1
|
de Manuel M, Wu FL, Przeworski M. A paternal bias in germline mutation is widespread in amniotes and can arise independently of cell division numbers. eLife 2022; 11:e80008. [PMID: 35916372 PMCID: PMC9439683 DOI: 10.7554/elife.80008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
In humans and other mammals, germline mutations are more likely to arise in fathers than in mothers. Although this sex bias has long been attributed to DNA replication errors in spermatogenesis, recent evidence from humans points to the importance of mutagenic processes that do not depend on cell division, calling into question our understanding of this basic phenomenon. Here, we infer the ratio of paternal-to-maternal mutations, α, in 42 species of amniotes, from putatively neutral substitution rates of sex chromosomes and autosomes. Despite marked differences in gametogenesis, physiologies and environments across species, fathers consistently contribute more mutations than mothers in all the species examined, including mammals, birds, and reptiles. In mammals, α is as high as 4 and correlates with generation times; in birds and snakes, α appears more stable around 2. These observations are consistent with a simple model, in which mutations accrue at equal rates in both sexes during early development and at a higher rate in the male germline after sexual differentiation, with a conserved paternal-to-maternal ratio across species. Thus, α may reflect the relative contributions of two or more developmental phases to total germline mutations, and is expected to depend on generation time even if mutations do not track cell divisions.
Collapse
Affiliation(s)
- Marc de Manuel
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Felix L Wu
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Molly Przeworski
- Department of Systems Biology, Columbia UniversityNew YorkUnited States
| |
Collapse
|
2
|
Ruiz-García M, Pinedo-Castro M, Shostell JM. Comparative phylogeography among eight Neotropical wild cat species: no single evolutionary pattern. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blab170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The felid species of South America are thought to have arrived on the continent during the Great American Biotic Interchange (GABI) in the Pleistocene. However, molecular and palaeontological data do not agree on how this event affected speciation in felids. Here, we determine both the number of colonization events and the period when felines first migrated from North America to South America. In addition, we evaluate whether similar evolutionary events could have affected the eight Neotropical cat species in their levels of genetic diversity, spatial genetic structure and demographic changes. We analysed four concatenated mitochondrial genes of the jaguar, ocelot, margay, tigrina, pampas cat, Andean cat, puma and jaguarundi. The samples were representative of a wide distribution of these species in Central and South America. Our analysis suggests either three or four colonization events from North America to South America over the past 3 Myr, followed by subsequent speciation events and the attainment of high or very high genetic diversity levels for seven of the species. No unique evolutionary process was detected for any of the current Neotropical cat species.
Collapse
Affiliation(s)
- Manuel Ruiz-García
- Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7A, No. 43-82, Bogotá DC, Colombia
| | - Myreya Pinedo-Castro
- Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7A, No. 43-82, Bogotá DC, Colombia
| | - Joseph Mark Shostell
- Math, Science and Technology Department, University of Minnesota Crookston, 2900 University Avenue, Crookston, MN 56716, USA
| |
Collapse
|
3
|
Nascimento FOD, Cheng J, Feijó A. Taxonomic revision of the pampas cat Leopardus colocola complex (Carnivora: Felidae): an integrative approach. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractThe pampas cat Leopardus colocola has been subject to conflicting classifications over the years. Currently, one polytypic species with seven subspecies is recognized, but integrative taxonomic study for this debated group has never been done. Here, we combine the broadest morphological coverage of the pampas cat to date with molecular data and ecological niche models to clarify its species composition and test the validity of recently proposed subspecies. The multiple lines of evidence derived from morphology, molecular, biogeography and climatic niche datasets converged on the recognition of five monotypic species: L. braccatus, L. colocola, L. garleppi (including thomasi, budini, steinbachi, crespoi and wolffsohni as synonyms), L. munoai and L. pajeros (including crucina as synonym). These five species are morphologically diagnosable based on skin and skull traits, have evolved in distinct climatic niche spaces and were recovered in molecular species delimitation. Contrary to previous taxonomic arrangements, we do not recognize subspecies in pampas cats. To objectively define the two most controversial species, we designate neotypes for L. colocola and L. pajeros. The diversification of pampas cats is associated with Middle Pleistocene glaciations, but additional genetic samples from the central Andean region are still needed to conclusively reconstruct its evolutionary history.
Collapse
Affiliation(s)
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| |
Collapse
|
4
|
Delgado M, Hecht J. A review of the development and functions of cat play, with future research considerations. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Ruiz-García M, Pinedo-Castro M, Shostell JM. Small spotted bodies with multiple specific mitochondrial DNAs: existence of diverse and differentiated tigrina lineages or species (Leopardus spp: Felidae, Mammalia) throughout Latin America. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:993-1014. [PMID: 29157065 DOI: 10.1080/24701394.2017.1404041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We analysed two sets of mitochondrial (mt) DNA data from tigrinas (traditionally, Leopardus tigrinus) we sampled in Costa Rica, Venezuela, Colombia, Ecuador, Peru, Bolivia, northwestern and northeastern Argentina and southern Brazil. Additionally, the analysis included some GenBank sequences from southern, central and northeastern Brazil. The first mt set (mt ATP8+mt 16S rRNA with 41 tigrina) revealed the existence of seven different tigrina-like haplogroups. They could represent, at least, 4-6 different tigrina species following the Phylogenetic Species Concept (PSC). In the second mt set (mitogenomics with 18 tigrinas), we detected six different tigrina-like haplogroups. They could represent 4-5 different tigrina species - including a possible full new species, which has gone previously unnoticed to the world of science both morphologic and molecularly. Coat patterns of several of these different tigrinas support the molecular differences. We also detected intense hybridization in many Andean tigrina with margays (Leopardus wiedii) and ocelots (Leopardus pardalis) as well as hybridization of one Bolivian tigrina with Leopardus geoffroyi. Similar hybridization was found for many of the southern Brazilian tigrina (Leopardus guttulus). All of the temporal split estimates for these tigrina haplogroups, together with those of the Leopardus species recognized to date, began in the late Pliocene but mostly occurred during the Pleistocene. In agreement with the existence of multiple species within the traditional L. tigrinus species, we detected strong and significant spatial structure in the two mt data sets. There were clear circular clines. A major part of the analyses detected more genetic resemblance between the Central American + trans Andean Colombian and Ecuadorian tigrina (L. oncilla) with the most geographically distant tigrina from central and southern Brazil (L. guttulus; pure individuals not hybridized with L. geoffroyi). In comparison, the Andean tigrina taxa had intermediate geographical origins but were highly genetically differentiated both from the Central American + trans Andean Colombian-Ecuadorian tigrina and from the central and southern Brazilian tigrina.
Collapse
Affiliation(s)
- Manuel Ruiz-García
- a Departamento de Biología, Facultad de Ciencias , Laboratorio de Genética de Poblaciones-Biología Evolutiva, Unidad de Genética, Pontificia Universidad Javeriana , Bogotá , Colombia
| | - Myreya Pinedo-Castro
- a Departamento de Biología, Facultad de Ciencias , Laboratorio de Genética de Poblaciones-Biología Evolutiva, Unidad de Genética, Pontificia Universidad Javeriana , Bogotá , Colombia
| | - Joseph Mark Shostell
- b Math, Science and Technology Department , University of Minnesota Crookston , Crookston , MN , USA
| |
Collapse
|
6
|
First Record of Puma concolor (Mammalia, Felidae) in the Early-Middle Pleistocene of South America. J MAMM EVOL 2017. [DOI: 10.1007/s10914-017-9385-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Non-invasive genetic sampling reveals diet shifts, but little difference in endoparasite richness and faecal glucocorticoids, in Belizean felids inside and outside protected areas. JOURNAL OF TROPICAL ECOLOGY 2016. [DOI: 10.1017/s0266467416000213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract:Many Neotropical felids are threatened with extinction due to direct effects of habitat destruction and/or human persecution. However, indirect and synergistic effects of human-felid conflict remain under-studied and potentially include increased stress and diet shifts that may negatively impact felid health. We hypothesized that faecal glucocorticoid metabolites (FGM) and endoparasite species richness (ESR) would be higher, and diet would shift, for felids outside protected areas where conflict occurs. In north-western Belize, a scat-detector dog located 336 faecal samples, identified to species and individual using DNA analyses. DNA amplification success was substantially higher within protected areas than outside. We detected jaguar, puma, ocelot, jaguarundi and domestic cat. FGMs were higher in puma and jaguarundi than in other felids, while ESR was similar across felids with domestic cats exhibiting the highest number of genera. Diet partitioning occurred among felids, but domestic cats may compete with ocelot and jaguarundi for small prey. Outside of protected areas, large cats shifted their diet to smaller prey and livestock remains were not found. Contrary to our hypotheses, FGM and ESR did not differ inside versus outside protected areas, but sample sizes were low in human-modified areas. We provide a baseline on wild felid adrenal activity, endoparasites and diet and suggest improvements to increase sample sizes outside protected areas. Our research provides a template for expanding non-invasive sampling approaches more widely across the range of Neotropical felids.
Collapse
|
8
|
Bahaa-el-din L, Henschel P, Butynski TM, Macdonald DW, Mills D, Slotow R, Hunter L. The African golden cat C
aracal aurata
: Africa's least-known felid. Mamm Rev 2014. [DOI: 10.1111/mam.12033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laila Bahaa-el-din
- Panthera; 8 West 40th Street, 18th Fl New York NY 10018 USA
- Wildlife Conservation Research Unit (WildCRU); Department of Zoology; The Recanati-Kaplan Centre; Oxford University; Tubney House, Abingdon Road Tubney OX13 5QL UK
- School of Life Sciences; University of Kwazulu-Natal - Westville Campus; Private Bag X54001 Durban 4000 South Africa
| | | | - Thomas M. Butynski
- Sustainability Centre Eastern Africa; Eastern Africa Primate Diversity and Conservation Program & Lolldaiga Hills Research Programme; PO Box 149 Nanyuki 10400 Kenya
| | - David W. Macdonald
- Wildlife Conservation Research Unit (WildCRU); Department of Zoology; The Recanati-Kaplan Centre; Oxford University; Tubney House, Abingdon Road Tubney OX13 5QL UK
| | - David Mills
- Panthera; 8 West 40th Street, 18th Fl New York NY 10018 USA
- School of Life Sciences; University of Kwazulu-Natal - Westville Campus; Private Bag X54001 Durban 4000 South Africa
| | - Rob Slotow
- School of Life Sciences; University of Kwazulu-Natal - Westville Campus; Private Bag X54001 Durban 4000 South Africa
- Department of Genetics; Evolution and Environment; University College; London United Kingdom
| | - Luke Hunter
- Panthera; 8 West 40th Street, 18th Fl New York NY 10018 USA
- School of Life Sciences; University of Kwazulu-Natal - Westville Campus; Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
9
|
Trigo TC, Schneider A, de Oliveira TG, Lehugeur LM, Silveira L, Freitas TRO, Eizirik E. Molecular data reveal complex hybridization and a cryptic species of neotropical wild cat. Curr Biol 2013; 23:2528-33. [PMID: 24291091 DOI: 10.1016/j.cub.2013.10.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/08/2013] [Accepted: 10/17/2013] [Indexed: 01/07/2023]
Abstract
Hybridization among animal species has recently become more recognized as an important phenomenon, especially in the context of recent radiations. Here we show that complex hybridization has led to contrasting patterns of genomic composition among closely related species of the Neotropical cat genus Leopardus. We show strong evidence of ancient hybridization and introgression between the pampas cat (L. colocolo) and northeastern populations of tigrina (L. tigrinus), leading to remarkable cytonuclear discordance in the latter. In contrast, southern tigrina populations show recent and continuing hybridization with Geoffroy's cat (L. geoffroyi), leading to extreme levels of interspecific admixture at their contact zone. Finally, we demonstrate that two seemingly continuous Brazilian tigrina populations show no evidence of ongoing gene flow between them, leading us to support their formal recognition as distinct species, namely L. tigrinus in the northeast and L. guttulus in the south.
Collapse
Affiliation(s)
- Tatiane C Trigo
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil.
| | - Alexsandra Schneider
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS 90619-900, Brazil
| | - Tadeu G de Oliveira
- Instituto Pró-Carnívoros, Atibaia, SP 12945-010, Brazil; Departamento de Biologia, Universidade Estadual do Maranhão (UEMA), São Luís, MA 65055-970, Brazil
| | - Livia M Lehugeur
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS 90619-900, Brazil
| | | | - Thales R O Freitas
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
| | - Eduardo Eizirik
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS 90619-900, Brazil; Instituto Pró-Carnívoros, Atibaia, SP 12945-010, Brazil.
| |
Collapse
|
10
|
Kerth G, Gusset M, Garbely J, König B, Gabanapelo T, Schiess-Meier M. Genetic sexing of stock-raiding leopards: not only males to blame. CONSERV GENET RESOUR 2013. [DOI: 10.1007/s12686-013-9979-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Tsubouchi A, Fukui D, Ueda M, Tada K, Toyoshima S, Takami K, Tsujimoto T, Uraguchi K, Raichev E, Kaneko Y, Tsunoda H, Masuda R. Comparative Molecular Phylogeny and Evolution of Sex Chromosome DNA Sequences in the Family Canidae (Mammalia: Carnivora). Zoolog Sci 2012; 29:151-61. [DOI: 10.2108/zsj.29.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
|
13
|
Abstract
Leopardus braccatus (Cope, 1889) is a small felid—not much larger than a domestic house cat—commonly called the Pantanal cat. No comprehensive surveys have been conducted to determine how many L. braccatus exist in the wild. It is found in humid, warm grasslands and wooded areas of extreme northwestern Argentina, southwestern and south- and north-central (newly reported ranges) Brazil, Paraguay, and Uruguay. Habitat loss and degradation are considered major threats throughout most of its range. It is uncommon in captivity and museum collections, listed with all Felidae under Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora, and considered “Near Threatened” by the International Union for Conservation of Nature and Natural Resources in the pampas cat group ( = L. colocolo).
Collapse
Affiliation(s)
- Anita L. Barstow
- United States Fish and Wildlife Service, Oklahoma Ecological Services Field Office, 9014 East 21st Street, Tulsa, OK 74129, USA; (ALB)
| | - David M. Leslie
- United States Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit and Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078-3051, USA; (DML)
| |
Collapse
|
14
|
Wei L, Wu X, Zhu L, Jiang Z. Mitogenomic analysis of the genus Panthera. SCIENCE CHINA-LIFE SCIENCES 2011; 54:917-30. [PMID: 22038004 DOI: 10.1007/s11427-011-4219-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 06/10/2011] [Indexed: 11/25/2022]
Abstract
The complete sequences of the mitochondrial DNA genomes of Panthera tigris, Panthera pardus, and Panthera uncia were determined using the polymerase chain reaction method. The lengths of the complete mitochondrial DNA sequences of the three species were 16990, 16964, and 16773 bp, respectively. Each of the three mitochondrial DNA genomes included 13 protein-coding genes, 22 tRNA, two rRNA, one O(L)R, and one control region. The structures of the genomes were highly similar to those of Felis catus, Acinonyx jubatus, and Neofelis nebulosa. The phylogenies of the genus Panthera were inferred from two combined mitochondrial sequence data sets and the complete mitochondrial genome sequences, by MP (maximum parsimony), ML (maximum likelihood), and Bayesian analysis. The results showed that Panthera was composed of Panthera leo, P. uncia, P. pardus, Panthera onca, P. tigris, and N. nebulosa, which was included as the most basal member. The phylogeny within Panthera genus was N. nebulosa (P. tigris (P. onca (P. pardus, (P. leo, P. uncia)))). The divergence times for Panthera genus were estimated based on the ML branch lengths and four well-established calibration points. The results showed that at about 11.3 MYA, the Panthera genus separated from other felid species and then evolved into the several species of the genus. In detail, N. nebulosa was estimated to be founded about 8.66 MYA, P. tigris about 6.55 MYA, P. uncia about 4.63 MYA, and P. pardus about 4.35 MYA. All these estimated times were older than those estimated from the fossil records. The divergence event, evolutionary process, speciation, and distribution pattern of P. uncia, a species endemic to the central Asia with core habitats on the Qinghai-Tibetan Plateau and surrounding highlands, mostly correlated with the geological tectonic events and intensive climate shifts that happened at 8, 3.6, 2.5, and 1.7 MYA on the plateau during the late Cenozoic period.
Collapse
Affiliation(s)
- Lei Wei
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | | | | | | |
Collapse
|
15
|
Polani S, Roca AL, Rosensteel BB, Kolokotronis SO, Bar-Gal GK. Evolutionary dynamics of endogenous feline leukemia virus proliferation among species of the domestic cat lineage. Virology 2010; 405:397-407. [DOI: 10.1016/j.virol.2010.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/22/2010] [Accepted: 06/03/2010] [Indexed: 01/18/2023]
|
16
|
Yamada C, Masuda R. Molecular Phylogeny and Evolution of Sex-Chromosomal Genes and SINE Sequences in the Family Mustelidae. MAMMAL STUDY 2010. [DOI: 10.3106/041.035.0102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Morris JG. Idiosyncratic nutrient requirements of cats appear to be diet-induced evolutionary adaptations. Nutr Res Rev 2009; 15:153-68. [PMID: 19087402 DOI: 10.1079/nrr200238] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cats have obligatory requirements for dietary nutrients that are not essential for other mammals. The present review relates these idiosyncratic nutritional requirements to activities of enzymes involved in the metabolic pathways of these nutrients. The high protein requirement of cats is a consequence of the lack of regulation of the aminotransferases of dispensable N metabolism and of the urea cycle enzymes. The dietary requirements for taurine and arginine are consequences of low activities of two enzymes in the pathways of synthesis that have a negative multiplicative effect on the rate of synthesis. Cats have obligatory dietary requirements for vitamin D and niacin which are the result of high activities of enzymes that catabolise precursors of these vitamins to other compounds. The dietary requirement for pre-formed vitamin A appears to result from deletion of enzymes required for cleavage and oxidation of carotenoids. The n-3 polyunsaturated fatty acids (PUFA) requirements have not been defined but low activities of desaturase enzymes indicate that cats may have a dietary need for pre-formed PUFA in addition to those needed by other animals to maintain normal plasma concentrations. The nutrient requirements of domestic cats support the thesis that their idiosyncratic requirements arose from evolutionary pressures arising from a rigorous diet of animal tissue. These pressures may have favoured energy conservation through deletion of redundant enzymes and modification of enzyme activities to result in metabolites more suited to the cat's metabolism. However, this retrospective viewpoint allows only recognition of association rather than cause and effect.
Collapse
Affiliation(s)
- James G Morris
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
18
|
Van Laere AS, Coppieters W, Georges M. Characterization of the bovine pseudoautosomal boundary: Documenting the evolutionary history of mammalian sex chromosomes. Genome Res 2008; 18:1884-95. [PMID: 18981267 DOI: 10.1101/gr.082487.108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here, we report the sequence characterization of the bovine pseudoautosomal boundary (PAB) and its neighborhood. We demonstrate that it maps to the 5' end of the GPR143 gene, which has concomitantly lost upstream noncoding exons on the Y chromosome. We show that the bovine PAB was created approximately 20.7 million years ago by illegitimate intrachromatid recombination between inverted, ruminant-specific Bov-tA repeats. Accordingly, we demonstrate that cattle share their PAB with all other examined ruminants including sheep, but not with cetaceans or more distantly related mammals. We provide evidence that, since its creation, the ancestral ruminant PAB has been displaced by attrition, which occurs at variable rates in different species, and that it is capable of retreat by attrition erasure. We have estimated the ratio of male to female mutation rates in the Bovidae family as approximately 1.7, and we provide evidence that the mutation rate is higher in the recombining pseudoautosomal region than in the adjacent, nonrecombining gonosome-specific sequences.
Collapse
Affiliation(s)
- Anne-Sophie Van Laere
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, Belgium
| | | | | |
Collapse
|
19
|
Tamada T, Siriaroonrat B, Subramaniam V, Hamachi M, Lin LK, Oshida T, Rerkamnuaychoke W, Masuda R. Molecular diversity and phylogeography of the Asian leopard cat, Felis bengalensis, inferred from mitochondrial and Y-chromosomal DNA sequences. Zoolog Sci 2008; 25:154-63. [PMID: 18533746 DOI: 10.2108/zsj.25.154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 10/09/2007] [Indexed: 11/17/2022]
Abstract
To investigate genetic diversity and phylogeography of the Asian leopard cat (Felis bengalensis), mitochondrial DNA (mtDNA) sequences were determined for 39 individuals from various areas. Sequences combining the complete cytochrome b gene (1,140 bp) with the partial control region (646-810 bp) were classified into 24 haplotypes: 21 types from 21 animals, one from eight animals from Tsushima Islands, one from eight animals from Iriomote Island, and one from two animals from Southeast Asia. Phylogenetic trees of the 24 haplotypes clearly showed three clades: a Northern Lineage and Southern Lineages 1 and 2. The Northern Lineage consisted of animals from Tsushima Islands, the Korean Peninsula, the continental Far East, Taiwan, and Iriomote Island. Within the Northern Lineage, genetic contacts could have occurred between geographically neighboring populations before isolation by straits. Southern Lineage 1, comprising Southeast Asian animals, showed higher genetic diversity. Southern Lineage 2 had large genetic distances from other lineages. Within the control region, the Asian leopard cats shared two to four repetitive motifs, and the number of motifs and their constitution were highly variable among individuals. The motifs were polymorphic even within individuals and could be classified into 31 types. Finally, males of mtDNA Southern Lineage 1 had either of two types of the Y-chromosomal gene ZFY, whereas all males of Northern Lineage shared only one type. Our results indicate that the diversity of southern populations is higher and that genetic differentiation among northern local populations reflects past geographical isolation.
Collapse
Affiliation(s)
- Tsutomu Tamada
- Division of Bioscience, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pecon-Slattery J, Troyer JL, Johnson WE, O'Brien SJ. Evolution of feline immunodeficiency virus in Felidae: implications for human health and wildlife ecology. Vet Immunol Immunopathol 2008; 123:32-44. [PMID: 18359092 PMCID: PMC2774529 DOI: 10.1016/j.vetimm.2008.01.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetic analyses of feline immunodeficiency viruses provide significant insights on the worldwide distribution and evolutionary history of this emerging pathogen. Large-scale screening of over 3000 samples from all species of Felidae indicates that at least some individuals from most species possess antibodies that cross react to FIV. Phylogenetic analyses of genetic variation in the pol-RT gene demonstrate that FIV lineages are species-specific and suggest that there has been a prolonged period of viral-host co-evolution. The clinical effects of FIV specific to species other than domestic cat are controversial. Comparative genomic analyses of all full-length FIV genomes confirmed that FIV is host specific. Recently sequenced lion subtype E is marginally more similar to Pallas cat FIV though env is more similar to that of domestic cat FIV, indicating a possible recombination between two divergent strains in the wild. Here we review global patterns of FIV seroprevalence and endemnicity, assess genetic differences within and between species-specific FIV strains, and interpret these with patterns of felid speciation to propose an ancestral origin of FIV in Africa followed by interspecies transmission and global dissemination to Eurasia and the Americas. Continued comparative genomic analyses of full-length FIV from all seropositive animals, along with whole genome sequence of host species, will greatly advance our understanding of the role of recombination, selection and adaptation in retroviral emergence.
Collapse
Affiliation(s)
- Jill Pecon-Slattery
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick, MD 21702, United States.
| | | | | | | |
Collapse
|
21
|
Nakagome S, Pecon-Slattery J, Masuda R. Unequal rates of Y chromosome gene divergence during speciation of the family Ursidae. Mol Biol Evol 2008; 25:1344-56. [PMID: 18400788 DOI: 10.1093/molbev/msn086] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evolution of the bear family Ursidae is well investigated in terms of morphological, paleontological, and genetic features. However, several phylogenetic ambiguities occur within the subfamily Ursinae (the family Ursidae excluding the giant panda and spectacled bear), which may correlate with behavioral traits of female philopatry and male-biased dispersal which form the basis of the observed matriarchal population structure in these species. In the process of bear evolution, we investigate the premise that such behavioral traits may be reflected in patterns of variation among genes with different modes of inheritance: matrilineal mitochondrial DNA (mtDNA), patrilineal Y chromosome, biparentally inherited autosomes, and the X chromosome. In the present study, we sequenced 3 Y-linked genes (3,453 bp) and 4 X-linked genes (4,960 bp) and reanalyzed previously published sequences from autosome genes (2,347 bp) in ursid species to investigate differences in evolutionary rates associated with patterns of inheritance. The results describe topological incongruence between sex-linked genes and autosome genes and between nuclear DNA and mtDNA. In more ancestral branches within the bear phylogeny, Y-linked genes evolved faster than autosome and X-linked genes, consistent with expectations based on male-driven evolution. However, this pattern changes among branches leading to each species within the lineage of Ursinae whereby the evolutionary rates of Y-linked genes have fewer than expected substitutions. This inconsistency between more recent nodes of the bear phylogeny with more ancestral nodes may reflect the influences of sex-biased dispersal as well as molecular evolutionary characteristics of the Y chromosome, and stochastic events in species natural history, and phylogeography unique to ursine bears.
Collapse
Affiliation(s)
- Shigeki Nakagome
- Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
22
|
Sequence variability analysis on major histocompatibility complex class II DRB alleles in three felines. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11515-008-0004-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
LIM BURTONK, ENGSTROM MARKD, BICKHAM JOHNW, PATTON JOHNC. Molecular phylogeny of New World sheath-tailed bats (Emballonuridae: Diclidurini) based on loci from the four genetic transmission systems in mammals. Biol J Linn Soc Lond 2007. [DOI: 10.1111/j.1095-8312.2007.00942.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Caballero S, Jackson J, Mignucci-Giannoni AA, Barrios-Garrido H, Beltrán-Pedreros S, Montiel-Villalobos MAG, Robertson KM, Baker CS. Molecular systematics of South American dolphins Sotalia: sister taxa determination and phylogenetic relationships, with insights into a multi-locus phylogeny of the Delphinidae. Mol Phylogenet Evol 2007; 46:252-68. [PMID: 18053749 DOI: 10.1016/j.ympev.2007.10.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 09/19/2007] [Accepted: 10/17/2007] [Indexed: 11/16/2022]
Abstract
The evolutionary relationships among members of the cetacean family Delphinidae, the dolphins, pilot whales and killer whales, are still not well understood. The genus Sotalia (coastal and riverine South American dolphins) is currently considered a member of the Stenoninae subfamily, along with the genera Steno (rough toothed dolphin) and Sousa (humpbacked dolphin). In recent years, a revision of this classification was proposed based on phylogenetic analysis of the mitochondrial gene cytochrome b, wherein Sousa was included in the Delphininae subfamily, keeping only Steno and Sotalia as members of the Stenoninae subfamily. Here we investigate the phylogenetic placement of Sotalia using two mitochondrial genes, six autosomal introns and four Y chromosome introns, providing a total of 5,196 base pairs (bp) for each taxon in the combined dataset. Sequences from these genomic regions were obtained for 17 delphinid species, including at least one species from each of five or six currently recognized subfamilies plus five odontocete outgroup species. Maximum Parsimony, Maximum Likelihood and Bayesian phylogenetic analysis of independent (each fragment) and combined datasets (mtDNA, nuDNA or mtDNA+nuDNA) showed that Sotalia and Sousa fall within a clade containing other members of Delphininae, exclusive of Steno. Sousa was resolved as the sister taxon to Sotalia according to analysis of the nuDNA dataset but not analysis of the mtDNA or combined mtDNA+nuDNA datasets. Based on the results from our multi-locus analysis, we offer several novel changes to the classification of Delphinidae, some of which are supported by previous morphological and molecular studies.
Collapse
Affiliation(s)
- Susana Caballero
- Laboratory of Molecular Ecology and Evolution, School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Blumenstiel JP. Sperm competition can drive a male-biased mutation rate. J Theor Biol 2007; 249:624-32. [PMID: 17919661 DOI: 10.1016/j.jtbi.2007.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 08/24/2007] [Indexed: 11/29/2022]
Abstract
A pattern of male-biased mutation has been found in a wide range of species. The standard explanation for this bias is that there are greater numbers of mitotic cell divisions in the history of the average sperm, compared to the average egg, and that mutations typically result from errors made during replication. However, this fails to provide an ultimate evolutionary explanation for why the male germline would tolerate more mutations that are typically deleterious. One possibility is that if there is a tradeoff between producing large numbers of sperm and expending energetic resources in maintaining a lower mutation rate, sperm competition would select for males that produce larger numbers of sperm despite a higher resulting mutation rate. Here I describe a model that jointly considers the fitness consequences of deleterious mutation and mating success in the face of sperm competition. I show that a moderate level of sperm competition can account for the observation that the male germline tolerates a higher mutation rate than the female germline.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
26
|
Luo SJ, Johnson WE, David VA, Menotti-Raymond M, Stanyon R, Cai QX, Beck T, Yuhki N, Pecon-Slattery J, Smith JLD, O'Brien SJ. Development of Y chromosome intraspecific polymorphic markers in the Felidae. ACTA ACUST UNITED AC 2007; 98:400-13. [PMID: 17646273 DOI: 10.1093/jhered/esm063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Y chromosome haplotyping based on microsatellites and single nucleotide polymorphisms (SNPs) has proved to be a powerful tool for population genetic studies of humans. However, the promise of the approach is hampered in the majority of nonhuman mammals by the lack of Y-specific polymorphic markers. We were able to identify new male-specific polymorphisms in the domestic cat Felis catus and 6 additional Felidae species with a combination of molecular genetic and cytogenetic approaches including 1) identifying domestic cat male-specific microsatellites from markers generated from a male cat microsatellite-enriched genomic library, a flow-sorted Y cosmid library, or a Y-specific cat bacteria artificial chromosome (BAC) clone, (2) constructing microsatellite-enriched libraries from flow-sorted Y chromosomes isolated directly from focal wildcat species, and (3) screening Y chromosome conserved anchored tagged sequences primers in Felidae species. Forty-one male-specific microsatellites were identified, but only 6 were single-copy loci, consistent with the repetitive nature of the Y chromosome. Nucleotide diversity (pi) of Y-linked intron sequences (2.1 kbp) was in the range of 0 (tiger) to 9.95 x 10(-4) (marbled cat), and the number of SNPs ranged from none in the tiger to 7 in the Asian leopard cat. The Y haplotyping system described here, consisting of 4 introns (SMCY3, SMCY7, UTY11, and DBY7) and 1 polymorphic microsatellite (SMCY-STR), represents the first available markers for tracking intraspecific male lineage polymorphisms in Felidae species and promises to provide significant insights to evolutionary and population genetic studies of the species.
Collapse
Affiliation(s)
- Shu-Jin Luo
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
King V, Goodfellow PN, Pearks Wilkerson AJ, Johnson WE, O'Brien SJ, Pecon-Slattery J. Evolution of the male-determining gene SRY within the cat family Felidae. Genetics 2007; 175:1855-67. [PMID: 17277366 PMCID: PMC1855139 DOI: 10.1534/genetics.106.066779] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 01/16/2007] [Indexed: 11/18/2022] Open
Abstract
In most placental mammals, SRY is a single-copy gene located on the Y chromosome and is the trigger for male sex determination during embryonic development. Here, we present comparative genomic analyses of SRY (705 bp) along with the adjacent noncoding 5' flank (997 bp) and 3' flank (948 bp) in 36 species of the cat family Felidae. Phylogenetic analyses indicate that the noncoding genomic flanks and SRY closely track species divergence. However, several inconsistencies are observed in SRY. Overall, the gene exhibits purifying selection to maintain function (omega = 0.815) yet SRY is under positive selection in two of the eight felid lineages. SRY has low numbers of nucleotide substitutions, yet most encode amino acid changes between species, and four different species have significantly altered SRY due to insertion/deletions. Moreover, fixation of nonsynonymous substitutions between sister taxa is not consistent and may occur rapidly, as in the case of domestic cat, or not at all over long periods of time, as observed within the Panthera lineage. The former resembles positive selection during speciation, and the latter purifying selection to maintain function. Thus, SRY evolution in cats likely reflects the different phylogeographic histories, selection pressures, and patterns of speciation in modern felids.
Collapse
Affiliation(s)
- V King
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Goetting-Minesky MP, Makova KD. Mammalian Male Mutation Bias: Impacts of Generation Time and Regional Variation in Substitution Rates. J Mol Evol 2006; 63:537-44. [PMID: 16955237 DOI: 10.1007/s00239-005-0308-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 06/12/2006] [Indexed: 12/01/2022]
Abstract
In mammals, males undergo a greater number of germline cell divisions compared with females. Thus, the male germline accumulates more DNA replication errors, which result in male mutation bias-a higher mutation rate for males than for females. The phenomenon of male mutation bias has been investigated mostly for rodents and primates, however, it has not been studied in detail for other mammalian orders. Here we sequenced and analyzed five introns of three genes (DBX/DBY, UTX/UTY, and ZFX/ZFY) homologous between X and Y chromosomes in several species of perissodactyls (horses and rhinos) and of primates. Male mutation bias was evident: substitution rate was higher for a Y chromosome intron than for its X chromosome homologue for all five intron pairs studied. Substitution rates varied regionally among introns sequenced on the same chromosome and this variation influenced male mutation bias inferred from each intron pair. Interestingly, we observed a positive correlation in substitution rates between homologous X and homologous Y introns as well as between orthologous primate and perissodactyl introns. The male-to-female mutation rate ratio estimated from concatenated sequences of five perissodactyl introns was 3.88 (95% CI = 2.90-6.07). Using the data generated here and estimates available in the literature, we compared male mutation bias among several mammalian orders. We conclude that male mutation bias is significantly higher for organisms with long generation times (primates, perissodactyls, and felids) than for organisms with short generation times (e.g., rodents) since the former undergo a greater number of male germline cell divisions.
Collapse
Affiliation(s)
- M Paula Goetting-Minesky
- Department of Biology, Center for Comparative Genomics and Bioinformatics, 518A Mueller Lab, Penn State University, University Park, PA 16803, USA
| | | |
Collapse
|
29
|
Chenuil A, Anne C. Choosing the right molecular genetic markers for studying biodiversity: from molecular evolution to practical aspects. Genetica 2006; 127:101-20. [PMID: 16850217 DOI: 10.1007/s10709-005-2485-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 08/25/2005] [Indexed: 11/25/2022]
Abstract
The use of molecular genetic markers (MGMs) has become widespread among evolutionary biologists, and the methods of analysis of genetic data improve rapidly, yet an organized framework in which scientists can work is lacking. Elements of molecular evolution are summarized to explain the origin of variation at the DNA level, its measures, and the relationships linking genetic variability to the biological parameters of the studied organisms. MGM are defined by two components: the DNA region(s) screened, and the technique used to reveal its variation. Criteria of choice belong to three categories: (1) the level of variability, (2) the nature of the information (e.g. dominance vs. codominance, ploidy, ... ) which must be determined according to the biological question and (3) some practical criteria which mainly depend on the equipment of the laboratory and experience of the scientist. A three-step procedure is proposed for drawing up MGMs suitable to answer given biological questions, and compiled data are organized to guide the choice at each step: (1) choice, determined by the biological question, of the level of variability and of the criteria of the nature of information, (2) choice of the DNA region and (3) choice of the technique.
Collapse
Affiliation(s)
- Anne Chenuil
- Centre d'Océanologie de Marseille Laboratoire DIMAR, UMR CNRS 6540-Université de la Méditerranée Chemin de la batterie des Lions, 13007, Marseille, France.
| | | |
Collapse
|
30
|
Pidancier N, Jordan S, Luikart G, Taberlet P. Evolutionary history of the genus Capra (Mammalia, Artiodactyla): discordance between mitochondrial DNA and Y-chromosome phylogenies. Mol Phylogenet Evol 2006; 40:739-49. [PMID: 16757184 DOI: 10.1016/j.ympev.2006.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 03/22/2006] [Accepted: 04/01/2006] [Indexed: 11/29/2022]
Abstract
The systematics of the genus Capra remain controversial in spite of studies conducted using morphology, mtDNA, and allozymes. Here, we assess the evolutionary history of Capra (i) using phylogenetic analysis of two nuclear genes located on the Y-chromosome and (ii) previously published and new cytochrome b sequences. For the Y-chromosome phylogeny, we sequenced segments from the amelogenin (AMELY) and zinc finger (ZFY) genes from all of the eight wild taxa and from domestic goats (Capra hircus). Phylogenetic analysis of the Y-chromosome data revealed two well-defined clades. The domestic goat (C. hircus), the bezoar (Capra aegagrus), and the markhor (C. falconeri) belong to one clade (ML bootstrap value [BP]: 98%), suggesting that domestic goats originated from one or both of these wild species. The second clade (ML BP: 92%) is comprised of all the other wild species. Horn morphology is generally concordant with the Y-chromosome phylogeny. The mtDNA data also revealed two well-defined clades. However, the species in each clade are different from those inferred from the Y-chromosome data. To explain the discordance between Y-chromosome and mtDNA phylogenies, several hypotheses are considered. We suggest that a plausible scenario involves mtDNA introgression between ancestral taxa before the relatively recent colonization of Western Europe, the Caucasus Mountains, and East Africa by Capra populations.
Collapse
Affiliation(s)
- Nathalie Pidancier
- Laboratoire d'Ecologie Alpine, Génomique des Populations et Biodiversité, CNRS UMR 5553, Université Joseph Fourier, B.P. 53, F-38041 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
31
|
Species and sex identification from faecal samples of sympatric carnivores, Amur leopard and Siberian tiger, in the Russian Far East. CONSERV GENET 2006. [DOI: 10.1007/s10592-005-9071-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A, Teeling E, O'Brien SJ. The late Miocene radiation of modern Felidae: a genetic assessment. Science 2006; 311:73-7. [PMID: 16400146 DOI: 10.1126/science.1122277] [Citation(s) in RCA: 422] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Modern felid species descend from relatively recent (<11 million years ago) divergence and speciation events that produced successful predatory carnivores worldwide but that have confounded taxonomic classifications. A highly resolved molecular phylogeny with divergence dates for all living cat species, derived from autosomal, X-linked, Y-linked, and mitochondrial gene segments (22,789 base pairs) and 16 fossil calibrations define eight principal lineages produced through at least 10 intercontinental migrations facilitated by sea-level fluctuations. A ghost lineage analysis indicates that available felid fossils underestimate (i.e., unrepresented basal branch length) first occurrence by an average of 76%, revealing a low representation of felid lineages in paleontological remains. The phylogenetic performance of distinct gene classes showed that Y-chromosome segments are appreciably more informative than mitochondrial DNA, X-linked, or autosomal genes in resolving the rapid Felidae species radiation.
Collapse
Affiliation(s)
- Warren E Johnson
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Yu L, Zhang YP. Phylogenetic studies of pantherine cats (Felidae) based on multiple genes, with novel application of nuclear beta-fibrinogen intron 7 to carnivores. Mol Phylogenet Evol 2005; 35:483-95. [PMID: 15804417 DOI: 10.1016/j.ympev.2005.01.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 01/16/2005] [Accepted: 01/26/2005] [Indexed: 11/24/2022]
Abstract
The pantherine lineage of the cat family Felidae (order: Carnivora) includes five big cats of genus Panthera and a great many midsized cats known worldwide. Presumably because of their recent and rapid radiation, the evolutionary relationship among pantherines remains ambiguous. We provide an independent assessment of the evolutionary history of pantherine lineage using two complete mitochondrial (mt) genes (ND2 and ND4) and the nuclear beta-fibrinogen intron 7 gene, whose utility in carnivoran phylogeny was first explored. The available four mt (ND5, cytb, 12S, and 16SrRNA) and two nuclear (IRBP and TTR) sequence loci were also combined to reconstruct phylogeny of 14 closely related cat species. Our analyses of combined mt data (six genes; approximately 3750 bp) and combined mt and nuclear data (nine genes; approximately 6500 bp) obtained identical tree topologies, which were well-resolved and strongly supported for almost all nodes. Monophyly of Panthera genus in pantherine lineage was confirmed and interspecific affinities within this genus revealed a novel branching pattern, with P. tigris diverging first in Panthera genus, followed by P. onca, P. leo, and last two sister species P. pardus and P. uncia. In addition, close association of Neofelis nebulosa to Panthera, the phylogenetic redefinition of Otocolobus manul within the domestic cat group, and the relatedness of Acinonyx jubatus and Puma concolor were all important findings in the resulting phylogenies. The potential utilities of nine different genes for phylogenetic resolution of closely related pantherine species were also evaluated, with special interest in that of the novel nuclear beta-fibrinogen intron 7.
Collapse
Affiliation(s)
- Li Yu
- Laboratory of Cellular and Molecular Evolution, and Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | | |
Collapse
|
34
|
Tamada T, Kurose N, Masuda R. Genetic diversity in domestic cats Felis catus of the Tsushima Islands, based on mitochondrial DNA cytochrome b and control region nucleotide sequences. Zoolog Sci 2005; 22:627-33. [PMID: 15988156 DOI: 10.2108/zsj.22.627] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nucleotide sequences of mitochondrial DNA (mtDNA) of 50 domestic cats (Felis catus) obtained from the Tsushima Islands were determined and the genetic diversity was analyzed. In the cats, six haplotypes of the complete cytochrome b sequences (1,140 base-pairs, bp) and ten haplotypes of the partial control region sequences (350 bp) were identified. Haplotypes obtained from both genes showed existence of at least 11 maternal lineages of domestic cats in Tsushima. Mean values of polymorphic site numbers and sequences differences in the control region were 2.4 times and 1.8 times higher than those in the cytochrome b gene, respectively. Our results support the idea that the evolutionary rate of the control region was faster than that of the cytochrome b as reported in other mammals. Molecular phylogenetic trees showed the similar clustering of haplotypes for both genes. Meanwhile, no individual variations within the Tsushima leopard cat (Felis bengalensis euptilura), which is native to Tsushima, were observed, possibly as a result of genetic drift in the small ancestral population by geographical isolation. In contrast, the diversity of the domestic cat population was higher than that of the leopard cats, because the genetic variability of the former's founders, which were repeatedly brought to Tsushima in the past, still remains. In addition, no sequences of the leopard cat mtDNA were detected in any domestic cats. However, because the possibility that the domestic cat would crossbreed with the leopard cat cannot be denied, genetic monitoring of two species is necessary to biological conservation in Tsushima.
Collapse
Affiliation(s)
- Tsutomu Tamada
- Division of Bioscience, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
35
|
Sandstedt SA, Tucker PK. Male-driven evolution in closely related species of the mouse genus Mus. J Mol Evol 2005; 61:138-44. [PMID: 16007492 DOI: 10.1007/s00239-004-0279-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 03/10/2005] [Indexed: 10/25/2022]
Abstract
Recently, other researchers have found that closely related primate species had a lower male-to-female mutation rate ratio (alpha) than distantly related species. To determine if this is a general phenomenon affecting other mammalian orders, eleven species or subspecies of the rodent genus Mus and two outgroup species were compared. Intron sequences from a gene in the nonrecombining region of the Y chromosome Jarid1d (Smcy) and its X chromosomal gametolog, Jarid1c (Smcx), were analyzed in a phylogenetic context. The male-to-female mutation rate ratio for all thirteen taxa is approximately 2.5, which is similar to previous estimates in more distantly related rodents. However, when branches with lengths of more than 2.5% were removed from the analysis, the male-to-female mutation rate ratio dropped to 0.9. Thus, in closely related rodents, as in closely related primates, the male-to-female mutation rate ratio is lower than expected.
Collapse
Affiliation(s)
- Sara A Sandstedt
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
36
|
Yu L, Li QW, Ryder OA, Zhang YP. Phylogenetic relationships within mammalian order Carnivora indicated by sequences of two nuclear DNA genes. Mol Phylogenet Evol 2004; 33:694-705. [PMID: 15522797 DOI: 10.1016/j.ympev.2004.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Revised: 07/13/2004] [Indexed: 11/18/2022]
Abstract
Phylogenetic relationships among 37 living species of order Carnivora spanning a relatively broad range of divergence times and taxonomic levels were examined using nuclear sequence data from exon 1 of the IRBP gene (approximately 1.3 kb) and first intron of the TTR gene (approximately 1 kb). These data were used to analyze carnivoran phylogeny at the family and generic level as well as the interspecific relationships within recently derived Felidae. Phylogenetic results using a combined IRBP+TTR dataset strongly supported within the superfamily Califormia, the red panda as the closest lineage to procyonid-mustelid (i.e., Musteloidea) clade followed by pinnipeds (Otariidae and Phocidae), Ursidae (including the giant panda), and Canidae. Four feliform families, namely the monophyletic Herpestidae, Hyaenidae, and Felidae, as well as the paraphyletic Viverridae were consistently recovered convincingly. The utilities of these two gene segments for the phylogenetic analyses were extensively explored and both were found to be fairly informative for higher-group associations within the order Carnivora, but not for those of low level divergence at the species level. Therefore, there is a need to find additional genetic markers with more rapid mutation rates that would be diagnostic at deciphering relatively recent relationships within the Carnivora.
Collapse
Affiliation(s)
- Li Yu
- Laboratory of Molecular Biology of Domestic Animals, and Cellular and Molecular Evolution, Kunming Institute of Zoology, Kunming 650223, China
| | | | | | | |
Collapse
|
37
|
Pecon-Slattery J, Pearks Wilkerson AJ, Murphy WJ, O'Brien SJ. Phylogenetic assessment of introns and SINEs within the Y chromosome using the cat family felidae as a species tree. Mol Biol Evol 2004; 21:2299-309. [PMID: 15329385 DOI: 10.1093/molbev/msh241] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cat family Felidae was used as a species tree to assess the phylogenetic performance of genes, and their embedded SINE elements, within the nonrecombining region of the Y chromosome (NRY). Genomic segments from single-copy X-Y homologs SMCY, UBE1Y, and ZFY (3,604 bp) were amplified in 36 species of cat. These genes are located within the X-degenerate region of the NRY and are thought to be molecular "fossils" that ceased conventional recombination with the X chromosome early within the placental mammal evolution. The pattern and tempo of evolution at these three genes is significant in light of the recent, rapid evolution of the family over approximately 12 Myr and provides exceptional support for each of the eight recognized felid lineages, as well as clear diagnostic substitutions identifying nearly all species. Bootstrap support and Bayesian posterior probabilities are uniformly high for defining each of the eight monophyletic lineages. Further, the preferential use of specific target-site motifs facilitating SINE insertion is empirically supported by sequence analyses of SINEs embedded within the three genes. Target-site insertion is thought to explain the contradiction between intron phylogeny and results of the SMCY SINE phylogeny that unites distantly related species. Overall, our data suggest X-degenerate genes within the NRY are singularly powerful markers and offer a valuable patrilineal perspective in species evolution.
Collapse
|
38
|
Abstract
The compilation of a dense gene map and eventually a whole genome sequence (WGS) of the domestic cat holds considerable value for human genome annotation, for veterinary medicine, and for insight into the evolution of genome organization among mammals. Human association and veterinary studies of the cat, its domestic breeds, and its charismatic wild relatives of the family Felidae have rendered the species a powerful model for human hereditary diseases, for infectious disease agents, for adaptive evolutionary divergence, for conservation genetics, and for forensic applications. Here we review the advantages, rationale, and present strategy of a feline genome project, and we describe the disease models, comparative genomics, and biological applications posed by the full resolution of the cat's genome.
Collapse
Affiliation(s)
- Stephen J O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick, Maryland 21702-1201, USA.
| | | | | | | |
Collapse
|
39
|
Yuhki N, Beck T, Stephens RM, Nishigaki Y, Newmann K, O'Brien SJ. Comparative genome organization of human, murine, and feline MHC class II region. Genome Res 2003; 13:1169-79. [PMID: 12743023 PMCID: PMC403645 DOI: 10.1101/gr.976103] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To study comparative molecular dynamics in the genesis of the major histocompatibility complex (MHC), we determined a complete nucleotide sequence spanning 758,291 bp of the domestic cat (Felis catus) extended and classical class II region. The feline class II MHC includes 44 genes (31 predicted to be expressed) which display DNA sequence homology and ordered gene synteny with human HLA and mouse H2, in extended class II and centromere proximal regions (DM to DO) of the classical class II region. However, remarkable genomic alterations including gene gain and loss plus size differentials of 250 kb are evident in comparisons of the cat class II with those of human and mouse. The cat MHC lacks the entire DQ region and retains only relict pseudogene homologs of DP genes, compensated by expansion and reorganization of seven modern DR genes. Repetitive gene families within the feline MHC comprise 35% of the feline MHC with very different density and abundance of GC levels, SINES, LINES, STRs, and retro-elements from the same repeats in human and mouse MHC. Comparison of the feline MHC with the murine and human MHC offers a detailed view of the consequences of genome organization in three mammalian lineages.
Collapse
Affiliation(s)
- Naoya Yuhki
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Changes in technology in the past decade have had such an impact on the way that molecular evolution research is done that it is difficult now to imagine working in a world without genomics or the Internet. In 1992, GenBank was less than a hundredth of its current size and was updated every three months on a huge spool of tape. Homology searches took 30 minutes and rarely found a hit. Now it is difficult to find sequences with only a few homologs to use as examples for teaching bioinformatics. For molecular evolution researchers, the genomics revolution has showered us with raw data and the information revolution has given us the wherewithal to analyze it. In broad terms, the most significant outcome from these changes has been our newfound ability to examine the evolution of genomes as a whole, enabling us to infer genome-wide evolutionary patterns and to identify subsets of genes whose evolution has been in some way atypical.
Collapse
Affiliation(s)
- Kenneth H Wolfe
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
41
|
Abstract
Studies of human genetic diseases have suggested a higher mutation rate in males than in females and the male-to-female ratio (alpha) of mutation rate has been estimated from DNA sequence and microsatellite data to be about 4-6 in higher primates. Two recent studies, however, claim that alpha is only about 2 in humans. This is even smaller than the estimates (alpha > 4) for carnivores and birds; humans should have a higher alpha than carnivores and birds because of a longer generation time and a larger sex difference in the number of germ cell cycles. To resolve this issue, we sequenced a noncoding fragment on Y of about 10.4 kilobases (kb) and a homologous region on chromosome 3 in humans, greater apes, and lesser apes. Here we show that our estimate of alpha from the internal branches of the phylogeny is 5.25 (95% confidence interval (CI) 2.44 to infinity), similar to the previous estimates, but significantly higher than the two recent ones. In contrast, for the external (short, species-specific) branches, alpha is only 2.23 (95% CI: 1.47-3.84). We suggest that closely related species are not suitable for estimating alpha, because of ancient polymorphism and other factors. Moreover, we provide an explanation for the small estimate of alpha in a previous study. Our study reinstates a high alpha in hominoids and supports the view that DNA replication errors are the primary source of germline mutation.
Collapse
Affiliation(s)
- Kateryna D Makova
- Department of Ecology and Evolution, University of Chicago, IL 60637, USA
| | | |
Collapse
|
42
|
Lercher MJ, Williams EJ, Hurst LD. Local similarity in evolutionary rates extends over whole chromosomes in human-rodent and mouse-rat comparisons: implications for understanding the mechanistic basis of the male mutation bias. Mol Biol Evol 2001; 18:2032-9. [PMID: 11606699 DOI: 10.1093/oxfordjournals.molbev.a003744] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The sex chromosomes and autosomes spend different times in the germ line of the two sexes. If cell division is mutagenic and if the sexes differ in number of cell divisions, then we expect that sequences on the X and Y chromosomes and autosomes should mutate at different rates. Tests of this hypothesis for several mammalian species have led to conflicting results. At the same time, recent evidence suggests that the chromosomal location of genes on autosomes affects their rate of evolution at synonymous sites. This suggests a mutagenic source different from germ cell replication. To correctly interpret the previous estimates of male mutation bias, it is crucial to understand the degree and range of this local similarity. With a carefully chosen randomization protocol, local similarity in synonymous rates of evolution can be detected in human-rodent and mouse-rat comparisons. However, the synonymous-site similarity in the mouse-rat comparison remains weak. Simulations suggest that this difference between the mouse-human and the mouse-rat comparisons is not artifactual and that there is therefore a difference between humans and rodents in the local patterns of mutation or selection on synonymous sites (conversely, we show that the previously reported absence of a local similarity in nonsynonymous rates of evolution in the human-rodent comparison was a methodological artifact). We show that linkage effects have a long-range component: not one in a million random genomes shows such levels of autosomal heterogeneity. The heterogeneity is so great that more autosomes than expected by chance have rates of synonymous evolution comparable with that of the X chromosome. As autosomal heterogeneity cannot be owing to different times spent in the germ line, this demonstrates that the dominant determiner of synonymous rates of evolution is not, as has been conjectured, the time spent in the male germ line.
Collapse
Affiliation(s)
- M J Lercher
- Department of Biology and Biochemistry, University of Bath, Claverton Downs, Bath, England.
| | | | | |
Collapse
|
43
|
Montell H, Fridolfsson AK, Ellegren H. Contrasting levels of nucleotide diversity on the avian Z and W sex chromosomes. Mol Biol Evol 2001; 18:2010-6. [PMID: 11606697 DOI: 10.1093/oxfordjournals.molbev.a003742] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sex chromosomes may provide a context for studying the local effects of mutation rate on molecular evolution, since the two types of sex chromosomes are generally exposed to different mutational environments in male and female germ lines. Importantly, recent studies of some vertebrates have provided evidence for a higher mutation rate among males than among females. Thus, in birds, the Z chromosome, which spends two thirds of its time in the male germ line, is exposed to more mutations than the female-specific W chromosome. We show here that levels of nucleotide diversity are drastically higher on the avian Z chromosome than in paralogous sequences on the W chromosome. In fact, no intraspecific polymorphism whatsoever was seen in about 3.4 kb of CHD1W intron sequence from a total of >150 W chromosome copies of seven different bird species. In contrast, the amount of genetic variability in paralogous sequences on the Z chromosome was significant, with an average pairwise nucleotide diversity (d) of 0.0020 between CHD1Z introns and with 37 segregating sites in a total of 3.8 kb of Z sequence. The contrasting levels of genetic variability on the avian sex chromosomes are thus in a direction predicted from a male-biased mutation rate. However, although a low gene number, as well as some other factors, argues against background selection and/or selective sweeps shaping the genetic variability of the avian W chromosome, we cannot completely exclude selection as a contributor to the low levels of variation on the W chromosome.
Collapse
Affiliation(s)
- H Montell
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
44
|
Jae-Heup K, Eizirik E, O'Brien SJ, Johnson WE. Structure and patterns of sequence variation in the mitochondrial DNA control region of the great cats. Mitochondrion 2001; 1:279-92. [PMID: 16120284 DOI: 10.1016/s1567-7249(01)00027-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2001] [Revised: 07/27/2001] [Accepted: 07/30/2001] [Indexed: 11/24/2022]
Abstract
Mitochondrial DNA control region structure and variation were determined in the five species of the genus Panthera. Comparative analyses revealed two hypervariable segments, a central conserved region, and the occurrence of size and sequence heteroplasmy. As observed in the domestic cat, but not commonly seen in other animals, two repetitive sequence arrays (RS-2 with an 80-bp motif and RS-3 with a 6-10-bp motif) were identified. The 3' ends of RS-2 and RS-3 were highly conserved among species, suggesting that these motifs have different functional constraints. Control region sequences provided improved phylogenetic resolution grouping the sister taxa lion (Panthera leo) and leopard (Panthera pardus), with the jaguar (Panthera onca).
Collapse
Affiliation(s)
- K Jae-Heup
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
45
|
Normark BB, Moran NA. Testing for the accumulation of deleterious mutations in asexual eukaryote genomes using molecular sequences. J NAT HIST 2000. [DOI: 10.1080/00222930050122147] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Pecon Slattery J, Sanner-Wachter L, O'Brien SJ. Novel gene conversion between X-Y homologues located in the nonrecombining region of the Y chromosome in Felidae (Mammalia). Proc Natl Acad Sci U S A 2000; 97:5307-12. [PMID: 10805789 PMCID: PMC25824 DOI: 10.1073/pnas.97.10.5307] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/1999] [Indexed: 11/18/2022] Open
Abstract
Genes located on the mammalian Y chromosome outside of the pseudoautosomal region do not recombine with those on the X and are predicted to either undergo selection for male function or gradually degenerate because of an accumulation of deleterious mutations. Here, phylogenetic analyses of X-Y homologues, Zfx and Zfy, among 26 felid species indicate two ancestral episodes of directed genetic exchange (ectopic gene conversion) from X to Y: once during the evolution of pallas cat and once in a common predecessor of ocelot lineage species. Replacement of the more rapidly evolving Y homologue with the evolutionarily constrained X copy may represent a mechanism for adaptive editing of functional genes on the nonrecombining region of the mammalian Y chromosome.
Collapse
Affiliation(s)
- J Pecon Slattery
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
47
|
Slattery JP, Murphy WJ, O'Brien SJ. Patterns of diversity among SINE elements isolated from three Y-chromosome genes in carnivores. Mol Biol Evol 2000; 17:825-9. [PMID: 10779543 DOI: 10.1093/oxfordjournals.molbev.a026361] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Murphy WJ, Sun S, Chen ZQ, Pecon-Slattery J, O'Brien SJ. Extensive conservation of sex chromosome organization between cat and human revealed by parallel radiation hybrid mapping. Genome Res 1999; 9:1223-30. [PMID: 10613845 PMCID: PMC311008 DOI: 10.1101/gr.9.12.1223] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A radiation hybrid (RH)-derived physical map of 25 markers on the feline X chromosome (including 19 Type I coding loci and 6 Type II microsatellite markers) was compared to homologous marker order on the human and mouse X chromosome maps. Complete conservation of synteny and marker order was observed between feline and human X chromosomes, whereas the same markers identified a minimum of seven rearranged syntenic segments between mouse and cat/human X chromosome marker order. Within the blocks, the feline, human, and mouse marker order was strongly conserved. Similarly, Y chromosome locus order was remarkably conserved between cat and human Y chromosomes, with only one marker (SMCY) position rearranged between the species. Tight linkage and a conserved gene order for a segment encoding three genes, DFFRY-DBY-UTY in human, mouse, and cat Y chromosomes, coupled with demonstrated deletion effects of these genes on reproductive impairment in both human and mouse, implicates the region as critical for Y-mediated sperm production.
Collapse
Affiliation(s)
- W J Murphy
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201,USA.
| | | | | | | | | |
Collapse
|
49
|
Johnson WE, Slattery JP, Eizirik E, Kim JH, Raymond MM, Bonacic C, Cambre R, Crawshaw P, Nunes A, Seuánez HN, Moreira MA, Seymour KL, Simon F, Swanson W, O'Brien SJ. Disparate phylogeographic patterns of molecular genetic variation in four closely related South American small cat species. Mol Ecol 1999; 8:S79-94. [PMID: 10703553 DOI: 10.1046/j.1365-294x.1999.00796.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tissue specimens from four species of Neotropical small cats (Oncifelis geoffroyi, N = 38; O. guigna, N = 6; Leopardus tigrinus, N = 32; Lynchailurus colocolo, N = 22) collected from throughout their distribution were examined for patterns of DNA sequence variation using three mitochondrial genes, 16S rRNA, ATP8, and NADH-5. Patterns between and among O. guigna and O. geoffroyi individuals were assessed further from size variation at 20 microsatellite loci. Phylogenetic analyses using mitochondrial DNA sequences revealed monophyletic clustering of the four species, plus evidence of natural hybridization between L. tigrinus and L. colocolo in areas of range overlap and discrete population subdivisions reflecting geographical isolation. Several commonly accepted subspecies partitions were affirmed for L. colocolo, but not for O. geoffroyi. The lack of geographical substructure in O. geoffroyi was recapitulated with the microsatellite data, as was the monophyletic clustering of O. guigna and O. geoffroyi individuals. L. tigrinus forms two phylogeographic clusters which correspond to L.t. oncilla (from Costa Rica) and L.t. guttula (from Brazil) and which have mitochondrial DNA (mtDNA) genetic distance estimates comparable to interspecific values between other ocelot lineage species. Using feline-specific calibration rates for mitochondrial DNA mutation rates, we estimated that extant lineages of O. guigna diverged 0.4 million years ago (Ma), compared with 1.7 Ma for L. colocolo, 2.0 Ma for O. geoffroyi, and 3.7 Ma for L. tigrinus.
Collapse
Affiliation(s)
- W E Johnson
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
O'Brien SJ, Yuhki N. Comparative genome organization of the major histocompatibility complex: lessons from the Felidae. Immunol Rev 1999; 167:133-44. [PMID: 10319256 PMCID: PMC7165862 DOI: 10.1111/j.1600-065x.1999.tb01387.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mammalian major histocompatibility complex (MHC) has taught both immunologists and evolutionary biologists a great deal about the patterns and processes that have led to immune defenses. Driven principally by human and mouse studies, comparative MHC projects among other mammalian species offer certain advantages in connecting MHC genome characters to natural situations. We have studied the MHC in the domestic cat and in several wild species of Felidae. Our observations affirm class I and class II homology with other mammalian orders, derivative gene duplications during the Felidae radiation, abundant persistent trans-species allele polymorphism, recombination-derived amino acid motifs, and inverted ratios of non-synonymous to silent substitutions in the MHC peptide-binding regions, consistent with overdominant selection in class I and II genes. MHC diversity as quantified in population studies is a powerful barometer of historic demographic reduction for several endangered species including cheetahs, Asiatic lions, Florida panthers and tigers. In two cases (Florida panther and cheetah), reduced MHC variation may be contributing to uniform population sensitivity to emerging infectious pathogens. The Felidae species, nearly all endangered and monitored for conservation concerns, have allowed a glimpse of species adaptation, mediated by MHC divergence, using comparative inferences drawn from human and mouse models.
Collapse
Affiliation(s)
- S J O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland 21702-1201, USA.
| | | |
Collapse
|