1
|
Haig D. Concerted evolution of ribosomal DNA: Somatic peace amid germinal strife: Intranuclear and cellular selection maintain the quality of rRNA. Bioessays 2021; 43:e2100179. [PMID: 34704616 DOI: 10.1002/bies.202100179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022]
Abstract
Most eukaryotes possess many copies of rDNA. Organismal selection alone cannot maintain rRNA function because the effects of mutations in one rDNA are diluted by the presence of many other rDNAs. rRNA quality is maintained by processes that increase homogeneity of rRNA within, and heterogeneity among, germ cells thereby increasing the effectiveness of cellular selection on ribosomal function. A successful rDNA repeat will possess adaptations for spreading within tandem arrays by intranuclear selection. These adaptations reside in the non-coding regions of rDNA. Single-copy genes are predicted to manage processes of intranuclear and cellular selection in the germline to maintain the quality of rRNA expressed in somatic cells of future generations.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Kara N, Krueger F, Rugg-Gunn P, Houseley J. Genome-wide analysis of DNA replication and DNA double-strand breaks using TrAEL-seq. PLoS Biol 2021; 19:e3000886. [PMID: 33760805 PMCID: PMC8021198 DOI: 10.1371/journal.pbio.3000886] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/05/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Faithful replication of the entire genome requires replication forks to copy large contiguous tracts of DNA, and sites of persistent replication fork stalling present a major threat to genome stability. Understanding the distribution of sites at which replication forks stall, and the ensuing fork processing events, requires genome-wide methods that profile replication fork position and the formation of recombinogenic DNA ends. Here, we describe Transferase-Activated End Ligation sequencing (TrAEL-seq), a method that captures single-stranded DNA 3' ends genome-wide and with base pair resolution. TrAEL-seq labels both DNA breaks and replication forks, providing genome-wide maps of replication fork progression and fork stalling sites in yeast and mammalian cells. Replication maps are similar to those obtained by Okazaki fragment sequencing; however, TrAEL-seq is performed on asynchronous populations of wild-type cells without incorporation of labels, cell sorting, or biochemical purification of replication intermediates, rendering TrAEL-seq far simpler and more widely applicable than existing replication fork direction profiling methods. The specificity of TrAEL-seq for DNA 3' ends also allows accurate detection of double-strand break sites after the initiation of DNA end resection, which we demonstrate by genome-wide mapping of meiotic double-strand break hotspots in a dmc1Δ mutant that is competent for end resection but not strand invasion. Overall, TrAEL-seq provides a flexible and robust methodology with high sensitivity and resolution for studying DNA replication and repair, which will be of significant use in determining mechanisms of genome instability.
Collapse
Affiliation(s)
- Neesha Kara
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Felix Krueger
- Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom
| | - Peter Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
3
|
Naseeb S, Carter Z, Minnis D, Donaldson I, Zeef L, Delneri D. Widespread Impact of Chromosomal Inversions on Gene Expression Uncovers Robustness via Phenotypic Buffering. Mol Biol Evol 2016; 33:1679-96. [PMID: 26929245 PMCID: PMC4915352 DOI: 10.1093/molbev/msw045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nonrandom gene organization in eukaryotes plays a significant role in genome evolution and function. Chromosomal structural changes impact meiotic fitness and, in several organisms, are associated with speciation and rapid adaptation to different environments. Small sized chromosomal inversions, encompassing few genes, are pervasive in Saccharomyces “sensu stricto” species, while larger inversions are less common in yeasts compared with higher eukaryotes. To explore the effect of gene order on phenotype, reproductive isolation, and gene expression, we engineered 16 Saccharomyces cerevisiae strains carrying all possible paracentric and pericentric inversions between Ty1 elements, a natural substrate for rearrangements. We found that 4 inversions were lethal, while the other 12 did not show any fitness advantage or disadvantage in rich and minimal media. At meiosis, only a weak negative correlation with fitness was seen with the size of the inverted region. However, significantly lower fertility was seen in heterozygote invertant strains carrying recombination hotspots within the breakpoints. Altered transcription was observed throughout the genome rather than being overrepresented within the inversions. In spite of the large difference in gene expression in the inverted strains, mitotic fitness was not impaired in the majority of the 94 conditions tested, indicating that the robustness of the expression network buffers the deleterious effects of structural changes in several environments. Overall, our results support the notion that transcriptional changes may compensate for Ty-mediated rearrangements resulting in the maintenance of a constant phenotype, and suggest that large inversions in yeast are unlikely to be a selectable trait during vegetative growth.
Collapse
Affiliation(s)
- Samina Naseeb
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Zorana Carter
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David Minnis
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ian Donaldson
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Leo Zeef
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Choudhury M, Zaman S, Jiang JC, Jazwinski SM, Bastia D. Mechanism of regulation of 'chromosome kissing' induced by Fob1 and its physiological significance. Genes Dev 2015; 29:1188-201. [PMID: 26063576 PMCID: PMC4470286 DOI: 10.1101/gad.260844.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein-mediated "chromosome kissing" between two DNA sites in trans (or in cis) is known to facilitate three-dimensional control of gene expression and DNA replication. However, the mechanisms of regulation of the long-range interactions are unknown. Here, we show that the replication terminator protein Fob1 of Saccharomyces cerevisiae promoted chromosome kissing that initiated rDNA recombination and controlled the replicative life span (RLS). Oligomerization of Fob1 caused synaptic (kissing) interactions between pairs of terminator (Ter) sites that initiated recombination in rDNA. Fob1 oligomerization and Ter-Ter kissing were regulated by intramolecular inhibitory interactions between the C-terminal domain (C-Fob1) and the N-terminal domain (N-Fob1). Phosphomimetic substitutions of specific residues of C-Fob1 counteracted the inhibitory interaction. A mutation in either N-Fob1 that blocked Fob1 oligomerization or C-Fob1 that blocked its phosphorylation antagonized chromosome kissing and recombination and enhanced the RLS. The results provide novel insights into a mechanism of regulation of Fob1-mediated chromosome kissing.
Collapse
Affiliation(s)
- Malay Choudhury
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Shamsu Zaman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - James C Jiang
- Tulane Center for Aging, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - S Michal Jazwinski
- Tulane Center for Aging, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Deepak Bastia
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
| |
Collapse
|
5
|
Abstract
Discoveries in cytogenetics, molecular biology, and genomics have revealed that genome change is an active cell-mediated physiological process. This is distinctly at variance with the pre-DNA assumption that genetic changes arise accidentally and sporadically. The discovery that DNA changes arise as the result of regulated cell biochemistry means that the genome is best modelled as a read-write (RW) data storage system rather than a read-only memory (ROM). The evidence behind this change in thinking and a consideration of some of its implications are the subjects of this article. Specific points include the following: cells protect themselves from accidental genome change with proofreading and DNA damage repair systems; localized point mutations result from the action of specialized trans-lesion mutator DNA polymerases; cells can join broken chromosomes and generate genome rearrangements by non-homologous end-joining (NHEJ) processes in specialized subnuclear repair centres; cells have a broad variety of natural genetic engineering (NGE) functions for transporting, diversifying and reorganizing DNA sequences in ways that generate many classes of genomic novelties; natural genetic engineering functions are regulated and subject to activation by a range of challenging life history events; cells can target the action of natural genetic engineering functions to particular genome locations by a range of well-established molecular interactions, including protein binding with regulatory factors and linkage to transcription; and genome changes in cancer can usefully be considered as consequences of the loss of homeostatic control over natural genetic engineering functions.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Gaillard H, Herrera-Moyano E, Aguilera A. Transcription-associated genome instability. Chem Rev 2013; 113:8638-61. [PMID: 23597121 DOI: 10.1021/cr400017y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla , Av. Américo Vespucio s/n, 41092 Seville, Spain
| | | | | |
Collapse
|
7
|
Lin C, Yang L, Rosenfeld MG. Molecular logic underlying chromosomal translocations, random or non-random? Adv Cancer Res 2012; 113:241-79. [PMID: 22429857 DOI: 10.1016/b978-0-12-394280-7.00015-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chromosomal translocations serve as essential diagnostic markers and therapeutic targets for leukemia, lymphoma, and many types of solid tumors. Understanding the mechanisms of chromosomal translocation generation has remained a central biological question for decades. Rather than representing a random event, recent studies indicate that chromosomal translocation is a non-random event in a spatially regulated, site-specific, and signal-driven manner, reflecting actions involved in transcriptional activation, epigenetic regulation, three-dimensional nuclear architecture, and DNA damage-repair. In this review, we will focus on the progression toward understanding the molecular logic underlying chromosomal translocation events and implications of new strategies for preventing chromosomal translocations.
Collapse
Affiliation(s)
- Chunru Lin
- Howard Hughes Medical Institute, University of California, San Diego, School of Medicine, La Jolla, California, USA
| | | | | |
Collapse
|
8
|
Houseley J, Tollervey D. Repeat expansion in the budding yeast ribosomal DNA can occur independently of the canonical homologous recombination machinery. Nucleic Acids Res 2011; 39:8778-91. [PMID: 21768125 PMCID: PMC3203602 DOI: 10.1093/nar/gkr589] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Major eukaryotic genomic elements, including the ribosomal DNA (rDNA), are composed of repeated sequences with well-defined copy numbers that must be maintained by regulated recombination. Although mechanisms that instigate rDNA recombination have been identified, none are directional and they therefore cannot explain precise repeat number control. Here, we show that yeast lacking histone chaperone Asf1 undergo reproducible rDNA repeat expansions. These expansions do not require the replication fork blocking protein Fob1 and are therefore independent of known rDNA expansion mechanisms. We propose the existence of a regulated rDNA repeat gain pathway that becomes constitutively active in asf1Δ mutants. Cells lacking ASF1 accumulate rDNA repeats with high fidelity in a processive manner across multiple cell divisions. The mechanism of repeat gain is dependent on highly repetitive sequence but, surprisingly, is independent of the homologous recombination proteins Rad52, Rad51 and Rad59. The expansion mechanism is compromised by mutations that decrease the processivity of DNA replication, which leads to progressive loss of rDNA repeats. Our data suggest that a novel mode of break-induced replication occurs in repetitive DNA that is dependent on high homology but does not require the canonical homologous recombination machinery.
Collapse
Affiliation(s)
- Jonathan Houseley
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK.
| | | |
Collapse
|
9
|
de la Loza MCD, Wellinger RE, Aguilera A. Stimulation of direct-repeat recombination by RNA polymerase III transcription. DNA Repair (Amst) 2009; 8:620-6. [PMID: 19168400 DOI: 10.1016/j.dnarep.2008.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/13/2008] [Accepted: 12/15/2008] [Indexed: 11/18/2022]
Abstract
Eukaryotic cells have to regulate the progression and integrity of DNA replication forks through concomitantly transcribed genes. A transcription-dependent increase of recombination within protein-coding and ribosomal genes of eukaryotic cells is well documented. Here we addressed whether tRNA transcription and tRNA-dependent transcription-associated replication pausing leads to genetic instability. Thus, we designed a plasmid based, LEU2 direct-repeat containing system for the analysis of factors that contribute to tRNA(SUP53)-dependent genetic instability. We show that tRNA(SUP53) transcription is recombinogenic and that recombination can be further stimulated by deletion of the 5' to 3' helicase Rrm3. Furthermore, tRNA(SUP53)-dependent recombination was markedly increased in the presence of 4-NQO in rrm3Delta cells only. The frequency of recombination events mediated by tRNA(SUP53) transcription does not correlate with the appearance and intensity of replication fork pausing sites. Our results provide evidence that the convergent encounter of replication and RNA polymerase III transcription machineries stimulates recombination, although to a lesser extent than RNA polymerase I or II transcription. However, there is no correlation between recombination and the specific replication fork pausing sites found at the tRNA (SUP53) gene. Our results indicate that tRNA-specific replication fork pausing sites are poorly recombinogenic.
Collapse
Affiliation(s)
- M C Díaz de la Loza
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla - CSIC, Avda. Américo Vespucio s/n, 41092 Sevilla, Spain
| | | | | |
Collapse
|
10
|
Torres-Rosell J, De Piccoli G, Aragón L. Can eukaryotic cells monitor the presence of unreplicated DNA? Cell Div 2007; 2:19. [PMID: 17623079 PMCID: PMC1976610 DOI: 10.1186/1747-1028-2-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 07/10/2007] [Indexed: 11/24/2022] Open
Abstract
Completion of DNA replication before mitosis is essential for genome stability and cell viability. Cellular controls called checkpoints act as surveillance mechanisms capable of detecting errors and blocking cell cycle progression to allow time for those errors to be corrected. An important question in the cell cycle field is whether eukaryotic cells possess mechanisms that monitor ongoing DNA replication and make sure that all chromosomes are fully replicated before entering mitosis, that is whether a replication-completion checkpoint exists. From recent studies with smc5–smc6 mutants it appears that yeast cells can enter anaphase without noticing that replication in the ribosomal DNA array was unfinished. smc5–smc6 mutants are proficient in all known cellular checkpoints, namely the S phase checkpoint, DNA-damage checkpoint, and spindle checkpoint, thus suggesting that none of these checkpoints can monitor the presence of unreplicated segments or the unhindered progression of forks in rDNA. Therefore, these results strongly suggest that normal yeast cells do not contain a DNA replication-completion checkpoint.
Collapse
Affiliation(s)
- Jordi Torres-Rosell
- Dept. Ciències Mèdiques Bàsiques, IRBLLEIDA, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida, Spain
| | - Giacomo De Piccoli
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Luis Aragón
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
11
|
Labib K, Hodgson B. Replication fork barriers: pausing for a break or stalling for time? EMBO Rep 2007; 8:346-53. [PMID: 17401409 PMCID: PMC1852754 DOI: 10.1038/sj.embor.7400940] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 01/30/2007] [Indexed: 11/09/2022] Open
Abstract
Defects in chromosome replication can lead to translocations that are thought to result from recombination events at stalled DNA replication forks. The progression of forks is controlled by an essential DNA helicase, which unwinds the parental duplex and can stall on encountering tight protein-DNA complexes. Such pause sites are hotspots for recombination and it has been proposed that stalled replisomes disassemble, leading to fork collapse. However, in both prokaryotes and eukaryotes it now seems that paused forks are surprisingly stable, so that DNA synthesis can resume without recombination if the barrier protein is removed. Recombination at stalled forks might require other events that occur after pausing, or might be dependent on features of the surrounding DNA sequence. These findings have important implications for our understanding of the regulation of genome stability in eukaryotic cells, in which pausing of forks is mediated by specific proteins that are associated with the replicative helicase.
Collapse
Affiliation(s)
- Karim Labib
- Cancer Research UK, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.
| | | |
Collapse
|
12
|
Oakes ML, Johzuka K, Vu L, Eliason K, Nomura M. Expression of rRNA genes and nucleolus formation at ectopic chromosomal sites in the yeast Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:6223-38. [PMID: 16880531 PMCID: PMC1592796 DOI: 10.1128/mcb.02324-05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed yeast strains in which rRNA gene repeats are integrated at ectopic sites in the presence or absence of the native nucleolus. At all three ectopic sites analyzed, near centromere CEN5, near the telomere of chromosome VI-R, and in middle of chromosome V-R (mid-V-R), a functional nucleolus was formed, and no difference in the expression of rRNA genes was observed. When two ribosomal DNA (rDNA) arrays are present, one native and the other ectopic, there is codominance in polymerase I (Pol I) transcription. We also examined the expression of a single rDNA repeat integrated into ectopic loci in strains with or without the native RDN1 locus. In a strain with reduced rRNA gene copies at RDN1 (approximately 40 copies), the expression of a single rRNA gene copy near the telomere was significantly reduced relative to the other ectopic sites, suggesting a less-efficient recruitment of the Pol I machinery from the RDN1 locus. In addition, we found a single rRNA gene at mid-V-R was as active as that within the 40-copy RDN1. Combined with the results of activity analysis of a single versus two tandem copies at CEN5, we conclude that tandem repetition is not required for efficient rRNA gene transcription.
Collapse
Affiliation(s)
- Melanie L Oakes
- Department of Biological Chemistry, University of California at Irvine, 240D Medical Sciences I, Irvine, CA 92697-1700, USA
| | | | | | | | | |
Collapse
|
13
|
Hepfer CE, Arnold-Croop S, Fogell H, Steudel KG, Moon M, Roff A, Zaikoski S, Rickman A, Komsisky K, Harbaugh DL, Lang GI, Keil RL. DEG1, encoding the tRNA:pseudouridine synthase Pus3p, impacts HOT1-stimulated recombination in Saccharomyces cerevisiae. Mol Genet Genomics 2005; 274:528-38. [PMID: 16231152 DOI: 10.1007/s00438-005-0042-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 08/06/2005] [Indexed: 11/28/2022]
Abstract
In Saccharomyces cerevisiae, HOT1-stimulated recombination has been implicated in maintaining homology between repeated ribosomal RNA genes. The ability of HOT1 to stimulate genetic exchange requires RNA polymerase I transcription across the recombining sequences. The trans-acting nuclear mutation hrm3-1 specifically reduces HOT1-dependent recombination and prevents cell growth at 37 degrees . The HRM3 gene is identical to DEG1. Excisive, but not gene replacement, recombination is reduced in HOT1-adjacent sequences in deg1Delta mutants. Excisive recombination within the genomic rDNA repeats is also decreased. The hypo-recombination and temperature-sensitive phenotypes of deg1Delta mutants are recessive. Deletion of DEG1 did not affect the rate of transcription from HOT1 or rDNA suggesting that while transcription is necessary it is not sufficient for HOT1 activity. Pseudouridine synthase 3 (Pus3p), the DEG1 gene product, modifies the anticodon arm of transfer RNA at positions 38 and 39 by catalyzing the conversion of uridine to pseudouridine. Cells deficient in pseudouridine synthases encoded by PUS1, PUS2 or PUS4 displayed no recombination defects, indicating that Pus3p plays a specific role in HOT1 activity. Pus3p is unique in its ability to modulate frameshifting and readthrough events during translation, and this aspect of its activity may be responsible for HOT1 recombination phenotypes observed in deg1 mutants.
Collapse
Affiliation(s)
- C E Hepfer
- Department of Biology, Millersville University, 50 East Frederick Street, PO Box 1002, Millersville, PA 17551, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Calzada A, Hodgson B, Kanemaki M, Bueno A, Labib K. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev 2005; 19:1905-19. [PMID: 16103218 PMCID: PMC1186190 DOI: 10.1101/gad.337205] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic cells regulate the progression and integrity of DNA replication forks to maintain genomic stability and couple DNA synthesis to other processes. The budding yeast proteins Mrc1 and Tof1 associate with the putative MCM-Cdc45 helicase and limit progression of the replisome when nucleotides are depleted, and the checkpoint kinases Mec1 and Rad53 stabilize such stalled forks and prevent disassembly of the replisome. Forks also pause transiently during unperturbed chromosome replication, at sites where nonnucleosomal proteins bind DNA tightly. We describe a method for inducing prolonged pausing of forks at protein barriers assembled at unique sites on a yeast chromosome, allowing us to examine for the first time the effects of pausing upon replisome integrity. We show that paused forks maintain an intact replisome that contains Mrc1, Tof1, MCM-Cdc45, GINS, and DNA polymerases alpha and epsilon and that recruits the Rrm3 helicase. Surprisingly, pausing does not require Mrc1, although Tof1 and Csm3 are both important. In addition, the integrity of the paused forks does not require Mec1, Rad53, or recombination. We also show that paused forks at analogous barriers in the rDNA are regulated similarly. These data indicate that paused and stalled eukaryotic replisomes resemble each other but are regulated differently.
Collapse
Affiliation(s)
- Arturo Calzada
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, UK
| | | | | | | | | |
Collapse
|
15
|
Criniti A, Simonazzi G, Cassanelli S, Ferrari M, Bizzaro D, Manicardi GC. X-linked heterochromatin distribution in the holocentric chromosomes of the green apple aphid Aphis pomi. Genetica 2005; 124:93-8. [PMID: 16011007 DOI: 10.1007/s10709-004-8154-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chromatin organization in the holocentric chromosomes of the green apple aphid Aphis pomi has been investigated at a cytological level after C-banding, NOR, Giemsa, fluorochrome staining and fluorescent in situ hybridization (FISH). C-banding technique showed that heterochromatic bands are exclusively located on X chromosomes. This data represents a peculiar feature that clearly contradicts the equilocal distribution of heterochromatin typical of monocentric chromosomes. Moreover, silver staining and FISH carried out with a 28S rDNA probe localized rDNA genes on one telomere of each X chromosome; CMA3 staining reveals that these silver positive telomeres are the only GC-rich regions among A. pomi heterochromatin, whereas all other C-positive bands are DAPI positive thus containing AT-rich DNA.
Collapse
Affiliation(s)
- A Criniti
- Dipartimento di Scienze Agrarie, Università di Modena e Reggio Emilia, Reggio Emilia, Italia
| | | | | | | | | | | |
Collapse
|
16
|
Burkhalter MD, Sogo JM. rDNA enhancer affects replication initiation and mitotic recombination: Fob1 mediates nucleolytic processing independently of replication. Mol Cell 2004; 15:409-21. [PMID: 15304221 DOI: 10.1016/j.molcel.2004.06.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 05/18/2004] [Accepted: 05/24/2004] [Indexed: 02/04/2023]
Abstract
To investigate the influence of the ribosomal DNA enhancer on initiation of replication and recombination at the ribosomal array, we used yeast S. cerevisiae strains with adjacent, tagged rRNA genes. We found that the enhancer is an absolute requirement for replication fork barrier function, while it only modulates initiation of replication. Moreover, the formation of monomeric extrachromosomal ribosomal circles depends on this element. Our data indicate that DNA double-strand breaks occur at specific sites in the parental leading arm of replication forks stalled at the replication fork barrier. Additionally, nicks upstream of the replication fork barrier were visualized by nucleotide-resolution mapping. They coincide with essential sequences of the mitotic hyperrecombination site HOT1, which previously has been determined at ectopic sites. Interestingly, these nicks are strictly dependent on the replication fork blocking-protein (Fob1), but are replication independent, suggesting that intrachromosomal ribosomal DNA recombination may occur outside of S phase.
Collapse
Affiliation(s)
- Martin D Burkhalter
- Institute of Cell Biology, Department of Biology, ETH Hönggerberg, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
17
|
Prusty R, Keil RL. SCH9, a putative protein kinase from Saccharomyces cerevisiae, affects HOT1 -stimulated recombination. Mol Genet Genomics 2004; 272:264-74. [PMID: 15349770 DOI: 10.1007/s00438-004-1049-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
HOT1 is a mitotic recombination hotspot derived from yeast rDNA. To further study HOT1 function, trans-acting H OT1 recombination mutants (hrm) that alter hotspot activity were isolated. hrm2-1 mutants have decreased HOT1 activity and grow slowly. The HRM2 gene was cloned and found to be identical to SCH9, a gene that affects a growth-control mechanism that is partially redundant with the cAMP-dependent protein kinase A (PKA) pathway. Deletion of SCH9 decreases HOT1 and rDNA recombination but not other mitotic exchange. Although high levels of RNA polymerase I transcription initiated at HOT1 are required for its recombination-stimulating activity, sch9 mutations do not affect transcription initiated within HOT1. Thus, transcription is necessary but not sufficient for HOT1 activity. TPK1, which encodes a catalytic subunit of PKA, is a multicopy suppressor of the recombination and growth defects of sch9 mutants, suggesting that increased PKA activity compensates for SCH9 loss. RAS2( val19), which codes for a hyperactive RAS protein and increases PKA activity, suppresses both phenotypic defects of sch9 mutants. In contrast to TPK1 and RAS2(val19), the gene for split zinc finger protein 1 (SFP1) on a multicopy vector suppresses only the growth defects of sch9 mutants, indicating that growth and HOT1 functions of Sch9p are separable. Sch9p may affect signal transduction pathways which regulate proteins that are specifically required for HOT1-stimulated exchange.
Collapse
Affiliation(s)
- R Prusty
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA
| | | |
Collapse
|
18
|
Abstract
Recombination hotspots are DNA sequences which enhance recombination around that region. HOT1 is one of the best-studied mitotic hotspots in yeast. HOT1 includes a RNA polymerase I (PolI) transcription promoter which is responsible for 35S ribosomal rRNA gene (rDNA) transcription. In a PolI defective mutant the HOT1 hotspot activity is abolished, therefore transcription of HOT1 is thought to be an important factor for the recombination stimulation. However, it is not clear whether the transcription itself or other pleiotropic phenotypes stimulates recombination. To investigate the role of transcription, we made a highly activated PolI transcription system in HOT1 by using a strain whose rDNA repeats are deleted (rdnDeltaDelta). In the rdnDeltaDelta strain, HOT1 transcription was increased about 14 times compared to wild-type. Recombination activity stimulated by HOT1 in this strain was also elevated, about 15 times, compared to wild-type. These results indicate that the level of PolI transcription in HOT1 determines efficiency of the recombination. Moreover, Fob1p, which is essential for both the recombination stimulation activity and transcription of HOT1, was dispensable in the rdnDeltaDelta strains. This suggests that Fob1p is functioning as a PolI transcriptional activator in the wild-type strain.
Collapse
Affiliation(s)
- Naomi Serizawa
- National Institute for Basic Biology, School of Life Science, 38 Nishigonaka, Myodaijicho, Okazaki, 444-8585, Japan
| | | | | |
Collapse
|
19
|
Kobayashi T. The replication fork barrier site forms a unique structure with Fob1p and inhibits the replication fork. Mol Cell Biol 2004; 23:9178-88. [PMID: 14645529 PMCID: PMC309713 DOI: 10.1128/mcb.23.24.9178-9188.2003] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The replication fork barrier site (RFB) is an approximately 100-bp DNA sequence located near the 3' end of the rRNA genes in the yeast Saccharomyces cerevisiae. The gene FOB1 is required for this RFB activity. FOB1 is also necessary for recombination in the ribosomal DNA (rDNA), including increase and decrease of rDNA repeat copy number, production of extrachromosomal rDNA circles, and possibly homogenization of the repeats. Despite the central role that Foblp plays in both replication fork blocking and rDNA recombination, the molecular mechanism by which Fob1p mediates these activities has not been determined. Here, I show by using chromatin immunoprecipitation, gel shift, footprinting, and atomic force microscopy assays that Fob1p directly binds to the RFB. Fob1p binds to two separated sequences in the RFB. A predicted zinc finger motif in Fob1p was shown to be essential for the RFB binding, replication fork blocking, and rDNA recombination activities. The RFB seems to wrap around Fob1p, and this wrapping structure may be important for function in the rDNA repeats.
Collapse
Affiliation(s)
- Takehiko Kobayashi
- National Institute for Basic Biology, 38 Nishigonaka, Myodaijicho, Okazaki 444-8585, Japan.
| |
Collapse
|
20
|
Mohanty BK, Bastia D. Binding of the replication terminator protein Fob1p to the Ter sites of yeast causes polar fork arrest. J Biol Chem 2003; 279:1932-41. [PMID: 14576157 DOI: 10.1074/jbc.m309078200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fob1p protein has been implicated in the termination of replication forks at the two tandem termini present in the non-transcribed spacer region located between the sequences encoding the 35 S and the 5 S RNAs of Saccharomyces cerevisiae. However, the biochemistry and mode of action of this protein were previously unknown. We have purified the Fob1p protein to near-homogeneity, and we developed a novel technique to show that it binds specifically to the Ter1 and Ter2 sequences. Interestingly, the two sequences share no detectable homology. We present two lines of evidence showing that the interaction of the Fob1p with the Ter sites causes replication termination. First, a mutant of FOB1, L104S, that significantly reduced the binding of the mutant form of the protein to the tandem Ter sites, also failed to promote replication termination in vivo. The mutant did not diminish nucleolar transport, and interaction of the mutant form of Fob1p with itself and with another protein encoded in the locus YDR026C suggested that the mutation did not cause global misfolding of the protein. Second, DNA site mutations in the Ter sequences that separately and specifically abolished replication fork arrest at Ter1 or Ter2 also eliminated sequence-specific binding of the Fob1p to the two sites. The work presented here definitively established Ter DNA-Fob1p interaction as an important step in fork arrest.
Collapse
Affiliation(s)
- Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
21
|
Huang J, Moazed D. Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev 2003; 17:2162-76. [PMID: 12923057 PMCID: PMC196457 DOI: 10.1101/gad.1108403] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Silencing within the yeast rDNA repeats inhibits hyperrecombination, represses transcription from foreign promoters, and extends replicative life span. rDNA silencing is mediated by a Sir2-containing complex called RENT (regulator of nucleolar silencing and telophase exit). We show that the Net1 (also called Cfi1) and Sir2 subunits of RENT localize primarily to two distinct regions within rDNA: in one of the nontranscribed spacers (NTS1) and around the Pol I promoter, extending into the 35S rRNA coding region. Binding to NTS1 overlaps the recombination hotspot and replication fork barrier elements, which have been shown previously to require the Fob1 protein for their activities. In cells lacking Fob1, silencing and the association of RENT subunits are abolished specifically at NTS1, while silencing and association at the Pol I promoter region are unaffected or increased. We find that Net1 and Sir2 are physically associated with Fob1 and subunits of RNA polymerase I. Together with the localization data, these results suggest the existence of two distinct modes for the recruitment of the RENT complex to rDNA and reveal a role for Fob1 in rDNA silencing and in the recruitment of the RENT complex. Furthermore, the Fob1-dependent associations of Net1 and Sir2 with the recombination hotspot region strongly suggest that Sir2 acts directly at this region to carry out its inhibitory effect on rDNA recombination and accelerated aging.
Collapse
Affiliation(s)
- Julie Huang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Takeuchi Y, Horiuchi T, Kobayashi T. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 2003; 17:1497-506. [PMID: 12783853 PMCID: PMC196080 DOI: 10.1101/gad.1085403] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is speculated that the function of the replication fork barrier (RFB) site is to avoid collision between the 35S rDNA transcription machinery and the DNA replication fork, because the RFB site is located near the 3'-end of the gene and inhibits progression of the replication fork moving in the opposite direction to the transcription machinery. However, the collision has never been observed in a blockless (fob1) mutant with 150 copies of rDNA. The gene FOB1 was shown previously to be required for replication fork blocking activity at the RFB site, and also for the rDNA copy number variation through unequal sister-chromatid recombination. This study documents the detection of fork collision in an fob1 derivative with reduced rDNA copy number (approximately 20) using two-dimensional agarose gel electrophoresis. This suggests that most of these reduced copies are actively transcribed. The collision was dependent on the transcription by RNA polymerase I. In addition, the transcription stimulated rDNA copy number variation, and the production of the extrachromosomal rDNA circles (ERCs), whose accumulation is thought to be a cause of aging. These results suggest that such a transcription-dependent fork collision induces recombination, and may function as a general recombination trigger for multiplication of highly transcribed single-copy genes.
Collapse
Affiliation(s)
- Yasushi Takeuchi
- National Institute for Basic Biology, Myodaijicho, Okazaki 444-8585, Japan
| | | | | |
Collapse
|
23
|
Benguría A, Hernández P, Krimer DB, Schvartzman JB. Sir2p suppresses recombination of replication forks stalled at the replication fork barrier of ribosomal DNA in Saccharomyces cerevisiae. Nucleic Acids Res 2003; 31:893-8. [PMID: 12560485 PMCID: PMC149208 DOI: 10.1093/nar/gkg188] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the ribosomal DNA (rDNA) of Saccharomyces cerevisiae replication forks progressing against transcription stall at a polar replication fork barrier (RFB) located close to and downstream of the 35S transcription unit. Forks blocked at this barrier are potentially recombinogenic. Plasmids bearing the RFB sequence in its active orientation integrated into the chromosomal rDNA in sir2 mutant cells but not in wild-type cells, indicating that the histone deacetylase silencing protein Sir2 (Sir2p), which also modulates the aging process in yeast, suppresses the recombination competence of forks blocked at the rDNA RFB. Orientation of the RFB sequence in its inactive course or its abolition by FOB1 deletion avoided plasmid integration in sir2 mutant cells, indicating that stalling of the forks in the plasmid context was required for recombination to take place. Altogether these results strongly suggest that one of the functions of Sir2p is to modulate access of the recombination machinery to the forks stalled at the rDNA RFB.
Collapse
Affiliation(s)
- Alberto Benguría
- Departamento de Biología Celular y del Desarrollo, Centro de Investigaciones Biológicas (CSIC), Velázquez 144, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
24
|
González-Barrera S, García-Rubio M, Aguilera A. Transcription and double-strand breaks induce similar mitotic recombination events in Saccharomyces cerevisiae. Genetics 2002; 162:603-14. [PMID: 12399375 PMCID: PMC1462300 DOI: 10.1093/genetics/162.2.603] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have made a comparative analysis of double-strand-break (DSB)-induced recombination and spontaneous recombination under low- and high-transcription conditions in yeast. We constructed two different recombination substrates, one for the analysis of intermolecular gene conversions and the other for intramolecular gene conversions and inversions. Such substrates were based on the same leu2-HOr allele fused to the tet promoter and containing a 21-bp HO site. Gene conversions and inversions were differently affected by rad1, rad51, rad52, and rad59 single and double mutations, consistent with the actual view that such events occur by different recombination mechanisms. However, the effect of each mutation on each type of recombination event was the same, whether associated with transcription or induced by the HO-mediated DSB. Both the highly transcribed DNA and the HO-cut sequence acted as recipients of the gene conversion events. These results are consistent with the hypothesis that transcription promotes initiation of recombination along the DNA sequence being transcribed. The similarity between transcription-associated and DSB-induced recombination suggests that transcription promotes DNA breaks.
Collapse
|
25
|
Abstract
Transcription is a central aspect of DNA metabolism that takes place on the same substrate as replication, repair and recombination. Not surprisingly, therefore, there is a physical and functional connection between these processes. In recent years, transcription has proven to be a relevant player in the maintenance of genome integrity and in the induction of genetic instability and diversity. The aim of this review is to provide an integrative view on how transcription can control different aspects of genomic integrity, by exploring different mechanisms that might be responsible for transcription-associated mutation (TAM) and transcription-associated recombination (TAR).
Collapse
Affiliation(s)
- Andrés Aguilera
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain.
| |
Collapse
|
26
|
Ganley ARD, Scott B. Concerted evolution in the ribosomal RNA genes of an Epichloë endophyte hybrid: comparison between tandemly arranged rDNA and dispersed 5S rrn genes. Fungal Genet Biol 2002; 35:39-51. [PMID: 11860264 DOI: 10.1006/fgbi.2001.1309] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined ribosomal RNA concerted evolution in an Epichloë endophyte interspecific hybrid (Lp1) and its progenitors (Lp5 and E8). We show that the 5S rrn genes are organized as dispersed copies. Cloned 5S gene sequences revealed two subfamilies exhibiting 12% sequence divergence, with substitutions forming coevolving pairs that maintain secondary structure and presumably function. Observed sequence patterns are not fully consistent with either concerted or classical evolution. The 5S rrn genes are syntenic with the tandemly arranged rDNA genes, despite residing outside the rDNA arrays. We also examined rDNA concerted evolution. Lp1 has rDNA sequence from only one progenitor and contains multiple rDNA arrays. Using 5S rrn genes as chromosomal markers, we propose that interlocus homogenization has replaced all Lp5 rDNA sequence with E8 sequence in the hybrid. This interlocus homogenization appears to have been rapid and efficient and is the first demonstration of hybrid interlocus homogenization in the Fungi.
Collapse
Affiliation(s)
- Austen R D Ganley
- Institute of Molecular BioSciences, Massey University, Palmerston North, Aotearoa, New Zealand.
| | | |
Collapse
|
27
|
Johzuka K, Horiuchi T. Replication fork block protein, Fob1, acts as an rDNA region specific recombinator in S. cerevisiae. Genes Cells 2002; 7:99-113. [PMID: 11895475 DOI: 10.1046/j.1356-9597.2001.00508.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The analysis of homologous recombination in the tandemly repeating rDNA array of Saccharomyces cerevisiae should provide useful information about the stability of not only the rDNA repeat but also the abundant repeated sequences on higher eukaryotic genomes. However, the data obtained so far are not yet conclusive, due to the absence of a reliable assay for detecting products of recombination in the rDNA array. RESULTS We developed an assay method to detect the products of unequal sister-chromatid recombination (marker-duplication products) in yeast rDNA. This assay, together with the circular rDNA detection assay, was used for the analysis. Marker-duplication occurred throughout the rDNA cluster, preferentially between nearby repeat units. The FOB1 and RAD52 genes were required for both types of recombinant formation. FOB1 showed a gene dosage effect on not only the amounts of both recombinants, but also on the copy number of the repeat. However, unlike the RAD52 gene, the FOB1 gene was not involved in homologous recombination in a non-rDNA locus. In addition, the marker-duplication products were drastically decreased in the mre11 mutant. CONCLUSION Our data demonstrate that FOB1- and RAD52-dependent homologous recombination cause the gain and loss of a few copies of the rDNA unit, and this must be a basic mechanism responsible for amplification and reduction of the rDNA copy number. In addition, FOB1 may also play a role in the copy number regulation of rDNA tandem repeats.
Collapse
Affiliation(s)
- Katsuki Johzuka
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji-cyo, Okazaki 444-8585, Japan
| | | |
Collapse
|
28
|
Wai H, Johzuka K, Vu L, Eliason K, Kobayashi T, Horiuchi T, Nomura M. Yeast RNA polymerase I enhancer is dispensable for transcription of the chromosomal rRNA gene and cell growth, and its apparent transcription enhancement from ectopic promoters requires Fob1 protein. Mol Cell Biol 2001; 21:5541-53. [PMID: 11463836 PMCID: PMC87276 DOI: 10.1128/mcb.21.16.5541-5553.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
At the end of the 35S rRNA gene within ribosomal DNA (rDNA) repeats in Saccharomyces cerevisiae lies an enhancer that has been shown to greatly stimulate rDNA transcription in ectopic reporter systems. We found, however, that the enhancer is not necessary for normal levels of rRNA synthesis from chromosomal rDNA or for cell growth. Yeast strains which have the entire enhancer from rDNA deleted did not show any defects in growth or rRNA synthesis. We found that the stimulatory activity of the enhancer for ectopic reporters is not observed in cells with disrupted nucleolar structures, suggesting that reporter genes are in general poorly accessible to RNA polymerase I (Pol I) machinery in the nucleolus and that the enhancer improves accessibility. We also found that a fob1 mutation abolishes transcription from the enhancer-dependent rDNA promoter integrated at the HIS4 locus without any effect on transcription from chromosomal rDNA. FOB1 is required for recombination hot spot (HOT1) activity, which also requires the enhancer region, and for recombination within rDNA repeats. We suggest that Fob1 protein stimulates interactions between rDNA repeats through the enhancer region, thus helping ectopic rDNA promoters to recruit the Pol I machinery normally present in the nucleolus.
Collapse
Affiliation(s)
- H Wai
- Department of Biological Chemistry, University of California-Irvine, Irvine, California 92697-1700, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kobayashi T, Nomura M, Horiuchi T. Identification of DNA cis elements essential for expansion of ribosomal DNA repeats in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:136-47. [PMID: 11113188 PMCID: PMC88787 DOI: 10.1128/mcb.21.1.136-147.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae carries approximately 150 ribosomal DNA (rDNA) copies in tandem repeats. Each repeat consists of the 35S rRNA gene, the NTS1 spacer, the 5S rRNA gene, and the NTS2 spacer. The FOB1 gene was previously shown to be required for replication fork block (RFB) activity at the RFB site in NTS1, for recombination hot spot (HOT1) activity, and for rDNA repeat expansion and contraction. We have constructed a strain in which the majority of rDNA repeats are deleted, leaving two copies of rDNA covering the 5S-NTS2-35S region and a single intact NTS1, and whose growth is supported by a helper plasmid carrying, in addition to the 5S rRNA gene, the 35S rRNA coding region fused to the GAL7 promoter. This strain carries a fob1 mutation, and an extensive expansion of chromosomal rDNA repeats was demonstrated by introducing the missing FOB1 gene by transformation. Mutational analysis using this system showed that not only the RFB site but also the adjacent approximately 400-bp region in NTS1 (together called the EXP region) are required for the FOB1-dependent repeat expansion. This approximately 400-bp DNA element is not required for the RFB activity or the HOT1 activity and therefore defines a function unique to rDNA repeat expansion (and presumably contraction) separate from HOT1 and RFB activities.
Collapse
Affiliation(s)
- T Kobayashi
- National Institute for Basic Biology, Okazaki 444-8585, Japan.
| | | | | |
Collapse
|
30
|
Gallardo M, Aguilera A. A new hyperrecombination mutation identifies a novel yeast gene, THP1, connecting transcription elongation with mitotic recombination. Genetics 2001; 157:79-89. [PMID: 11139493 PMCID: PMC1461480 DOI: 10.1093/genetics/157.1.79] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Given the importance of the incidence of recombination in genomic instability, it is of great interest to know the elements or processes controlling recombination in mitosis. One such process is transcription, which has been shown to induce recombination in bacteria, yeast, and mammals. To further investigate the genetic control of the incidence of recombination and genetic instability and, in particular, its connection with transcription, we have undertaken a search for hyperrecombination mutants among a large number of strains deleted in genes of unknown function. We have identified a new gene, THP1 (YOL072w), whose deletion mutation strongly stimulates recombination between repeats. In addition, thp1 Delta impairs transcription, a defect that is particularly strong at the level of elongation through particular DNA sequences such as lacZ. The hyperrecombination phenotype of thp1 Delta cells is fully dependent on transcription elongation of the repeat construct. When transcription is impeded either by shutting off the promoter or by using a premature transcription terminator, hyperrecombination between repeats is abolished, providing new evidence that transcription-elongation impairment may be a source of recombinogenic substrates in mitosis. We show that Thp1p and two other proteins previously shown to control transcription-associated recombination, Hpr1p and Tho2p, act in the same "pathway" connecting transcription elongation with the incidence of mitotic recombination.
Collapse
Affiliation(s)
- M Gallardo
- Departamento de Genética, Universidad de Sevilla, 41012 Seville, Spain
| | | |
Collapse
|
31
|
Saxe D, Datta A, Jinks-Robertson S. Stimulation of mitotic recombination events by high levels of RNA polymerase II transcription in yeast. Mol Cell Biol 2000; 20:5404-14. [PMID: 10891481 PMCID: PMC85992 DOI: 10.1128/mcb.20.15.5404-5414.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The impact of high levels of RNA polymerase II transcription on mitotic recombination was examined using lys2 recombination substrates positioned on nonhomologous chromosomes. Substrates were used that could produce Lys(+) recombinants by either a simple (noncrossover) gene conversion event or a crossover-associated recombination event, by only a simple gene conversion event, or by only a crossover event. Transcription of the lys2 substrates was regulated by the highly inducible GAL1-10 promoter or the low-level LYS2 promoter, with GAL1-10 promoter activity being controlled by the presence or absence of the Gal80p negative regulatory protein. Transcription was found to stimulate recombination in all assays used, but the level of stimulation varied depending on whether only one or both substrates were highly transcribed. In addition, there was an asymmetry in the types of recombination events observed when one substrate versus the other was highly transcribed. Finally, the lys2 substrates were positioned as direct repeats on the same chromosome and were found to exhibit a different recombinational response to high levels of transcription from that exhibited by the repeats on nonhomologous chromosomes. The relevance of these results to the mechanisms of transcription-associated recombination are discussed.
Collapse
Affiliation(s)
- D Saxe
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
32
|
Ward TR, Hoang ML, Prusty R, Lau CK, Keil RL, Fangman WL, Brewer BJ. Ribosomal DNA replication fork barrier and HOT1 recombination hot spot: shared sequences but independent activities. Mol Cell Biol 2000; 20:4948-57. [PMID: 10848619 PMCID: PMC85945 DOI: 10.1128/mcb.20.13.4948-4957.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the ribosomal DNA of Saccharomyces cerevisiae, sequences in the nontranscribed spacer 3' of the 35S ribosomal RNA gene are important to the polar arrest of replication forks at a site called the replication fork barrier (RFB) and also to the cis-acting, mitotic hyperrecombination site called HOT1. We have found that the RFB and HOT1 activity share some but not all of their essential sequences. Many of the mutations that reduce HOT1 recombination also decrease or eliminate fork arrest at one of two closely spaced RFB sites, RFB1 and RFB2. A simple model for the juxtaposition of RFB and HOT1 sequences is that the breakage of strands in replication forks arrested at RFB stimulates recombination. Contrary to this model, we show here that HOT1-stimulated recombination does not require the arrest of forks at the RFB. Therefore, while HOT1 activity is independent of replication fork arrest, HOT1 and RFB require some common sequences, suggesting the existence of a common trans-acting factor(s).
Collapse
Affiliation(s)
- T R Ward
- Department of Genetics, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Both sexual and asexual fungi undergo chromosomal rearrangements, which are the main cause of karyotype variability among the populations. Different recombination processes can produce chromosomal reorganizations, both during mitosis and meiosis, but other mechanisms operate to limit the extent of the rearrangements; some of these mechanisms, such as the RIP (repeat-induced point mutations) of Neurospora crassa, have been well established for sexual fungi. In laboratory strains, treatments such as mutation and transformation enhance the appearance of chromosomal rearrangements. Different DNA sequences present in fungal genomes are able to promote these reorganizations; some of these sequences are involved in well-regulated processes (e.g., site-specific recombination) but most of them act simply as substrates for recombination events leading to DNA rearrangements. In Penicillium chrysogenum we have found that short specific DNA sequences are involved in tandem reiterations leading to amplification of the cluster of the penicillin biosynthesis genes. In some cases, specific chromosomal rearrangements have been associated with particular phenotypes (as occurs in adaptive-like mutants of Candida albicans and Candida stellatoidea), and they may play a role in genetic variability for environmental adaptation.
Collapse
Affiliation(s)
- F Fierro
- Faculty of Biology, University of León, Spain
| | | |
Collapse
|
34
|
Mandrioli M, Manicardi GC, Bizzaro D, Bianchi U. NOR heteromorphism within a parthenogenetic lineage of the aphid Megoura viciae. Chromosome Res 1999; 7:157-62. [PMID: 10328627 DOI: 10.1023/a:1009215721904] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In parthenogenetic females of a clone of the aphid Megoura viciae (Homoptera, Aphididae), more than 50% of the cells show heteromorphism between homologous NORs which are located on one telomeric region of the two X chromosomes. Using different techniques, such as staining with the CG-specific fluorochrome chromomycin A3, silver staining and in-situ hybridization with an rDNA probe, we have shown that the observed heteromorphism is due to an unequal distribution of ribosomal genes between homologous NOR regions. The total number of rDNA genes per individual aphid remained constant. Moreover, the analysis of cells from single embroys has shown that the observed heteromorphism is not only intraclonal but also intraindividual. These data, together with the finding of X chromosomes connected by chromatin bridges between their NORs, allow us to suggest that mitotic unequal crossing over could be the main cause of NOR heteomorphism in this taxon.
Collapse
Affiliation(s)
- M Mandrioli
- Dipartimento di Biologia Animale, Università di Modena, Italy
| | | | | | | |
Collapse
|
35
|
Kobayashi T, Heck DJ, Nomura M, Horiuchi T. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 1998; 12:3821-30. [PMID: 9869636 PMCID: PMC317266 DOI: 10.1101/gad.12.24.3821] [Citation(s) in RCA: 305] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Saccharomyces cerevisiae carries approximately 150 copies of rDNA in tandem repeats. It was found that the absence of an essential subunit of RNA polymerase I (Pol I) in rpa135 deletion mutants triggers a gradual decrease in rDNA repeat number to about one-half the normal level. Reintroduction of the missing RPA135 gene induced a gradual increase in repeat number back to the normal level. Gene FOB1 was shown to be essential for both the decrease and increase of rDNA repeats. FOB1 was shown previously to be required for replication fork blocking (RFB) activity at RFB site in rDNA and for recombination hot-spot (HOT1) activity. Thus, DNA replication fork blockage appears to stimulate recombination and play an essential role in rDNA expansion/contraction and sequence homogenization, and possibly, in the instability of repeated sequences in general. RNA Pol I, on the other hand, appears to control repeat numbers, perhaps by stabilizing rDNA with the normal repeat numbers as a stable nucleolar structure.
Collapse
MESH Headings
- Blotting, Southern
- Cell Division
- Chromosomes/genetics
- DNA Replication
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- DNA-Binding Proteins
- Electrophoresis, Gel, Pulsed-Field
- Fungal Proteins/genetics
- Fungal Proteins/physiology
- Gene Amplification/genetics
- Gene Dosage
- Genetic Vectors
- Models, Genetic
- Molecular Weight
- Mutagenesis, Insertional
- RNA Polymerase I/genetics
- RNA Polymerase I/metabolism
- Recombination, Genetic
- Regulatory Sequences, Nucleic Acid
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Tandem Repeat Sequences
Collapse
Affiliation(s)
- T Kobayashi
- National Institute for Basic Biology, Myodaijicho, Okazaki, 444-8585, Japan
| | | | | | | |
Collapse
|
36
|
Zhao A, Guo A, Liu Z, Pape L. Molecular cloning and analysis of Schizosaccharomyces pombe Reb1p: sequence-specific recognition of two sites in the far upstream rDNA intergenic spacer. Nucleic Acids Res 1997; 25:904-10. [PMID: 9016645 PMCID: PMC146519 DOI: 10.1093/nar/25.4.904] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The coding sequences for a Schizosaccharomyces pombe sequence-specific DNA binding protein, Reb1p, have been cloned. The predicted S. pombe Reb1p is 24-29% identical to mouse TTF-1 (transcription termination factor-1) and Saccharomyces cerevisiae REB1 protein, both of which direct termination of RNA polymerase I catalyzed transcripts. The S.pombe Reb1 cDNA encodes a predicted polypeptide of 504 amino acids with a predicted molecular weight of 58.4 kDa. The S. pombe Reb1p is unusual in that the bipartite DNA binding motif identified originally in S.cerevisiae and Klyveromyces lactis REB1 proteins is uninterrupted and thus S.pombe Reb1p may contain the smallest natural REB1 homologous DNA binding domain. Its genomic coding sequences were shown to be interrupted by two introns. A recombinant histidine-tagged Reb1 protein bearing the rDNA binding domain has two homologous, sequence-specific binding sites in the S. pomber DNA intergenic spacer, located between 289 and 480 nt downstream of the end of the approximately 25S rRNA coding sequences. Each binding site is 13-14 bp downstream of two of the three proposed in vivo termination sites. The core of this 17 bp site, AGGTAAGGGTAATGCAC, is specifically protected by Reb1p in footprinting analysis.
Collapse
Affiliation(s)
- A Zhao
- Department of Chemistry, New York University 10003, USA
| | | | | | | |
Collapse
|
37
|
Liu Z, Zhao A, Chen L, Pape L. Activated levels of rRNA synthesis in fission yeast are driven by an intergenic rDNA region positioned over 2500 nucleotides upstream of the initiation site. Nucleic Acids Res 1997; 25:659-67. [PMID: 9016610 PMCID: PMC146475 DOI: 10.1093/nar/25.3.659] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
RNA polymerase I-catalyzed synthesis of the Schizosaccharomyces pombe approximately 37S pre-rRNAs was shown to be sensitive to regulatory sequences located several kilobases upstream of the initiation site for the rRNA gene. An in vitro transcription system for RNA polymerase I-catalyzed RNA synthesis was established that supports correct and activated transcription from templates bearing a full S. pombe rRNA gene promoter. A 780 bp region starting at -2560 significantly stimulates transcription of ac is-located rDNA promoter and competes with an rDNA promoter in trans, thus displaying some of the activities of rDNA transcriptional enhancers in vitro. Deletion of a 30 bp enhancer-homologous domain in this 780 bp far upstream region blocked its cis-stimulatory effect. The sequence of the S. pombe 3.5 kb intergenic spacer was determined and its organization differs from that of vertebrate, Drosophila, Acanthamoeba and plant intergenic rDNA spacers: it does not contain multiple, imperfect copies of the rRNA gene promoter nor repetitive elements of 140 bp, as are found in vertebrate rDNA enhancers.
Collapse
Affiliation(s)
- Z Liu
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|