1
|
Steenwyk JL, King N. The promise and pitfalls of synteny in phylogenomics. PLoS Biol 2024; 22:e3002632. [PMID: 38768403 PMCID: PMC11105162 DOI: 10.1371/journal.pbio.3002632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Reconstructing the tree of life remains a central goal in biology. Early methods, which relied on small numbers of morphological or genetic characters, often yielded conflicting evolutionary histories, undermining confidence in the results. Investigations based on phylogenomics, which use hundreds to thousands of loci for phylogenetic inquiry, have provided a clearer picture of life's history, but certain branches remain problematic. To resolve difficult nodes on the tree of life, 2 recent studies tested the utility of synteny, the conserved collinearity of orthologous genetic loci in 2 or more organisms, for phylogenetics. Synteny exhibits compelling phylogenomic potential while also raising new challenges. This Essay identifies and discusses specific opportunities and challenges that bear on the value of synteny data and other rare genomic changes for phylogenomic studies. Synteny-based analyses of highly contiguous genome assemblies mark a new chapter in the phylogenomic era and the quest to reconstruct the tree of life.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Nicole King
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
2
|
Li XD, Jiang GF, Yan LY, Li R, Mu Y, Deng WA. Positive Selection Drove the Adaptation of Mitochondrial Genes to the Demands of Flight and High-Altitude Environments in Grasshoppers. Front Genet 2018; 9:605. [PMID: 30568672 PMCID: PMC6290170 DOI: 10.3389/fgene.2018.00605] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/19/2018] [Indexed: 01/23/2023] Open
Abstract
The molecular evolution of mitochondrial genes responds to changes in energy requirements and to high altitude adaptation in animals, but this has not been fully explored in invertebrates. The evolution of atmospheric oxygen content from high to low necessarily affects the energy requirements of insect movement. We examined 13 mitochondrial protein-coding genes (PCGs) of grasshoppers to test whether the adaptive evolution of genes involved in energy metabolism occurs in changes in atmospheric oxygen content and high altitude adaptation. Our molecular evolutionary analysis of the 13 PCGs in 15 species of flying grasshoppers and 13 related flightless grasshoppers indicated that, similar to previous studies, flightless grasshoppers have experienced relaxed selection. We found evidence of significant positive selection in the genes ATP8, COX3, ND2, ND4, ND4L, ND5, and ND6 in flying lineages. This results suggested that episodic positive selection allowed the mitochondrial genes of flying grasshoppers to adapt to increased energy demands during the continuous reduction of atmospheric oxygen content. Our analysis of five grasshopper endemic to the Tibetan Plateau and 13 non-Tibetan grasshoppers indicated that, due to positive selection, more non-synonymous nucleotide substitutions accumulated in Tibetan grasshoppers than in non-Tibetan grasshoppers. We also found evidence for significant positive selection in the genes ATP6, ND2, ND3, ND4, and ND5 in Tibetan lineages. Our results thus strongly suggest that, in grasshoppers, positive selection drives mitochondrial genes to better adapt both to the energy requirements of flight and to the high altitude of the Tibetan Plateau.
Collapse
Affiliation(s)
- Xiao-Dong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- School of Chemistry and Bioengineering, Hechi University, Yizhou, China
| | - Guo-Fang Jiang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, China
| | - Li-Yun Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ran Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuan Mu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei-An Deng
- School of Chemistry and Bioengineering, Hechi University, Yizhou, China
| |
Collapse
|
3
|
The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas. ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0270-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Shen X, Sun S, Zhao FQ, Zhang GT, Tian M, Tsang LM, Wang JF, Chu KH. Phylomitogenomic analyses strongly support the sister relationship of the Chaetognatha and Protostomia. ZOOL SCR 2015. [DOI: 10.1111/zsc.12140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Shen
- Jiangsu Key Laboratory of Marine Biotechnology/Co-Innovation Center of Jiangsu Marine Bio-industry Technology; Huaihai Institute of Technology; Lianyungang 222005 China
- Beijing Institutes of Life Science; Chinese Academy of Sciences; Beijing 100101 China
- Simon F. S. Li Marine Science Laboratory; School of Life Sciences; The Chinese University of Hong Kong; Shatin Hong Kong China
| | - Song Sun
- KLMEES and JBMERS; Institute of Oceanology; Chinese Academy of Sciences; Qingdao 266071 China
| | - Fang Qing Zhao
- Beijing Institutes of Life Science; Chinese Academy of Sciences; Beijing 100101 China
| | - Guang Tao Zhang
- KLMEES and JBMERS; Institute of Oceanology; Chinese Academy of Sciences; Qingdao 266071 China
| | - Mei Tian
- Jiangsu Key Laboratory of Marine Biotechnology/Co-Innovation Center of Jiangsu Marine Bio-industry Technology; Huaihai Institute of Technology; Lianyungang 222005 China
| | - Ling Ming Tsang
- Institute of Marine Biology; National Taiwan Ocean University; Keelung 20224 Taiwan
| | - Jin Feng Wang
- Beijing Institutes of Life Science; Chinese Academy of Sciences; Beijing 100101 China
| | - Ka Hou Chu
- Simon F. S. Li Marine Science Laboratory; School of Life Sciences; The Chinese University of Hong Kong; Shatin Hong Kong China
| |
Collapse
|
5
|
Kim JY, Yoo JS, Park YC. The complete mitochondrial genome of the green crab spider Oxytate striatipes (Araneae: Thomisidae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:1878-9. [PMID: 25319303 DOI: 10.3109/19401736.2014.971268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitochondrial genome (KM507783) of the green crab spider Oxytate striatipes was determined. The mitochondrial genome of O. striatipes was 14,407 bp long with a total base composition of 35.80% A, 42.40% T, 8.60% C, and 13.20% G. Total length of 13 protein-coding genes was 10,801 bp and 9 of them were encoded on heavy strand. COX1 started with TTA, uncommon start codon in invertebrate mitogenomes. The total length of 22 tRNA genes was 1202 bp, varying from 46 bp (tRNA(Thr)) to 67 bp (tRNA(Trp) and tRNA(Gln)). The standard cloverleaf secondary structure was found in 8 tRNA genes and TV-replacement loop was not found in the other 14 tRNA genes.
Collapse
Affiliation(s)
- Ji Young Kim
- a Wildlife Conservation and Genomics, Department of Forest Protection Environment , Kangwon National University , Chunchoen , Republic of Korea and
| | - Jung Sun Yoo
- b Exhibition & Education Division , National Institute of Biological Resources , Incheon , Republic of Korea
| | - Yung Chul Park
- a Wildlife Conservation and Genomics, Department of Forest Protection Environment , Kangwon National University , Chunchoen , Republic of Korea and
| |
Collapse
|
6
|
Fritzenwanker JH, Gerhart J, Freeman RM, Lowe CJ. The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii. EvoDevo 2014; 5:17. [PMID: 24987514 PMCID: PMC4077281 DOI: 10.1186/2041-9139-5-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/03/2014] [Indexed: 12/31/2022] Open
Abstract
Background The Fox gene family is a large family of transcription factors that arose early in organismal evolution dating back to at least the common ancestor of metazoans and fungi. They are key components of many gene regulatory networks essential for embryonic development. Although much is known about the role of Fox genes during vertebrate development, comprehensive comparative studies outside vertebrates are sparse. We have characterized the Fox transcription factor gene family from the genome of the enteropneust hemichordate Saccoglossus kowalevskii, including phylogenetic analysis, genomic organization, and expression analysis during early development. Hemichordates are a sister group to echinoderms, closely related to chordates and are a key group for tracing the evolution of gene regulatory mechanisms likely to have been important in the diversification of the deuterostome phyla. Results Of the 22 Fox gene families that were likely present in the last common ancestor of all deuterostomes, S. kowalevskii has a single ortholog of each group except FoxH, which we were unable to detect, and FoxQ2, which has three paralogs. A phylogenetic analysis of the FoxQ2 family identified an ancestral duplication in the FoxQ2 lineage at the base of the bilaterians. The expression analyses of all 23 Fox genes of S. kowalevskii provide insights into the evolution of components of the regulatory networks for the development of pharyngeal gill slits (foxC, foxL1, and foxI), mesoderm patterning (foxD, foxF, foxG), hindgut development (foxD, foxI), cilia formation (foxJ1), and patterning of the embryonic apical territory (foxQ2). Conclusions Comparisons of our results with data from echinoderms, chordates, and other bilaterians help to develop hypotheses about the developmental roles of Fox genes that likely characterized ancestral deuterostomes and bilaterians, and more recent clade-specific innovations.
Collapse
Affiliation(s)
- Jens H Fritzenwanker
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - John Gerhart
- Department of Molecular and Cell Biology, University of California, 142 Life Sciences Addition #3200, Berkeley, CA 94720, USA
| | - Robert M Freeman
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA
| | - Christopher J Lowe
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| |
Collapse
|
7
|
Kim JY, Yoon KB, Park YC. The complete mitochondrial genome of the jumping spider Telamonia vlijmi (Araneae: Salticidae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:635-6. [PMID: 24735135 DOI: 10.3109/19401736.2014.908466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitochondrial genome of a jumping spider Telamonia vlijmi was sequenced and its total length is 14,601 bp, with A 35.5%, T 41.8%, C 8.7%, and G 14.0%. Among protein-coding genes, two genes (CO1 and Cytb) start with TTA, uncommon in invertebrate mitogenomes. The standard cloverleaf secondary structure was found in 10 tRNA genes and TV-replacement loop was not found in the other 12 tRNA genes.
Collapse
Affiliation(s)
- Ji Young Kim
- a Department of Forest Environment System , College of Forest and Environmental Science, Kangwon National University , Chuncheon , Korea
| | - Kwang Bae Yoon
- a Department of Forest Environment System , College of Forest and Environmental Science, Kangwon National University , Chuncheon , Korea
| | - Yung Chul Park
- a Department of Forest Environment System , College of Forest and Environmental Science, Kangwon National University , Chuncheon , Korea
| |
Collapse
|
8
|
Cavalieri V, Melfi R, Spinelli G. The Compass-like locus, exclusive to the Ambulacrarians, encodes a chromatin insulator binding protein in the sea urchin embryo. PLoS Genet 2013; 9:e1003847. [PMID: 24086165 PMCID: PMC3784565 DOI: 10.1371/journal.pgen.1003847] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
Chromatin insulators are eukaryotic genome elements that upon binding of specific proteins display barrier and/or enhancer-blocking activity. Although several insulators have been described throughout various metazoans, much less is known about proteins that mediate their functions. This article deals with the identification and functional characterization in Paracentrotus lividus of COMPASS-like (CMPl), a novel echinoderm insulator binding protein. Phylogenetic analysis shows that the CMPl factor, encoded by the alternative spliced Cmp/Cmpl transcript, is the founder of a novel ambulacrarian-specific family of Homeodomain proteins containing the Compass domain. Specific association of CMPl with the boxB cis-element of the sns5 chromatin insulator is demonstrated by using a yeast one-hybrid system, and further corroborated by ChIP-qPCR and trans-activation assays in developing sea urchin embryos. The sns5 insulator lies within the early histone gene cluster, basically between the H2A enhancer and H1 promoter. To assess the functional role of CMPl within this locus, we challenged the activity of CMPl by two distinct experimental strategies. First we expressed in the developing embryo a chimeric protein, containing the DNA-binding domain of CMPl, which efficiently compete with the endogenous CMPl for the binding to the boxB sequence. Second, to titrate the embryonic CMPl protein, we microinjected an affinity-purified CMPl antibody. In both the experimental assays we congruently observed the loss of the enhancer-blocking function of sns5, as indicated by the specific increase of the H1 expression level. Furthermore, microinjection of the CMPl antiserum in combination with a synthetic mRNA encoding a forced repressor of the H2A enhancer-bound MBF1 factor restores the normal H1 mRNA abundance. Altogether, these results strongly support the conclusion that the recruitment of CMPl on sns5 is required for buffering the H1 promoter from the H2A enhancer activity, and this, in turn, accounts for the different level of accumulation of early linker and nucleosomal transcripts. Mounting evidence in several model organisms collectively demonstrates a role for the DNA-protein complexes known as chromatin insulators in orchestrating the functional domain organization of the eukaryotic genome. Several DNA elements displaying features of insulators, viz barrier and/or directional enhancer-blocking activity, have been identified in yeast, Drosophila, sea urchin, vertebrates and plants; however, proteins that bind these DNA sequences eliciting insulator activities are far less known. Here we identify a novel protein, COMPASS-like (CMPl), which is expressed exclusively by the ambulacrarian group of metazoans and interacts directly with the sea urchin sns5 insulator. Sns5 lies within the early histone gene cluster, basically between the H2A enhancer and H1 promoter, where it acts buffering the H1 promoter from the H2A enhancer influence. Intriguingly, we find that CMPl role is absolutely required for the sns5 activity, therefore imposing the different level of accumulation of the linker and nucleosomal transcripts. Overall, our findings add an interesting and novel facet to the chromatin insulator field, highlighting the surprisingly low evolutionary conservation of trans-acting factors binding to chromatin insulators. This opens the possibility that multiple lineage-specific factors modulate chromatin organization in different metazoans.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
- * E-mail: (VC); (GS)
| | - Raffaella Melfi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Giovanni Spinelli
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
- * E-mail: (VC); (GS)
| |
Collapse
|
9
|
Kaul-Strehlow S, Stach T. A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, Histology and 3D-reconstructions. Front Zool 2013; 10:53. [PMID: 24010725 PMCID: PMC4081662 DOI: 10.1186/1742-9994-10-53] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 08/20/2013] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Traditionally, the origin of the third germ layer and its special formation of coelomic cavities by enterocoely is regarded to be an informative character in phylogenetic analyses. In early deuterostomes such as sea urchins, the mesoderm forms through a single evagination pinching off from the apical end of the archenteron which then gives off mesocoela and metacoela on each side. This echinoid-type coelom formation has conventionally been assumed to be ancestral for Deuterostomia. However, recent phylogenetic analyses show that Echinodermata hold a more derived position within Deuterostomia. In this regard a subgroup of Hemichordata, namely enteropneusts, seem to host promising candidates, because they are supposed to have retained many ancestral deuterostome features on the one hand, and furthermore share some characteristics with chordates on the other hand. In enteropneusts a wide range of different modes of coelom formation has been reported and in many cases authors of the original observations carefully detailed the limitations of their descriptions, while these doubts disappeared in subsequent reviews. In the present study, we investigated the development of all tissues in an enteropneust, Saccoglossus kowalevskii by using modern morphological techniques such as complete serial sectioning for LM and TEM, and 3D-reconstructions, in order to contribute new data to the elucidation of deuterostome evolution. RESULTS Our data show that in the enteropneust S. kowalevskii all main coelomic cavities (single protocoel, paired mesocoela and metacoela) derive from the endoderm via enterocoely as separate evaginations, in contrast to the aforementioned echinoid-type. The anlagen of the first pair of gill slits emerge at the late kink stage (~96 h pf). From that time onwards, we documented a temporal left-first development of the gill slits and skeletal gill rods in S. kowalevskii until the 2 gill slit juvenile stage. CONCLUSIONS The condition of coelom formation from separate evaginations is recapitulated in the larva of amphioxus and can be observed in crinoid echinoderms in a similar way. Therefore, coelom formation from separated pouches, rather than from a single apical pouch with eventual subdivision is suggested as the ancestral type of coelom formation for Deuterostomia. Left-right asymmetries are also present in echinoderms (rudiment formation), cephalochordates (larval development), tunicates (gut coiling) and vertebrates (visceral organs), and it is known from other studies applying molecular genetic analyses that genes such as nodal, lefty and pitx are involved during development. We discuss our findings in S. kowalevskii in the light of morphological as well as molecular genetic data.
Collapse
Affiliation(s)
- Sabrina Kaul-Strehlow
- Department für Integrative Zoologie, Universität Wien, Althanstr. 14, 1090, Wien, Austria
| | - Thomas Stach
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| |
Collapse
|
10
|
Perseke M, Golombek A, Schlegel M, Struck TH. The impact of mitochondrial genome analyses on the understanding of deuterostome phylogeny. Mol Phylogenet Evol 2013; 66:898-905. [DOI: 10.1016/j.ympev.2012.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 11/09/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
|
11
|
Mallatt J, Craig CW, Yoder MJ. Nearly complete rRNA genes from 371 Animalia: Updated structure-based alignment and detailed phylogenetic analysis. Mol Phylogenet Evol 2012; 64:603-17. [DOI: 10.1016/j.ympev.2012.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 12/30/2022]
|
12
|
The enigmatic mitochondrial genome of Rhabdopleura compacta (Pterobranchia) reveals insights into selection of an efficient tRNA system and supports monophyly of Ambulacraria. BMC Evol Biol 2011; 11:134. [PMID: 21599892 PMCID: PMC3121625 DOI: 10.1186/1471-2148-11-134] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 05/20/2011] [Indexed: 11/30/2022] Open
Abstract
Background The Hemichordata comprises solitary-living Enteropneusta and colonial-living Pterobranchia, sharing morphological features with both Chordata and Echinodermata. Despite their key role for understanding deuterostome evolution, hemichordate phylogeny is controversial and only few molecular data are available for phylogenetic analysis. Furthermore, mitochondrial sequences are completely lacking for pterobranchs. Therefore, we determined and analyzed the complete mitochondrial genome of the pterobranch Rhabdopleura compacta to elucidate deuterostome evolution. Thereby, we also gained important insights in mitochondrial tRNA evolution. Results The mitochondrial DNA of Rhabdopleura compacta corresponds in size and gene content to typical mitochondrial genomes of metazoans, but shows the strongest known strand-specific mutational bias in the nucleotide composition among deuterostomes with a very GT-rich main-coding strand. The order of the protein-coding genes in R. compacta is similar to that of the deuterostome ground pattern. However, the protein-coding genes have been highly affected by a strand-specific mutational pressure showing unusual codon frequency and amino acid composition. This composition caused extremely long branches in phylogenetic analyses. The unusual codon frequency points to a selection pressure on the tRNA translation system to codon-anticodon sequences of highest versatility instead of showing adaptations in anticodon sequences to the most frequent codons. Furthermore, an assignment of the codon AGG to Lysine has been detected in the mitochondrial genome of R. compacta, which is otherwise observed only in the mitogenomes of some arthropods. The genomes of these arthropods do not have such a strong strand-specific bias as found in R. compacta but possess an identical mutation in the anticodon sequence of the tRNALys. Conclusion A strong reversed asymmetrical mutational constraint in the mitochondrial genome of Rhabdopleura compacta may have arisen by an inversion of the replication direction and adaptation to this bias in the protein sequences leading to an enigmatic mitochondrial genome. Although, phylogenetic analyses of protein coding sequences are hampered, features of the tRNA system of R. compacta support the monophyly of Ambulacraria. The identical reassignment of AGG to Lysine in two distinct groups may have occurred by convergent evolution in the anticodon sequence of the tRNALys.
Collapse
|
13
|
Yankura KA, Martik ML, Jennings CK, Hinman VF. Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms. BMC Biol 2010; 8:143. [PMID: 21118544 PMCID: PMC3002323 DOI: 10.1186/1741-7007-8-143] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/30/2010] [Indexed: 01/27/2023] Open
Abstract
Background Conservation of orthologous regulatory gene expression domains, especially along the neuroectodermal anterior-posterior axis, in animals as disparate as flies and vertebrates suggests that common patterning mechanisms have been conserved since the base of Bilateria. The homology of axial patterning is far less clear for the many marine animals that undergo a radical transformation in body plan during metamorphosis. The embryos of these animals are microscopic, feeding within the plankton until they metamorphose into their adult forms. Results We describe here the localization of 14 transcription factors within the ectoderm during early embryogenesis in Patiria miniata, a sea star with an indirectly developing planktonic bipinnaria larva. We find that the animal-vegetal axis of this very simple embryo is surprisingly well patterned. Furthermore, the patterning that we observe throughout the ectoderm generally corresponds to that of "head/anterior brain" patterning known for hemichordates and vertebrates, which share a common ancestor with the sea star. While we suggest here that aspects of head/anterior brain patterning are generally conserved, we show that another suite of genes involved in retinal determination is absent from the ectoderm of these echinoderms and instead operates within the mesoderm. Conclusions Our findings therefore extend, for the first time, evidence of a conserved axial pattering to echinoderm embryos exhibiting maximal indirect development. The dissociation of head/anterior brain patterning from "retinal specification" in echinoderm blastulae might reflect modular changes to a developmental gene regulatory network within the ectoderm that facilitates the evolution of these microscopic larvae.
Collapse
Affiliation(s)
- Kristen A Yankura
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
14
|
Perseke M, Bernhard D, Fritzsch G, Brümmer F, Stadler PF, Schlegel M. Mitochondrial genome evolution in Ophiuroidea, Echinoidea, and Holothuroidea: Insights in phylogenetic relationships of Echinodermata. Mol Phylogenet Evol 2010; 56:201-11. [DOI: 10.1016/j.ympev.2010.01.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 01/27/2010] [Accepted: 01/30/2010] [Indexed: 10/19/2022]
|
15
|
Molecular phylogeny of hemichordata, with updated status of deep-sea enteropneusts. Mol Phylogenet Evol 2009; 52:17-24. [DOI: 10.1016/j.ympev.2009.03.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 12/18/2008] [Accepted: 03/25/2009] [Indexed: 11/20/2022]
|
16
|
Bourlat SJ, Rota-Stabelli O, Lanfear R, Telford MJ. The mitochondrial genome structure of Xenoturbella bocki (phylum Xenoturbellida) is ancestral within the deuterostomes. BMC Evol Biol 2009; 9:107. [PMID: 19450249 PMCID: PMC2697986 DOI: 10.1186/1471-2148-9-107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 05/18/2009] [Indexed: 11/14/2022] Open
Abstract
Background Mitochondrial genome comparisons contribute in multiple ways when inferring animal relationships. As well as primary sequence data, rare genomic changes such as gene order, shared gene boundaries and genetic code changes, which are unlikely to have arisen through convergent evolution, are useful tools in resolving deep phylogenies. Xenoturbella bocki is a morphologically simple benthic marine worm recently found to belong among the deuterostomes. Here we present analyses comparing the Xenoturbella bocki mitochondrial gene order, genetic code and control region to those of other metazoan groups. Results The complete mitochondrial genome sequence of Xenoturbella bocki was determined. The gene order is most similar to that of the chordates and the hemichordates, indicating that this conserved mitochondrial gene order might be ancestral to the deuterostome clade. Using data from all phyla of deuterostomes, we infer the ancestral mitochondrial gene order for this clade. Using inversion and breakpoint analyses of metazoan mitochondrial genomes, we test conflicting hypotheses for the phylogenetic placement of Xenoturbella and find a closer affinity to the hemichordates than to other metazoan groups. Comparative analyses of the control region reveal similarities in the transcription initiation and termination sites and origin of replication of Xenoturbella with those of the vertebrates. Phylogenetic analyses of the mitochondrial sequence indicate a weakly supported placement as a basal deuterostome, a result that may be the effect of compositional bias. Conclusion The mitochondrial genome of Xenoturbella bocki has a very conserved gene arrangement in the deuterostome group, strikingly similar to that of the hemichordates and the chordates, and thus to the ancestral deuterostome gene order. Similarity to the hemichordates in particular is suggested by inversion and breakpoint analysis. Finally, while phylogenetic analyses of the mitochondrial sequences support a basal deuterostome placement, support for this decreases with the use of more sophisticated models of sequence evolution.
Collapse
Affiliation(s)
- Sarah J Bourlat
- Department of Invertebrate Zoology, Swedish Museum of Natural History, Stockholm, Sweden.
| | | | | | | |
Collapse
|
17
|
Abstract
The evolutionary history of the vertebrate mouth has long been an intriguing issue in comparative zoology. When the prevertebrate state was considered, the oral structure in adult lancelets (amphioxus) was traditionally referred to because of its general similarity to that of the ammocoete larva of lampreys. The larval mouth in lancelets, however, shows a peculiar developmental mode. Reflecting this, the affinity of the lancelet mouth has long been argued, but is still far from a consensus. The increase in available data from molecular biology, comparative developmental biology, paleontology, and other related fields makes it prudent to discuss morphological homology and homoplasy. Here, we review how the lancelet mouth has been interpreted in the study of evolution of the vertebrate mouth, as well as recent advances in chordate studies. With this background of increased knowledge, our innervation analysis supports the interpretation that the morphological similarity in the oral apparatus between ammocoetes and lancelets is a homoplasy caused by their similar food habits.
Collapse
Affiliation(s)
- Kinya Yasui
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, 2445 Mukaishima, Onomichi, Hiroshima 722-0073, Japan.
| | | |
Collapse
|
18
|
Freeman RM, Wu M, Cordonnier-Pratt MM, Pratt LH, Gruber CE, Smith M, Lander ES, Stange-Thomann N, Lowe CJ, Gerhart J, Kirschner M. cDNA sequences for transcription factors and signaling proteins of the hemichordate Saccoglossus kowalevskii: efficacy of the expressed sequence tag (EST) approach for evolutionary and developmental studies of a new organism. THE BIOLOGICAL BULLETIN 2008; 214:284-302. [PMID: 18574105 DOI: 10.2307/25470670] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We describe a collection of expressed sequence tags (ESTs) for Saccoglossus kowalevskii, a direct-developing hemichordate valuable for evolutionary comparisons with chordates. The 202,175 ESTs represent 163,633 arrayed clones carrying cDNAs prepared from embryonic libraries, and they assemble into 13,677 continuous sequences (contigs), leaving 10,896 singletons (excluding mitochondrial sequences). Of the contigs, 53% had significant matches when BLAST was used to query the NCBI databases (< or = 10(-10)), as did 51% of the singletons. Contigs most frequently matched sequences from amphioxus (29%), chordates (67%), and deuterostomes (87%). From the clone array, we isolated 400 full-length sequences for transcription factors and signaling proteins of use for evolutionary and developmental studies. The set includes sequences for fox, pax, tbx, hox, and other homeobox-containing factors, and for ligands and receptors of the TGFbeta, Wnt, Hh, Delta/Notch, and RTK pathways. At least 80% of key sequences have been obtained, when judged against gene lists of model organisms. The median length of these cDNAs is 2.3 kb, including 1.05 kb of 3' untranslated region (UTR). Only 30% are entirely matched by single contigs assembled from ESTs. We conclude that an EST collection based on 150,000 clones is a rich source of sequences for molecular developmental work, and that the EST approach is an efficient way to initiate comparative studies of a new organism.
Collapse
Affiliation(s)
- R M Freeman
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
A large-scale phylogenetic study of the human lineage dramatically points up the problems of using single genes to build phylogenetic trees. A recent large-scale phylogenomic study has shown the great degree of topological variation that can be found among eukaryotic phylogenetic trees constructed from single genes, highlighting the problems that can be associated with gene sampling in phylogenetic studies.
Collapse
Affiliation(s)
- Jose Castresana
- Department of Physiology and Molecular Biodiversity, Institute of Molecular Biology of Barcelona, CSIC, 08034 Barcelona, Spain.
| |
Collapse
|
20
|
Andrew Cameron R, Davidson EH. A basal deuterostome genome viewed as a natural experiment. Gene 2007; 406:1-7. [PMID: 17550788 PMCID: PMC2200295 DOI: 10.1016/j.gene.2007.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/26/2007] [Accepted: 04/26/2007] [Indexed: 11/26/2022]
Abstract
With the determination of its genome sequence the utility of the sea urchin model system increases. The phylogenetic position of the sea urchin among the deuterostomes allows for informative comparisons to vertebrate research models. A combined whole genome shotgun and bacterial artificial chromosome based strategy yielded a high quality draft genome sequence of 814 Mb. The predicted gene set estimated to include 23,300 genes was annotated and compared to those of other metazoan animals. Gene family expansions in the innate immune system are large and offer a first glimpse of how the long-lived sea urchin defends itself. The gene sets of the sea urchin place it firmly among the deuterostomes and indicate that various gene family-specific expansions and contractions characterize the evolution of animal genomes rather than the invention of new genes.
Collapse
Affiliation(s)
- R Andrew Cameron
- Beckman Institute 139-74, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, United States.
| | | |
Collapse
|
21
|
Perseke M, Hankeln T, Weich B, Fritzsch G, Stadler PF, Israelsson O, Bernhard D, Schlegel M. The mitochondrial DNA of Xenoturbella bocki: genomic architecture and phylogenetic analysis. Theory Biosci 2007; 126:35-42. [PMID: 18087755 DOI: 10.1007/s12064-007-0007-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/19/2007] [Indexed: 11/29/2022]
Abstract
The phylogenetic position of Xenoturbella bocki has been a matter of controversy since its description in 1949. We sequenced a second complete mitochondrial genome of this species and performed phylogenetic analyses based on the amino acid sequences of all 13 mitochondrial protein-coding genes and on its gene order. Our results confirm the deuterostome relationship of Xenoturbella. However, in contrast to a recently published study (Bourlat et al. in Nature 444:85-88, 2006), our data analysis suggests a more basal branching of Xenoturbella within the deuterostomes, rather than a sister-group relationship to the Ambulacraria (Hemichordata and Echinodermata).
Collapse
Affiliation(s)
- Marleen Perseke
- Institut für Zoologie, Molekulare Evolution und Systematik der Tiere Universität Leipzig, Talstr. 33, 04103, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Talavera G, Castresana J. Improvement of Phylogenies after Removing Divergent and Ambiguously Aligned Blocks from Protein Sequence Alignments. Syst Biol 2007; 56:564-77. [PMID: 17654362 DOI: 10.1080/10635150701472164] [Citation(s) in RCA: 3675] [Impact Index Per Article: 204.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Alignment quality may have as much impact on phylogenetic reconstruction as the phylogenetic methods used. Not only the alignment algorithm, but also the method used to deal with the most problematic alignment regions, may have a critical effect on the final tree. Although some authors remove such problematic regions, either manually or using automatic methods, in order to improve phylogenetic performance, others prefer to keep such regions to avoid losing any information. Our aim in the present work was to examine whether phylogenetic reconstruction improves after alignment cleaning or not. Using simulated protein alignments with gaps, we tested the relative performance in diverse phylogenetic analyses of the whole alignments versus the alignments with problematic regions removed with our previously developed Gblocks program. We also tested the performance of more or less stringent conditions in the selection of blocks. Alignments constructed with different alignment methods (ClustalW, Mafft, and Probcons) were used to estimate phylogenetic trees by maximum likelihood, neighbor joining, and parsimony. We show that, in most alignment conditions, and for alignments that are not too short, removal of blocks leads to better trees. That is, despite losing some information, there is an increase in the actual phylogenetic signal. Overall, the best trees are obtained by maximum-likelihood reconstruction of alignments cleaned by Gblocks. In general, a relaxed selection of blocks is better for short alignment, whereas a stringent selection is more adequate for longer ones. Finally, we show that cleaned alignments produce better topologies although, paradoxically, with lower bootstrap. This indicates that divergent and problematic alignment regions may lead, when present, to apparently better supported although, in fact, more biased topologies.
Collapse
Affiliation(s)
- Gerard Talavera
- Department of Physiology, Institute of Molecular Biology of Barcelona, Barcelona, Spain
| | | |
Collapse
|
23
|
Kon T, Nohara M, Yamanoue Y, Fujiwara Y, Nishida M, Nishikawa T. Phylogenetic position of a whale-fall lancelet (Cephalochordata) inferred from whole mitochondrial genome sequences. BMC Evol Biol 2007; 7:127. [PMID: 17663797 PMCID: PMC2034537 DOI: 10.1186/1471-2148-7-127] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 07/31/2007] [Indexed: 11/17/2022] Open
Abstract
Background The lancelet Asymmetron inferum (subphylum Cephalochordata) was recently discovered on the ocean floor off the southwest coast of Japan at a depth of 229 m, in an anaerobic and sulfide-rich environment caused by decomposing bodies of the sperm whale Physeter macrocephalus. This deep sulfide-rich habitat of A. inferum is unique among the lancelets. The distinguishing adaptation of this species to such an extraordinary habitat can be considered in a phylogenetic framework. As the first step of reconstruction of the evolutionary processes in this species, we investigated its phylogenetic position based on 11 whole mitochondrial genome sequences including the newly determined ones of the whale-fall lancelet A. inferum and two coral-reef congeners. Results Our phylogenetic analyses showed that extant lancelets are clustered into two major clades, the Asymmetron clade and the Epigonichthys + Branchiostoma clade. A. inferum was in the former and placed in the sister group to A. lucayanum complex. The divergence time between A. inferum and A. lucayanum complex was estimated to be 115 Mya using the penalized likelihood (PL) method or 97 Mya using the nonparametric rate smoothing (NPRS) method (the middle Cretaceous). These are far older than the first appearance of large whales (the middle Eocene, 40 Mya). We also discovered that A. inferum mitogenome (mitochondrial genome) has been subjected to large-scale gene rearrangements, one feature of rearrangements being unique among the lancelets and two features shared with A. lucayanum complex. Conclusion Our study supports the monophyly of genus Asymmetron assumed on the basis of the morphological characters. Furthermore, the features of the A. inferum mitogenome expand our knowledge of variation within cephalochordate mitogenomes, adding a new case of transposition and inversion of the trnQ gene. Our divergence time estimation suggests that A. inferum remained a member of the Mesozoic and the early Cenozoic large vertebrate-fall communities before shifting to become a whale-fall specialist.
Collapse
Affiliation(s)
- Takeshi Kon
- Department of Marine Bioscience, Ocean Research Institute, the University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan
| | - Masahiro Nohara
- Yokohama R&D Center, HITEC Co., Ltd., 2-20-5 Minamisaiwai, Nishi, Yokohama, Kanagawa 220-0005, Japan
| | - Yusuke Yamanoue
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Yoshihiro Fujiwara
- Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Mutsumi Nishida
- Department of Marine Bioscience, Ocean Research Institute, the University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan
| | - Teruaki Nishikawa
- The Nagoya University Museum, Nagoya University, Chikusa Aichi 464-8601, Japan
| |
Collapse
|
24
|
Mallatt J, Winchell CJ. Ribosomal RNA genes and deuterostome phylogeny revisited: More cyclostomes, elasmobranchs, reptiles, and a brittle star. Mol Phylogenet Evol 2007; 43:1005-22. [PMID: 17276090 DOI: 10.1016/j.ympev.2006.11.023] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 10/27/2006] [Accepted: 11/22/2006] [Indexed: 01/08/2023]
Abstract
This is an expanded study of the relationships among the deuterostome animals based on combined, nearly complete 28S and 18S rRNA genes (>3925 nt.). It adds sequences from 20 more taxa to the approximately 45 sequences used in past studies. Seven of the new taxa were sequenced here (brittle star Ophiomyxa, lizard Anolis, turtle Chrysemys, sixgill shark Hexanchus, electric ray Narcine, Southern Hemisphere lamprey Geotria, and Atlantic hagfish Myxine for 28S), and the other 13 were from GenBank and the literature (from a chicken, dog, rat, human, three lungfishes, and several ray-finned fishes, or Actinopterygii). As before, our alignments were based on secondary structure but did not account for base pairing in the stems of rRNA. The new findings, derived from likelihood-based tree-reconstruction methods and by testing hypotheses with parametric bootstrapping, include: (1) brittle star joins with sea star in the echinoderm clade, Asterozoa; (2) with two hagfishes and two lampreys now available, the cyclostome (jawless) fishes remain monophyletic; (3) Hexanchiform sharks are monophyletic, as Hexanchus groups with the frilled shark, Chlamydoselachus; (4) turtle is the sister taxon of all other amniotes; (5) bird is closer to the lizard than to the mammals; (6) the bichir Polypterus is in a monophyletic Actinopterygii; (7) Zebrafish Danio is the sister taxon of the other two teleosts we examined (trout and perch); (8) the South American and African lungfishes group together to the exclusion of the Australian lungfish. Other findings either upheld those of the previous rRNA-based studies (e.g., echinoderms and hemichordates group as Ambulacraria; orbitostylic sharks; batoids are not derived from any living lineage of sharks) or were obvious (monophyly of mammals, gnathostomes, vertebrates, echinoderms, etc.). Despite all these findings, the rRNA data still fail to resolve the relations among the major groups of deuterostomes (tunicates, Ambulacraria, cephalochordates and vertebrates) and of gnathostomes (chondrichthyans, lungfishes, coelacanth, actinopterygians, amphibians, and amniotes), partly because tunicates and lungfishes are rogue taxa that disrupt the tree. Nonetheless, parametric bootstrapping showed our RNA-gene data are only consistent with these dominant hypotheses: (1) deuterostomes consist of Ambulacraria plus Chordata, with Chordata consisting of tunicates and 'vertebrates plus cephalochordates'; and (2) lungfishes are the closest living relatives of tetrapods.
Collapse
Affiliation(s)
- Jon Mallatt
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | |
Collapse
|
25
|
Yasui K, Urata M, Yamaguchi N, Ueda H, Henmi Y. Laboratory Culture of the Oriental Lancelet Branchiostoma belcheri. Zoolog Sci 2007; 24:514-20. [PMID: 17867851 DOI: 10.2108/zsj.24.514] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 12/07/2006] [Indexed: 11/17/2022]
Abstract
To overcome difficulties in getting research materials of cephalochordate lancelets, which has severely hampered experimental studies of this animal, we have attempted to establish a culture system in the laboratory. Adult animals collected from the wild were maintained in 2.5-L plastic containers filled with natural seawater without sand substratum. They were fed daily with unicellular algae. About 25% of the animals collected in 2003, 2004, and 2005 developed gonads in our culture system. Some of the sexually mature animals collected in the breeding seasons in 2005 and 2006 spawned spontaneously in the plastic containers of this system. Broods obtained in 2005 were maintained longer than a year in a glass tank without sand substratum. The progeny born in the laboratory showed great individual variation in growth but metamorphosed normally, and some of them started to develop gonads around 10 months after fertilization. Our mass culture methods for both adults and their progeny made daily observation possible and allowed the constant spawning of animals collected from the wild, at least in the summer season. Our culture method saves labor in maintenance and is easily set up without any specific demands except for running seawater, though still required to better survival rate and spawning control. Lancelet populations maintained in the laboratory can promote studies on these animals across disciplines and especially contribute to elucidation of the evolutionary history of chordates.
Collapse
Affiliation(s)
- Kinya Yasui
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima, Japan.
| | | | | | | | | |
Collapse
|
26
|
Massey SE, Garey JR. A comparative genomics analysis of codon reassignments reveals a link with mitochondrial proteome size and a mechanism of genetic code change via suppressor tRNAs. J Mol Evol 2007; 64:399-410. [PMID: 17390094 DOI: 10.1007/s00239-005-0260-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Using a comparative genomics approach we demonstrate a negative correlation between the number of codon reassignments undergone by 222 mitochondrial genomes and the mitochondrial genome size, the number of mitochondrial ORFs, and the sizes of the large and small subunit mitochondrial rRNAs. In addition, we show that the TGA-to-tryptophan codon reassignment, which has occurred 11 times in mitochondrial genomes, is found in mitochondrial genomes smaller than those which have not undergone the reassignment. We therefore propose that mitochondrial codon reassignments occur in a wide range of phyla, particularly in Metazoa, due to a reduced "proteomic constraint" on the mitochondrial genetic code, compared to the nuclear genetic code. The reduced proteomic constraint reflects the small size of the mitochondrial-encoded proteome and allows codon reassignments to occur with less likelihood of lethality. In addition, we demonstrate a striking link between nonsense codon reassignments and the decoding properties of naturally occurring nonsense suppressor tRNAs. This suggests that natural preexisting nonsense suppression facilitated nonsense codon reassignments and constitutes a novel mechanism of genetic code change. These findings explain for the first time the identity of the stop codons and amino acids reassigned in mitochondrial and nuclear genomes. Nonsense suppressor tRNAs provided the raw material for nonsense codon reassignments, implying that the properties of the tRNA anticodon have dictated the identity of nonsense codon reassignments.
Collapse
Affiliation(s)
- Steven E Massey
- Department of Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | | |
Collapse
|
27
|
Materna SC, Berney K, Cameron RA. The S. purpuratus genome: a comparative perspective. Dev Biol 2006; 300:485-95. [PMID: 17056028 DOI: 10.1016/j.ydbio.2006.09.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 09/15/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
The predicted gene models derived from the sea urchin genome were compared to the gene catalogs derived from other completed genomes. The models were categorized by their best match to conserved protein domains. Identification of potential orthologs and assignment of sea urchin gene models to groups of homologous genes was accomplished by BLAST alignment and through the use of a clustering algorithm. For the first time, an overview of the sea urchin genetic toolkit emerges and by extension a more precise view of the features shared among the gene catalogs that characterize the super-clades of animals: metazoans, bilaterians, chordate and non-chordate deuterostomes, ecdysozoan and lophotrochozoan protostomes. About one third of the 40 most prevalent domains in the sea urchin gene models are not as abundant in the other genomes and thus constitute expansions that are specific at least to sea urchins if not to all echinoderms. A number of homologous groups of genes previously restricted to vertebrates have sea urchin representatives thus expanding the deuterostome complement. Obversely, the absence of representatives in the sea urchin confirms a number of chordate specific inventions. The specific complement of genes in the sea urchin genome results largely from minor expansions and contractions of existing families already found in the common metazoan "toolkit" of genes. However, several striking expansions shed light on how the sea urchin lives and develops.
Collapse
Affiliation(s)
- Stefan C Materna
- Division of Biology, m/c 139-74, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | | | | |
Collapse
|
28
|
Scouras A, Smith MJ. The complete mitochondrial genomes of the sea lily Gymnocrinus richeri and the feather star Phanogenia gracilis: Signature nucleotide bias and unique nad4L gene rearrangement within crinoids. Mol Phylogenet Evol 2006; 39:323-34. [PMID: 16359875 DOI: 10.1016/j.ympev.2005.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 10/26/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
Complete DNA sequences have been determined for the mitochondrial genomes of the crinoids Phanogenia gracilis (15892 bp) and Gymnocrinus richeri (15966 bp). The mitochondrial genetic map of the stalkless feather star P. gracilis is identical to that of the comatulid feather star Florometra serratissima (Scouras, A., Smith, M.J., 2001. Mol. Biol. Evol. 18, 61-73). The mitochondrial gene order of the stalked crinoid G. richeri differs from that of F. serratissima and P. gracilis by the transposition of the nad4L protein gene. The G. richeri nad4L mitochondrial map position is unique among metazoa and is likely a derived feature in this stalked crinoid. Nucleotide compositional analyses of protein genes encoded on the major sense strand confirm earlier conclusions regarding a crinoid-distinctive T over C bias. All three crinoids exhibit high T levels in third codon positions, whereas other echinoderm classes favor A or C in the third codon position. The nucleotide bias is reflected in the relative synonymous codon usage patterns of crinoids versus other echinoderms. We suggest that the nucleotide bias of crinoids, in comparison to other echinoderms, indicates that a physical inversion of the origin of replication has occurred in the crinoid lineage. Evolutionary rate tests support the use of the cytochrome b (cob) gene in molecular phylogenetic analyses of echinoderms. A consensus echinoderm tree was generated based on cytochrome b nucleotide alignments that placed the asteroids as a sister group to a clade containing the ophiuroids and the (echinoids+holothuroids) with the crinoids basal to the rest of the echinoderm classes: [Crinoid,(Asteroid,(Ophiuroid,(Echinoid,Holothuroid)))].
Collapse
Affiliation(s)
- Andrea Scouras
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
29
|
|
30
|
Hypsa V. Parasite histories and novel phylogenetic tools: Alternative approaches to inferring parasite evolution from molecular markers. Int J Parasitol 2006; 36:141-55. [PMID: 16387305 DOI: 10.1016/j.ijpara.2005.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 10/19/2005] [Accepted: 10/28/2005] [Indexed: 10/25/2022]
Abstract
Parasitological research is often contingent on the knowledge of the phylogeny/genealogy of the studied group. Although molecular phylogenetics has proved to be a powerful tool in such investigations, its application in the traditional fashion, based on a tree inference from the primary nucleotide sequences may, in many cases, be insufficient or even improper. These limitations are due to a number of factors, such as a scarcity/ambiguity of phylogenetic information in the sequences, an intricacy of gene relationships at low phylogenetic levels, or a lack of criteria when deciding among several competing coevolutionary scenarios. With respect to the importance of a precise and reliable phylogenetic background in many biological studies, attempts are being made to extend molecular phylogenetics with a variety of new data sources and methodologies. In this review, selected approaches potentially applicable to parasitological research are presented and their advantages as well as drawbacks are discussed. These issues include the usage of idiosyncratic markers (unique features with presumably low probability of homoplasy), such as insertion of mobile elements, gene rearrangements and secondary structure features; the problem of ancestral polymorphism and reticulate relationships at low phylogenetic levels; and the utility of a molecular clock to facilitate discrimination among alternative scenarios in host-parasite coevolution.
Collapse
Affiliation(s)
- Václav Hypsa
- Faculty of Biological Sciences, University of South Bohemia, and Institute of Parasitology, Academy of Sciences of the Czech Republic, Branisovská 31, 37005 Ceské Budejovice, Czech Republic.
| |
Collapse
|
31
|
Abstract
Genome trees are a means to capture the overwhelming amount of phylogenetic information that is present in genomes. Different formalisms have been introduced to reconstruct genome trees on the basis of various aspects of the genome. On the basis of these aspects, we separate genome trees into five classes: (a) alignment-free trees based on statistic properties of the genome, (b) gene content trees based on the presence and absence of genes, (c) trees based on chromosomal gene order, (d) trees based on average sequence similarity, and (e) phylogenomics-based genome trees. Despite their recent development, genome tree methods have already had some impact on the phylogenetic classification of bacterial species. However, their main impact so far has been on our understanding of the nature of genome evolution and the role of horizontal gene transfer therein. An ideal genome tree method should be capable of using all gene families, including those containing paralogs, in a phylogenomics framework capitalizing on existing methods in conventional phylogenetic reconstruction. We expect such sophisticated methods to help us resolve the branching order between the main bacterial phyla.
Collapse
Affiliation(s)
- Berend Snel
- Center for Molecular and Biomolecular Informatics, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
32
|
Lin G, Lo LC, Zhu ZY, Feng F, Chou R, Yue GH. The complete mitochondrial genome sequence and characterization of single-nucleotide polymorphisms in the control region of the Asian seabass (Lates calcarifer). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:71-9. [PMID: 16228120 PMCID: PMC4273291 DOI: 10.1007/s10126-005-5051-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 06/25/2005] [Indexed: 05/04/2023]
Abstract
We determined the complete mtDNA nucleotide sequence of Lates calcarifer using the shotgun sequencing method. The mitochondrial DNA (mtDNA) was 16,535 base pairs (bp) in length, and contained 13 protein coding genes, 22 transfer RNAs, 2 ribosomal RNAs, and one major noncoding control region (CR). The CR was unusually short at only 768 bp. A striking feature of the mitochondrial genome was the high G+C content (46.1%), which is among the highest in fish. The gene order was identical to that of a typical vertebrate. Phylogenetic analyses using concatenated amino acid sequences of 12 protein-coding genes of 30 fish species representing 14 suborders clearly showed Lates calcarifer was located in the cluster of fish species from the order Perciformes, supporting the traditional systematic classification. We characterized single-nucleotide polymorphisms (SNPs) in the CR by sequencing the complete CR of 25 individuals obtained from Australia and Singapore. A total of 68 SNPs were detected. Eighteen SNPs were fixed with alternative nucleotides in Australian and Singapore seabass, and these SNPs could be used for differentiating fish from the two countries.
Collapse
Affiliation(s)
- G. Lin
- />Molecular Population Genetics Group, Temasek Life Sciences Lab, 1 Research Link, National University of Singapore, 117604 Singapore
| | - L. C. Lo
- />Molecular Population Genetics Group, Temasek Life Sciences Lab, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Z. Y. Zhu
- />Molecular Population Genetics Group, Temasek Life Sciences Lab, 1 Research Link, National University of Singapore, 117604 Singapore
| | - F. Feng
- />Molecular Population Genetics Group, Temasek Life Sciences Lab, 1 Research Link, National University of Singapore, 117604 Singapore
| | - R. Chou
- />Agri-Food and Veterinary Authority of Singapore, Tower Block MND Complex, 069110 Singapore
| | - G. H. Yue
- />Molecular Population Genetics Group, Temasek Life Sciences Lab, 1 Research Link, National University of Singapore, 117604 Singapore
| |
Collapse
|
33
|
Abstract
The phylogenetic relationships among deuterostome animals have been debated for many years, and a diversity of hypotheses have been proposed based on both morphological and molecular data. Here we have assembled sequences of 217 nuclear-encoded proteins to address specific questions concerning their relationships and times of origin. We recovered significant support for urochordates as the closest relative of vertebrates with an analysis of 59 proteins (17,400 amino acids) and suggest that the basal position of urochordates found in previous molecular studies may have been the result of long-branch attraction biases. Our results also support Ambulacraria, the pairing of hemichordates with echinoderms (nine proteins; 2,382 amino acids), and Cyclostomata, the pairing of lampreys with hagfish (25 proteins; 6,895 amino acids). In addition, 325 shared proteins (102,110 amino acids) were obtained from the complete genomes of six vertebrates and a urochordate for phylogenetic analysis and divergence time estimation. An evolutionary timescale was estimated using a local (Bayesian) molecular clock method. We found that most major lineages of deuterostomes arose prior to the Cambrian Explosion of fossils (approximately 520 MYA) and that several lineages had originated before periods of global glaciation in the Precambrian.
Collapse
Affiliation(s)
- Jaime E Blair
- NASA Astrobiology Institute and Department of Biology, The Pennsylvania State University, University Park, USA.
| | | |
Collapse
|
34
|
Qiu Y, Song D, Zhou K, Sun H. The mitochondrial sequences of Heptathela hangzhouensis and Ornithoctonus huwena reveal unique gene arrangements and atypical tRNAs. J Mol Evol 2005; 60:57-71. [PMID: 15696368 DOI: 10.1007/s00239-004-0010-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Accepted: 07/29/2004] [Indexed: 10/25/2022]
Abstract
We have sequenced the complete mitochondrial genomes of the spiders Heptathela hangzhouensis and Ornithoctonus huwena. Both genomes encode 13 protein-coding genes, 22 tRNA genes, and 2 ribosomal RNA genes. H. hangzhouensis, a species of the suborder Mesothelae and a representative of the most basal clade of Araneae, possesses a gene order identical to that of Limulus polyphemus of Xiphosura. On the other hand, O. huwena, a representative of suborder Opisthothelae, infraorder Mygalomorphae, was found to have seven tRNA genes positioned differently from those of Limulus. The rrnL-trnL1-nad1 arrangement shared by the araneomorph families Salticidae, Nesticidae, and Linyphiidae and the mygalomorph family Theraphosidae is a putative synapomorphy joining the mygalomorph with the araneomorph. Between the two species examined, base compositions also differ significantly. The lengths of most protein-coding genes in H. hangzhouensis and O. huwena mtDNA are either identical to or slightly shorter than their Limulus counterparts. Usage of initiation and termination codons in these protein-coding genes seems to follow patterns conserved among most arthropod and some other metazoan mitochondrial genomes. The sequences of the 3' ends of rrnS and rrnL in the two species are similar to those reported for Limulus, and the entire genes are shortened by about 100-250 nucleotides with respect to Limulus. The lengths of most tRNA genes from the two species are distinctly shorter than those of Limulus and the sequences reveal unusual inferred tRNA secondary structures. Our finding provides new molecular evidence supporting that the suborder Mesothelae is basal to opisthothelids.
Collapse
Affiliation(s)
- Yang Qiu
- Jiangsu Key Lab for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210097, PR China
| | | | | | | |
Collapse
|
35
|
Nohara M, Nishida M, Miya M, Nishikawa T. Evolution of the Mitochondrial Genome in Cephalochordata as Inferred from Complete Nucleotide Sequences from Two Epigonichthys Species. J Mol Evol 2005; 60:526-37. [PMID: 15883887 DOI: 10.1007/s00239-004-0238-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 11/07/2004] [Indexed: 11/26/2022]
Abstract
Complete mitochondrial (mt) DNA sequences of two lancelets, Epigonichthys maldivensis and E. lucayanus, were compared with those of two Branchiostoma lancelets and several deuterostomes previously surveyed. The mt-gene order of E. lucayanus was quite different from that of E. maldivensis, the latter being identical to the two Branchiostoma species. A remarkable genomic change in E. lucayanus mtDNA was an inversion, indicating the possibility of recombination of the mt-genome. Gene rearrangements, probably attributable to tandem genome duplications and subsequent random deletions, were observed in two parts. Short major unassignable sequences of the examined lancelets were regarded as a part of putative regulative elements, judging from some sequence similarity to the conserved sequence block (CSB) in mammalian mtDNA. The considerable mt-genome reorganization in E. lucayanus seemed to have affected the nucleotide substitution pattern, suggested by base composition analyses. The present analysis also suggested that AGR codons in lancelet mtDNA were likely to correspond to serine residue, rather than glycine. Furthermore, the AGG codon, so far reputed to be unassignable in lancelet mtDNA, was found twice in E. maldivensis, indicating the availability of all four AGN codons in some lancelets. This finding lends support to an alternative hypothesis regarding the evolutionary history of AGR-codon assignment in extant chordates, rather than that previously proposed. A molecular phylogenetic tree of the Epigonichthys and Branchiostoma species based on DNA sequences of the 13 mt-protein genes doubted the monophyly of the former genus, unlike the prevailing classification based on their different gonadal arrangements.
Collapse
Affiliation(s)
- Masahiro Nohara
- Yokohama R&D Center, HITEC Co., Ltd., 3-55-1 Hagoromo-cho, Naka-ku, Yokohama, Kanagawa, 231-0047, Japan
| | | | | | | |
Collapse
|
36
|
Abstract
A comprehensive review of literature on all 15 genera constituting the phylum Hemichordata resulted in a morphological matrix of 105 characters. The echinoderms, tunicates, cephalochordates, and vertebrates were included in the analysis, and the cnidarians, polychaetes, and sipunculids were employed as outgroup taxa. The consensus tree supported the traditional view of a monophyletic Hemichordata, Echinodermata, Ambulacraria, and Chordata. The enteropneust families Spengelidae and Ptychoderidae were each monophyletic and sister-taxa, but there was no resolution among the family Harrimaniidae. A detailed sensitivity analysis provided (i) tree lengths of competing evolutionary hypothesis and (ii) a test of monophyly of groups under a variety of evolutionary models. It is argued that the ancestral deuterostome was a benthic vermiform organism with a terminal mouth and anus, well-developed circular and longitudinal muscles, a simple nerve plexus with little sign of regionalization, a pharynx with gill slits and collagenous gill bars, a cluster of vacuolated cells with myofilaments, produced iodotyrosine, and displayed direct development. The pterobranchs have lost many of these features as a consequence of evolving a small body size and living in tubes, but these features exist in present-day enteropneusts, suggesting that they are a plausible model for the proximate ancestor of deuterostomes.
Collapse
|
37
|
Abstract
The deuterostomes are a monophyletic group of multicellular animals that include the Chordata, a phylum that exhibits a unique body plan within the metazoans. Deuterostomes classically contained three phyla, Echinodermata, Hemichordata, and Chordata. Protochordata describes two invertebrate chordate subphyla, the Tunicata (Urochordata) and the Cephalochordata. Tunicate species are key to understanding chordate origins, as they have tadpole larvae with a chordate body plan. However, molecular phylogenies show only weak support for the Tunicata as the sister-group to the rest of the chordates, suggesting that they are highly divergent from the Cephalochordata and Vertebrata. We believe that members of the Tunicata exhibit a unique adult body plan and should be considered a separate phylum rather than a subphylum of Chordata. The molecular phylogeny of the deuterostomes is reviewed and discussed in the context of likely morphological evolutionary scenarios and the possibility is raised that the ancestor of the Tunicata was colonial. In this scenario, the colonial tadpole larva would more resemble an ancestral chordate than the solitary tadpole larva. In contrast, the true chordates (vertebrates and cephalochordates) would have evolved from filter-feeding benthic worms with cartilaginous gill slits, similar to extant enteropneust hemichordates.
Collapse
|
38
|
Yokobori SI, Oshima T, Wada H. Complete nucleotide sequence of the mitochondrial genome of Doliolum nationalis with implications for evolution of urochordates. Mol Phylogenet Evol 2004; 34:273-83. [PMID: 15619441 DOI: 10.1016/j.ympev.2004.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2004] [Revised: 09/28/2004] [Accepted: 10/01/2004] [Indexed: 10/26/2022]
Abstract
The evolutionary history of the diverse lifestyles adopted by urochordates has attracted intense interest because it may effect the evolutionary history of vertebrates. Here, we report the complete mitochondrial (mt) DNA sequence of the pelagic thaliacean doliolid Doliolum nationalis. The doliolid mt genome shares the unusual tRNAs of trnM(uau) and trnG(ucu) with other ascidians, such as Halocynthia and Ciona. On the other hand, the gene order of the doliolid mt genome is significantly different from that of any ascidian species or vertebrate reported to date. Phylogenetic analyses of the amino acid sequences of 12 protein-coding genes strongly support the sister-grouping of doliolids and the Phlebobranch ascidian Ciona, with the Stolidobranch ascidian alocynthia as the outgroup, thereby providing strong support for the paraphyly of ascidians, as has been suggested by 18S rDNA studies. Given the paraphyletic nature of ascidians, it seems likely that the common ancestor of ascidians and thaliaceans was sessile, as are the present-day ascidians, and that the thaliaceans subsequently evolved a pelagic lifestyle.
Collapse
Affiliation(s)
- Shin-ichi Yokobori
- Department of Molecular Biology, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan.
| | | | | |
Collapse
|
39
|
Scouras A, Beckenbach K, Arndt A, Smith MJ. Complete mitochondrial genome DNA sequence for two ophiuroids and a holothuroid: the utility of protein gene sequence and gene maps in the analyses of deep deuterostome phylogeny. Mol Phylogenet Evol 2004; 31:50-65. [PMID: 15019608 DOI: 10.1016/j.ympev.2003.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2002] [Revised: 07/09/2003] [Indexed: 11/30/2022]
Abstract
The complete mitochondrial genome sequences have been determined for the holothuroid Cucumaria miniata and two ophiuroid species Ophiopholis aculeata and Ophiura lütkeni. In addition, the nucleotide sequence of the mitochondrial protein-coding genes for the asteroid Pisaster ochraceus has been completed. Maximum-likelihood and LogDet distance analyses of concatenated protein-coding sequences produced a series of trees that did not conclusively support generally accepted models of echinoderm phylogeny. The ophiuroid data consistently demonstrated accelerated nucleotide divergence rates and lack of stationarity. This confounds the phylogenetic analyses. Molecular investigations using individual protein-coding gene alignments demonstrated that the cytochrome b gene exhibits the least deviation in rate and stationarity and generated some trees consistent with proposed echinoderm phylogenies. Phylogenies based on echinoderm mitochondrial gene rearrangements also proved problematic because of extensive variation in gene order between and within classes. A comparison of the two distinctive ophiuroid mitochondrial gene orders supports the hypothesis that O. lütkeni has a more derived mitochondrial gene order versus O. aculeata. The variation in the echinoderm mitochondrial gene maps reinforces the limitations of the application of mitochondrial gene rearrangements as a global phylogenetic tool.
Collapse
Affiliation(s)
- Andrea Scouras
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Boulevard, Burnaby, BC, Canada V5A 1S6
| | | | | | | |
Collapse
|
40
|
Anderson FE, Córdoba AJ, Thollesson M. Bilaterian phylogeny based on analyses of a region of the sodium-potassium ATPase beta-subunit gene. J Mol Evol 2004; 58:252-68. [PMID: 15045481 DOI: 10.1007/s00239-003-2548-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Accepted: 09/15/2003] [Indexed: 10/26/2022]
Abstract
Molecular investigations of deep-level relationships within and among the animal phyla have been hampered by a lack of slowly evolving genes that are amenable to study by molecular systematists. To provide new data for use in deep-level metazoan phylogenetic studies, primers were developed to amplify a 1.3-kb region of the alpha subunit of the nuclear-encoded sodium-potassium ATPase gene from 31 bilaterians representing several phyla. Maximum parsimony, maximum likelihood, and Bayesian analyses of these sequences (combined with ATPase sequences for 23 taxa downloaded from GenBank) yield congruent trees that corroborate recent findings based on analyses of other data sets (e.g., the 18S ribosomal RNA gene). The ATPase-based trees support monophyly for several clades (including Lophotrochozoa, a form of Ecdysozoa, Vertebrata, Mollusca, Bivalvia, Gastropoda, Arachnida, Hexapoda, Coleoptera, and Diptera) but do not support monophyly for Deuterostomia, Arthropoda, or Nemertea. Parametric bootstrapping tests reject monophyly for Arthropoda and Nemertea but are unable to reject deuterostome monophyly. Overall, the sodium-potassium ATPase alpha-subunit gene appears to be useful for deep-level studies of metazoan phylogeny.
Collapse
Affiliation(s)
- Frank E Anderson
- Laboratory of Molecular Systematics, Smithsonian Institution, Museum Support Center, 4210 Silver Hill Road, Suitland, MD 20746, USA.
| | | | | |
Collapse
|
41
|
Peterson KJ. Isolation of Hox and Parahox genes in the hemichordate Ptychodera flava and the evolution of deuterostome Hox genes. Mol Phylogenet Evol 2004; 31:1208-15. [PMID: 15120410 DOI: 10.1016/j.ympev.2003.10.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 09/25/2003] [Indexed: 11/19/2022]
Abstract
Because of their importance for proper development of the bilaterian embryo, Hox genes have taken center stage for investigations into the evolution of bilaterian metazoans. Taxonomic surveys of major protostome taxa have shown that Hox genes are also excellent phylogenetic markers, as specific Hox genes are restricted to one of the two great protostome clades, the Lophotrochozoa or the Ecdysozoa, and thus support the phylogenetic relationships as originally deduced by 18S rDNA studies. Deuterostomes are the third major group of bilaterians and consist of three major phyla, the echinoderms, the hemichordates, and the chordates. Most morphological studies have supported Hemichordata+Chordata, whereas molecular studies support Echinodermata+Hemichordata, a clade known as Ambulacraria. To test these competing hypotheses, complete or near complete cDNAs of eight Hox genes and four Parahox genes were isolated from the enteropneust hemichordate Ptychodera flava. Only one copy of each Hox gene was isolated suggesting that the Hox genes of P. flava are arranged in a single cluster. Of particular importance is the isolation of three posterior or Abd-B Hox genes; these genes are only shared with echinoderms, and thus support the monophyly of Ambulacraria.
Collapse
Affiliation(s)
- Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
42
|
Boore JL, Medina M, Rosenberg LA. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the Scaphopod Graptacme eborea and the bivalve Mytilus edulis. Mol Biol Evol 2004; 21:1492-503. [PMID: 15014161 DOI: 10.1093/molbev/msh090] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have determined the complete sequence of the mitochondrial genome of the scaphopod mollusk Graptacme eborea (14,492 nts) and completed the sequence of the mitochondrial genome of the bivalve mollusk Mytilus edulis (16,740 nts). (The name Graptacme eborea is a revision of the species formerly known as Dentalium eboreum.) G. eborea mtDNA contains the 37 genes that are typically found and has the genes divided about evenly between the two strands, but M. edulis contains an extra trnM and is missing atp8, and it has all genes on the same strand. Each has a highly rearranged gene order relative to each other and to all other studied mtDNAs. G. eborea mtDNA has almost no strand skew, but the coding strand of M. edulis mtDNA is very rich in G and T. This is reflected in differential codon usage patterns and even in amino acid compositions. G. eborea mtDNA has fewer noncoding nucleotides than any other mtDNA studied to date, with the largest noncoding region only 24 nt long. Phylogenetic analysis using 2,420 aligned amino acid positions of concatenated proteins weakly supports an association of the scaphopod with gastropods to the exclusion of Bivalvia, Cephalopoda, and Polyplacophora, but it is generally unable to convincingly resolve the relationships among major groups of the Lophotrochozoa, in contrast to the good resolution seen for several other major metazoan groups.
Collapse
Affiliation(s)
- Jeffrey L Boore
- Department of Biology, University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
43
|
Rawlings TA, Collins TM, Bieler R. Changing identities: tRNA duplication and remolding within animal mitochondrial genomes. Proc Natl Acad Sci U S A 2003; 100:15700-5. [PMID: 14673095 PMCID: PMC307631 DOI: 10.1073/pnas.2535036100] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the majority of metazoan mitochondrial genomes (mtDNAs) contain the same 37 genes, including 22 encoding transfer RNAs (tRNAs), the recognition of orthologs is not always straightforward. Here we demonstrate that inferring tRNA orthologs among taxa by using anticodon triplets and deduced secondary structure can be misleading: through a process of tRNA duplication and mutation in the anticodon triplet, remolded leucine (LUUR) tRNA genes have repeatedly taken over the role of isoaccepting LCUN leucine tRNAs within metazoan mtDNA. In the present work, data from within the gastropods and a broad survey of metazoan mtDNA suggest that tRNA leucine duplication and remolding events have occurred independently at least seven times within three major animal lineages. In all cases where the mechanism of gene remolding can be inferred with confidence, the direction is the same: from LUUR to LCUN. Gene remolding and its apparent asymmetry have significant implications for the use of mitochondrial tRNA gene orders as phylogenetic markers. Remolding complicates the identification of orthologs and can result in convergence in gene order. Careful sequence-based analysis of tRNAs can help to recognize this homoplasy, improving gene-order-based phylogenetic hypotheses and underscoring the importance of careful homology assessment. tRNA remolding also provides an additional mechanism by which gene order changes can occur within mtDNA: through the changing identity of tRNA genes themselves. Recognition of these remolding events can lead to new interpretations of gene order changes, as well as the discovery of phylogenetically relevant gene dynamics that are hidden at the level of gene order alone.
Collapse
Affiliation(s)
- Timothy A Rawlings
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| | | | | |
Collapse
|
44
|
Hu M, Chilton NB, Gasser RB. The mitochondrial genome of Strongyloides stercoralis (Nematoda) – idiosyncratic gene order and evolutionary implications. Int J Parasitol 2003; 33:1393-408. [PMID: 14527522 DOI: 10.1016/s0020-7519(03)00130-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The complete mitochondrial genome sequence of the parasitic nematode Strongyloides stercoralis was determined, and its organisation and structure compared with other nematodes for which complete mitochondrial sequence data were available. The mitochondrial genome of S. stercoralis is 13,758 bp in size and contains 36 genes (all transcribed in the clockwise direction) but lacks the atp8 gene. This genome has a high T content (55.9%) and a low C content (8.3%). Corresponding to this T content, there are 16 (poly-T) tracts of >/=12 Ts distributed across the genome. In protein-coding genes, the T bias is greatest (76.4%) at the third codon position compared with the first and second codon positions. Also, the C content is higher at the first (9.3%) and second (13.4%) codon positions than at the third (2%) position. These nucleotide biases have a significant effect on predicted codon usage patterns and, hence, on amino acid compositions of the mitochondrial proteins. Interestingly, six of the 12 protein-coding genes are predicted to employ a unique initiation codon (TTT), which has not yet been reported for any other animal mitochondrial genome. The secondary structures predicted for the 22 transfer RNA (trn) genes and the two ribosomal RNA (rrn) genes are similar to those of other nematodes. In contrast, the gene arrangement in the mitochondrial genome of S. stercoralis is different from all other nematodes studied to date, revealing only a limited number of shared gene boundaries (atp6-nad2 and cox2-rrnL). Evolutionary analyses of mitochondrial nucleotide and amino acid sequence data sets for S. stercoralis and seven other nematodes demonstrate that the mitochondrial genome provides a rich source of phylogenetically informative characters. In conclusion, the S. stercoralis mitochondrial genome, with its unique gene order and characteristics, should provide a resource for comparative mitochondrial genomics and systematics studies of parasitic nematodes.
Collapse
Affiliation(s)
- Min Hu
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | | | |
Collapse
|
45
|
Friedrich M, Muqim N. Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetle Tribolium castanaeum. Mol Phylogenet Evol 2003; 26:502-12. [PMID: 12644407 DOI: 10.1016/s1055-7903(02)00335-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We describe the first complete mitochondrial genome sequence from a representative of the insect order Coleoptera, the flour beetle Tribolium castaneum. The 15,881 bp long Tribolium mitochondrial genome encodes 13 putative proteins, two ribosomal RNAs and 22 tRNAs canonical for animal mitochondrial genomes. Their arrangement is identical to that in Drosophila melanogaster, which is considered ancestral for insects and crustaceans (Boore et al., 1998; Hwang, et al., 2001a). Nucleotide composition, amino acid composition, and codon usage fall within the range of values observed in other insect mitochondrial genomes. Most notable features are the use of TCT as tRNA(Ser(AGN)) anticodon instead of GCT, which is used in most other arthropod species, and the relative scarcity of special sequence motifs in the 1431 bp long control region. Phylogenetic analysis confirmed resolving power in the conserved regions of the mitochondrial proteome regarding diversification events, which predate the emergence of pterygote insects, while little resolution was obtained at the level of basal perygote diversification. The partition of faster evolving amino acid sites harbored strong support for joining Lepidoptera with Diptera, which is consistent with a monophyletic Mecopterida.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA.
| | | |
Collapse
|
46
|
Abstract
The internal organs of all vertebrates are asymmetrically organised across the left-right axis. The development of this asymmetry is controlled by a molecular pathway that includes the signalling molecule Nodal and the transcription factor Pitx2, proteins encoded by genes that are predominantly expressed on the left side of all vertebrate embryos studied to date. Vertebrates share Phylum Chordata with two other groups of animals, amphioxus and the urochordates (including ascidians). Both these taxa develop left-right asymmetries, and recent studies have begun to address the degree of conservation of nodal and Pitx2 in this process. Pitx2 is a member of the Pitx homeobox gene family, and in both amphioxus and ascidians Pitx gene expression is predominantly left sided. These studies suggest that left-right asymmetry in all chordates is regulated by a conserved developmental pathway, and that this pathway evolved before the separation of the lineages leading to living chordates.
Collapse
Affiliation(s)
- Clive J Boorman
- School of Animal and Microbial Sciences, The University of Reading, Whiteknights, UK
| | | |
Collapse
|
47
|
Harada Y, Shoguchi E, Taguchi S, Okai N, Humphreys T, Tagawa K, Satoh N. Conserved expression pattern of BMP-2/4 in hemichordate acorn worm and echinoderm sea cucumber embryos. Zoolog Sci 2002; 19:1113-21. [PMID: 12426473 DOI: 10.2108/zsj.19.1113] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The auricularia larva of sea cucumbers and tornaria larva of acorn worms share striking developmental and morphological similarities. They are regarded as not only an archetype of the nonchordate deuterostome larva, but also an archetype of the origin of chordates. Here we report the characterization and spatial expression patterns of the BMP-2/4 genes of a hemichordate acorn worm (Pf-bmp2/4) and an echinoderm sea cucumber (Sj-bmp2/4). Both the Pf-bmp2/4 and Sj-bmp2/4 genes exhibited apparently conserved expression in the region of the coelomopore complex. This is in agreement with the homology between their basic larval body plans with respect to coelomogenesis and allows us to discuss the evolutionary counterparts of the coelomopore complex in chordates.
Collapse
Affiliation(s)
- Yoshito Harada
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Winchell CJ, Sullivan J, Cameron CB, Swalla BJ, Mallatt J. Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Mol Biol Evol 2002; 19:762-76. [PMID: 11961109 DOI: 10.1093/oxfordjournals.molbev.a004134] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated evolutionary relationships among deuterostome subgroups by obtaining nearly complete large-subunit ribosomal RNA (LSU rRNA)-gene sequences for 14 deuterostomes and 3 protostomes and complete small-subunit (SSU) rRNA-gene sequences for five of these animals. With the addition of previously published sequences, we compared 28 taxa using three different data sets (LSU only, SSU only, and combined LSU + SSU) under minimum evolution (with LogDet distances), maximum likelihood, and maximum parsimony optimality criteria. Additionally, we analyzed the combined LSU + SSU sequences with spectral analysis of LogDet distances, a technique that measures the amount of support and conflict within the data for every possible grouping of taxa. Overall, we found that (1) the LSU genes produced a tree very similar to the SSU gene tree, (2) adding LSU to SSU sequences strengthened the bootstrap support for many groups above the SSU-only values (e.g., hemichordates plus echinoderms as Ambulacraria; lancelets as the sister group to vertebrates), (3) LSU sequences did not support SSU-based hypotheses of pterobranchs evolving from enteropneusts and thaliaceans evolving from ascidians, and (4) the combined LSU + SSU data are ambiguous about the monophyly of chordates. No tree-building algorithm united urochordates conclusively with other chordates, although spectral analysis did so, providing our only evidence for chordate monophyly. With spectral analysis, we also evaluated several major hypotheses of deuterostome phylogeny that were constructed from morphological, embryological, and paleontological evidence. Our rRNA-gene analysis refutes most of these hypotheses and thus advocates a rethinking of chordate and vertebrate origins.
Collapse
|
49
|
Furlong RF, Holland PWH. Bayesian phylogenetic analysis supports monophyly of ambulacraria and of cyclostomes. Zoolog Sci 2002; 19:593-9. [PMID: 12130812 DOI: 10.2108/zsj.19.593] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vertebrates are part of the phylum Chordata, itself part of a three-phylum group known as the deuterostomes. Despite extensive phylogenetic analysis of the deuterostome animals, several unresolved relationships remain. These include the relationship between the three deuterostome phyla (chordates, echinoderms and hemichordates), and the monophyletic or paraphyletic origin of the cyclostomes (hagfish and lampreys). Using robust Bayesian statistical analysis of 18S ribosomal DNA, mitochondrial genes and nuclear protein-coding DNA, we find strong support for a hemichordate-echinoderm clade, and for monophyly of the cyclostomes.
Collapse
Affiliation(s)
- Rebecca F Furlong
- School of Animal and Microbial Sciences, The University of Reading, Whiteknoghts, UK
| | | |
Collapse
|
50
|
Boore JL, Staton JL. The Mitochondrial Genome of the Sipunculid Phascolopsis gouldii Supports Its Association with Annelida Rather than Mollusca. Mol Biol Evol 2002; 19:127-37. [PMID: 11801741 DOI: 10.1093/oxfordjournals.molbev.a004065] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We determined the sequence of about half (7,470 nt) of the mitochondrial genome of the sipunculid Phascolopsis gouldii, the first representative of this phylum to be so studied. All of the 19 identified genes are transcribed from the same DNA strand. The arrangement of these genes is remarkably similar to that of the oligochaete annelid Lumbricus terrestris. Comparison of both the inferred amino acid sequences and the gene arrangements of a variety of diverse metazoan taxa reveals that the phylum Sipuncula is more closely related to Annelida than to Mollusca. This requires reinterpretation of the homology of several embryological features and of patterns of animal body plan evolution.
Collapse
Affiliation(s)
- Jeffrey L Boore
- Department of Biology, University of Michigan. DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA.
| | | |
Collapse
|