1
|
Turner CD, Curran SP. Activated SKN-1 alters the aging trajectories of long-lived Caenorhabditis elegans mutants. Genetics 2025; 229:iyaf016. [PMID: 39874273 PMCID: PMC12005260 DOI: 10.1093/genetics/iyaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
In the presence of stressful environments, the SKN-1 cytoprotective transcription factor is activated to induce the expression of gene targets that can restore homeostasis. However, chronic activation of SKN-1 results in diminished health and a reduction of lifespan. Here, we demonstrate the necessity of modulating SKN-1 activity to maintain the longevity-promoting effects associated with genetic mutations that impair daf-2/insulin receptor signaling, the eat-2 model of dietary restriction, and glp-1-dependent loss of germ cell proliferation. A hallmark of animals with constitutive SKN-1 activation is the age-dependent loss of somatic lipids, and this phenotype is linked to a general reduction in survival in animals harboring the skn-1gf allele. Surprisingly, daf-2lf; skn-1gf double mutant animals do not redistribute somatic lipids, which suggests the insulin signaling pathway functions downstream of SKN-1 in the maintenance of lipid distribution. As expected, the eat-2lf allele, which independently activates SKN-1, continues to display somatic lipid depletion in older ages with and without the skn-1gf activating mutation. In contrast, the presence of the skn-1gf allele does not lead to somatic lipid redistribution in glp-1lf animals that lack a proliferating germline. Taken together, these studies support a genetic model where SKN-1 activity is an important regulator of lipid mobilization in response to nutrient availability that fuels the developing germline by engaging the daf-2/insulin receptor pathway.
Collapse
Affiliation(s)
- Chris D Turner
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Hamdi A, Córdoba-Rojano MA, Monje-Moreno JM, Guillén-Izquierdo E, Rodríguez-Arcos R, Jiménez-Araujo A, Muñoz-Ruiz MJ, Guillén-Bejarano R. Harnessing the Potential of Walnut Leaves from Nerpio: Unveiling Extraction Techniques and Bioactivity Through Caenorhabditis elegans Studies. Foods 2025; 14:1048. [PMID: 40232090 PMCID: PMC11942337 DOI: 10.3390/foods14061048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 04/16/2025] Open
Abstract
This study used Juglans regia leaves from the Gran Jefe variety; this indigenous cultivar from Nerpio is highly valued for its quality and distinct characteristics. This type of walnut is traditionally cultivated in the region and is noted for its organoleptic properties and adaptation to local climatic conditions. Two solvents were tested to determine the optimal extraction conditions for phenolic compounds: 80% ethanol and water. Direct homogenization with an Ultra-Turrax, direct ultrasound, and indirect ultrasound treatments were compared for ethanol extraction. Water extractions were conducted using direct and indirect ultrasound, infusion, and decoction. Compared to water extraction, 80% ethanol proved to be more efficient. Extracting phenolic compounds from 'Gran Jefe' walnut leaves was most effective when using direct extraction methods without either ultrasound assistance or indirect ultrasound treatment. The main compounds identified were trans-3-caffeoylquinic acid and quercetin-3-hexoside isomer 1. The ethanolic extract obtained through direct extraction was selected to study further the bioactivities of 'Gran Jefe' walnut leaves using C. elegans as an in vivo model. Results indicated that the leaf extract enhanced thermal and oxidative stress resistance, promoted fertility, and exhibited neuroprotective effects in models of Alzheimer's and Parkinson's diseases. The observed bioactivities were attributed to the free phenolics present in the ethanolic extract.
Collapse
Affiliation(s)
- Amel Hamdi
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain; (M.A.C.-R.); (E.G.-I.); (R.R.-A.); (A.J.-A.)
- Molecular Biology and Biochemical Engineering Department, Centro Andaluz de Biología del Desarrollo (CABD), University Pablo de Olavide (UPO), CSIC/UPO/JA, Carretera de Utrera Km 1, 41013 Seville, Spain; (J.M.M.-M.); (M.J.M.-R.)
| | - Miguel Angel Córdoba-Rojano
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain; (M.A.C.-R.); (E.G.-I.); (R.R.-A.); (A.J.-A.)
| | - Jose Manuel Monje-Moreno
- Molecular Biology and Biochemical Engineering Department, Centro Andaluz de Biología del Desarrollo (CABD), University Pablo de Olavide (UPO), CSIC/UPO/JA, Carretera de Utrera Km 1, 41013 Seville, Spain; (J.M.M.-M.); (M.J.M.-R.)
| | - Elisa Guillén-Izquierdo
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain; (M.A.C.-R.); (E.G.-I.); (R.R.-A.); (A.J.-A.)
| | - Rocío Rodríguez-Arcos
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain; (M.A.C.-R.); (E.G.-I.); (R.R.-A.); (A.J.-A.)
| | - Ana Jiménez-Araujo
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain; (M.A.C.-R.); (E.G.-I.); (R.R.-A.); (A.J.-A.)
| | - Manuel Jesús Muñoz-Ruiz
- Molecular Biology and Biochemical Engineering Department, Centro Andaluz de Biología del Desarrollo (CABD), University Pablo de Olavide (UPO), CSIC/UPO/JA, Carretera de Utrera Km 1, 41013 Seville, Spain; (J.M.M.-M.); (M.J.M.-R.)
| | - Rafael Guillén-Bejarano
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain; (M.A.C.-R.); (E.G.-I.); (R.R.-A.); (A.J.-A.)
| |
Collapse
|
3
|
Yeom E, Mun H, Lim J, Chun YL, Min KW, Lambert J, Cowart LA, Pierce JS, Ogretmen B, Cho JH, Chang JH, Buchan JR, Pitt J, Kaeberlein M, Kang SU, Kwon ES, Ko S, Choi KM, Lee YS, Ha YS, Kim SJ, Lee KP, Kim HS, Yang SY, Shin CH, Yoon JH, Lee KS. Phosphorylation of an RNA-Binding Protein Rck/Me31b by Hippo Is Essential for Adipose Tissue Aging. Aging Cell 2025:e70022. [PMID: 40070010 DOI: 10.1111/acel.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 05/15/2025] Open
Abstract
The metazoan lifespan is determined in part by a complex signaling network that regulates energy metabolism and stress responses. Key signaling hubs in this network include insulin/IGF-1, AMPK, mTOR, and sirtuins. The Hippo/Mammalian Ste20-like Kinase1 (MST1) pathway has been reported to maintain lifespan in Caenorhabditis elegans, but its role has not been studied in higher metazoans. In this study, we report that overexpression of Hpo, the MST1 homolog in Drosophila melanogaster, decreased lifespan with concomitant changes in lipid metabolism and aging-associated gene expression, while RNAi Hpo depletion increased lifespan. These effects were mediated primarily by Hpo-induced transcriptional activation of the RNA-binding protein maternal expression at 31B (Me31b)/RCK, resulting in stabilization of mRNA-encoding a lipolytic hormone, Akh. In mouse adipocytes, Hpo/Mst1 mediated adipocyte differentiation, phosphorylation of RNA-binding proteins such as Rck, decapping MRNA 2 (Dcp2), enhancer Of MRNA decapping 3 (Edc3), nucleolin (NCL), and glucagon mRNA stability by interacting with Rck. Decreased lifespan in Hpo-overexpressing Drosophila lines required expression of Me31b, but not DCP2, which was potentially mediated by recovering expression of lipid metabolic genes and formation of lipid droplets. Taken together, our findings suggest that Hpo/Mst1 plays a conserved role in longevity by regulating adipogenesis and fatty acid metabolism.
Collapse
Affiliation(s)
- Eunbyul Yeom
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
- Neurophysiology and Metabolism Research Group, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Hyejin Mun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Oncology Science, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Jinhwan Lim
- Department of Environmental and Occupational Heatlh, University of California, Irvine, California, USA
- Translational Gerontology Branch, National Institute of Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Yoo Lim Chun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Johana Lambert
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Hunter Holmes McGuire Veteran's Affairs Medical Center, Richmond, Virginia, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Hunter Holmes McGuire Veteran's Affairs Medical Center, Richmond, Virginia, USA
| | - Jason S Pierce
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jung-Hyun Cho
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, Republic of Korea
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Jason Pitt
- Department of Laboratory Medicine and Pathology, University of Washington, Washington, DC, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Washington, DC, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eun-Soo Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kyoung-Min Choi
- Department of Oncology Science, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Yoon-Su Ha
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Kwang-Pyo Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Hyo-Sung Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Seo Young Yang
- Department of Biology Education, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Hoon Shin
- Department of Oncology Science, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Oncology Science, University of Oklahoma, Oklahoma City, Oklahoma, USA
- Department of Pathology, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Kyu-Sun Lee
- Neurophysiology and Metabolism Research Group, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
4
|
Guo X, Lu J, Miao L, Shen E. Mitochondrial Proteome Reveals Metabolic Tuning by Restricted Insulin Signaling to Promote Longevity in Caenorhabditis elegans. BIOLOGY 2025; 14:279. [PMID: 40136535 PMCID: PMC11940386 DOI: 10.3390/biology14030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
Aging is a time-dependent process of functional decline influenced by genetic and environmental factors. Age-related mitochondrial changes remain incompletely understood. Here, we found that compared to the wild type, the mitochondria of long-lived daf-2 C. elegans maintain youthful morphology and function. Through quantitative proteomic analysis on isolated mitochondria, we identified 257 differentially expressed candidates. Analysis of these changed mitochondrial proteins reveals a significant upregulation of five key mitochondrial metabolic pathways in daf-2 mutants, including branched-chain amino acids (BCAA), reactive oxygen species (ROS), propionate, β-alanine, and fatty acids (FA), all of which are related to daf-2-mediated longevity. In addition, mitochondrial ribosome protein abundance slightly decreased in daf-2 mutants. A mild reduction in mitochondrial elongation factor G (gfm-1) by RNAi extends the lifespan of wild type while decreasing lipid metabolic process and cytoplasmic fatty acid metabolism, suggesting that proper inhibition of mitochondrial translation activity might be important for lifespan extension. Overall, our findings indicate that mitochondrial metabolic modulation contributes to the longevity of daf-2 mutants and further highlights the crucial role of mitochondria in aging.
Collapse
Affiliation(s)
- Xuanxuan Guo
- School of Medicine, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Jiuwei Lu
- Department of Biochemistry, University of California Riverside, Riverside, CA 92521, USA;
| | - Long Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- MOE Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Enzhi Shen
- School of Medicine, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
5
|
Traa A, Tamez González AA, Van Raamsdonk JM. Developmental disruption of the mitochondrial fission gene drp-1 extends the longevity of daf-2 insulin/IGF-1 receptor mutant. GeroScience 2025; 47:877-902. [PMID: 39028454 PMCID: PMC11872967 DOI: 10.1007/s11357-024-01276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
The dynamic nature of the mitochondrial network is regulated by mitochondrial fission and fusion, allowing for re-organization of mitochondria to adapt to the cell's ever-changing needs. As organisms age, mitochondrial fission and fusion become dysregulated and mitochondrial networks become increasingly fragmented. Modulation of mitochondrial dynamics has been shown to affect longevity in fungi, yeast, Drosophila and C. elegans. Disruption of the mitochondrial fission gene drp-1 drastically increases the already long lifespan of daf-2 insulin/IGF-1 signaling (IIS) mutants. In this work, we determined the conditions required for drp-1 disruption to extend daf-2 longevity and explored the molecular mechanisms involved. We found that knockdown of drp-1 during development is sufficient to extend daf-2 lifespan, while tissue-specific knockdown of drp-1 in neurons, intestine or muscle failed to increase daf-2 longevity. Disruption of other genes involved in mitochondrial fission also increased daf-2 lifespan as did treatment with RNA interference clones that decrease mitochondrial fragmentation. In exploring potential mechanisms involved, we found that deletion of drp-1 increases resistance to chronic stresses. In addition, we found that disruption of drp-1 increased mitochondrial and peroxisomal connectedness in daf-2 worms, increased oxidative phosphorylation and ATP levels, and increased mitophagy in daf-2 worms, but did not affect their ROS levels, food consumption or mitochondrial membrane potential. Disruption of mitophagy through RNA interference targeting pink-1 decreased the lifespan of daf-2;drp-1 worms suggesting that increased mitophagy contributes to their extended lifespan. Overall, this work defined the conditions under which drp-1 disruption increases daf-2 lifespan and has identified multiple changes in daf-2;drp-1 mutants that may contribute to their lifespan extension.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Aura A Tamez González
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Tissenbaum HA. Characterizing the Role of daf-16/C. elegans FOXO in Lifespan and Healthspan. Methods Mol Biol 2025; 2871:193-200. [PMID: 39565590 DOI: 10.1007/978-1-0716-4217-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In Caenorhabditis elegans (C. elegans), there is a single FOXO transcription factor homolog, encoded by the gene, daf-16. As a central regulator for multiple pathways, DAF-16 integrates these signals to result in changes in longevity, development, fat storage, stress resistance, innate immunity, and reproduction. One of the main advantages of using C. elegans is the ability to study FOXO in the context of the whole animal. Therefore, manipulating the levels or the activity of daf-16 results in visible, scorable phenotypic changes. DAF-16 is the downstream target of the conserved insulin/IGF-1 signaling (IIS) pathway, a PI 3-kinase signaling cascade that ultimately controls its nuclear localization. Since the IIS pathway is a major regulator of lifespan, almost all studies of lifespan modulation examine the requirement of daf-16. More recently, lifespan analysis has been accompanied by healthspan analysis, referring to the time an animal is healthy. In this chapter, I will focus on the assays to assess lifespan and healthspan of C. elegans FOXO/daf-16, in the context of a whole animal.
Collapse
Affiliation(s)
- Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Krishnan H, Ahmed S, Hubbard SR, Miller WT. Catalytic activities of wild-type C. elegans DAF-2 kinase and dauer-associated mutants. FEBS J 2024; 291:5435-5454. [PMID: 39428852 DOI: 10.1111/febs.17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
DAF-2, the Caenorhabditis elegans insulin-like receptor homolog, regulates larval development, metabolism, stress response, and lifespan. The availability of numerous daf-2 mutant alleles has made it possible to elucidate the genetic mechanisms underlying these physiological processes. The DAF-2 pathway is significantly conserved with the human insulin/IGF-1 signaling pathway; it includes proteins homologous to human IRS, GRB-2, and PI3K, making it an important model to investigate human pathological conditions. We expressed and purified the kinase domain of wild-type DAF-2 to examine the catalytic activity and substrate specificity of the enzyme. Like the human insulin receptor kinase, DAF-2 kinase phosphorylates tyrosines within specific YxN or YxxM motifs, which are important for recruiting downstream effectors. DAF-2 kinase phosphorylated peptides derived from the YxxM and YxN motifs located in the C-terminal extension of the receptor tyrosine kinase, consistent with the idea that the DAF-2 receptor may possess independent signaling capacity. Unlike the human insulin or IGF-1 receptor kinases, DAF-2 kinase was poorly inhibited by the small-molecule inhibitor linsitinib. We also expressed and purified mutant kinases corresponding to daf-2 alleles that result in partial loss-of-function phenotypes in C. elegans. These mutations caused a complete loss of kinase function in vitro. Our biochemical investigations provide new insights into DAF-2 kinase function, and the approach should be useful for studying other mutations to shed light on DAF-2 signaling in C. elegans physiology.
Collapse
Affiliation(s)
- Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
| | - Sultan Ahmed
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NY, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
- Department of Veterans Affairs Medical Center, Northport, NY, USA
| |
Collapse
|
8
|
Satué K, Fazio E, Velasco-Martinez MG, La Fauci D, Barbiera G, Medica P, Cravana C. Can the reduced GH, IGF-1, and ovarian steroids concentrations be considered as suspected biomarkers of age-associated functional deficit in mares? Theriogenology 2024; 228:75-80. [PMID: 39098123 DOI: 10.1016/j.theriogenology.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
In humans' and experimental animals' components of the somatotropic axis, such as growth hormone (GH) and insulin-like growth factor 1 (IGF-1) concentrations, decrease with advancing age. Although there is evidence regarding IGF-1, the effect of age on GH in mares, as well as the relationships between both parameters, have not yet been elucidated. On the other hand, although GH and IGF-1 are related to follicular development, it is unknown if they could be correlated with the circulating concentrations of ovarian steroids in mares, as occurs in other species. The hypothesis of this study was that both GH and IGF-1 could experience physiological changes with advancing age also in mares, and that both GH/IGF-1 could be correlated with oestradiol-17β (E2) and progesterone (P4), as recorded for other species. Hence, the objective of this study was to evaluate the concentrations of GH, IGF-1, E2, and P4 in mares, according to the different ages. Blood samples were drawn from 56 healthy cyclic Spanish Purebred mares belonging to four different age groups: 6-9 years, 10-13 years, 14-16 years and >16 years. Mares aged 6-9 years and 10-13 years showed higher GH concentrations (P < 0.05) than mares of 14-16 and >16 years; and mares aged 14-16 showed higher GH concentrations (P < 0.05) than >16 years (P < 0.05). Mares aged >16 years showed lower IGF-1 concentrations (P < 0.05) than mares of 6-9, 10-13 and 14-16 years (P < 0.05). The concentrations of E2 and P4 showed no significant differences among different age groups. Both GH and IGF-1 were not correlated with each other or with E2 and P4. The concentrations of E2 and P4 did not change with age. Advancing age leads to a decrease in the activity of the somatotropic axis in physiological cyclic mares, represented by a significant GH reduction, which, however, was ascribed for IGF-1 exclusively to mares over 16 years of age, without alterations in steroid hormone patterns.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, 46115, Valencia, Spain.
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Maria Gemma Velasco-Martinez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - Deborah La Fauci
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Giuliana Barbiera
- Pharmaceutical and Chemical Technician, 98168, Messina, Messina, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Cristina Cravana
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| |
Collapse
|
9
|
Turner CD, Curran SP. Activated SKN-1 alters the aging trajectories of long-lived C. elegans mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602737. [PMID: 39026841 PMCID: PMC11257557 DOI: 10.1101/2024.07.09.602737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In the presence of stressful environments, the SKN-1 cytoprotective transcription factor is activated to induce the expression of gene targets that can restore homeostasis. However, chronic activation of SKN-1 results in diminished health and a reduction of lifespan. Here we demonstrate the necessity of modulating SKN-1 activity to maintain the longevity-promoting effects associated with genetic mutations that impair daf-2/insulin receptor signaling, the eat-2 model of caloric restriction, and glp-1-dependent loss of germ cell proliferation. A hallmark of animals with constitutive SKN-1 activation is the age-dependent loss of somatic lipids and this phenotype is linked to a general reduction in survival in animals harboring the skn-1gf allele, but surprisingly, daf-2lf; skn-1gf double mutant animals do not redistribute somatic lipids which suggests the insulin signaling pathway functions downstream of SKN-1 in the maintenance of lipid distribution. As expected, the eat-2lf allele, which independently activates SKN-1, continues to display somatic lipid depletion in older ages with and without the skn-1gf activating mutation. In contrast, the presence of the skn-1gf allele does not lead to somatic lipid redistribution in glp-1lf animals that lack a proliferating germline. Taken together, these studies support a genetic model where SKN-1 activity is an important regulator of lipid mobilization in response to nutrient availability that fuels the developing germline by engaging the daf-2/insulin receptor pathway.
Collapse
Affiliation(s)
- Chris D. Turner
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA.90089
| | - Sean P. Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA.90089
| |
Collapse
|
10
|
Mauro MS, Martin SL, Dumont J, Shirasu-Hiza M, Canman JC. Patterning, regulation, and role of FoxO/DAF-16 in the early embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594029. [PMID: 38798632 PMCID: PMC11118310 DOI: 10.1101/2024.05.13.594029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Insulin resistance and diabetes are associated with many health issues including higher rates of birth defects and miscarriage during pregnancy. Because insulin resistance and diabetes are both associated with obesity, which also affects fertility, the role of insulin signaling itself in embryo development is not well understood. A key downstream target of the insulin/insulin-like growth factor signaling (IIS) pathway is the forkhead family transcription factor FoxO (DAF-16 in C. elegans ). Here, we used quantitative live imaging to measure the patterning of endogenously tagged FoxO/DAF-16 in the early worm embryo. In 2-4-cell stage embryos, FoxO/DAF-16 initially localized uniformly to all cell nuclei, then became dramatically enriched in germ precursor cell nuclei beginning at the 8-cell stage. This nuclear enrichment in early germ precursor cells required germ fate specification, PI3K (AGE-1)- and PTEN (DAF-18)-mediated phospholipid regulation, and the deubiquitylase USP7 (MATH-33), yet was unexpectedly insulin receptor (DAF-2)- and AKT-independent. Functional analysis revealed that FoxO/DAF-16 acts as a cell cycle pacer for early cleavage divisions-without FoxO/DAF-16 cell cycles were shorter than in controls, especially in germ lineage cells. These results reveal the germ lineage specific patterning, upstream regulation, and cell cycle role for FoxO/DAF-16 during early C. elegans embryogenesis.
Collapse
|
11
|
Rodriguez-Colman MJ, Dansen TB, Burgering BMT. FOXO transcription factors as mediators of stress adaptation. Nat Rev Mol Cell Biol 2024; 25:46-64. [PMID: 37710009 DOI: 10.1038/s41580-023-00649-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/16/2023]
Abstract
The forkhead box protein O (FOXO, consisting of FOXO1, FOXO3, FOXO4 and FOXO6) transcription factors are the mammalian orthologues of Caenorhabditis elegans DAF-16, which gained notoriety for its capability to double lifespan in the absence of daf-2 (the gene encoding the worm insulin receptor homologue). Since then, research has provided many mechanistic details on FOXO regulation and FOXO activity. Furthermore, conditional knockout experiments have provided a wealth of data as to how FOXOs control development and homeostasis at the organ and organism levels. The lifespan-extending capabilities of DAF-16/FOXO are highly correlated with their ability to induce stress response pathways. Exogenous and endogenous stress, such as cellular redox stress, are considered the main drivers of the functional decline that characterizes ageing. Functional decline often manifests as disease, and decrease in FOXO activity indeed negatively impacts on major age-related diseases such as cancer and diabetes. In this context, the main function of FOXOs is considered to preserve cellular and organismal homeostasis, through regulation of stress response pathways. Paradoxically, the same FOXO-mediated responses can also aid the survival of dysfunctional cells once these eventually emerge. This general property to control stress responses may underlie the complex and less-evident roles of FOXOs in human lifespan as opposed to model organisms such as C. elegans.
Collapse
Affiliation(s)
| | - Tobias B Dansen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
12
|
Михеев РК, Андреева ЕН, Григорян ОР, Шереметьева ЕВ, Абсатарова ЮС, Одарченко АС, Оплетаева ОН. [Molecular and cellular mechanisms of ageing: modern knowledge (literature review)]. PROBLEMY ENDOKRINOLOGII 2023; 69:45-54. [PMID: 37968951 PMCID: PMC10680502 DOI: 10.14341/probl13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 11/17/2023]
Abstract
Ageing (as known as eldering, senescence) is a genetically and epigenetically programmed pathophysiological process. Velocity of biological ageing is defined as balance between alteration and reparation of body structures. According to last World Health Organization (WHO) highlights ageing still stays an extremely actual scientific, social and demographic problem: in 2020 total number of people older than 60 years and older was 1 billion people; in 2030 future number may be 1,4 billion people, in 2050 - 2,1 billion people. Absence of single universal theory of aging nowadays is reason for scientifical and clinical collaboration between biologists and doctors, including endocrinologists. Designing of potentially effective newest anti-ageing strategies (such as natural/synthetic telomerase regulators, mesenchymal stem cells etc.) is of interest to scientific community. The aim of present article is a review of modern omics (genomic, proteomic, metabolomic) ageing mechanisms, potential ways of targeted prevention and treatment of age-related disease according to conception of personalized medicine. Present review is narrative, it does not lead to systematic review, meta-analysis and does not aim to commercial advertisement. Review has been provided via PubMed article that have been published since 1979 until 2022.
Collapse
Affiliation(s)
- Р. К. Михеев
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. Н. Андреева
- Национальный медицинский исследовательский центр эндокринологии; Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - О. Р. Григорян
- Национальный медицинский исследовательский центр эндокринологии
| | | | | | - А. С. Одарченко
- Национальный медицинский исследовательский центр эндокринологии
| | | |
Collapse
|
13
|
Téfit MA, Budiman T, Dupriest A, Yew JY. Environmental microbes promote phenotypic plasticity in reproduction and sleep behaviour. Mol Ecol 2023; 32:5186-5200. [PMID: 37577956 PMCID: PMC10544802 DOI: 10.1111/mec.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
The microbiome has been hypothesized as a driving force of phenotypic variation in host organisms that is capable of extending metabolic processes, altering development and in some cases, conferring novel functions that are critical for survival. Only a few studies have directly shown a causal role for the environmental microbiome in altering host phenotypic features. To assess the extent to which environmental microbes induce variation in host life-history traits and behaviour, we inoculated axenic Drosophila melanogaster with microbes isolated from drosophilid populations collected from two different field sites and generated two populations with distinct bacterial and fungal profiles. We show that microbes isolated from environmental sites with modest abiotic differences induce large variation in host reproduction, fatty acid levels, stress tolerance and sleep behaviour. Importantly, clearing microbes from each experimental population removed the phenotypic differences. The results support the causal role of environmental microbes as drivers of host phenotypic plasticity and potentially, rapid adaptation and evolution.
Collapse
Affiliation(s)
- Mélisandre A Téfit
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Tifanny Budiman
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Adrianna Dupriest
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Joanne Y Yew
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
14
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
15
|
Ghaddar A, Mony VK, Mishra S, Berhanu S, Johnson JC, Enriquez-Hesles E, Harrison E, Patel A, Horak MK, Smith JS, O'Rourke EJ. Increased alcohol dehydrogenase 1 activity promotes longevity. Curr Biol 2023; 33:1036-1046.e6. [PMID: 36805847 PMCID: PMC10236445 DOI: 10.1016/j.cub.2023.01.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/28/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
Several molecules can extend healthspan and lifespan across organisms. However, most are upstream signaling hubs or transcription factors orchestrating complex anti-aging programs. Therefore, these molecules point to but do not reveal the fundamental mechanisms driving longevity. Instead, downstream effectors that are necessary and sufficient to promote longevity across conditions or organisms may reveal the fundamental anti-aging drivers. Toward this goal, we searched for effectors acting downstream of the transcription factor EB (TFEB), known as HLH-30 in C. elegans, because TFEB/HLH-30 is necessary across anti-aging interventions and its overexpression is sufficient to extend C. elegans lifespan and reduce biomarkers of aging in mammals including humans. As a result, we present an alcohol-dehydrogenase-mediated anti-aging response (AMAR) that is essential for C. elegans longevity driven by HLH-30 overexpression, caloric restriction, mTOR inhibition, and insulin-signaling deficiency. The sole overexpression of ADH-1 is sufficient to activate AMAR, which extends healthspan and lifespan by reducing the levels of glycerol-an age-associated and aging-promoting alcohol. Adh1 overexpression is also sufficient to promote longevity in yeast, and adh-1 orthologs are induced in calorically restricted mice and humans, hinting at ADH-1 acting as an anti-aging effector across phyla.
Collapse
Affiliation(s)
- Abbas Ghaddar
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Vinod K Mony
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Swarup Mishra
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Samuel Berhanu
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - James C Johnson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Elisa Enriquez-Hesles
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Emma Harrison
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Aaroh Patel
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Mary Kate Horak
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA; Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Jeffrey S Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Eyleen J O'Rourke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA; Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
16
|
Asparagus Fructans as Emerging Prebiotics. Foods 2022; 12:foods12010081. [PMID: 36613297 PMCID: PMC9818401 DOI: 10.3390/foods12010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Commercial fructans (inulin and oligofructose) are generally obtained from crops such as chicory, Jerusalem artichoke or agave. However, there are agricultural by-products, namely asparagus roots, which could be considered potential sources of fructans. In this work, the fructans extracted from asparagus roots and three commercial ones from chicory and agave were studied in order to compare their composition, physicochemical characteristics, and potential health effects. Asparagus fructans had similar chemical composition to the others, especially in moisture, simple sugars and total fructan contents. However, its contents of ash, protein and phenolic compounds were higher. FTIR analysis confirmed these differences in composition. Orafti®GR showed the highest degree of polymerization (DP) of up to 40, with asparagus fructans (up to 25) falling between Orafti®GR and the others (DP 10-11). Although asparagus fructan powder had a lower fructan content and lower DP than Orafti®GR, its viscosity was higher, probably due to the presence of proteins. The existence of phenolic compounds lent antioxidant activity to asparagus fructans. The prebiotic activity in vitro of the four samples was similar and, in preliminary assays, asparagus fructan extract presented health effects related to infertility and diabetes diseases. All these characteristics confer a great potential for asparagus fructans to be included in the prebiotics market.
Collapse
|
17
|
One-day thermal regime extends the lifespan in Caenorhabditis elegans. Comput Struct Biotechnol J 2022; 21:495-505. [PMID: 36618984 PMCID: PMC9813578 DOI: 10.1016/j.csbj.2022.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Environmental factors, including temperature, can modulate an animal's lifespan. However, their underlying mechanisms remain largely undefined. We observed a profound effect of temperature on the aging of Caenorhabditis elegans (C. elegans) by performing proteomic analysis at different time points (young adult, middle age, and old age) and temperature conditions (20 °C and 25 °C). Importantly, although at the higher temperature, animals had short life spans, the shift from 20 °C to 25 °C for one day during early adulthood was beneficial for protein homeostasis since; it decreased protein synthesis and increased degradation. Consistent with our findings, animals who lived longer in the 25 °C shift were also more resistant to high temperatures along with oxidative and UV stresses. Furthermore, the lifespan extension by the 25 °C shift was mediated by three important transcription factors, namely FOXO/DAF-16, HSF-1, and HIF-1. We revealed an unexpected and complicated mechanism underlying the effects of temperature on aging, which could potentially aid in developing strategies to treat age-related diseases. Our data are available in ProteomeXchange with the identifier PXD024916.
Collapse
|
18
|
Egan BM, Scharf A, Pohl F, Kornfeld K. Control of aging by the renin–angiotensin system: a review of C. elegans, Drosophila, and mammals. Front Pharmacol 2022; 13:938650. [PMID: 36188619 PMCID: PMC9518657 DOI: 10.3389/fphar.2022.938650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
The free-living, non-parasitic nematode Caenorhabditis elegans is a premier model organism for the study of aging and longevity due to its short lifespan, powerful genetic tools, and conservation of fundamental mechanisms with mammals. Approximately 70 percent of human genes have homologs in C. elegans, including many that encode proteins in pathways that influence aging. Numerous genetic pathways have been identified in C. elegans that affect lifespan, including the dietary restriction pathway, the insulin/insulin-like growth factor (IGF) signaling pathway, and the disruption of components of the mitochondrial electron transport chain. C. elegans is also a powerful system for performing drug screens, and many lifespan-extending compounds have been reported; notably, several FDA-approved medications extend the lifespan in C. elegans, raising the possibility that they can also extend the lifespan in humans. The renin–angiotensin system (RAS) in mammals is an endocrine system that regulates blood pressure and a paracrine system that acts in a wide range of tissues to control physiological processes; it is a popular target for drugs that reduce blood pressure, including angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs). Emerging evidence indicates that this system influences aging. In C. elegans, decreasing the activity of the ACE homolog acn-1 or treatment with the ACE-inhibitor Captopril significantly extends the lifespan. In Drosophila, treatment with ACE inhibitors extends the lifespan. In rodents, manipulating the RAS with genetic or pharmacological interventions can extend the lifespan. In humans, polymorphisms in the ACE gene are associated with extreme longevity. These results suggest the RAS plays a conserved role in controlling longevity. Here, we review studies of the RAS and aging, emphasizing the potential of C. elegans as a model for understanding the mechanism of lifespan control.
Collapse
Affiliation(s)
- Brian M. Egan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrea Scharf
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, United States
| | - Franziska Pohl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Kerry Kornfeld,
| |
Collapse
|
19
|
Fu N, Li J, Ren L, Li X, Wang M, Li F, Zong S, Luo Y. Chromosome-level genome assembly of Monochamus saltuarius reveals its adaptation and interaction mechanism with pine wood nematode. Int J Biol Macromol 2022; 222:325-336. [PMID: 36115455 DOI: 10.1016/j.ijbiomac.2022.09.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022]
Abstract
Monochamus saltuarius (Coleoptera: Cerambycidae) was reported as the vector beetle of the pine wood nematode (PWN, Bursaphelenchus xylophilus) in Japan and Europe. It was first reported to transmitted the PWN to native Pinus species in 2018 in Liaoning Province, China. However, the lack of genomic resources has limited the in-depth understanding of its interspecific relationship with PWN. Here, we obtained a chromosome-level reference genome of M. saltuarius combining Illumina, Nanopore and Hi-C sequencing technologies. We assembled the scaffolds into ten chromosomes (including an X chromosome) and obtained a 682.23 Mb chromosome-level genome with a N50 of 73.69 Mb. In total, 427.67 Mb (62.69 %) repeat sequences were identified and 14, 492 protein-coding genes were predicted, of which 93.06 % were annotated. We described the mth/mthl, P450, OBP and OR gene families associated with the vector beetle's development and resistance, as well as the host selection and adaptation, which serve as a valuable resource for understanding the host adaptation in insects during evolution. This high quality reference genome of M. saltuarius also provide new avenues for researching the mechanism of this synergistic damage between vector beetles and PWN.
Collapse
Affiliation(s)
- Ningning Fu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jiaxing Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | | | - Ming Wang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Fengqi Li
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
20
|
Naranjo-Galindo FJ, Ai R, Fang EF, Nilsen HL, SenGupta T. C. elegans as an Animal Model to Study the Intersection of DNA Repair, Aging and Neurodegeneration. FRONTIERS IN AGING 2022; 3:916118. [PMID: 35821838 PMCID: PMC9261396 DOI: 10.3389/fragi.2022.916118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022]
Abstract
Since its introduction as a genetic model organism, Caenorhabditis elegans has yielded insights into the causes of aging. In addition, it has provided a molecular understanding of mechanisms of neurodegeneration, one of the devastating effects of aging. However, C. elegans has been less popular as an animal model to investigate DNA repair and genomic instability, which is a major hallmark of aging and also a cause of many rare neurological disorders. This article provides an overview of DNA repair pathways in C. elegans and the impact of DNA repair on aging hallmarks, such as mitochondrial dysfunction, telomere maintenance, and autophagy. In addition, we discuss how the combination of biological characteristics, new technical tools, and the potential of following precise phenotypic assays through a natural life-course make C. elegans an ideal model organism to study how DNA repair impact neurodegeneration in models of common age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco José Naranjo-Galindo
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Ruixue Ai
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Tanima SenGupta
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
21
|
Hodge F, Bajuszova V, van Oosten-Hawle P. The Intestine as a Lifespan- and Proteostasis-Promoting Signaling Tissue. FRONTIERS IN AGING 2022; 3:897741. [PMID: 35821863 PMCID: PMC9261303 DOI: 10.3389/fragi.2022.897741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022]
Abstract
In multicellular organisms such as Caenorhabditis elegans, cellular stress stimuli and responses are communicated between tissues to promote organismal health- and lifespan. The nervous system is the predominant regulator of cell nonautonomous proteostasis that orchestrates systemic stress responses to integrate both internal and external stimuli. This review highlights the role of the intestine in mediating cell nonautonomous stress responses and explores recent findings that suggest a central role for the intestine to regulate organismal proteostasis. As a tissue that receives and further transduces signals from the nervous system in response to dietary restriction, heat- and oxidative stress, and hypoxia, we explore evidence suggesting the intestine is a key regulatory organ itself. From the perspective of naturally occurring stressors such as dietary restriction and pathogen infection we highlight how the intestine can function as a key regulator of organismal proteostasis by integrating insulin/IGF-like signaling, miRNA-, neuropeptide- and metabolic signaling to alter distal tissue functions in promoting survival, health- and lifespan.
Collapse
Affiliation(s)
| | | | - Patricija van Oosten-Hawle
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
22
|
Athar F, Templeman NM. C. elegans as a model organism to study female reproductive health. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111152. [PMID: 35032657 DOI: 10.1016/j.cbpa.2022.111152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Female reproductive health has been historically understudied and underfunded. Here, we present the advantages of using a free-living nematode, Caenorhabditis elegans, as an animal system to study fundamental aspects of female reproductive health. C. elegans is a powerful high-throughput model organism that shares key genetic and physiological similarities with humans. In this review, we highlight areas of pressing medical and biological importance in the 21st century within the context of female reproductive health. These include the decline in female reproductive capacity with increasing chronological age, reproductive dysfunction arising from toxic environmental insults, and cancers of the reproductive system. C. elegans has been instrumental in uncovering mechanistic insights underlying these processes, and has been valuable for developing and testing therapeutics to combat them. Adopting a convenient model organism such as C. elegans for studying reproductive health will encourage further research into this field, and broaden opportunities for making advancements into evolutionarily conserved mechanisms that control reproductive function.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
23
|
Abstract
Biology of aging is an active and rapidly expanding area of biomedical research. Over the years, focus of work in this field has been gradually shifting from studying the effects and symptoms of aging to searching for mechanisms of the aging process. Progress of this work led to an additional shift from looking for "the mechanism" of aging and formulating the corresponding "theories of aging" to appreciation that aging represents a net result of multiple physiological changes and their intricate interactions. It was also shown that mechanisms of aging include nutrient-dependent signaling pathways which have been remarkably conserved in the course of the evolution. Another important development in this field is increased emphasis on searching for pharmacological and environmental interventions that can extend healthspan or influence other aspects of aging. Progress in understanding the key role of aging as a risk factor for chronic disease provides impetus for these studies. Data from the recent pandemic provided additional evidence for the impact of age on resilience. Progress of work in this area also was influenced by major analytical and technological advances, including greatly improved methods for the study of gene expression, protein, lipids, and metabolites profiles, enhanced ability to produce various genetic modifications and novel approaches to assessment of biological age. Progress in research on the biology of aging provides reasons for optimism about the chances that safe and widely applicable anti-aging interventions with significant benefits for both individual and public health will be developed in the not too distant future.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, 801 N. Rutledge St., P. O. Box 19628, Springfield, IL, 62794-9628, USA.
| |
Collapse
|
24
|
Hills-Muckey K, Martinez MAQ, Stec N, Hebbar S, Saldanha J, Medwig-Kinney TN, Moore FEQ, Ivanova M, Morao A, Ward JD, Moss EG, Ercan S, Zinovyeva AY, Matus DQ, Hammell CM. An engineered, orthogonal auxin analog/AtTIR1(F79G) pairing improves both specificity and efficacy of the auxin degradation system in Caenorhabditis elegans. Genetics 2022; 220:iyab174. [PMID: 34739048 PMCID: PMC9097248 DOI: 10.1093/genetics/iyab174] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The auxin-inducible degradation system in C. elegans allows for spatial and temporal control of protein degradation via heterologous expression of a single Arabidopsis thaliana F-box protein, transport inhibitor response 1 (AtTIR1). In this system, exogenous auxin (Indole-3-acetic acid; IAA) enhances the ability of AtTIR1 to function as a substrate recognition component that adapts engineered degron-tagged proteins to the endogenous C. elegans E3 ubiquitin ligases complex [SKR-1/2-CUL-1-F-box (SCF)], targeting them for degradation by the proteosome. While this system has been employed to dissect the developmental functions of many C. elegans proteins, we have found that several auxin-inducible degron (AID)-tagged proteins are constitutively degraded by AtTIR1 in the absence of auxin, leading to undesired loss-of-function phenotypes. In this manuscript, we adapt an orthogonal auxin derivative/mutant AtTIR1 pair [C. elegans AID version 2 (C.e.AIDv2)] that transforms the specificity of allosteric regulation of TIR1 from IAA to one that is dependent on an auxin derivative harboring a bulky aryl group (5-Ph-IAA). We find that a mutant AtTIR1(F79G) allele that alters the ligand-binding interface of TIR1 dramatically reduces ligand-independent degradation of multiple AID*-tagged proteins. In addition to solving the ectopic degradation problem for some AID-targets, the addition of 5-Ph-IAA to culture media of animals expressing AtTIR1(F79G) leads to more penetrant loss-of-function phenotypes for AID*-tagged proteins than those elicited by the AtTIR1-IAA pairing at similar auxin analog concentrations. The improved specificity and efficacy afforded by the mutant AtTIR1(F79G) allele expand the utility of the AID system and broaden the number of proteins that can be effectively targeted with it.
Collapse
Affiliation(s)
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Natalia Stec
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Shilpa Hebbar
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Joanne Saldanha
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Frances E Q Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Ivanova
- Department of Molecular Biology, Rowan University, Stratford, NJ 08084, USA
| | - Ana Morao
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - J D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Eric G Moss
- Department of Molecular Biology, Rowan University, Stratford, NJ 08084, USA
| | - Sevinc Ercan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Anna Y Zinovyeva
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
25
|
Bartke A, Brown-Borg H. Mutations Affecting Mammalian Aging: GH and GHR vs IGF-1 and Insulin. Front Genet 2021; 12:667355. [PMID: 34899820 PMCID: PMC8652133 DOI: 10.3389/fgene.2021.667355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Holly Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
26
|
Tiwary E, Hu M, Prasain JK. Sperm-Guiding Unconventional Prostaglandins in C. elegans: Synthesis and Signaling. Metabolites 2021; 11:metabo11120853. [PMID: 34940611 PMCID: PMC8705762 DOI: 10.3390/metabo11120853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins comprise a family of lipid signaling molecules derived from polyunsaturated fatty acids and are involved in a wide array of biological processes, including fertilization. Prostaglandin-endoperoxide synthase (a.k.a. cyclooxygenase or Cox) initiates prostaglandin synthesis from 20-carbon polyunsaturated fatty acids, such as arachidonic acid. Oocytes of Caenorhabditis elegans (C. elegans) have been shown to secrete sperm-guidance cues prostaglandins, independent of Cox enzymes. Both prostaglandin synthesis and signal transduction in C. elegans are environmentally modulated pathways that regulate sperm guidance to the fertilization site. Environmental factors such as food triggers insulin and TGF-β secretion and their levels regulate tissue-specific prostaglandin synthesis in C. elegans. This novel PG pathway is abundant in mouse and human ovarian follicular fluid, where their functions, mechanism of synthesis and pathways remain to be established. Given the importance of prostaglandins in reproductive processes, a better understanding of how diets and other environmental factors influence their synthesis and function may lead to new strategies towards improving fertility in mammals.
Collapse
Affiliation(s)
- Ekta Tiwary
- Department of Medicines, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Muhan Hu
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Jeevan K. Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-(205)-996-2612
| |
Collapse
|
27
|
Das S, Min S, Prahlad V. Gene bookmarking by the heat shock transcription factor programs the insulin-like signaling pathway. Mol Cell 2021; 81:4843-4860.e8. [PMID: 34648748 PMCID: PMC8642288 DOI: 10.1016/j.molcel.2021.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/09/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Maternal stress can have long-lasting epigenetic effects on offspring. To examine how epigenetic changes are triggered by stress, we examined the effects of activating the universal stress-responsive heat shock transcription factor HSF-1 in the germline of Caenorhabditis elegans. We show that, when activated in germ cells, HSF-1 recruits MET-2, the putative histone 3 lysine 9 (H3K9) methyltransferase responsible for repressive H3K9me2 (H3K9 dimethyl) marks in chromatin, and negatively bookmarks the insulin receptor daf-2 and other HSF-1 target genes. Increased H3K9me2 at these genes persists in adult progeny and shifts their stress response strategy away from inducible chaperone expression as a mechanism to survive stress and instead rely on decreased insulin/insulin growth factor (IGF-1)-like signaling (IIS). Depending on the duration of maternal heat stress exposure, this epigenetic memory is inherited by the next generation. Thus, paradoxically, HSF-1 recruits the germline machinery normally responsible for erasing transcriptional memory but, instead, establishes a heritable epigenetic memory of prior stress exposure.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA
| | - Sehee Min
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA; Department of Biology, 143 Biology Building, Iowa City, IA 52242-1324, USA; Iowa Neuroscience Institute, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA.
| |
Collapse
|
28
|
Context-specific regulation of lysosomal lipolysis through network-level diverting of transcription factor interactions. Proc Natl Acad Sci U S A 2021; 118:2104832118. [PMID: 34607947 DOI: 10.1073/pnas.2104832118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Plasticity in multicellular organisms involves signaling pathways converting contexts-either natural environmental challenges or laboratory perturbations-into context-specific changes in gene expression. Congruently, the interactions between the signaling molecules and transcription factors (TF) regulating these responses are also context specific. However, when a target gene responds across contexts, the upstream TF identified in one context is often inferred to regulate it across contexts. Reconciling these stable TF-target gene pair inferences with the context-specific nature of homeostatic responses is therefore needed. The induction of the Caenorhabditis elegans genes lipl-3 and lipl-4 is observed in many genetic contexts and is essential to survival during fasting. We find DAF-16/FOXO mediating lipl-4 induction in all contexts tested; hence, lipl-4 regulation seems context independent and compatible with across-context inferences. In contrast, DAF-16-mediated regulation of lipl-3 is context specific. DAF-16 reduces the induction of lipl-3 during fasting, yet it promotes it during oxidative stress. Through discrete dynamic modeling and genetic epistasis, we define that DAF-16 represses HLH-30/TFEB-the main TF activating lipl-3 during fasting. Contrastingly, DAF-16 activates the stress-responsive TF HSF-1 during oxidative stress, which promotes C. elegans survival through induction of lipl-3 Furthermore, the TF MXL-3 contributes to the dominance of HSF-1 at the expense of HLH-30 during oxidative stress but not during fasting. This study shows how context-specific diverting of functional interactions within a molecular network allows cells to specifically respond to a large number of contexts with a limited number of molecular players, a mode of transcriptional regulation we name "contextualized transcription."
Collapse
|
29
|
Clark JF, Ciccarelli EJ, Kayastha P, Ranepura G, Yamamoto KK, Hasan MS, Madaan U, Meléndez A, Savage-Dunn C. BMP pathway regulation of insulin signaling components promotes lipid storage in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009836. [PMID: 34634043 PMCID: PMC8530300 DOI: 10.1371/journal.pgen.1009836] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
A small number of peptide growth factor ligands are used repeatedly in development and homeostasis to drive programs of cell differentiation and function. Cells and tissues must integrate inputs from these diverse signals correctly, while failure to do so leads to pathology, reduced fitness, or death. Previous work using the nematode C. elegans identified an interaction between the bone morphogenetic protein (BMP) and insulin/IGF-1-like signaling (IIS) pathways in the regulation of lipid homeostasis. The molecular components required for this interaction, however, were not fully understood. Here we report that INS-4, one of 40 insulin-like peptides (ILPs), is regulated by BMP signaling to modulate fat accumulation. Furthermore, we find that the IIS transcription factor DAF-16/FoxO, but not SKN-1/Nrf, acts downstream of BMP signaling in lipid homeostasis. Interestingly, BMP activity alters sensitivity of these two transcription factors to IIS-promoted cytoplasmic retention in opposite ways. Finally, we probe the extent of BMP and IIS interactions by testing additional IIS functions including dauer formation, aging, and autophagy induction. Coupled with our previous work and that of other groups, we conclude that BMP and IIS pathways have at least three modes of interaction: independent, epistatic, and antagonistic. The molecular interactions we identify provide new insight into mechanisms of signaling crosstalk and potential therapeutic targets for IIS-related pathologies such as diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- James F. Clark
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Emma J. Ciccarelli
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Peter Kayastha
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
| | - Gehan Ranepura
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
| | - Katerina K. Yamamoto
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Muhammad S. Hasan
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
| | - Uday Madaan
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Alicia Meléndez
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Cathy Savage-Dunn
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Hussain S, Yadav SS, Banerjee M, Usman K, Khattri S. Evaluation of the Effect of FOXO3 rs13217795 Genotype and Minor Allele (C) on Clinical Chemistry and Genetic Risk of Diabetes Among the Elderly Individuals from Northern India. Mol Syndromol 2021; 13:99-107. [DOI: 10.1159/000518636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022] Open
Abstract
The forkhead box O family (FOXO) is expressed ubiquitously in a spatio-temporal manner and plays a key role in cellular metabolism, senescence, and aging. Genetic mutations in FOXO lead to metabolic diseases and cancer,and affect the longevity of individuals. Our study investigated how the genetic risk of type 2 diabetes mellitus (T2DM) altered due to an intronic variant rs13217795 of the longevity-associated <i>FOXO3</i> gene in the geriatric population of North India. Genotypic characteristics of rs13217795 were determined among 347 age sex-matched (177 diabetic cases, 170 healthy controls) elderly individuals by TaqMan SNP assays after clinical assessment. Clinical chemistry and circulating cytokines level were assessed by biochemical and immunoassays. Genotype frequencies were not significantly (<i>p</i> = 0.526) different between cases and controls. The minor allele (C) frequency in diabetic cases and controls was 0.47 and 0.49, respectively (OR = 0.94, 95% CI = 0.69–1.26, <i>p</i> > 0.05). The minor allele was associated with lower fasting plasma glucose (FPG), fasting insulin, HOMA-IR, CRP, TNF-α, and IL-6 (<i>p</i> < 0.05). The homozygous minor allele carriers showed significantly lower levels of FPG, HOMA-IR, and TNF-α in T2DM patients. The minor allele (C) of intronic polymorphism in <i>FOXO3</i> (rs13217795: T/C) confers the protective role characterized by its association with a decrease in glycemic and insulin resistance and proinflammatory markers.
Collapse
|
31
|
Ke W, Reed JN, Yang C, Higgason N, Rayyan L, Wählby C, Carpenter AE, Civelek M, O’Rourke EJ. Genes in human obesity loci are causal obesity genes in C. elegans. PLoS Genet 2021; 17:e1009736. [PMID: 34492009 PMCID: PMC8462697 DOI: 10.1371/journal.pgen.1009736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/24/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and its associated metabolic syndrome are a leading cause of morbidity and mortality. Given the disease's heavy burden on patients and the healthcare system, there has been increased interest in identifying pharmacological targets for the treatment and prevention of obesity. Towards this end, genome-wide association studies (GWAS) have identified hundreds of human genetic variants associated with obesity. The next challenge is to experimentally define which of these variants are causally linked to obesity, and could therefore become targets for the treatment or prevention of obesity. Here we employ high-throughput in vivo RNAi screening to test for causality 293 C. elegans orthologs of human obesity-candidate genes reported in GWAS. We RNAi screened these 293 genes in C. elegans subject to two different feeding regimens: (1) regular diet, and (2) high-fructose diet, which we developed and present here as an invertebrate model of diet-induced obesity (DIO). We report 14 genes that promote obesity and 3 genes that prevent DIO when silenced in C. elegans. Further, we show that knock-down of the 3 DIO genes not only prevents excessive fat accumulation in primary and ectopic fat depots but also improves the health and extends the lifespan of C. elegans overconsuming fructose. Importantly, the direction of the association between expression variants in these loci and obesity in mice and humans matches the phenotypic outcome of the loss-of-function of the C. elegans ortholog genes, supporting the notion that some of these genes would be causally linked to obesity across phylogeny. Therefore, in addition to defining causality for several genes so far merely correlated with obesity, this study demonstrates the value of model systems compatible with in vivo high-throughput genetic screening to causally link GWAS gene candidates to human diseases.
Collapse
Affiliation(s)
- Wenfan Ke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jordan N. Reed
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
| | - Chenyu Yang
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Noel Higgason
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Leila Rayyan
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carolina Wählby
- Department of Information Technology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Anne E. Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mete Civelek
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Eyleen J. O’Rourke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Simpson DJ, Chandra T. Epigenetic age prediction. Aging Cell 2021; 20:e13452. [PMID: 34415665 PMCID: PMC8441394 DOI: 10.1111/acel.13452] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries.
Collapse
Affiliation(s)
- Daniel J. Simpson
- MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tamir Chandra
- MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|
33
|
MHY2013 Modulates Age-related Inflammation and Insulin Resistance by Suppressing the Akt/FOXO1/IL-1β Axis and MAPK-mediated NF-κB Signaling in Aged Rat Liver. Appl Immunohistochem Mol Morphol 2020; 28:579-592. [PMID: 32902936 DOI: 10.1097/pai.0000000000000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic inflammation is a major risk factor underlying aging and age-associated diseases. It impairs normal lipid accumulation, adipose tissue function, and mitochondrial function, which eventually lead to insulin resistance. Peroxisome proliferator-activated receptors (PPARs) critically regulate gluconeogenesis, lipid metabolism, and the lipid absorption and breakdown process, and PPAR activity decreases in the liver during aging. In the present study, we investigated the ability of 2-(4-(5,6-methylenedioxybenzo[d]thiazol-2-yl)-2-methylphenoxy)-2-methylpropanoic acid (MHY2013), synthesized PPARα/PPARβ/PPARγ pan agonist, to suppress the inflammatory response and attenuate insulin resistance in aged rat liver. Six- and 20-month-old rats were divided into 4 groups: young and old rats fed ad libitum; and old rats fed ad libitum supplemented with MHY2013 (1 mg and 5 mg/kg/d for 4 wk). We found that MHY2013 supplementation efficiently downregulated the activity of nuclear factor-κB through JNK/ERK/p38 mitogen-activated protein kinase signaling in the liver of aged rats. In addition, MHY2013 treatment increased hepatic insulin signaling, and the downstream signaling activity of FOXO1, which is negatively regulated by Akt. Downregulation of Akt increases expression of FOXO1, which acts as a transcription factor and increases transcription of interleukin-1β, leading to hepatic inflammation. The major finding of this study is that MHY2013 acts as a therapeutic agent against age-related inflammation associated with insulin resistance by activating PPARα, PPARβ, and PPARγ. Thus, the study provides evidence for the anti-inflammatory properties of MHY2013, and the role it plays in the regulation of age-related alterations in signal transduction pathways.
Collapse
|
34
|
Wong SS, Yu J, Schroeder FC, Kim DH. Population Density Modulates the Duration of Reproduction of C. elegans. Curr Biol 2020; 30:2602-2607.e2. [PMID: 32442457 DOI: 10.1016/j.cub.2020.04.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Population density can modulate the developmental trajectory of Caenorhabditis elegans larvae by promoting entry into dauer diapause, which is characterized by metabolic and anatomical remodeling and stress resistance [1, 2]. Genetic analysis of dauer formation has identified the involvement of evolutionarily conserved endocrine signaling pathways, including the DAF-2/insulin-like receptor signaling pathway [3-7]. Chemical and metabolomic analysis of dauer-inducing pheromone has identified a family of small molecules, ascarosides, which act potently to communicate increased population density and promote dauer formation [1, 8-10]. Here, we show that adult animals respond to ascarosides produced under conditions of increased population density by increasing the duration of reproduction. We observe that the ascarosides that promote dauer entry of larvae also act on adult animals to attenuate expression of the insulin peptide INS-6 from the ASI chemosensory neurons, resulting in diminished neuroendocrine insulin signaling that extends the duration of reproduction. Genetic analysis of ins-6 and corresponding insulin-signaling pathway mutants showed that the effect of increased population density on reproductive span was mimicked by ins-6 loss of function that exerted effects on duration of reproduction through the canonical DAF-2-DAF-16 pathway. We further observed that the effect of population density on reproductive span acted through DAF-16-dependent and DAF-16-independent pathways upstream of DAF-12, paralleling in adults what has been observed for the dauer developmental decision of larvae. Our data suggest that, under conditions of increased population density, C. elegans animals prolong the duration of reproductive egg laying, which may enable the subsequent development of progeny under more favorable conditions.
Collapse
Affiliation(s)
- Spencer S Wong
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jingfang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14850, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca 14850, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14850, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca 14850, NY, USA
| | - Dennis H Kim
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Parker GA, Kohn N, Spirina A, McMillen A, Huang W, Mackay TFC. Genetic Basis of Increased Lifespan and Postponed Senescence in Drosophila melanogaster. G3 (BETHESDA, MD.) 2020; 10:1087-1098. [PMID: 31969430 PMCID: PMC7056975 DOI: 10.1534/g3.120.401041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/21/2020] [Indexed: 01/14/2023]
Abstract
Limited lifespan and senescence are near-universal phenomena. These quantitative traits exhibit variation in natural populations due to the segregation of many interacting loci and from environmental effects. Due to the complexity of the genetic control of lifespan and senescence, our understanding of the genetic basis of variation in these traits is incomplete. Here, we analyzed the pattern of genetic divergence between long-lived (O) Drosophila melanogaster lines selected for postponed reproductive senescence and unselected control (B) lines. We quantified the productivity of the O and B lines and found that reproductive senescence is maternally controlled. We therefore chose 57 candidate genes that are expressed in ovaries, 49 of which have human orthologs, and assessed the effects of RNA interference in ovaries and accessary glands on lifespan and reproduction. All but one candidate gene affected at least one life history trait in one sex or productivity week. In addition, 23 genes had antagonistic pleiotropic effects on lifespan and productivity. Identifying evolutionarily conserved genes affecting increased lifespan and delayed reproductive senescence is the first step toward understanding the evolutionary forces that maintain segregating variation at these loci in nature and may provide potential targets for therapeutic intervention to delay senescence while increasing lifespan.
Collapse
Affiliation(s)
- Grace A Parker
- Department of Biological Sciences
- Program in Genetics
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695 and
| | | | | | | | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, Michigan, 48824
| | - Trudy F C Mackay
- Department of Biological Sciences,
- Program in Genetics
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695 and
| |
Collapse
|
36
|
Molenaars M, Janssens GE, Williams EG, Jongejan A, Lan J, Rabot S, Joly F, Moerland PD, Schomakers BV, Lezzerini M, Liu YJ, McCormick MA, Kennedy BK, van Weeghel M, van Kampen AHC, Aebersold R, MacInnes AW, Houtkooper RH. A Conserved Mito-Cytosolic Translational Balance Links Two Longevity Pathways. Cell Metab 2020; 31:549-563.e7. [PMID: 32084377 PMCID: PMC7214782 DOI: 10.1016/j.cmet.2020.01.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/22/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Slowing down translation in either the cytosol or the mitochondria is a conserved longevity mechanism. Here, we found a non-interventional natural correlation of mitochondrial and cytosolic ribosomal proteins (RPs) in mouse population genetics, suggesting a translational balance. Inhibiting mitochondrial translation in C. elegans through mrps-5 RNAi repressed cytosolic translation. Transcriptomics integrated with proteomics revealed that this inhibition specifically reduced translational efficiency of mRNAs required in growth pathways while increasing stress response mRNAs. The repression of cytosolic translation and extension of lifespan from mrps-5 RNAi were dependent on atf-5/ATF4 and independent from metabolic phenotypes. We found the translational balance to be conserved in mammalian cells upon inhibiting mitochondrial translation pharmacologically with doxycycline. Lastly, extending this in vivo, doxycycline repressed cytosolic translation in the livers of germ-free mice. These data demonstrate that inhibiting mitochondrial translation initiates an atf-5/ATF4-dependent cascade leading to coordinated repression of cytosolic translation, which could be targeted to promote longevity.
Collapse
Affiliation(s)
- Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Evan G Williams
- Institute of Molecular Systems Biology, ETH Zurich, Zürich, Switzerland
| | - Aldo Jongejan
- Bioinformatics Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jiayi Lan
- Institute of Molecular Systems Biology, ETH Zurich, Zürich, Switzerland
| | - Sylvie Rabot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Fatima Joly
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Perry D Moerland
- Bioinformatics Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marco Lezzerini
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Yasmine J Liu
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Autophagy, Inflammation, and Metabolism Center of Biological Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, CA, USA; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, Zürich, Switzerland; Faculty of Science, University of Zürich, Switzerland
| | - Alyson W MacInnes
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
37
|
Affiliation(s)
- Marc Van Gilst
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Trubitsyn AG. The Mechanism of Programmed Aging: The Way to Create a Real Remedy for Senescence. Curr Aging Sci 2020; 13:31-41. [PMID: 31660847 PMCID: PMC7403645 DOI: 10.2174/1874609812666191014111422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Accumulation of various damages is considered the primary cause of aging throughout the history of gerontology. No progress has been made in extending animal lifespan under the guidance of this concept. This concept denies the existence of longevity genes, but it has been experimentally shown that manipulating genes that affect cell division rates can increase the maximum lifespan of animals. These methods of prolonging life are unsuitable for humans because of dangerous side effects, but they undoubtedly indicate the programmed nature of aging. OBJECTIVE The objective was to understand the mechanism of programmed aging to determine how to solve the problem of longevity. METHODS Fundamental research has already explored key details relating to the mechanism of programmed aging, but they are scattered across different fields of knowledge. The way was to recognize and combine them into a uniform mechanism. RESULTS Only a decrease in bioenergetics is under direct genetic control. This causes many different harmful processes that serve as the execution mechanism of the aging program. The aging rate and, therefore, lifespan are determined by the rate of cell proliferation and the magnitude of the decrease in bioenergetics per cell division in critical tissues. CONCLUSION The mechanism of programmed aging points the way to achieving an unlimited healthy life; it is necessary to develop a means for managing bioenergetics. It has already been substantially studied by molecular biologists and is now waiting for researchers from gerontology.
Collapse
Affiliation(s)
- Alexander G. Trubitsyn
- Institute of Biology of Far Eastern Branch of Russian Academy of Sciences, pr. 100-letiya Vladivostoka 159, Vladivostok, 690022, Russia
| |
Collapse
|
39
|
Mazucanti CH, Liu QR, Lang D, Huang N, O’Connell JF, Camandola S, Egan JM. Release of insulin produced by the choroid plexis is regulated by serotonergic signaling. JCI Insight 2019; 4:131682. [PMID: 31647782 PMCID: PMC6962018 DOI: 10.1172/jci.insight.131682] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
The choroid plexus (ChP) is a highly vascularized tissue found in the brain ventricles, with an apical epithelial cell layer surrounding fenestrated capillaries. It is responsible for the production of most of the cerebrospinal fluid (CSF) in the ventricular system, subarachnoid space, and central canal of the spinal cord, while also constituting the blood-CSF barrier (BCSFB). In addition, epithelial cells of the ChP (EChP) synthesize neurotrophic factors and other signaling molecules that are released into the CSF. Here, we show that insulin is produced in EChP of mice and humans, and its expression and release are regulated by serotonin. Insulin mRNA and immune-reactive protein, including C-peptide, are present in EChP, as detected by several experimental approaches, and appear in much higher levels than any other brain region. Moreover, insulin is produced in primary cultured mouse EChP, and its release, albeit Ca2+ sensitive, is not regulated by glucose. Instead, activation of the 5HT2C receptor by serotonin treatment led to activation of IP3-sensitive channels and Ca2+ mobilization from intracellular storage, leading to insulin secretion. In vivo depletion of brain serotonin in the dorsal raphe nucleus negatively affected insulin expression in the ChP, suggesting an endogenous modulation of ChP insulin by serotonin. Here, we show for the first time to our knowledge that insulin is produced by EChP in the brain, and its release is modulated at least by serotonin but not glucose.
Collapse
|
40
|
Schmeisser K, Parker JA. Pleiotropic Effects of mTOR and Autophagy During Development and Aging. Front Cell Dev Biol 2019; 7:192. [PMID: 31572724 PMCID: PMC6749033 DOI: 10.3389/fcell.2019.00192] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
Autophagy as a ubiquitous catabolic process causes degradation of cytoplasmic components and is generally considered to have beneficial effects on health and lifespan. In contrast, inefficient autophagy has been linked with detrimental effects on the organism and various diseases, such as Parkinson's disease. Previous research, however, showed that this paradigm is far from being black and white. For instance, it has been reported that increased levels of autophagy during development can be harmful, but become advantageous in the aging cell or organism, causing enhanced healthspan and even longevity. The antagonistic pleiotropy hypothesis postulates that genes, which control various traits in an organism, can be fitness-promoting in early life, but subsequently trigger aging processes later. Autophagy is controlled by the mechanistic target of rapamycin (mTOR), a key player of nutrient sensing and signaling and classic example of a pleiotropic gene. mTOR acts upstream of transcription factors such as FOXO, NRF, and TFEB, controlling protein synthesis, degradation, and cellular growth, thereby regulating fertility as well as aging. Here, we review recent findings about the pleiotropic role of autophagy during development and aging, examine the upstream factors, and contemplate specific mechanisms leading to disease, especially neurodegeneration.
Collapse
Affiliation(s)
- Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - J Alex Parker
- Département de Neurosciences, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
41
|
Selfe J, Shipley JM. IGF signalling in germ cells and testicular germ cell tumours: roles and therapeutic approaches. Andrology 2019; 7:536-544. [PMID: 31179642 PMCID: PMC6771568 DOI: 10.1111/andr.12658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor (IGF) axis plays key roles in normal tissue growth and development as well as in the progression of several tumour types and their subsequent growth and progression to a metastatic phenotype. This review explores the role of IGF system in normal germ cell development and function in addition to examining the evidence for deregulation of IGF signalling in cancer, with particular relevance to evidence supporting a role in testicular germ cell tumours (TGCTs). Despite the clear preclinical rationale for targeting the IGF axis in cancer, there has been a lack of progress in identifying which patients may benefit from such therapy. Future employment of agents targeting the IGF pathway is expected to concentrate on their use in combination with other treatments to prevent resistance and exploit their potential as chemo- and radiosensitizers.
Collapse
Affiliation(s)
- J Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - J M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
42
|
Chan JP, Wright JR, Wong HT, Ardasheva A, Brumbaugh J, McLimans C, Lamendella R. Using Bacterial Transcriptomics to Investigate Targets of Host-Bacterial Interactions in Caenorhabditis elegans. Sci Rep 2019; 9:5545. [PMID: 30944351 PMCID: PMC6447554 DOI: 10.1038/s41598-019-41452-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
The interactions between a host and its resident microbes form complicated networks that can affect host physiology. Disentangling these host-microbe interactions can help us better understand mechanisms by which bacteria affect hosts, while also defining the integral commensal protection that host-associated microbiota offer to promote health. Here we utilize a tractable genetic model organism, Caenorhabditis elegans, to study the effects of host environments on bacterial gene expression and metabolic pathways. First, we compared the transcriptomic profiles of E. coli OP50 in vitro (on agar plates) versus in vivo (fed to C. elegans host). Our data revealed that 110 biosynthetic genes were enriched in host-associated E. coli. Several of these expressed genes code for the precursors and products needed for the synthesis of lipopolysaccharides (LPS), which are important for innate immune and stress responses, as well as pathogenicity. Secondly, we compared the transcriptomic profiles of E. coli fed to hosts with different genetic backgrounds, including the long-lived daf-2/insulin like growth factor (IGF) receptor and short lived daf-16/FOXO transcription factor mutants. We find that hosts genetics also alters bacterial metabolic pathways. Given that bacteria influence host health, this transcriptomics approach can elucidate genes mediating host aging.
Collapse
Affiliation(s)
- Jason P Chan
- Department of Biology, Juniata College, Huntingdon, PA, USA.
| | | | - Hoi Tong Wong
- Department of Biology, Juniata College, Huntingdon, PA, USA
| | | | | | | | | |
Collapse
|
43
|
Guo N, Wang J, Wang X. Effect of starvation and high-carbohydrate diet on learning ability of Caenorhabditis elegans. Heliyon 2019; 5:e01289. [PMID: 30891518 PMCID: PMC6403438 DOI: 10.1016/j.heliyon.2019.e01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/22/2019] [Accepted: 02/26/2019] [Indexed: 11/17/2022] Open
Abstract
Starvation and high-carbohydrate diet have a big impact on our health, while their effects on the learning ability are not so clear. Here, we used C. elegans as the model organism to investigate it. We starved the worms for 24 h or fed them with glucose since hatching, and then measured their learning ability at L4 stage using mechanosensory stimulation assay. The results showed that the learning ability was significantly decreased by starvation, while could be gradually recovered after 3 h normal feeding. After glucose treatment, the length-width ratio of worm was reduced and the learning ability was also significantly decreased. Interestingly, this effect could be passed down two generations probably through epigenetic inheritance. To understand the mechanism of these effects, age-1 and mec-3 mutants were used and they affected the learning ability differently under normal or adverse conditions. Therefore, we concluded that starvation and high-carbohydrate diet could modulate the learning ability of C. elegans, and they were regulated by different gene networks.
Collapse
Affiliation(s)
- Naijing Guo
- The High School Affiliated to Renmin University, China
| | - Jiayu Wang
- Chaoyang Experimental Primary School Affiliated to Capital Normal University, China
| | - XiangMing Wang
- Institute of Biophysics, Chinese Academy of Sciences, China,Corresponding author.
| |
Collapse
|
44
|
Kim HM, Lee DK, Long NP, Kwon SW, Park JH. Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:578-586. [PMID: 30597390 DOI: 10.1016/j.envpol.2018.12.043] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 05/06/2023]
Abstract
Nanoplastics are widely used in modern life, for example, in cosmetics and daily use products, and are attracting concern due to their potential toxic effects on environments. In this study, the uptake of nanopolystyrene particles by Caenorhabditis elegans (C. elegans) and their toxic effects were evaluated. Nanopolystyrene particles with sizes of 50 and 200 nm were prepared, and the L4 stage of C. elegans was exposed to these particles for 24 h. Their uptake was monitored by confocal microscopy, and various phenotypic alterations of the exposed nematode such as locomotion, reproduction and oxidative stress were measured. In addition, a metabolomics study was performed to determine the significantly affected metabolites in the exposed C. elegans group. Exposure to nanopolystyrene particles caused the perturbation of metabolites related to energy metabolism, such as TCA cycle intermediates, glucose and lactic acid. Nanopolystyrene also resulted in toxic effect including induction of oxidative stress and reduction of locomotion and reproduction. Collectively, these findings provide new insights into the toxic effects of nanopolystyrene particles.
Collapse
Affiliation(s)
- Hyung Min Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Kyu Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nguyen Phuoc Long
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hill Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
45
|
Weger BD, Gobet C, Yeung J, Martin E, Jimenez S, Betrisey B, Foata F, Berger B, Balvay A, Foussier A, Charpagne A, Boizet-Bonhoure B, Chou CJ, Naef F, Gachon F. The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism. Cell Metab 2019; 29:362-382.e8. [PMID: 30344015 PMCID: PMC6370974 DOI: 10.1016/j.cmet.2018.09.023] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 06/27/2018] [Accepted: 09/25/2018] [Indexed: 02/08/2023]
Abstract
The circadian clock and associated feeding rhythms have a profound impact on metabolism and the gut microbiome. To what extent microbiota reciprocally affect daily rhythms of physiology in the host remains elusive. Here, we analyzed transcriptome and metabolome profiles of male and female germ-free mice. While mRNA expression of circadian clock genes revealed subtle changes in liver, intestine, and white adipose tissue, germ-free mice showed considerably altered expression of genes associated with rhythmic physiology. Strikingly, the absence of the microbiome attenuated liver sexual dimorphism and sex-specific rhythmicity. The resulting feminization of male and masculinization of female germ-free animals is likely caused by altered sexual development and growth hormone secretion, associated with differential activation of xenobiotic receptors. This defines a novel mechanism by which the microbiome regulates host metabolism.
Collapse
Affiliation(s)
- Benjamin D Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Cédric Gobet
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jake Yeung
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Eva Martin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Sonia Jimenez
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Bertrand Betrisey
- Cellular Metabolism, Department of Cell Biology, Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Francis Foata
- Host-Microbe Interaction, Department of Gastro-Intestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, 1000 Lausanne, Switzerland
| | - Bernard Berger
- Host-Microbe Interaction, Department of Gastro-Intestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, 1000 Lausanne, Switzerland
| | - Aurélie Balvay
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Anne Foussier
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Aline Charpagne
- Genomics, Department of Multi-Omics, Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Brigitte Boizet-Bonhoure
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002, 34396 Montpellier, France
| | - Chieh Jason Chou
- Host-Microbe Interaction, Department of Gastro-Intestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, 1000 Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
46
|
Kim SW, Moon J, An YJ. Matricidal hatching can induce multi-generational effects in nematode Caenorhabditis elegans after dietary exposure to nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36394-36402. [PMID: 30368709 DOI: 10.1007/s11356-018-3535-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
In this study, we investigated multi-generational effects and generation particle transfer in Caenorhabditis elegans following maternal food exposure to core-shell quantum dots. We found that that the Bag of Worms (BOW) phenotype in aged worms induces changes in quantum dot distribution in the parental body, which is related to the inter-generation transfer of these nanoparticles and to their effects in the offspring. To confirm these results we examined a variety of endpoints, namely, survival, reproduction, aging phenotype, oxidative stress, and intestinal fat metabolism. We show that worms born to parents at different times after exposure show different phenotypic effects as a consequence of quantum dot transfer. This evidence of trans-generational transfer and the effects of nanoparticles highlights the complex multi-generational effects and potential safety hazards that can occur under real environmental conditions.
Collapse
Affiliation(s)
- Shin Woong Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Jongmin Moon
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
47
|
Bartke A, Quainoo N. Impact of Growth Hormone-Related Mutations on Mammalian Aging. Front Genet 2018; 9:586. [PMID: 30542372 PMCID: PMC6278173 DOI: 10.3389/fgene.2018.00586] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
Mutations of a single gene can lead to a major increase in longevity in organisms ranging from yeast and worms to insects and mammals. Discovering these mutations (sometimes referred to as “longevity genes”) led to identification of evolutionarily conserved molecular, cellular, and organismal mechanisms of aging. Studies in mice provided evidence for the important role of growth hormone (GH) signaling in mammalian aging. Mice with mutations or gene deletions leading to GH deficiency or GH resistance have reduced body size and delayed maturation, but are healthier and more resistant to stress, age slower, and live longer than their normal (wild type) siblings. Mutations of the same genes in people can provide remarkable protection from age-related disease, but have no consistent impact on lifespan. Ongoing research indicates that genetic defects in GH signaling are linked to extension of healthspan and lifespan via a variety of interlocking mechanism, including improvements in genome and stem cell maintenance, stress resistance, glucose homeostasis, and thermogenesis, along with reductions in the mechanistic target of rapamycin (mTOR) C1 complex signaling and in chronic low grade inflammation.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Nana Quainoo
- Department of Biology, University of Illinois Springfield, Springfield, IL, United States
| |
Collapse
|
48
|
Li SW, How CM, Liao VHC. Prolonged exposure of di(2-ethylhexyl) phthalate induces multigenerational toxic effects in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:260-266. [PMID: 29627549 DOI: 10.1016/j.scitotenv.2018.03.355] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The plasticizer di(2-ethylhexyl) phthalate (DEHP) is an emerging organic contaminant that has represented a risk for organisms present in the environment. However, there is still limited information regarding DEHP-induced multigenerational toxicity and the underlying mechanisms. In this study we investigated the multigenerational toxic effects including locomotive behaviors and reproduction upon prolonged DEHP exposure (from larval L1 to adult) and the underlying mechanisms in the nematode Caenorhabditis elegans. The multigenerational effects were examined over 6 generations (F0-F5) with only parental C. elegans (F0) was exposed to DEHP from larval L1 to adults (72h), and the subsequent offsprings (F1-F5) were grown under DEHP-free conditions. The results showed that prolonged exposure (72h) to various concentrations of DEHP caused dose-dependent locomotive impairments and reproduction defects in C. elegans and that a concentration of 0.2mg/L DEHP was enough to cause such sublethal effects. The results showed that after prolonged exposure to DEHP in the F0 generation, abnormal locomotive behaviors such as reduced body bends and head thrashes were observed from generations F0 to F5. Additionally, prolonged exposure to DEHP (20mg/L) in F0 significantly reduced total brood size in F0, and this parental exposure was sufficient to cause multigenerational reproductive toxicity in the offspring generations (F1-F5) as well. Furthermore, the expressions of reproduction-related genes such as vit-2 and vit-6 were down-regulated by about 20% until F3, and the expression of H3Kme2 demethylase, spr-5, was downregulated in F1 by about 40%. Results from this study demonstrate that prolonged exposure to DEHP only at F0 adversely affected reproduction and locomotive behaviors in C. elegans across generations and might be associated with inadequate vitellogenin production and malfunction of H3Kme2 demethylase. This study implies that parentally prolonged exposure to DEHP caused multigenerational defects in both reproduction and locomotive behaviors raising the potential health and ecological risk.
Collapse
Affiliation(s)
- Shang-Wei Li
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
49
|
Molenaars M, Janssens GE, Santermans T, Lezzerini M, Jelier R, MacInnes AW, Houtkooper RH. Mitochondrial ubiquinone-mediated longevity is marked by reduced cytoplasmic mRNA translation. Life Sci Alliance 2018; 1. [PMID: 30198021 PMCID: PMC6126614 DOI: 10.26508/lsa.201800082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This study uses polysomal RNA sequencing to show that the translational efficiency of specific mRNA changes in long-lived Caenorhabditis elegans with reduced ubiquinone synthesis. Mutations in the clk-1 gene impair mitochondrial ubiquinone biosynthesis and extend the lifespan in Caenorhabditis elegans. We demonstrate here that this life extension is linked to the repression of cytoplasmic mRNA translation, independent of the alleged nuclear form of CLK-1. Clk-1 mutations inhibit polyribosome formation similarly to daf-2 mutations that dampen insulin signaling. Comparisons of total versus polysomal RNAs in clk-1(qm30) mutants reveal a reduction in the translational efficiencies of mRNAs coding for elements of the translation machinery and an increase in those coding for the oxidative phosphorylation and autophagy pathways. Knocking down the transcription initiation factor TATA-binding protein-associated factor 4, a protein that becomes sequestered in the cytoplasm during early embryogenesis to induce transcriptional silencing, ameliorates the clk-1 inhibition of polyribosome formation. These results underscore a prominent role for the repression of cytoplasmic protein synthesis in eukaryotic lifespan extension and suggest that mutations impairing mitochondrial function are able to exploit this repression similarly to reductions of insulin signaling. Moreover, this report reveals an unexpected role for TATA-binding protein-associated factor 4 as a repressor of polyribosome formation when ubiquinone biosynthesis is compromised.
Collapse
Affiliation(s)
- Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Toon Santermans
- CMPG - Predictive Genetics and Multicellular Systems, University of Leuven, B-3001 Leuven, Belgium
| | - Marco Lezzerini
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Rob Jelier
- CMPG - Predictive Genetics and Multicellular Systems, University of Leuven, B-3001 Leuven, Belgium
| | - Alyson W MacInnes
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Libbrecht R, Oxley PR, Kronauer DJC. Clonal raider ant brain transcriptomics identifies candidate molecular mechanisms for reproductive division of labor. BMC Biol 2018; 16:89. [PMID: 30103762 PMCID: PMC6090591 DOI: 10.1186/s12915-018-0558-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/31/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Division of labor between reproductive queens and workers that perform brood care is a hallmark of insect societies. However, studies of the molecular basis of this fundamental dichotomy are limited by the fact that the caste of an individual cannot typically be experimentally manipulated at the adult stage. Here we take advantage of the unique biology of the clonal raider ant, Ooceraea biroi, to study brain gene expression dynamics during experimentally induced transitions between reproductive and brood care behavior. RESULTS Introducing larvae that inhibit reproduction and induce brood care behavior causes much faster changes in adult gene expression than removing larvae. In addition, the general patterns of gene expression differ depending on whether ants transition from reproduction to brood care or vice versa, indicating that gene expression changes between phases are cyclic rather than pendular. Finally, we identify genes that could play upstream roles in regulating reproduction and behavior because they show large and early expression changes in one or both transitions. CONCLUSIONS Our analyses reveal that the nature and timing of gene expression changes differ substantially depending on the direction of the transition, and identify a suite of promising candidate molecular regulators of reproductive division of labor that can now be characterized further in both social and solitary animal models. This study contributes to understanding the molecular regulation of reproduction and behavior, as well as the organization and evolution of insect societies.
Collapse
Affiliation(s)
- Romain Libbrecht
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany.
| | - Peter R Oxley
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Samuel J. Wood Library, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|