However, a deficiency of RAD52 exacerbates the MMC survival of RAD54 mutant mice and also has a distinct effect on the survival of bone marrow cells after exposure to ionizing radiation. These findings may be explained by additive defects in HR in the double mutant but may also indicate a more prominent role for single-strand annealing in the absence of Rad54.
Collapse
Affiliation(s)
- Femke A T de Vries
- Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Arai N, Ito D, Inoue T, Shibata T, Takahashi H. Heteroduplex joint formation by a stoichiometric complex of Rad51 and Rad52 of Saccharomyces cerevisiae. J Biol Chem 2005; 280:32218-29. [PMID: 16033757 DOI: 10.1074/jbc.m507521200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both Rad51 and Rad52 are required for homologous genetic recombination in Saccharomyces cerevisiae. Rad51 promotes heteroduplex joint formation, a general step in homologous recombination. Rad52 facilitates the binding of Rad51 to replication protein A (RPA)-coated single-stranded DNA. The requirement of RPA can be avoided in vitro, if the single-stranded DNA is short. Using short single-stranded DNA and homologous double-stranded DNA, in the absence of RPA, we found that Rad52 (optimal at three per Rad51) was still required for Rad51-promoted heteroduplex joint formation in vitro, as assayed by the formation of D-loops, suggesting another role for Rad52. Rad51 has to bind to the single-stranded DNA before the addition of double-stranded DNA for efficient D-loop formation. Immunoprecipitation and single-stranded DNA-bead precipitation analyses revealed the presence of the free and DNA-bound complexes of Rad51 and Rad52 at a 1 to 2 stoichiometry. In the presence of single-stranded DNA, in addition to Rad51, Rad52 was required for extensive untwisting that is an intermediate step toward D-loop formation. Thus, these results suggest that the formation of the stoichiometric complex of Rad52 with Rad51 on single-stranded DNA is required for the functional binding of the protein-single-stranded DNA complex to the double-stranded DNA to form D-loops.
Collapse
Affiliation(s)
- Naoto Arai
- Department of Applied Biological Science, Nihon University College of Bioresource Sciences, Fujisawa-shi, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
36
|
Barber LJ, Ward TA, Hartley JA, McHugh PJ. DNA interstrand cross-link repair in the Saccharomyces cerevisiae cell cycle: overlapping roles for PSO2 (SNM1) with MutS factors and EXO1 during S phase. Mol Cell Biol 2005; 25:2297-309. [PMID: 15743825 PMCID: PMC1061624 DOI: 10.1128/mcb.25.6.2297-2309.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pso2/Snm1 is a member of the beta-CASP metallo-beta-lactamase family of proteins that include the V(D)J recombination factor Artemis. Saccharomyces cerevisiae pso2 mutants are specifically sensitive to agents that induce DNA interstrand cross-links (ICLs). Here we establish a novel overlapping function for PSO2 with MutS mismatch repair factors and the 5'-3' exonuclease Exo1 in the repair of DNA ICLs, which is confined to S phase. Our data demonstrate a requirement for NER and Pso2, or Exo1 and MutS factors, in the processing of ICLs, and this is required prior to the repair of ICL-induced DNA double-strand breaks (DSBs) that form during replication. Using a chromosomally integrated inverted-repeat substrate, we also show that loss of both pso2 and exo1/msh2 reduces spontaneous homologous recombination rates. Therefore, PSO2, EXO1, and MSH2 also appear to have overlapping roles in the processing of some forms of endogenous DNA damage that occur at an irreversibly collapsed replication fork. Significantly, our analysis of ICL repair in cells synchronized for each cell cycle phase has revealed that homologous recombination does not play a major role in the direct repair of ICLs, even in G2, when a suitable template is readily available. Rather, we propose that recombination is primarily involved in the repair of DSBs that arise from the collapse of replication forks at ICLs. These findings have led to considerable clarification of the complex genetic relationship between various ICL repair pathways.
Collapse
Affiliation(s)
- Louise J Barber
- Cancer Research UK Drug-DNA Interactions Research Group, Department of Oncology, Royal Free and University College Medical School, University College London, London
| | | | | | | |
Collapse
|
37
|
Abstract
The process of homologous recombination promotes error-free repair of double-strand breaks and is essential for meiosis. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Herein, we review recent genetic, biochemical, and structural analyses of the genes and proteins involved in recombination.
Collapse
|
38
|
Prado F, Aguilera A. Partial depletion of histone H4 increases homologous recombination-mediated genetic instability. Mol Cell Biol 2005; 25:1526-36. [PMID: 15684401 PMCID: PMC548009 DOI: 10.1128/mcb.25.4.1526-1536.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA replication can be a source of genetic instability. Given the tight connection between DNA replication and nucleosome assembly, we analyzed the effect of a partial depletion of histone H4 on genetic instability mediated by homologous recombination. A Saccharomyces cerevisiae strain was constructed in which the expression of histone H4 was driven by the regulated tet promoter. In agreement with defective nucleosome assembly, partial depletion of histone H4 led to subtle changes in plasmid superhelical density and chromatin sensitivity to micrococcal nuclease. Under these conditions, homologous recombination between ectopic DNA sequences was increased 20-fold above the wild-type levels. This hyperrecombination was not associated with either defective repair or transcription but with an accumulation of recombinogenic DNA lesions during the S and G(2)/M phases, as determined by an increase in the proportion of budded cells containing Rad52-yellow fluorescent protein foci. Consistently, partial depletion of histone H4 caused a delay during the S and G(2)/M phases. Our results suggest that histone deposition defects lead to the formation of recombinogenic DNA structures during replication that increase genomic instability.
Collapse
Affiliation(s)
- Félix Prado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | | |
Collapse
|
39
|
Dudás A, Chovanec M. DNA double-strand break repair by homologous recombination. Mutat Res 2004; 566:131-67. [PMID: 15164978 DOI: 10.1016/j.mrrev.2003.07.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Revised: 07/29/2003] [Accepted: 07/30/2003] [Indexed: 01/06/2023]
Abstract
DNA double-strand breaks (DSB) are presumed to be the most deleterious DNA lesions as they disrupt both DNA strands. Homologous recombination (HR), single-strand annealing, and non-homologous end-joining are considered to be the pathways for repairing DSB. In this review, we focus on DSB repair by HR. The proteins involved in this process as well as the interactions among them are summarized and characterized. The main emphasis is on eukaryotic cells, particularly the budding yeast Saccharomyces cerevisiae and mammals. Only the RAD52 epistasis group proteins are included.
Collapse
Affiliation(s)
- Andrej Dudás
- Laboratory of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava 37, Slovak Republic
| | | |
Collapse
|
40
|
Forche A, May G, Beckerman J, Kauffman S, Becker J, Magee PT. A system for studying genetic changes in Candida albicans during infection. Fungal Genet Biol 2003; 39:38-50. [PMID: 12742062 DOI: 10.1016/s1087-1845(02)00585-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Candida albicans is a diploid yeast with a dimorphic life history. It exists commensally in many healthy humans but becomes a potent pathogen in immunocompromised hosts. The underlying genetic mechanisms by which C. albicans switches from a commensal to a pathogenic form in the host are not well understood. To study the evolution of virulence in mammalian hosts, we used GAL1 as selectable marker system that allows for both positive and negative selection in selective media. We show that the deletion of one or both copies of GAL1 in the C. albicans genome does not change virulence in a systemic mouse model. We obtained estimates for the frequency of mitotic recombination at the GAL1 locus during systemic infection. Our observations suggest that genetic changes such as mitotic recombination and gene conversion occur at a high enough frequency to be important in the transition of C. albicans from a commensal to a pathogenic organism.
Collapse
Affiliation(s)
- A Forche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Xu YM, Deng JZ, Ma J, Chen SN, Marshall R, Jones SH, Johnson RK, Hecht SM. DNA damaging activity of ellagic acid derivatives. Bioorg Med Chem 2003; 11:1593-6. [PMID: 12628683 DOI: 10.1016/s0968-0896(02)00452-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A strain of yeast rendered repair deficient by the conditional expression of the RAD52 locus was used to search for natural products capable of damaging DNA. Four ellagic acid derivatives, namely 3,3'-dimethyl-4'-O-beta-D-glucopyranosyl ellagic acid (1), 3,3',4-trimethyl-4'-O-beta-D-glucopyranosyl ellagic acid (2), 3'-methyl-3,4-O,O-methylidene ellagic acid (3) and 3'-methyl-3,4-O,O-methylidene-4'-O-beta-D-glucopyranosyl ellagic acid (4), were identified by this assay as DNA damaging natural principles from several plants, including Alangium javanicum, Anisophyllea apetala, Crypteronia paniculata, Mouririi sp. and Scholtzia parviflora. Although none of the isolated principles mediated frank strand scission of DNA in vitro, all of them potently inhibited the growth of yeast in the absence of expression of RAD52.
Collapse
Affiliation(s)
- Ya-ming Xu
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, VA 22901, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Asleson EN, Livingston DM. Investigation of the stability of yeast rad52 mutant proteins uncovers post-translational and transcriptional regulation of Rad52p. Genetics 2003; 163:91-101. [PMID: 12586699 PMCID: PMC1462433 DOI: 10.1093/genetics/163.1.91] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated the stability of the Saccharomyces cerevisiae Rad52 protein to learn how a cell controls its quantity and longevity. We measured the cellular levels of wild-type and mutant forms of Rad52p when expressed from the RAD52 promoter and the half-lives of the various forms of Rad52p when expressed from the GAL1 promoter. The wild-type protein has a half-life of 15 min. rad52 mutations variably affect the cellular levels of the protein products, and these levels correlate with the measured half-lives. While missense mutations in the N terminus of the protein drastically reduce the cellular levels of the mutant proteins, two mutations--one a deletion of amino acids 210-327 and the other a missense mutation of residue 235--increase the cellular level and half-life more than twofold. These results suggest that Rad52p is subject to post-translational regulation. Proteasomal mutations have no effect on Rad52p half-life but increase the amount of RAD52 message. In contrast to Rad52p, the half-life of Rad51p is >2 hr, and RAD51 expression is unaffected by proteasomal mutations. These differences between Rad52p and Rad51p suggest differential regulation of two proteins that interact in recombinational repair.
Collapse
Affiliation(s)
- Erin N Asleson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
43
|
Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 2002; 66:630-70, table of contents. [PMID: 12456786 PMCID: PMC134659 DOI: 10.1128/mmbr.66.4.630-670.2002] [Citation(s) in RCA: 790] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.
Collapse
Affiliation(s)
- Lorraine S Symington
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
44
|
Abstract
Broken chromosomal ends in somatic cells of higher plants frequently heal by the ligation of DNA ends to unrelated sequences or to sequences with micro-homologies. This pathway of DNA-strand-break repair is the bane of gene-targeting attempts in plants. However, there is a second somatic pathway of chromosome repair, which is driven by DNA-sequence homology. Observations from yeast, fly and plants of homologous-recombination mechanisms point towards new strategies of gene targeting in plants.
Collapse
Affiliation(s)
- Animesh Ray
- Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, USA.
| | | |
Collapse
|
45
|
Morgan EA, Shah N, Symington LS. The requirement for ATP hydrolysis by Saccharomyces cerevisiae Rad51 is bypassed by mating-type heterozygosity or RAD54 in high copy. Mol Cell Biol 2002; 22:6336-43. [PMID: 12192033 PMCID: PMC135622 DOI: 10.1128/mcb.22.18.6336-6343.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2002] [Revised: 03/26/2002] [Accepted: 06/20/2002] [Indexed: 11/20/2022] Open
Abstract
Rad51 can promote extensive strand exchange in vitro in the absence of ATP hydrolysis, and the Rad51-K191R mutant protein, which can bind but poorly hydrolyze ATP, also promotes strand exchange. A haploid strain expressing the rad51-K191R allele showed an equivalent sensitivity at low doses of ionizing radiation to rad51-K191A or rad51 null mutants and was defective in spontaneous and double-strand break-induced mitotic recombination. However, the rad51-K191R/rad51-K191R diploid sporulated and the haploid spores showed high viability, indicating no apparent defect in meiotic recombination. The DNA repair defect caused by the rad51-K191R allele was suppressed in diploids and by mating-type heterozygosity in haploids. RAD54 expressed from a high-copy-number plasmid also suppressed the gamma-ray sensitivity of rad51-K191R haploids. The suppression by mating-type heterozygosity of the DNA repair defect conferred by the rad51-K191R allele could occur by elevated expression of factors that act to stabilize, or promote catalysis, by the partially functional Rad51-K191R protein.
Collapse
Affiliation(s)
- Elizabeth A Morgan
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
46
|
Freedman JA, Jinks-Robertson S. Genetic Requirements for Spontaneous and Transcription-Stimulated Mitotic Recombination inSaccharomyces cerevisiae. Genetics 2002; 162:15-27. [PMID: 12242220 PMCID: PMC1462249 DOI: 10.1093/genetics/162.1.15] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractThe genetic requirements for spontaneous and transcription-stimulated mitotic recombination were determined using a recombination system that employs heterochromosomal lys2 substrates that can recombine only by crossover or only by gene conversion. The substrates were fused either to a constitutive low-level promoter (pLYS) or to a highly inducible promoter (pGAL). In the case of the “conversion-only” substrates the use of heterologous promoters allowed either the donor or the recipient allele to be highly transcribed. Transcription of the donor allele stimulated gene conversions in rad50, rad51, rad54, and rad59 mutants, but not in rad52, rad55, and rad57 mutants. In contrast, transcription of the recipient allele stimulated gene conversions in rad50, rad51, rad54, rad55, rad57, and rad59 mutants, but not in rad52 mutants. Finally, transcription stimulated crossovers in rad50, rad54, and rad59 mutants, but not in rad51, rad52, rad55, and rad57 mutants. These data are considered in relation to previously proposed molecular mechanisms of transcription-stimulated recombination and in relation to the roles of the recombination proteins.
Collapse
Affiliation(s)
- Jennifer A Freedman
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
47
|
Kagawa W, Kurumizaka H, Ishitani R, Fukai S, Nureki O, Shibata T, Yokoyama S. Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form. Mol Cell 2002; 10:359-71. [PMID: 12191481 DOI: 10.1016/s1097-2765(02)00587-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The human Rad52 protein forms a heptameric ring that catalyzes homologous pairing. The N-terminal half of Rad52 is the catalytic domain for homologous pairing, and the ring formed by the domain fragment was reported to be approximately decameric. Splicing variants of Rad52 and a yeast homolog (Rad59) are composed mostly of this domain. In this study, we determined the crystal structure of the homologous-pairing domain of human Rad52 and revealed that the domain forms an undecameric ring. Each monomer has a beta-beta-beta-alpha fold, which consists of highly conserved amino acid residues among Rad52 homologs. A mutational analysis revealed that the amino acid residues located between the beta-beta-beta-alpha fold and the characteristic hairpin loop are essential for ssDNA and dsDNA binding.
Collapse
Affiliation(s)
- Wataru Kagawa
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
van den Bosch M, Lohman PHM, Pastink A. DNA double-strand break repair by homologous recombination. Biol Chem 2002; 383:873-92. [PMID: 12222678 DOI: 10.1515/bc.2002.095] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The induction of double-strand breaks (DSBs) in DNA by exposure to DNA damaging agents, or as intermediates in normal cellular processes, constitutes a severe threat for the integrity of the genome. If not properly repaired, DSBs may result in chromosomal aberrations, which, in turn, can lead to cell death or to uncontrolled cell growth. To maintain the integrity of the genome, multiple pathways for the repair of DSBs have evolved during evolution: homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA). HR has the potential to lead to accurate repair of DSBs, whereas NHEJ and SSA are essentially mutagenic. In yeast, DSBs are primarily repaired via high-fidelity repair of DSBs mediated by HR, whereas in higher eukaryotes, both HR and NHEJ are important. In this review, we focus on the functional conservation of HR from fungi to mammals and on the role of the individual proteins in this process.
Collapse
Affiliation(s)
- Michael van den Bosch
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Center, The Netherlands
| | | | | |
Collapse
|
49
|
Seitz EM, Haseltine CA, Kowalczykowski SC. DNA recombination and repair in the archaea. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:101-69. [PMID: 11677683 DOI: 10.1016/s0065-2164(01)50005-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E M Seitz
- Sections of Microbiology and of Molecular and Cellular Biology, Center for Genetics and Development, University of California, Davis, Davis, California 95616-8665, USA
| | | | | |
Collapse
|
50
|
van den Bosch M, Zonneveld JBM, Vreeken K, de Vries FAT, Lohman PHM, Pastink A. Differential expression and requirements for Schizosaccharomyces pombe RAD52 homologs in DNA repair and recombination. Nucleic Acids Res 2002; 30:1316-24. [PMID: 11884628 PMCID: PMC101351 DOI: 10.1093/nar/30.6.1316] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In fission yeast two RAD52 homologs have been identified, rad22A(+) and rad22B(+). Two-hybrid experiments and GST pull-down assays revealed physical interaction between Rad22A and Rad22B, which is dependent on the N-terminal regions. Interaction with Rhp51 is dependent on the C-terminal parts of either protein. Both Rad22A and Rad22B also interact with RPA. The expression of rad22B(+) in mitotically dividing cells is very low in comparison with rad22A(+) but is strongly enhanced after induction of meiosis, in contrast to rad22A(+). Rad22B mutant cells are not hypersensitive to DNA-damaging agents (X-rays, UV and cisplatin) and display normal levels of recombination. In these respects the Schizosaccharomyces pombe rad22B mutant resembles the weak phenotype of vertebrate cells deficient for RAD52. Mutation of rad22A(+) leads to severe sensitivity to DNA-damaging agents and to defects in recombination. In a rad22Arad22B double mutant a further increase in sensitivity to DNA-damaging agents and additional mitotic recombination defects were observed. The data presented here indicate that Rad22A and Rad22B have overlapping roles in repair and recombination, although specialized functions for each protein cannot be excluded.
Collapse
Affiliation(s)
- Michael van den Bosch
- MGC Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|