1
|
Li Y, Guan Y, Jiang Z, Xie Q, Wang Q, Yu C, Yu W. Soil Microbial and Metabolomic Shifts Induced by Phosphate-Solubilizing Bacterial Inoculation in Torreya grandis Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:3209. [PMID: 39599416 PMCID: PMC11598221 DOI: 10.3390/plants13223209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Phosphorus is crucial for plant growth and development, but excess fertilizer not absorbed by plants often binds with metal ions like iron and manganese, forming insoluble compounds that contribute to soil environmental pollution. This study investigates the impact of Burkholderia sp., a phosphate-solubilizing bacterium utilized as a biofertilizer, on the fertility of T. grandis soil, alongside the associated shifts in soil metabolites and their relationship with microbial communities after inoculation. The soil microbial community structures and metabolite profiles were analyzed via amplicon sequencing and high-resolution untargeted metabolomics. The inoculation of phosphate-solubilizing bacteria led to a significant (p < 0.05) enhancement in total phosphorus, potassium, and nitrogen concentrations in the soil, with a marked increase in available phosphorus in bulk soil (p < 0.05). Moreover, the microbial community structure exhibited significant shifts, particularly in the abundance of bacterial phyla such as Acidobacteria, Chloroflexi, Proteobacteria, and the fungal phylum Ascomycota. Metabolomic analysis revealed distinct metabolites, including fatty acids, hormones, amino acids, and drug-related compounds. Key microbial taxa such as Chloroflexi, Proteobacteria, Acidobacteria, Verrucomicrobia, Mucoromycota, and Ascomycota indirectly contributed to soil phosphorus metabolism by influencing these differential metabolites. In conclusion, the application of phosphate-solubilizing bacteria offers an innovative approach to improving soil quality in T. grandis, promoting phosphorus utilization efficiency, and enhancing soil ecosystem health by optimizing microbial communities and metabolite compositions.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.G.); (Z.J.); (Q.X.)
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China;
| | - Yuanyuan Guan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.G.); (Z.J.); (Q.X.)
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China;
| | - Zhengchu Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.G.); (Z.J.); (Q.X.)
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China;
| | - Qiandan Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.G.); (Z.J.); (Q.X.)
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China;
| | - Qi Wang
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China;
| | - Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.G.); (Z.J.); (Q.X.)
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China;
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.G.); (Z.J.); (Q.X.)
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China;
- NFGA Engineering Research Center for Torreya grandis ‘Merrillii’, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Adaptive Evolution of Rhizobial Symbiosis beyond Horizontal Gene Transfer: From Genome Innovation to Regulation Reconstruction. Genes (Basel) 2023; 14:genes14020274. [PMID: 36833201 PMCID: PMC9957244 DOI: 10.3390/genes14020274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
There are ubiquitous variations in symbiotic performance of different rhizobial strains associated with the same legume host in agricultural practices. This is due to polymorphisms of symbiosis genes and/or largely unexplored variations in integration efficiency of symbiotic function. Here, we reviewed cumulative evidence on integration mechanisms of symbiosis genes. Experimental evolution, in concert with reverse genetic studies based on pangenomics, suggests that gain of the same circuit of key symbiosis genes through horizontal gene transfer is necessary but sometimes insufficient for bacteria to establish an effective symbiosis with legumes. An intact genomic background of the recipient may not support the proper expression or functioning of newly acquired key symbiosis genes. Further adaptive evolution, through genome innovation and reconstruction of regulation networks, may confer the recipient of nascent nodulation and nitrogen fixation ability. Other accessory genes, either co-transferred with key symbiosis genes or stochastically transferred, may provide the recipient with additional adaptability in ever-fluctuating host and soil niches. Successful integrations of these accessory genes with the rewired core network, regarding both symbiotic and edaphic fitness, can optimize symbiotic efficiency in various natural and agricultural ecosystems. This progress also sheds light on the development of elite rhizobial inoculants using synthetic biology procedures.
Collapse
|
3
|
Rodríguez S, Correa-Galeote D, Sánchez-Pérez M, Ramírez M, Isidra-Arellano MC, Reyero-Saavedra MDR, Zamorano-Sánchez D, Hernández G, Valdés-López O, Girard L. A Novel OmpR-Type Response Regulator Controls Multiple Stages of the Rhizobium etli - Phaseolus vulgaris N 2-Fixing Symbiosis. Front Microbiol 2021; 11:615775. [PMID: 33384681 PMCID: PMC7769827 DOI: 10.3389/fmicb.2020.615775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/26/2020] [Indexed: 11/22/2022] Open
Abstract
OmpR, is one of the best characterized response regulators families, which includes transcriptional regulators with a variety of physiological roles including the control of symbiotic nitrogen fixation (SNF). The Rhizobium etli CE3 genome encodes 18 OmpR-type regulators; the function of the majority of these regulators during the SNF in common bean, remains elusive. In this work, we demonstrated that a R. etli mutant strain lacking the OmpR-type regulator RetPC57 (ΔRetPC57), formed less nodules when used as inoculum for common bean. Furthermore, we observed reduced expression level of bacterial genes involved in Nod Factors production (nodA and nodB) and of plant early-nodulation genes (NSP2, NIN, NF-YA and ENOD40), in plants inoculated with ΔRetPC57. RetPC57 also contributes to the appropriate expression of genes which products are part of the multidrug efflux pumps family (MDR). Interestingly, nodules elicited by ΔRetPC57 showed increased expression of genes relevant for Carbon/Nitrogen nodule metabolism (PEPC and GOGAT) and ΔRetPC57 bacteroids showed higher nitrogen fixation activity as well as increased expression of key genes directly involved in SNF (hfixL, fixKf, fnrN, fixN, nifA and nifH). Taken together, our data show that the previously uncharacterized regulator RetPC57 is a key player in the development of the R. etli - P. vulgaris symbiosis.
Collapse
Affiliation(s)
- Susana Rodríguez
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - David Correa-Galeote
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mishael Sánchez-Pérez
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mario Ramírez
- Programa de Genómica Funcional de Eucariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mariel C Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - María Del Rocío Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - David Zamorano-Sánchez
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Georgina Hernández
- Programa de Genómica Funcional de Eucariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - Lourdes Girard
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
4
|
Hu Y, Jiao J, Liu LX, Sun YW, Chen WF, Sui XH, Chen WX, Tian CF. Evidence for Phosphate Starvation of Rhizobia without Terminal Differentiation in Legume Nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1060-1068. [PMID: 29663866 DOI: 10.1094/mpmi-02-18-0031-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phosphate homeostasis is tightly modulated in all organisms, including bacteria, which harbor both high- and low-affinity transporters acting under conditions of fluctuating phosphate levels. It was thought that nitrogen-fixing rhizobia, named bacteroids, inhabiting root nodules of legumes are not phosphate limited. Here, we show that the high-affinity phosphate transporter PstSCAB, rather than the low-affinity phosphate transporter Pit, is essential for effective nitrogen fixation of Sinorhizobium fredii in soybean nodules. Symbiotic and growth defects of the pst mutant can be effectively restored by knocking out PhoB, the transcriptional repressor of pit. The pst homologs of representative rhizobia were actively transcribed in bacteroids without terminal differentiation in nodules of diverse legumes (soybean, pigeonpea, cowpea, common bean, and Sophora flavescens) but exhibited a basal expression level in terminally differentiated bacteroids (alfalfa, pea, and peanut). Rhizobium leguminosarum bv. viciae Rlv3841 undergoes characteristic nonterminal and terminal differentiations in nodules of S. flavescens and pea, respectively. The pst mutant of Rlv3841 showed impaired adaptation to the nodule environment of S. flavescens but was indistinguishable from the wild-type strain in pea nodules. Taken together, root nodule rhizobia can be either phosphate limited or nonlimited regarding the rhizobial differentiation fate, which is a host-dependent feature.
Collapse
Affiliation(s)
- Yue Hu
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Li Xue Liu
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Yan Wei Sun
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Wen Feng Chen
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
5
|
Skouri-Panet F, Benzerara K, Cosmidis J, Férard C, Caumes G, De Luca G, Heulin T, Duprat E. In Vitro and in Silico Evidence of Phosphatase Diversity in the Biomineralizing Bacterium Ramlibacter tataouinensis. Front Microbiol 2018; 8:2592. [PMID: 29375498 PMCID: PMC5768637 DOI: 10.3389/fmicb.2017.02592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
Microbial phosphatase activity can trigger the precipitation of metal-phosphate minerals, a process called phosphatogenesis with global geochemical and environmental implications. An increasing diversity of phosphatases expressed by diverse microorganisms has been evidenced in various environments. However, it is challenging to link the functional properties of genomic repertoires of phosphatases with the phosphatogenesis capabilities of microorganisms. Here, we studied the betaproteobacterium Ramlibacter tataouinensis (Rta), known to biomineralize Ca-phosphates in the environment and the laboratory. We investigated the functional repertoire of this biomineralization process at the cell, genome and molecular level. Based on a mineralization assay, Rta is shown to hydrolyse the phosphoester bonds of a wide range of organic P molecules. Accordingly, its genome has an unusually high diversity of phosphatases: five genes belonging to two non-homologous families, phoD and phoX, were detected. These genes showed diverse predicted cis-regulatory elements. Moreover, they encoded proteins with diverse structural properties according to molecular models. Heterologously expressed PhoD and PhoX in Escherichia coli had different profiles of substrate hydrolysis. As evidenced for Rta cells, recombinant E. coli cells induced the precipitation of Ca-phosphate mineral phases, identified as poorly crystalline hydroxyapatite. The phosphatase genomic repertoire of Rta (containing phosphatases of both the PhoD and PhoX families) was previously evidenced as prevalent in marine oligotrophic environments. Interestingly, the Tataouine sand from which Rta was isolated showed similar P-depleted, but Ca-rich conditions. Overall, the diversity of phosphatases in Rta allows the hydrolysis of a broad range of organic P substrates and therefore the release of orthophosphates (inorganic phosphate) under diverse trophic conditions. Since the release of orthophosphates is key to the achievement of high saturation levels with respect to hydroxyapatite and the induction of phosphatogenesis, Rta appears as a particularly efficient driver of this process as shown experimentally.
Collapse
Affiliation(s)
- Fériel Skouri-Panet
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Karim Benzerara
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Julie Cosmidis
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Céline Férard
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Géraldine Caumes
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Gilles De Luca
- Laboratoire d'Écologie Microbienne de la Rhizosphère et Environnements Extrêmes, UMR 7265, Aix Marseille Univ, Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Saint-Paul-lez-Durance, France
| | - Thierry Heulin
- Laboratoire d'Écologie Microbienne de la Rhizosphère et Environnements Extrêmes, UMR 7265, Aix Marseille Univ, Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Saint-Paul-lez-Durance, France
| | - Elodie Duprat
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| |
Collapse
|
6
|
Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti. J Bacteriol 2018; 200:JB.00501-17. [PMID: 29158240 DOI: 10.1128/jb.00501-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022] Open
Abstract
Sinorhizobium meliloti is a soil-dwelling alphaproteobacterium that engages in a nitrogen-fixing root nodule symbiosis with leguminous plants. Cell surface polysaccharides are important both for adapting to stresses in the soil and for the development of an effective symbiotic interaction. Among the polysaccharides characterized to date, the acidic exopolysaccharides I (EPS-I; succinoglycan) and II (EPS-II; galactoglucan) are particularly important for protection from abiotic stresses, biofilm formation, root colonization, and infection of plant roots. Previous genetic screens discovered mutants with impaired EPS production, allowing the delineation of EPS biosynthetic pathways. Here we report on a genetic screen to isolate mutants with mucoid colonial morphologies that suggest EPS overproduction. Screening with Tn5-110, which allows the recovery of both null and upregulation mutants, yielded 47 mucoid mutants, most of which overproduce EPS-I; among the 30 unique genes and intergenic regions identified, 14 have not been associated with EPS production previously. We identified a new protein-coding gene, emmD, which may be involved in the regulation of EPS-I production as part of the EmmABC three-component regulatory circuit. We also identified a mutant defective in EPS-I production, motility, and symbiosis, where Tn5-110 was not responsible for the mutant phenotypes; these phenotypes result from a missense mutation in rpoA corresponding to the domain of the RNA polymerase alpha subunit known to interact with transcription regulators.IMPORTANCE The alphaproteobacterium Sinorhizobium meliloti converts dinitrogen to ammonium while inhabiting specialized plant organs termed root nodules. The transformation of S. meliloti from a free-living soil bacterium to a nitrogen-fixing plant symbiont is a complex developmental process requiring close interaction between the two partners. As the interface between the bacterium and its environment, the S. meliloti cell surface plays a critical role in adaptation to varied soil environments and in interaction with plant hosts. We isolated and characterized S. meliloti mutants with increased production of exopolysaccharides, key cell surface components. Our diverse set of mutants suggests roles for exopolysaccharide production in growth, metabolism, cell division, envelope homeostasis, biofilm formation, stress response, motility, and symbiosis.
Collapse
|
7
|
Ouyang L, Pei H, Xu Z. Low nitrogen stress stimulating the indole-3-acetic acid biosynthesis of Serratia sp. ZM is vital for the survival of the bacterium and its plant growth-promoting characteristic. Arch Microbiol 2016; 199:425-432. [PMID: 27803972 DOI: 10.1007/s00203-016-1312-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
Serratia sp. ZM is a plant growth-promoting (PGP) bacterial strain isolated from the rhizospheric soil of Populus euphratica in northwestern China. In this study, low nitrogen supply significantly stimulated the production of indole-3-acetic acid (IAA) in Serratia sp.ZM. The inoculation of the bacterium to wheat seedlings improved plant growth compared with the uninoculated group, and the stimulating effect was more prominent under low nitrogen stress. Inactivation of the predicted key gene in the IAA biosynthesis pathway impaired IAA production and significantly hampered mutant growth in poor medium. Furthermore, the IAA-deficient mutant lost the PGP effect under either normal or low nitrogen conditions in plant experiments. This study revealed the significant impact of environmental nitrogen levels on IAA production in the PGP strain and the vital effect of IAA on resistance physiology of both the bacterium and host plant. The characteristics of Serratia sp. ZM also indicated its application potential as a biofertilizer for plants, especially those suffering from poor nitrogen soil.
Collapse
Affiliation(s)
- Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| | - Haiyan Pei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhaohui Xu
- Department of Biological Sciences, Bowling Green State University, Bowling Green, USA
| |
Collapse
|
8
|
Site-Specific Ser/Thr/Tyr Phosphoproteome of Sinorhizobium meliloti at Stationary Phase. PLoS One 2015; 10:e0139143. [PMID: 26401955 PMCID: PMC4581636 DOI: 10.1371/journal.pone.0139143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
Sinorhizobium meliloti, a facultative microsymbiont of alfalfa, should fine-tune its cellular processes to live saprophytically in soils characterized with limited nutrients and diverse stresses. In this study, TiO2 enrichment and LC-MS/MS were used to uncover the site-specific Ser/Thr/Tyr phosphoproteome of S. meliloti in minimum medium at stationary phase. There are a total of 96 unique phosphorylated sites, with a Ser/Thr/Tyr distribution of 63:28:5, in 77 proteins. Phosphoproteins identified in S. meliloti showed a wide distribution pattern regarding to functional categories, such as replication, transcription, translation, posttranslational modification, transport and metabolism of amino acids, carbohydrate, inorganic ion, succinoglycan etc. Ser/Thr/Tyr phosphosites identified within the conserved motif in proteins of key cellular function indicate a crucial role of phosphorylation in modulating cellular physiology. Moreover, phosphorylation in proteins involved in processes related to rhizobial adaptation was also discussed, such as those identified in SMa0114 and PhaP2 (polyhydroxybutyrate synthesis), ActR (pH stress and microaerobic adaption), SupA (potassium stress), chaperonin GroEL2 (viability and potentially symbiosis), and ExoP (succinoglycan synthesis and secretion). These Ser/Thr/Tyr phosphosites identified herein would be helpful for our further investigation and understanding of the role of phosphorylation in rhizobial physiology.
Collapse
|
9
|
Crystal structure of PhnF, a GntR-family transcriptional regulator of phosphate transport in Mycobacterium smegmatis. J Bacteriol 2014; 196:3472-81. [PMID: 25049090 DOI: 10.1128/jb.01965-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bacterial uptake of phosphate is usually accomplished via high-affinity transporters that are commonly regulated by two-component systems, which are activated when the concentration of phosphate is low. Mycobacterium smegmatis possesses two such transporters, the widely distributed PstSCAB system and PhnDCE, a transporter that in other bacteria mediates the uptake of alternative phosphorus sources. We previously reported that the transcriptional regulator PhnF controls the production of the Phn system, acting as a repressor under high-phosphate conditions. Here we show that the phnDCE genes are common among environmental mycobacteria, where they are often associated with phnF-like genes. In contrast, pathogenic mycobacteria were not found to encode Phn-like systems but instead were found to possess multiple copies of the pst genes. A detailed biochemical analysis of PhnF binding to its identified binding sites in the phnD-phnF intergenic region of M. smegmatis has allowed us to propose a quantitative model for repressor binding, which shows that a PhnF dimer binds independently to each site. We present the crystal structure of M. smegmatis PhnF at 1.8-Å resolution, showing a homodimer with a helix-turn-helix N-terminal domain and a C-terminal domain with a UbiC transcription regulator-associated fold. The C-terminal domain crystallized with a bound sulfate ion instead of the so far unidentified physiological ligand, allowing the identification of residues involved in effector binding. Comparison of the positioning of the DNA binding domains in PhnF with that in homologous proteins suggests that its DNA binding activity is regulated via a conformational change in the linker region, triggering a movement of the N-terminal domains.
Collapse
|
10
|
Phosphate concentration alters the effective bacterial quorum in the symbiosis of Medicago truncatula-Sinorhizobium meliloti. Symbiosis 2014. [DOI: 10.1007/s13199-014-0280-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Hove-Jensen B, Zechel DL, Jochimsen B. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol Mol Biol Rev 2014; 78:176-97. [PMID: 24600043 PMCID: PMC3957732 DOI: 10.1128/mmbr.00040-13] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses.
Collapse
|
12
|
Janczarek M. Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Int J Mol Sci 2011; 12:7898-933. [PMID: 22174640 PMCID: PMC3233446 DOI: 10.3390/ijms12117898] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 11/16/2022] Open
Abstract
Rhizobia are Gram-negative bacteria that can exist either as free-living bacteria or as nitrogen-fixing symbionts inside root nodules of leguminous plants. The composition of the rhizobial outer surface, containing a variety of polysaccharides, plays a significant role in the adaptation of these bacteria in both habitats. Among rhizobial polymers, exopolysaccharide (EPS) is indispensable for the invasion of a great majority of host plants which form indeterminate-type nodules. Various functions are ascribed to this heteropolymer, including protection against environmental stress and host defense, attachment to abiotic and biotic surfaces, and in signaling. The synthesis of EPS in rhizobia is a multi-step process regulated by several proteins at both transcriptional and post-transcriptional levels. Also, some environmental factors (carbon source, nitrogen and phosphate starvation, flavonoids) and stress conditions (osmolarity, ionic strength) affect EPS production. This paper discusses the recent data concerning the function of the genes required for EPS synthesis and the regulation of this process by several environmental signals. Up till now, the synthesis of rhizobial EPS has been best studied in two species, Sinorhizobium meliloti and Rhizobium leguminosarum. The latest data indicate that EPS synthesis in rhizobia undergoes very complex hierarchical regulation, in which proteins engaged in quorum sensing and the regulation of motility genes also participate. This finding enables a better understanding of the complex processes occurring in the rhizosphere which are crucial for successful colonization and infection of host plant roots.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., Lublin 20-033, Poland; E-Mail: ; Tel.: +48-81-537-5974
| |
Collapse
|
13
|
Krol E, Blom J, Winnebald J, Berhörster A, Barnett MJ, Goesmann A, Baumbach J, Becker A. RhizoRegNet—A database of rhizobial transcription factors and regulatory networks. J Biotechnol 2011; 155:127-34. [DOI: 10.1016/j.jbiotec.2010.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/27/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
|
14
|
Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 2010; 76:4626-32. [PMID: 20511434 DOI: 10.1128/aem.02756-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability compared to the wild-type 1021 strain. Here, we present data showing that RD64 is also highly effective in mobilizing P from insoluble sources, such as phosphate rock (PR). Under P-limiting conditions, the higher level of P-mobilizing activity of RD64 than of the 1021 wild-type strain is connected with the upregulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity, and the increased secretion into the growth medium of malic, succinic, and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released larger amounts of another P-solubilizing organic acid, 2-hydroxyglutaric acid, than plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited higher levels of dry-weight production than Mt-1021 plants. Here, we also report that P-starved Mt-RD64 plants show significant increases in both shoot and root fresh weights when compared to P-starved Mt-1021 plants. We discuss how, in a Rhizobium-legume model system, a balanced interplay of different factors linked to bacterial IAA overproduction rather than IAA production per se stimulates plant growth under stressful environmental conditions and, in particular, under P starvation.
Collapse
|
15
|
Proteomic alterations explain phenotypic changes in Sinorhizobium meliloti lacking the RNA chaperone Hfq. J Bacteriol 2010; 192:1719-29. [PMID: 20081032 DOI: 10.1128/jb.01429-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ubiquitous bacterial RNA-binding protein Hfq is involved in stress resistance and pathogenicity. In Sinorhizobium meliloti, Hfq is essential for the establishment of symbiosis with Medicago sativa and for nitrogen fixation. A proteomic analysis identifies 55 proteins with significantly affected expression in the hfq mutant; most of them are involved in cell metabolism or stress resistance. Important determinants of oxidative stress resistance, such as CysK, Gsh, Bfr, SodC, KatB, KatC, and a putative peroxiredoxine (SMc00072), are downregulated in the hfq mutant. The hfq mutant is affected for H(2)O(2), menadione, and heat stress resistance. Part of these defects could result from the reductions of rpoE1, rpoE2, rpoE3, and rpoE4 expression levels in the hfq mutant. Some proteins required for efficient symbiosis are reduced in the hfq mutant, contributing to the drastic defect in nodulation observed in this mutant.
Collapse
|
16
|
N'Guessan AL, Elifantz H, Nevin KP, Mouser PJ, Methé B, Woodard TL, Manley K, Williams KH, Wilkins MJ, Larsen JT, Long PE, Lovley DR. Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer. ISME JOURNAL 2009; 4:253-66. [PMID: 20010635 DOI: 10.1038/ismej.2009.115] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphate-limitation were identified by microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high-affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU upregulated the most. Quantitative PCR analysis of pstB and phoU transcript levels in G. sulfurreducens grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium-bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve because of the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.
Collapse
Affiliation(s)
- A Lucie N'Guessan
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
McIntosh M, Meyer S, Becker A. NovelSinorhizobium melilotiquorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability. Mol Microbiol 2009; 74:1238-56. [DOI: 10.1111/j.1365-2958.2009.06930.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Basconcillo LS, Zaheer R, Finan TM, McCarry BE. A shotgun lipidomics approach in Sinorhizobium meliloti as a tool in functional genomics. J Lipid Res 2008; 50:1120-32. [PMID: 19096048 DOI: 10.1194/jlr.m800443-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A shotgun lipidomics approach that allowed the analysis of eight lipid classes directly from crude extracts of the soil bacterium Sinorhizobium meliloti is presented. New MS-MS transitions are reported for the analysis of monomethylphosphatidylethanolamines, dimethylphosphatidylethanolamines, and three bacterial non-phosphorus-containing lipid classes [sulfoquinovosyldiacylglycerols, ornithines, and diacylglyceryl-(N,N,N-trimethyl)-homoserines]. Unique MS-MS transitions allowed the analysis of isomeric species from various lipid classes without chromatography. Analyses required small sample amounts and minimal preparation; thus, this methodology has excellent potential to be used as a screening tool for the analysis of large numbers of samples in functional genomics studies. FA distributions within lipid classes of S. meliloti are described for the first time, and the relative positions of fatty acyl substituents (sn-1, sn-2) in phospholipids are presented. FA distributions in diacylglyceryl-(N,N,N-trimethyl)-homoserines were identical to those of phospholipids, indicating a common biosynthetic origin for these lipids. The method was applied to the analysis of mutants deficient in the PhoB regulator protein. Increased lipid cyclopropanation was observed in PhoB-deficient mutants under P(i) starvation.
Collapse
|
19
|
Santos-Beneit F, Rodríguez-García A, Franco-Domínguez E, Martín JF. Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete Streptomyces coelicolor. MICROBIOLOGY-SGM 2008; 154:2356-2370. [PMID: 18667568 DOI: 10.1099/mic.0.2008/019539-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The transport of inorganic phosphate (P(i)) is essential for the growth of all organisms. The metabolism of soil-dwelling Streptomyces species, and their ability to produce antibiotics and other secondary metabolites, are strongly influenced by the availability of phosphate. The transcriptional regulation of the SCO4138 and SCO1845 genes of Streptomyces coelicolor was studied. These genes encode the two putative low-affinity P(i) transporters PitH1 and PitH2, respectively. Expression of these genes and that of the high-affinity transport system pstSCAB follows a sequential pattern in response to phosphate deprivation, as shown by coupling their promoters to a luciferase reporter gene. Expression of pitH2, but not that of pap-pitH1 (a bicistronic transcript), is dependent upon the response regulator PhoP. PhoP binds to specific sequences consisting of direct repeats of 11 nt in the promoter of pitH2, but does not bind to the pap-pitH1 promoter, which lacks these direct repeats for PhoP recognition. The transcription start point of the pitH2 promoter was identified by primer extension analyses, and the structure of the regulatory sequences in the PhoP-protected DNA region was established. It consists of four central direct repeats flanked by two other less conserved repeats. A model for PhoP regulation of this promoter is proposed based on the four promoter DNA-PhoP complexes detected by electrophoretic mobility shift assays and footprinting studies.
Collapse
Affiliation(s)
- Fernando Santos-Beneit
- Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain
| | - Antonio Rodríguez-García
- Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain
| | - Etelvina Franco-Domínguez
- Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain
| | - Juan F Martín
- área de Microbiología, Fac. CC. Biológicas y Ambientales, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain.,Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain
| |
Collapse
|
20
|
Pobigaylo N, Szymczak S, Nattkemper TW, Becker A. Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:219-31. [PMID: 18184066 DOI: 10.1094/mpmi-21-2-0219] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sinorhizobium meliloti enters an endosymbiosis with alfalfa plants through the formation of nitrogen-fixing nodules. In order to identify S. meliloti genes required for symbiosis and competitiveness, a method of signature-tagged mutagenesis was used. Two sets, each consisting of 378 signature-tagged mutants with a known transposon insertion site, were used in an experiment in planta. As a result, 67 mutants showing attenuated symbiotic phenotypes were identified, including most of the exo, fix, and nif mutants in the sets. For 38 mutants in genes previously not described to be involved in competitiveness or symbiosis in S. meliloti, attenuated competitiveness phenotypes were tested individually. A large part of these phenotypes was confirmed. Moreover, additional symbiotic defects were observed for mutants in several novel genes such as infection deficiency phenotypes (ilvI and ilvD2 mutants) or delayed nodulation (pyrE, metA, thiC, thiO, and thiD mutants).
Collapse
Affiliation(s)
- Nataliya Pobigaylo
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany
| | | | | | | |
Collapse
|
21
|
Exopolysaccharide biosynthesis is important for Mesorhizobium tianshanense: plant host interaction. Arch Microbiol 2008; 189:525-30. [DOI: 10.1007/s00203-007-0345-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 11/14/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
|
22
|
Gebhard S, Tran SL, Cook GM. The Phn system of Mycobacterium smegmatis: a second high-affinity ABC-transporter for phosphate. MICROBIOLOGY-SGM 2007; 152:3453-3465. [PMID: 17074913 DOI: 10.1099/mic.0.29201-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Uptake of inorganic phosphate, an essential but often limiting nutrient, in bacteria is usually accomplished by the high-affinity ABC-transport system Pst. Pathogenic species of mycobacteria contain several copies of the genes encoding the Pst system (pstSCAB), and two of the encoded proteins, PstS1 and PstS2, have been shown to be virulence factors in Mycobacterium tuberculosis. The fast-growing Mycobacterium smegmatis contains only a single copy of the pst operon. This study reports the biochemical and molecular characterization of a second high-affinity phosphate transport system, designated Phn. The Phn system is encoded by a three-gene operon that constitutes the components of a putative ABC-type phosphonate/phosphate transport system. Expression studies using phnD- and pstS-lacZ transcriptional fusions showed that both operons were induced when the culture entered phosphate limitation, indicating a role for both systems in phosphate uptake at low extracellular concentrations. Deletion mutants in either phnD or pstS failed to grow in minimal medium with a 10 mM phosphate concentration, while the isogenic wild-type strain mc(2)155 grew at micromolar phosphate concentrations. Analysis of the kinetics of phosphate transport in the wild-type and mutant strains led to the proposal that the Phn and Pst systems are both high-affinity phosphate transporters with similar affinities for phosphate (i.e. apparent K(m) values between 40 and 90 muM P(i)). The Phn system of M. smegmatis appears to be unique in that, unlike previously identified Phn systems, it does not recognize phosphonates or phosphite as substrates.
Collapse
Affiliation(s)
- Susanne Gebhard
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Sieu L Tran
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
23
|
Monds RD, Newell PD, Schwartzman JA, O'Toole GA. Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. Appl Environ Microbiol 2006; 72:1910-24. [PMID: 16517638 PMCID: PMC1393216 DOI: 10.1128/aem.72.3.1910-1924.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Pho regulon integrates the sensing of environmental inorganic phosphate (Pi) availability with coregulation of gene expression, mediating an adaptive response to Pi limitation. Many aspects of the Pho regulon have been addressed in studies of Escherichia coli; however, it is unclear how transferable this knowledge is to other bacterial systems. Here, we report work to discern the conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. We demonstrate by mutational studies that PhoB/PhoR and the Pst system have conserved functions in the regulation of Pi-induced phosphatase activities, as well as expression of other Pi-regulated genes. A genetic screen was carried out to isolate factors that affect Pho-regulated phosphatase activity. We identified the Pho-regulated phosphatases PhoX and PhoD and present evidence that these enzymes are exported via the Tat system. The phoX and phoD genes were shown to be members of the Pho regulon by reverse transcription-PCR, as well as by functional assessment of putative PhoB binding sites (Pho boxes). Our data also suggested that at least one other non-Tat-secreted Pho-regulated phosphatase exists. From the genetic screen, numerous siderophore mutants that displayed severe defects in Pho-activated phosphatase activity were isolated. Subsequently, iron was shown to be important for modulating the activity of Pho-regulated phosphatases, but it does not regulate this activity at the level of transcription. We also identify and demonstrate a novel role in siderophore production and Pho-regulated phosphatase activity for ApaH, the hydrolase for the nucleotide-signaling molecule AppppA. Finally, numerous mutations in multiple cellular pathways were recovered that may be required for maximal induction of the Pho regulon under Pi-limiting conditions.
Collapse
Affiliation(s)
- Russell D Monds
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
24
|
Yuan ZC, Zaheer R, Morton R, Finan TM. Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria. Nucleic Acids Res 2006; 34:2686-97. [PMID: 16717279 PMCID: PMC1464414 DOI: 10.1093/nar/gkl365] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In proteobacteria, genes whose expression is modulated in response to the external concentration of inorganic phosphate are often regulated by the PhoB protein which binds to a conserved motif (Pho box) within their promoter regions. Using a position weight matrix algorithm derived from known Pho box sequences, we identified 96 putative Pho regulon members whose promoter regions contained one or more Pho boxs in the Sinorhizobium meliloti genome. Expression of these genes was examined through assays of reporter gene fusions and through comparison with published microarray data. Of 96 genes, 31 were induced and 3 were repressed by Pi starvation in a PhoB dependent manner. Novel Pho regulon members included several genes of unknown function. Comparative analysis across 12 proteobacterial genomes revealed highly conserved Pho regulon members including genes involved in Pi metabolism (pstS, phnC and ppdK). Genes with no obvious association with Pi metabolism were predicted to be Pho regulon members in S.meliloti and multiple organisms. These included smc01605 and smc04317 which are annotated as substrate binding proteins of iron transporters and katA encoding catalase. This data suggests that the Pho regulon overlaps and interacts with several other control circuits, such as the oxidative stress response and iron homeostasis.
Collapse
Affiliation(s)
| | | | | | - Turlough M. Finan
- To whom correspondence should be addressed. Tel: +905 525 9140, ext. 22932; Fax: +905 522 6066;
| |
Collapse
|
25
|
Yuan ZC, Zaheer R, Finan TM. Regulation and properties of PstSCAB, a high-affinity, high-velocity phosphate transport system of Sinorhizobium meliloti. J Bacteriol 2006; 188:1089-102. [PMID: 16428413 PMCID: PMC1347321 DOI: 10.1128/jb.188.3.1089-1102.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The properties and regulation of the pstSCAB-encoded Pi uptake system from the alfalfa symbiont Sinorhizobium meliloti are reported. We present evidence that the pstSCAB genes and the regulatory phoUB genes are transcribed from a single promoter that contains two PhoB binding sites and that transcription requires PhoB. S. meliloti strain 1021 (Rm1021) and its derivatives were found to carry a C deletion frameshift mutation in the pstC gene (designated pstC1021) that severely impairs activity of the PstSCAB Pi transport system. This mutation is absent in RCR2011, the parent of Rm1021. Correction of the pstC1021 mutation in Rm1021 by site-directed mutagenesis revealed that PstSCAB is a Pi-specific, high-affinity (Km, 0.2 microM), high-velocity (Vmax, 70 nmol/min/mg protein) transport system. The pstC1021 allele was shown to generate a partial pho regulon constitutive phenotype, in which transcription is activated by PhoB even under Pi-excess conditions that render PhoB inactive in a wild-type background. The previously reported symbiotic Fix- phenotype of phoCDET mutants was found to be dependent on the pstC1021 mutation, as Rm1021 phoCDET mutants formed small white nodules on alfalfa that failed to reduce N2, whereas phoCDET mutant strains with a corrected pstC allele (RmP110) formed pink nodules on alfalfa that fixed N2 like the wild type. Alfalfa root nodules formed by the wild-type RCR2011 strain expressed the low-affinity orfA-pit-encoded Pi uptake system and neither the pstSCAB genes nor the phoCDET genes. Thus, metabolism of alfalfa nodule bacteroids is not Pi limited.
Collapse
Affiliation(s)
- Ze-Chun Yuan
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | |
Collapse
|
26
|
Involvement of a Gene Encoding Putative Acetate Kinase in Magnetosome Synthesis in Magnetospirillum magneticum AMB-1. HAYATI JOURNAL OF BIOSCIENCES 2006. [DOI: 10.1016/s1978-3019(16)30375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Yuan ZC, Zaheer R, Finan TM. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens. Mol Microbiol 2006; 58:877-94. [PMID: 16238634 DOI: 10.1111/j.1365-2958.2005.04874.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Growth of Sinorhizobium meliloti under Pi-limiting conditions induced expression of the major H2O2-inducible catalase (HPII) gene (katA) in this organism. This transcription required the PhoB transcriptional regulator and initiated from a promoter that was distinct from the OxyR-dependent promoter which activates katA transcription in response to addition of H2O2. In N2-fixing root nodules, katA was transcribed from the OxyR- and not the PhoB-dependent promoter. This is consistent with the accumulation of reactive oxygen species (ROS) in nodules and also indicates that bacteroids within nodules are not Pi-limited. Pi-limited growth also induced expression of catalase genes in Agrobacterium tumefaciens (HPI) and Pseudomonas aeruginosa (PA4236-HPI) suggesting that this may be a widespread phenomenon. The response is not a general stress response as in both S. meliloti and P. aeruginosa increased transcription is mediated by the phosphate responsive transcriptional activator PhoB. The phenotypic consequences of this response were demonstrated in S. meliloti by the dramatic increase in H2O2 resistance of wild type but not phoB mutant cells upon growth in Pi-limiting media. Our data indicate that in S. meliloti, katA and other genes whose products are involved in protection from oxidative stress are induced upon Pi-limitation. These observations suggest that as part of the response to Pi-limitation, S. meliloti, P. aeruginosa and A. tumefaciens have evolved a capacity to increase their resistance to oxidative stress. Whether this capacity evolved because Pi-starved cells generate more ROS or whether the physiological changes that occur in the cells in response to Pi-starvation render them more sensitive to ROS remains to be established.
Collapse
Affiliation(s)
- Ze-Chun Yuan
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | | | |
Collapse
|
28
|
López-Lara IM, Gao JL, Soto MJ, Solares-Pérez A, Weissenmayer B, Sohlenkamp C, Verroios GP, Thomas-Oates J, Geiger O. Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:973-82. [PMID: 16167767 DOI: 10.1094/mpmi-18-0973] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The microsymbiont of alfalfa, Sinorhizobium meliloti, possesses phosphatidylglycerol, cardiolipin, phosphatidylethanolamine, and phosphatidylcholine as major membrane phospholipids, when grown in the presence of sufficient accessible phosphorus sources. Under phosphate-limiting conditions of growth, S. meliloti replaces its phospholipids by membrane lipids that do not contain any phosphorus in their molecular structure and, in S. meliloti, these phosphorus-free membrane lipids are sulphoquinovosyl diacylglycerols (SL), ornithine-containing lipids (OL), and diacylglyceryl-N,N,N-trimethylhomoserines (DGTS). In earlier work, we demonstrated that neither SL nor OL are required for establishing a nitrogen-fixing root nodule symbiosis with alfalfa. We now report the identification of the two structural genes btaA and btaB from S. meliloti required for DGTS biosynthesis. When the sinorhizobial btaA and btaB genes are expressed in Escherichia coli, they cause the formation of DGTS in this latter organism. A btaA-deficient mutant of S. meliloti is unable to form DGTS but can form nitrogen-fixing root nodules on alfalfa, demonstrating that sinorhizobial DGTS is not required for establishing a successful symbiosis with the host plant. Even a triple mutant of S. meliloti, unable to form any of the phosphorus-free membrane lipids SL, OL, or DGTS is equally competitive for nodule occupancy as the wild type. Only under growth-limiting concentrations of phosphate in culture media did mutants that could form neither OL nor DGTS grow to lesser cell densities.
Collapse
Affiliation(s)
- Isabel M López-Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Quester I, Becker A. Four promoters subject to regulation by ExoR and PhoB direct transcription of the Sinorhizobium melilotiexoYFQ operon involved in the biosynthesis of succinoglycan. J Mol Microbiol Biotechnol 2004; 7:115-32. [PMID: 15263816 DOI: 10.1159/000078655] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Succinoglycan (EPS I), the main acidic exopolysaccharide of Sinorhizobium meliloti, is required for the initiation and elongation of infection threads during nodulation of the host plant alfalfa. The gene products of the exoYFQ operon are involved in the first step of succinoglycan biosynthesis as well as in the polymerisation of subunits to the high-molecular-mass form of this exopolysaccharide. One promoter region that directs transcription of exoX and two promoter regions that drive transcription of exoY were mapped in the exoX-exoY intergenic region. The distal exoY promoter region containing three putative -10 promoter elements was active under standard growth conditions and was subject to ExoR-dependent regulation. Although this promoter region was stimulated in a phoB mutant, no PHO box-like sequences were found, suggesting an indirect regulatory effect of PhoB. The proximal promoter contains a PHO box-like sequence in the putative -35 region and was affected by low and high phosphate concentrations dependent on PhoB. In the case of deleted upstream regions, this promoter was also controlled by ExoR. An additional promoter displaying activity in exoR, mucR and phoB mutants under standard conditions was identified upstream of exoF. The putative -35 promoter element of this promoter is covered by a second PHO box-like sequence.
Collapse
Affiliation(s)
- Ingmar Quester
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Bielefeld, Deutschland
| | | |
Collapse
|
30
|
Wielbo J, Mazur A, Król JE, Marczak M, Skorupska A. Environmental modulation of the pssTNOP gene expression in Rhizobium leguminosarum bv. trifolii. Can J Microbiol 2004; 50:201-11. [PMID: 15105887 DOI: 10.1139/w04-004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exopolysaccharide production by Rhizobium leguminosarum bv. trifolii is required for successful establishment of nitrogen-fixing symbiosis with clover (Trifolium pratense L.). Using plasmid-borne transcriptional fusions of promoters of pss genes with promoterless lacZ the effect of root exudate, phosphate, and ammonia on expression of pssT, pssN, pssO, and pssP genes in wild-type strain RtTA1 background was determined. A stimulating effect of these environmental factors on pssO and pssP gene expression was observed. The putative pssO gene promoter was determined to be a strong promoter within which the divergent nod-box element was identified. The pssO promoter was slightly inducible in a flavonoid-dependent manner in wild-type R. leguminosarum bv. trifolii strains RtTA1 and ANU843 and very weakly active in a mutant of strain ANU843 that lacks the regulatory nodD gene. The expression of pssO and pssP genes in planta was investigated using plasmid-borne pssO-gusA and pssP-gusA fusions under different phosphate availability to clover. The level of pssO-gusA fusion expression was shown to be dependent on phosphate concentration in the plant growth medium.
Collapse
Affiliation(s)
- Jerzy Wielbo
- Department of General Microbiology, Maria Curie-Skłodowska University, Lublin, Poland
| | | | | | | | | |
Collapse
|
31
|
Danhorn T, Hentzer M, Givskov M, Parsek MR, Fuqua C. Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. J Bacteriol 2004; 186:4492-501. [PMID: 15231781 PMCID: PMC438617 DOI: 10.1128/jb.186.14.4492-4501.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 02/26/2004] [Indexed: 11/20/2022] Open
Abstract
The plant pathogen Agrobacterium tumefaciens forms architecturally complex biofilms on inert surfaces. Adherence of A. tumefaciens C58 was significantly enhanced under phosphate limitation compared to phosphate-replete conditions, despite slower overall growth under low-phosphate conditions. Replacement of Pi with sn-glycerol-3-phosphate and 2-aminoethylphosphonate yielded similar results. The increase in surface interactions under phosphate limitation was observed in both static culture and continuous-culture flow cells. Statistical analysis of confocal micrographs obtained from the flow cell biofilms revealed that phosphate limitation increased both the overall attached biomass and the surface coverage, whereas the maximum thickness of the biofilm was not affected. Functions encoded on the two large plasmids of A. tumefaciens C58, pTiC58 and pAtC58, were not required for the observed phosphate effect. The phosphate concentration at which increased attachment was observed triggered the phosphate limitation response, controlled in many bacteria by the two-component regulatory system PhoR-PhoB. The A. tumefaciens phoB and phoR orthologues could only be disrupted in the presence of plasmid-borne copies of the genes, suggesting that this regulatory system might be essential. Expression of the A. tumefaciens phoB gene from a tightly regulated inducible promoter, however, correlated with the amount of biofilm under both phosphate-limiting and nonlimiting conditions, demonstrating that components of the Pho regulon influence A. tumefaciens surface interactions.
Collapse
Affiliation(s)
- Thomas Danhorn
- Department of Biology, 1001 E. 3rd St., Jordan Hall 142, Indiana University, Bloomington, IN 47405-1847, USA
| | | | | | | | | |
Collapse
|
32
|
Krol E, Becker A. Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol Genet Genomics 2004; 272:1-17. [PMID: 15221452 DOI: 10.1007/s00438-004-1030-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 05/21/2004] [Indexed: 01/16/2023]
Abstract
The global response to phosphate starvation was analysed at the transcriptional level in two closely related strains of Sinorhizobium meliloti, Rm1021 and Rm2011. The Pho regulon is known to be induced by PhoB under conditions of phosphate limitation. Ninety-eight genes were found to be significantly induced (more than three-fold) in a phoB -dependent manner in phosphate-stressed cells, and phoB -independent repression of 86 genes was observed. Possible roles of these genes in the phosphate stress response are discussed. Twenty new putative PHO box sequences were identified in regions upstream of 17 of the transcriptional units that showed phoB -dependent, or partially phoB -dependent, regulation, indicating direct regulation of these genes by PhoB. Despite the overall similarity between the phosphate stress responses in Rm1021 and Rm2011, lower induction rates were found for a set of phoB -dependent genes in Rm1021. Moreover, Rm1021 exhibited moderate constitutive activation of 12 phosphate starvation-inducible, phoB -dependent genes when cells were grown in a complex medium. A 1-bp deletion was observed in the pstC ORF in Rm1021, which results in truncation of the protein product. This mutation is probably responsible for the expression of phosphate starvation-inducible genes in Rm1021 in the absence of phosphate stress.
Collapse
Affiliation(s)
- E Krol
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Postfach 100131, 33501, Bielefeld, Germany
| | | |
Collapse
|
33
|
Marketon MM, Glenn SA, Eberhard A, González JE. Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 2003; 185:325-31. [PMID: 12486070 PMCID: PMC141839 DOI: 10.1128/jb.185.1.325-331.2003] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti is a soil bacterium capable of invading and establishing a symbiotic relationship with alfalfa plants. This invasion process requires the synthesis, by S. meliloti, of at least one of the two symbiotically important exopolysaccharides, succinoglycan and EPS II. We have previously shown that the sinRI locus of S. meliloti encodes a quorum-sensing system that plays a role in the symbiotic process. Here we show that the sinRI locus exerts one level of control through regulation of EPS II synthesis. Disruption of the autoinducer synthase gene, sinI, abolished EPS II production as well as the expression of several genes in the exp operon that are responsible for EPS II synthesis. This phenotype was complemented by the addition of acyl homoserine lactone (AHL) extracts from the wild-type strain but not from a sinI mutant, indicating that the sinRI-specified AHLs are required for exp gene expression. This was further confirmed by the observation that synthetic palmitoleyl homoserine lactone (C(16:1)-HL), one of the previously identified sinRI-specified AHLs, specifically restored exp gene expression. Most importantly, the absence of symbiotically active EPS II in a sinI mutant was confirmed in plant nodulation assays, emphasizing the role of quorum sensing in symbiosis.
Collapse
Affiliation(s)
- Melanie M Marketon
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Escherichia coli contains two major systems for transporting inorganic phosphate (P(i)). The low-affinity P(i) transporter (pitA) is expressed constitutively and is dependent on the proton motive force, while the high-affinity Pst system (pstSCAB) is induced at low external P(i) concentrations by the pho regulon and is an ABC transporter. We isolated a third putative P(i) transport gene, pitB, from E. coli K-12 and present evidence that pitB encodes a functional P(i) transporter that may be repressed at low P(i) levels by the pho regulon. While a pitB(+) cosmid clone allowed growth on medium containing 500 microM P(i), E. coli with wild-type genomic pitB (pitA Delta pstC345 double mutant) was unable to grow under these conditions, making it indistinguishable from a pitA pitB Delta pstC345 triple mutant. The mutation Delta pstC345 constitutively activates the pho regulon, which is normally induced by phosphate starvation. Removal of pho regulation by deleting the phoB-phoR operon allowed the pitB(+) pitA Delta pstC345 strain to utilize P(i), with P(i) uptake rates significantly higher than background levels. In addition, the apparent K(m) of PitB decreased with increased levels of protein expression, suggesting that there is also regulation of the PitB protein. Strain K-10 contains a nonfunctional pitA gene and lacks Pit activity when the Pst system is mutated. The pitA mutation was identified as a single base change, causing an aspartic acid to replace glycine 220. This mutation greatly decreased the amount of PitA protein present in cell membranes, indicating that the aspartic acid substitution disrupts protein structure.
Collapse
Affiliation(s)
- R M Harris
- School of Biochemistry and Molecular Biology, The Faculties, The Australian National University, ACT, 0200, Australia.
| | | | | | | |
Collapse
|
35
|
Allaway D, Schofield NA, Leonard ME, Gilardoni L, Finan TM, Poole PS. Use of differential fluorescence induction and optical trapping to isolate environmentally induced genes. Environ Microbiol 2001; 3:397-406. [PMID: 11472504 DOI: 10.1046/j.1462-2920.2001.00205.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The techniques of differential fluorescence induction (DFI) and optical trapping (OT) have been combined to allow the identification of environmentally induced genes in single bacterial cells. Designated DFI-OT, this technique allows the in situ isolation of genes driving the expression of green fluorescent protein (Gfp) using temporal and spatial criteria. A series of plasmid-based promoter probe vectors (pOT) was developed for the construction of random genomic libraries that are linked to gfpUV or egfp. Bacteria that do not express Gfp on laboratory medium (i.e. non-fluorescent) were inoculated into the environment, and induced genes were detected with a combined fluorescence/optical trapping microscope. Using this selection strategy, rhizosphere-induced genes with homology to thiamine pyrophosphorylase (thiE) and cyclic glucan synthase (ndvB) were isolated. Other genes were expressed late in the stationary phase or as a consequence of surface-dependent growth, including fixND and metX, and a putative ABC transporter of putrescine. This strategy provides a unique ability to combine spatial, temporal and physical information to identify environmental regulation of bacterial gene expression.
Collapse
Affiliation(s)
- D Allaway
- Division of Microbiology, School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | | | | | | | | | | |
Collapse
|
36
|
Mendrygal KE, González JE. Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 2000; 182:599-606. [PMID: 10633091 PMCID: PMC94320 DOI: 10.1128/jb.182.3.599-606.2000] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exopolysaccharide production by Sinorhizobium meliloti is required for invasion of root nodules on alfalfa and successful establishment of a nitrogen-fixing symbiosis between the two partners. S. meliloti wild-type strain Rm1021 requires production of either succinoglycan, a polymer of repeating octasaccharide subunits, or EPS II, an exopolysaccharide of repeating dimer subunits. The reason for the production of two functional exopolysaccharides is not clear. Earlier reports suggested that low-phosphate conditions stimulate the production of EPS II in Rm1021. We found that phosphate concentrations determine which exopolysaccharide is produced by S. meliloti. The low-phosphate conditions normally found in the soil (1 to 10 microM) stimulate EPS II production, while the high-phosphate conditions inside the nodule (20 to 100 mM) block EPS II synthesis and induce the production of succinoglycan. Interestingly, the EPS II produced by S. meliloti in low-phosphate conditions does not allow the invasion of alfalfa nodules. We propose that this invasion phenotype is due to the lack of the active molecular weight fraction of EPS II required for nodule invasion. An analysis of the function of PhoB in this differential exopolysaccharide production is presented.
Collapse
Affiliation(s)
- K E Mendrygal
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083-0688, USA
| | | |
Collapse
|
37
|
Gonin M, Quardokus EM, O'Donnol D, Maddock J, Brun YV. Regulation of stalk elongation by phosphate in Caulobacter crescentus. J Bacteriol 2000; 182:337-47. [PMID: 10629178 PMCID: PMC94281 DOI: 10.1128/jb.182.2.337-347.2000] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Caulobacter crescentus, stalk biosynthesis is regulated by cell cycle cues and by extracellular phosphate concentration. Phosphate-starved cells undergo dramatic stalk elongation to produce stalks as much as 30 times as long as those of cells growing in phosphate-rich medium. To identify genes involved in the control of stalk elongation, transposon mutants were isolated that exhibited a long-stalk phenotype irrespective of extracellular phosphate concentration. The disrupted genes were identified as homologues of the high-affinity phosphate transport genes pstSCAB of Escherichia coli. In E. coli, pst mutants have a constitutively expressed phosphate (Pho) regulon. To determine if stalk elongation is regulated by the Pho regulon, the Caulobacter phoB gene that encodes the transcriptional activator of the Pho regulon was cloned and mutated. While phoB was not required for stalk synthesis or for the cell cycle timing of stalk synthesis initiation, it was required for stalk elongation in response to phosphate starvation. Both pstS and phoB mutants were deficient in phosphate transport. When a phoB mutant was grown with limiting phosphate concentrations, stalks only increased in length by an average of 1.4-fold compared to the average 9-fold increase in stalk length of wild-type cells grown in the same medium. Thus, the phenotypes of phoB and pst mutants were opposite. phoB mutants were unable to elongate stalks during phosphate starvation, whereas pst mutants made long stalks in both high- and low-phosphate media. Analysis of double pst phoB mutants indicated that the long-stalk phenotype of pst mutants was dependent on phoB. In addition, analysis of a pstS-lacZ transcriptional fusion showed that pstS transcription is dependent on phoB. These results suggest that the signal transduction pathway that stimulates stalk elongation in response to phosphate starvation is mediated by the Pst proteins and the response regulator PhoB.
Collapse
Affiliation(s)
- M Gonin
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | |
Collapse
|
38
|
Botero LM, Al-Niemi TS, McDermott TR. Characterization of two inducible phosphate transport systems in Rhizobium tropici. Appl Environ Microbiol 2000; 66:15-22. [PMID: 10618197 PMCID: PMC91779 DOI: 10.1128/aem.66.1.15-22.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium tropici forms nitrogen-fixing nodules on the roots of the common bean (Phaseolus vulgaris). Like other legume-Rhizobium symbioses, the bean-R. tropici association is sensitive to the availability of phosphate (P(i)). To better understand phosphorus movement between the bacteroid and the host plant, P(i) transport was characterized in R. tropici. We observed two P(i) transport systems, a high-affinity system and a low-affinity system. To facilitate the study of these transport systems, a Tn5B22 transposon mutant lacking expression of the high-affinity transport system was isolated and used to characterize the low-affinity transport system in the absence of the high-affinity system. The K(m) and V(max) values for the low-affinity system were estimated to be 34 +/- 3 microM P(i) and 118 +/- 8 nmol of P(i) x min(-1) x mg (dry weight) of cells(-1), respectively, and the K(m) and V(max) values for the high-affinity system were 0.45 +/- 0.01 microM P(i) and 86 +/- 5 nmol of P(i) x min(-1) x mg (dry weight) of cells(-1), respectively. Both systems were inducible by P(i) starvation and were also shock sensitive, which indicated that there was a periplasmic binding-protein component. Neither transport system appeared to be sensitive to the proton motive force dissipator carbonyl cyanide m-chlorophenylhydrazone, but P(i) transport through both systems was eliminated by the ATPase inhibitor N,N'-dicyclohexylcarbodiimide; the P(i) transport rate was correlated with the intracellular ATP concentration. Also, P(i) movement through both systems appeared to be unidirectional, as no efflux or exchange was observed with either the wild-type strain or the mutant. These properties suggest that both P(i) transport systems are ABC type systems. Analysis of the transposon insertion site revealed that the interrupted gene exhibited a high level of homology with kdpE, which in several bacteria encodes a cytoplasmic response regulator that governs responses to low potassium contents and/or changes in medium osmolarity.
Collapse
Affiliation(s)
- L M Botero
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana 59717, USA
| | | | | |
Collapse
|
39
|
Summers ML, Denton MC, McDermott TR. Genes coding for phosphotransacetylase and acetate kinase in Sinorhizobium meliloti are in an operon that is inducible by phosphate stress and controlled by phoB. J Bacteriol 1999; 181:2217-24. [PMID: 10094701 PMCID: PMC93636 DOI: 10.1128/jb.181.7.2217-2224.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent work in this laboratory has shown that the gene coding for acetate kinase (ackA) in Sinorhizobium meliloti is up-regulated in response to phosphate limitation. Characterization of the region surrounding ackA revealed that it is adjacent to pta, which codes for phosphotransacetylase, and that these two genes are part of an operon composed of at least two additional genes in the following order: an open reading frame (orfA), pta, ackA, and the partial sequence of a gene with an inferred peptide that has a high degree of homology to enoyl-ACP reductase (fabI). Experiments combining enzyme assays, a chromosomal lacZ::ackA transcriptional fusion, complementation analysis with cosmid subclones, and the creation of mutations in pta and ackA all indicated that the orfA-pta-ackA-fabI genes are cotranscribed in response to phosphate starvation. Primer extension was used to map the position of the phosphate starvation-inducible transcriptional start sites upstream of orfA. The start sites were found to be preceded by a sequence having similarity to PHO boxes from other phosphate-regulated genes in S. meliloti and to the consensus PHO box in Escherichia coli. Introduction of a phoB mutation in the wild-type strain eliminated elevated levels of acetate kinase and phosphotransacetylase activities in response to phosphate limitation and also eliminated the phosphate stress-induced up-regulation of the ackA::lacZ fusion. Mutations in either ackA alone or both pta and ackA did not affect the nodulation or nitrogen fixation phenotype of S. meliloti.
Collapse
Affiliation(s)
- M L Summers
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana 59717, USA
| | | | | |
Collapse
|
40
|
Geiger O, Röhrs V, Weissenmayer B, Finan TM, Thomas-Oates JE. The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol Microbiol 1999; 32:63-73. [PMID: 10216860 DOI: 10.1046/j.1365-2958.1999.01325.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacteria react to phosphate starvation by activating genes involved in the transport and assimilation of phosphate as well as other phosphorous compounds. Some soil bacteria have evolved an additional mechanism for saving phosphorous. Under phosphate-limiting conditions, they replace their membrane phospholipids by lipids not containing phosphorus. Here, we show that the membrane lipid pattern of the free-living microsymbiotic bacterium Rhizobium (Sinorhizobium) meliloti is altered at low phosphate concentrations. When phosphate is growth limiting, an increase in sulpholipids, ornithine lipids and the de novo synthesis of diacylglyceryl trimethylhomoserine (DGTS) lipids is observed. Rhizobium meliloti phoCDET mutants, deficient in phosphate uptake, synthesize DGTS constitutively at low or high medium phosphate concentrations, suggesting that reduced transport of phosphorus sources to the cytoplasm causes induction of DGTS biosynthesis. Rhizobium meliloti phoU or phoB mutants are unable to form DGTS at low or high phosphate concentrations. However, the functional complementation of phoU or phoB mutants with the phoB gene demonstrates that, of the two genes, only intact phoB is required for the biosynthesis of the membrane lipid DGTS.
Collapse
Affiliation(s)
- O Geiger
- Institute of Biotechnology, Technical University Berlin, Germany.
| | | | | | | | | |
Collapse
|
41
|
Parker GF, Higgins TP, Hawkes T, Robson RL. Rhizobium (Sinorhizobium) meliloti phn genes: characterization and identification of their protein products. J Bacteriol 1999; 181:389-95. [PMID: 9882650 PMCID: PMC93390 DOI: 10.1128/jb.181.2.389-395.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the phn operon encodes proteins responsible for the uptake and breakdown of phosphonates. The C-P (carbon-phosphorus) lyase enzyme encoded by this operon which catalyzes the cleavage of C-P bonds in phosphonates has been recalcitrant to biochemical characterization. To advance the understanding of this enzyme, we have cloned DNA from Rhizobium (Sinorhizobium) meliloti that contains homologues of the E. coli phnG, -H, -I, -J, and -K genes. We demonstrated by insertional mutagenesis that the operon from which this DNA is derived encodes the R. meliloti C-P lyase. Furthermore, the phenotype of this phn mutant shows that the C-P lyase has a broad substrate specificity and that the organism has another enzyme that degrades aminoethylphosphonate. A comparison of the R. meliloti and E. coli phn genes and their predicted products gave new information about C-P lyase. The putative R. meliloti PhnG, PhnH, and PhnK proteins were overexpressed and used to make polyclonal antibodies. Proteins of the correct molecular weight that react with these antibodies are expressed by R. meliloti grown with phosphonates as sole phosphorus sources. This is the first in vivo demonstration of the existence of these hitherto hypothetical Phn proteins.
Collapse
Affiliation(s)
- G F Parker
- School of Animal and Microbial Sciences, University of Reading, Reading RG6 6AJ, United Kingdom
| | | | | | | |
Collapse
|
42
|
Bardin SD, Voegele RT, Finan TM. Phosphate assimilation in Rhizobium (Sinorhizobium) meliloti: identification of a pit-like gene. J Bacteriol 1998; 180:4219-26. [PMID: 9696772 PMCID: PMC107420 DOI: 10.1128/jb.180.16.4219-4226.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Accepted: 06/01/1998] [Indexed: 11/20/2022] Open
Abstract
Rhizobium meliloti mutants defective in the phoCDET-encoded phosphate transport system form root nodules on alfalfa plants that fail to fix nitrogen (Fix-). We have previously reported that two classes of second-site mutations can suppress the Fix- phenotype of phoCDET mutants to Fix+. Here we show that one of these suppressor loci (sfx1) contains two genes, orfA and pit, which appear to form an operon transcribed in the order orfA-pit. The Pit protein is homologous to various phosphate transporters, and we present evidence that three suppressor mutations arose from a single thymidine deletion in a hepta-thymidine sequence centered 54 nucleotides upstream of the orfA transcription start site. This mutation increased the level of orfA-pit transcription. These data, together with previous biochemical evidence, show that the orfA-pit genes encode a Pi transport system that is expressed in wild-type cells grown with excess Pi but repressed in cells under conditions of Pi limitation. In phoCDET mutant cells, orfA-pit expression is repressed, but this repression is alleviated by the second-site suppressor mutations. Suppression increases orfA-pit expression compensating for the deficiencies in phosphate assimilation and symbiosis of the phoCDET mutants.
Collapse
Affiliation(s)
- S D Bardin
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | |
Collapse
|