1
|
Madbouly A, Bashyal P, Banos A, Ramirez J, Whitaker C, Fernandez-Vina M, Springer B, Ybarra Y, Maiers M, Bolon YT. Profiling the genetic diversity of the HLA system in Mexico using 9-locus allele and haplotype frequencies from donors in the NMDP Mexico donor center. Hum Immunol 2025; 86:111324. [PMID: 40334347 DOI: 10.1016/j.humimm.2025.111324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Profiling the HLA diversity at the population level benefits multiple clinical and anthropological applications, such as tracing population migration, identifying genetic relationships between different groups, quantifying the added diversity in a global donor pool and matching for solid organ and stem cell transplantation. We calculated nine-locus HLA-A ∼ C ∼ B ∼ DRB1 ∼ DRB3/4/5 ∼ DQA1 ∼ DQB1 ∼ DPA1 ∼ DPB1 allele and haplotype frequencies in about 170,000 volunteer donor genotypes from the NMDP Mexico (NMDP MX, previously Be The Match Mexico) donor center. These donors are predominantly of Mexican ancestry recruited from multiple regions in Mexico. The goal of the study was to describe the HLA genetic profiles of the Mexican population and investigate the contribution of these donors' HLA in serving Mexican, US and international patients in need of hematopoietic cell transplants. Additionally, we estimated that almost all Mexican patients will have an available 5 of 8 or better matched donor in the NMDP MX donor center with matches also available for some of the Latino patients in the U.S. We demonstrate that Mexican populations clustered genetically and shared multiple frequent alleles and haplotypes with populations from the US Mexican or Chicano, US South/Central American Hispanic, and some Latino populations. Operationally, 78 % of NMDP Mexico donors contributed genotypes that were observed a total of three times or less on the registry, increasing the diversity of the overall NMDP registry. More than 300 donor collections were facilitated through the NMDP MX donor center serving mostly Hispanic/Latino patients in the US and abroad. This study highlights the importance of adding the NMDP MX donors to the worldwide donor pool and paves the way for a data-driven strategy for future planning and donor recruitment.
Collapse
Affiliation(s)
- Abeer Madbouly
- CIBMTR® (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, MN, USA; NMDP, Minneapolis, MN, USA
| | - Pradeep Bashyal
- CIBMTR® (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, MN, USA; NMDP, Minneapolis, MN, USA
| | | | | | | | | | | | | | - Martin Maiers
- CIBMTR® (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, MN, USA; NMDP, Minneapolis, MN, USA
| | - Yung-Tsi Bolon
- CIBMTR® (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, MN, USA; NMDP, Minneapolis, MN, USA
| |
Collapse
|
2
|
Mukisa J, Kyobe S, Amujal M, Katagirya E, Diphoko T, Sebetso G, Mwesigwa S, Mboowa G, Retshabile G, Williams L, Mlotshwa B, Matshaba M, Jjingo D, Kateete DP, Joloba ML, Mardon G, Hanchard N, Hollenbach JA. High KIR diversity in Uganda and Botswana children living with HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626612. [PMID: 39677597 PMCID: PMC11642868 DOI: 10.1101/2024.12.03.626612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are essential components of the innate immune system found on the surfaces of natural killer (NK) cells. The KIRs encoding genes are located on chromosome 19q13.4 and are genetically diverse across populations. KIRs are associated with various disease states including HIV progression, and are linked to transplantation rejection and reproductive success. However, there is limited knowledge on the diversity of KIRs from Uganda and Botswana HIV-infected paediatric cohorts, with high endemic HIV rates. We used next-generation sequencing technologies on 312 (246 Uganda, 66 Botswana) samples to generate KIR allele data and employed customised bioinformatics techniques for allelic, allotype and disease association analysis. We show that these sample sets from Botswana and Uganda have different KIRs of different diversities. In Uganda, we observed 147 vs 111 alleles in the Botswana cohort, which had a more than 1 % frequency. We also found significant deviation towards homozygosity for the KIR3DL2 gene for both rapid (RPs) and long-term non-progressors (LTNPs)in the Ugandan cohort. The frequency of the bw4-80I ligand was also significantly higher among the LTNPs than RPs (8.9 % Vs 2.0%, P-value: 0.032). In the Ugandan cohort, KIR2DS4*001 (OR: 0.671, 95 % CI: 0.481-0.937, FDR adjusted Pc=0.142) and KIR2DS4*006 (OR: 2.519, 95 % CI: 1.085-5.851, FDR adjusted Pc=0.142) were not associated with HIV disease progression after adjustment for multiple testing. Our study results provide additional knowledge of the genetic diversity of KIRs in African populations and provide evidence that will inform future immunogenetics studies concerning human disease susceptibility, evolution and host immune responses.
Collapse
Affiliation(s)
- John Mukisa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Samuel Kyobe
- Department of Medical Microbiology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Marion Amujal
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Eric Katagirya
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Thabo Diphoko
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Gaseene Sebetso
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Savannah Mwesigwa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
- Global Pathogen Genomics, Broad Institute, Cambridge, USA
| | - Gaone Retshabile
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Lesedi Williams
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Busisiwe Mlotshwa
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Mogomotsi Matshaba
- Botswana-Baylor Children’s Clinical Centre of Excellence, P/Bag BR 129, Gaborone, Botswana
| | - Daudi Jjingo
- College of Computing and Information Sciences, Makerere University, Kampala, Uganda
- African Center of Excellence in Bioinformatics and Data Science, Makerere University, Kampala, Uganda
| | - David P. Kateete
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Graeme Mardon
- Department of Molecular and Human Genetics and Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Neil Hanchard
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Jill A. Hollenbach
- Department of Neurology and Department of Epidemiology and Biostatistics, University of California San Francisco, CA, 94158, USA
| |
Collapse
|
3
|
Mack SJ, Single RM, Solberg OD, Thomson G, Erlich HA. Population genetic dissection of HLA-DPB1 amino acid polymorphism to infer selection. Hum Immunol 2024; 85:111151. [PMID: 39413638 PMCID: PMC11827675 DOI: 10.1016/j.humimm.2024.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Although allele frequency data for most HLA loci provide strong evidence for balancing selection at the allele level, the DPB1 locus is a notable exception, with allele frequencies compatible with neutral evolution (genetic drift) or directional selection in most populations. This discrepancy is especially interesting as evidence for balancing selection has been seen at the nucleotide and amino acid (AA) sequence levels for DPB1. We describe methods used to examine the global distribution of DPB1 alleles and their constituent AA sequences. These methods allow investigation of the influence of natural selection in shaping DPβ diversity in a hierarchical fashion for DPB1 alleles, all polymorphic DPB1 exon 2-encoded AA positions, as well as all pairs and trios of these AA positions. In addition, we describe how asymmetric linkage disequilibrium for all DPB1 exon 2-encoded AA pairs can be used to complement other methods. Application of these methods provides strong evidence for the operation of balancing selection on AA positions 56, 85-87, 36, 55 and 84 (listed in decreasing order of the strength of selection), but no evidence for balancing selection on DPB1 alleles.
Collapse
Affiliation(s)
- Steven J Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States.
| | - Richard M Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States
| | - Owen D Solberg
- Bioinformatics and Biostatistics, Monogram Biosciences, South San Francisco, CA, United States
| | - Glenys Thomson
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Henry A Erlich
- Center for Genetics, Children's Hospital & Research Center Oakland, Oakland, CA, United States
| |
Collapse
|
4
|
Single RM, Mack SJ, Solberg OD, Thomson G, Erlich HA. Natural Selection on HLA-DPB1 Amino Acids Operates Primarily on DP Serologic Categories. Hum Immunol 2024; 85:111153. [PMID: 39461275 PMCID: PMC12022158 DOI: 10.1016/j.humimm.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The DPB1 locus is notable among the classical HLA loci in that allele frequencies at this locus are consistent with genetic drift, whereas the frequencies of specific DPβ amino acids are consistent with the action of balancing selection. We investigated the influence of natural selection in shaping the diversity of three functional categories of DPB1 diversity defined by specific amino acid motifs, DPB1 T-cell epitopes, DPB1 supertypes and DP1-DP4 serologic categories (SCs), via Ewens-Watterson (EW) selective neutrality and asymmetric Linkage Disequilibrium (ALD) analyses in a worldwide sample of 136 populations. These EW analyses provide strong evidence for the operation of balancing selection on DP SCs, but no evidence for balancing selection on T-cell epitopes or supertypes. We further investigated the global distribution of SCs. Each SC is common in a different region of the world, with the DP1 SC most common in Southeast Asia and Oceania, the DP2 SC in North and South America, the DP3 SC in South America, and the DP4 SC in Europe. The DP2 SC is present in all populations, while 14% of populations are missing at least one DP1, DP3, or DP4 SC. We observed consistent DPA1∼DP SC haplotype associations across 10 populations from five global regions, and found that asymmetric linkage disequilibrium (LD) between the DPB1 locus and the four most-common DPA1 alleles (DPA1*01:03, *02:01, *02:02 and *03:01) is determined by variation at DPβ AA positions 85-87. These positions are in LD with both DPα positions 31 and 50. We conclude from these EW analyses that natural selection is primarily operating to maintain population-level diversity of DP SCs, rather than DPB1 alleles or other functional categories of DPB1 diversity.
Collapse
Affiliation(s)
- Richard M Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States
| | - Steven J Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States.
| | - Owen D Solberg
- Bioinformatics and Biostatistics, Monogram Biosciences, South San Francisco, CA, United States
| | - Glenys Thomson
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Henry A Erlich
- Center for Genetics, Children's Hospital & Research Center Oakland, Oakland, CA, United States
| |
Collapse
|
5
|
Association of HLA class II alleles with suicidal behavior in a Transylvanian population. REV ROMANA MED LAB 2023. [DOI: 10.2478/rrlm-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Abstract
Background: Suicide is a complex phenomenon determined by the interaction of various risk factors. The Major Histocompatibility Complex is the most polymorphic gene cluster of the entire human genome, being linked to both the regulation of the immune system and various psychiatric diseases. The aim of this study was to identify HLA-DQB1 and DRB1 alleles and genotypes susceptible to influence suicidal behavior.
Methods: We explored the association of HLA-DQB1 alleles with the suicidal behavior on a sample of 427 individuals (including 110 suicide attempters) from Transylvania, as well as the association of HLA-DRB1 alleles with the suicidal behavior on a sample of 271 individuals (including 50 suicide attempters), using the single specific primer-PCR (SSP-PCR) technique.
Results: We found that the HLA-DQB1*02, *03 and *06 alleles, the DQB1*02/*03, DQB1*02/*06, DRB1*12/*15 and DRB1*07/*13 genotypes, as well as the DQB1*06~DRB1*07 and DQB1*02~DRB1*13 haplotypes, were more frequent in suicide attempters. In contrast, the HLA-DQB1*04 and DQB1*13 alleles, the DQB1*02/*05 and DQB1*03/*05 genotypes and the DQB1*03~DRB1*13 haplotype were less frequent in the case group.
Conclusion: HLA-DQB1*02, *03 and *06 alleles and the DQB1*02/*03 and *02/*06 genotypes are susceptible to favor a suicide behavior, while the HLA-DQB1*04 and *13 alleles and the DQB1*02/*05 and *03/*05 genotypes were protective against such behavior. A similar analysis regarding the HLA-DRB1 alleles detected a possible risk for suicidal behavior among individuals possessing either the DRB1*12/*15 or the DRB1*07/*13 genotypes. DQB1*06~DRB1*07 and DQB1*02~DRB1*13 haplotypes were found susceptible to favor a suicidal behavior, while DQB1*03~DRB1*13 exhibited a protective influence.
Collapse
|
6
|
James LM, Charonis SA, Georgopoulos AP. Schizophrenia, Human Leukocyte Antigen (HLA), and Herpes Viruses: Immunogenetic Associations at the Population Level. Neurosci Insights 2023; 18:26331055231166411. [PMID: 37077512 PMCID: PMC10108429 DOI: 10.1177/26331055231166411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/13/2023] [Indexed: 04/21/2023] Open
Abstract
Several factors have been implicated in schizophrenia (SZ), including human herpes viruses (HHV) and the adaptive immunity Human Leukocyte Antigen (HLA) genes. Here we investigated these issues in 2 complementary ways. In one analysis, we evaluated SZ-HLA and HHV-HLA associations at the level of a single allele by computing (a) a SZ-HLA protection/susceptibility (P/S) score based on the covariance between SZ and 127 HLA allele prevalences in 14 European countries, (b) estimating in silico HHV-HLA best binding affinities for the 9 HHV strains, and (c) evaluating the dependence of P/S score on HHV-HLA binding affinities. These analyses yielded (a) a set of 127 SZ-HLA P/S scores, varying by >200× (maximum/minimum), which could not be accounted for by chance, (b) a set of 127 alleles × 9 HHV best-estimated affinities, varying by >600×, and (c) a set of correlations between SZ-HLA P/S scores and HHV-HLA binding which indicated a prominent role of HHV1. In a subsequent analysis, we extended these findings to the individual person by taking into account the fact that every individual carries 12 HLA alleles and computed (a) the average SZ-HLA P/S scores of 12 randomly chosen alleles (2 per gene), an indicator of HLA-based SZ P/S for an individual, and (b) the average of the corresponding HHV estimated affinities for those alleles, an indicator of overall effectiveness of HHV-HLA binding. We found (a) that HLA protection for SZ was significantly more prominent than susceptibility, and (b) that protective SZ-HLA scores were associated with higher HHV-HLA binding affinities, indicating that HLA binding and subsequent elimination of several HHV strains may confer protection against schizophrenia.
Collapse
Affiliation(s)
- Lisa M James
- The HLA Research Group, Department of Veterans Affairs Health Care System, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Lisa M James, Brain Sciences Center (11B), Minneapolis VAHCS, One Veterans Drive, Minneapolis, MN 55417, USA.
| | - Spyros A Charonis
- The HLA Research Group, Department of Veterans Affairs Health Care System, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- The HLA Research Group, Department of Veterans Affairs Health Care System, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
7
|
Niemann M, Matern BM, Spierings E, Schaub S, Hönger G. Peptides Derived From Mismatched Paternal Human Leukocyte Antigen Predicted to Be Presented by HLA-DRB1, -DRB3/4/5, -DQ, and -DP Induce Child-Specific Antibodies in Pregnant Women. Front Immunol 2021; 12:797360. [PMID: 34992608 PMCID: PMC8725048 DOI: 10.3389/fimmu.2021.797360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Predicted Indirectly ReCognizable Human Leukocyte Antigen (HLA) Epitopes (PIRCHE) are known to be a significant risk factor for the development of donor HLA-specific antibodies after organ transplantation. Most previous studies on PIRCHE limited their analyses on the presentation of the HLA-DRB1 locus, although HLA-DRB3/4/5, -DQ, and -DP are also known for presenting allopeptides to CD4+ T cells. In this study, we analyzed the impact of predicted allopeptides presented by these additional loci on the incidence of HLA-specific antibodies after an immunization event. We considered pregnancy as a model system of an HLA immunization and observed child-specific HLA antibody (CSA) development of 231 mothers during pregnancy by samples being taken at delivery. Our data confirm that PIRCHE presented by HLA-DRB1 along with HLA-DRB3/4/5, -DQ, and -DP are significant predictors for the development of CSA. Although there was limited peptidome overlap observed within the mothers’ presenting HLA proteins, combining multiple presenting loci in a single predictor improved the model only marginally. Prediction performance of PIRCHE further improved when normalizing scores by the respective presenters’ binding promiscuity. Immunogenicity analysis of specific allopeptides could not identify significant drivers of an immune response in this small cohort, suggesting confirmatory studies.
Collapse
Affiliation(s)
- Matthias Niemann
- Research and Development, PIRCHE AG, Berlin, Germany
- *Correspondence: Matthias Niemann,
| | - Benedict M. Matern
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Gideon Hönger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
8
|
Analysis of HLA gene polymorphisms in East Africans reveals evidence of gene flow in two Semitic populations from Sudan. Eur J Hum Genet 2021; 29:1259-1271. [PMID: 33753913 PMCID: PMC8384866 DOI: 10.1038/s41431-021-00845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/28/2020] [Accepted: 02/25/2021] [Indexed: 02/02/2023] Open
Abstract
Sudan, a northeastern African country, is characterized by high levels of cultural, linguistic, and genetic diversity, which is believed to be affected by continuous migration from neighboring countries. Consistent with such demographic effect, genome-wide SNP data revealed a shared ancestral component among Sudanese Afro-Asiatic speaking groups and non-African populations, mainly from West Asia. Although this component is shared among all Afro-Asiatic speaking groups, the extent of this sharing in Semitic groups, such as Sudanese Arab, is still unknown. Using genotypes of six polymorphic human leukocyte antigen (HLA) genes (i.e., HLA-A, -C, -B, -DRB1, -DQB1, and -DPB1), we examined the genetic structure of eight East African ethnic groups with origins in Sudan, South Sudan, and Ethiopia. We identified informative HLA alleles using principal component analysis, which revealed that the two Semitic groups (Gaalien and Shokrya) constituted a distinct cluster from the other Afro-Asiatic speaking groups in this study. The HLA alleles that distinguished Semitic Arabs co-exist in the same extended HLA haplotype, and those alleles are in strong linkage disequilibrium. Interestingly, we find the four-locus haplotype "C*12:02-B*52:01-DRB1*15:02-DQB1*06:01" exclusively in non-African populations and it is widely spread across Asia. The identification of this haplotype suggests a gene flow from Asia, and likely these haplotypes were brought to Africa through back migration from the Near East. These findings will be of interest to biomedical and anthropological studies that examine the demographic history of northeast Africa.
Collapse
|
9
|
James LM, Georgopoulos AP. Immunogenetic Epidemiology of Dementia and Parkinson's Disease in 14 Continental European Countries: Shared Human Leukocyte Antigen (HLA) Profiles. JOURNAL OF IMMUNOLOGICAL SCIENCES 2021; 5:16-26. [PMID: 40370814 PMCID: PMC12077081 DOI: 10.29245/2578-3009/2021/2.1209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Human leukocyte antigen (HLA), which is critically involved in immune response to foreign antigens and in autoimmunity, has been implicated in dementia and Parkinson's disease. Here we report on the correlations between the population frequencies of 127 HLA Class I and II alleles and the population prevalence of dementia and Parkinson's disease in 14 Continental Western European countries, extending previous work1,2. We used these correlations to construct and compare HLA profiles for each disease3. We found that (a) the HLA profiles of the two diseases were significantly correlated across both HLA Class I and Class II alleles, (b) negative ("protective") HLA-disease correlations did not differ significantly for either HLA class, but (c) positive ("susceptibility") HLA-disease correlations were significantly higher in dementia than in Parkinson's disease for both HLA classes of alleles. These findings indicate that (a) dementia and Parkinson's disease share immunogenetic HLA-related mechanisms, (b) HLA-related protective mechanisms (presumably against pathogens) do not differ between the two diseases, but (c) HLA-related susceptibility mechanisms (presumably underlying autoimmunity) are significantly stronger in dementia than in Parkinson's disease.
Collapse
Affiliation(s)
- Lisa M. James
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Apostolos P. Georgopoulos
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
James LM, Charonis SA, Georgopoulos AP. Association of Dementia Human Leukocyte Antigen (HLA) Profile with Human Herpes Viruses 3 and 7: An in silico Investigation. JOURNAL OF IMMUNOLOGICAL SCIENCES 2021; 5:7-14. [PMID: 40371217 PMCID: PMC12077050 DOI: 10.29245/2578-3009/2021/3.1218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Human leukocyte antigen (HLA), the most highly polymorphic region of the human genome, is increasingly recognized as an important genetic contributor to dementia risk and resilience. HLA is involved in protection against foreign antigens including human herpes viruses (HHV), which have been widely implicated in dementia. Here we used an in silico approach1 to determine binding affinities of glycoproteins from 9 human herpes virus (HHV) strains to 113 HLA alleles, and to examine the association of a previously identified HLA-dementia risk profile2 to those affinities. We found a highly significant correlation between high binding affinities of HLA alleles to HHV 3 and 7 and the dementia risk scores of those alleles, such that the higher the estimated binding affinity, the lower the dementia risk score. These findings suggest that protection conferred by HLA alleles may be related to their ability to bind and eliminate HHV3 and HHV7 and point to the possibility that protection against these viruses may reduce dementia incidence.
Collapse
Affiliation(s)
- Lisa M. James
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Spyros A. Charonis
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Apostolos P. Georgopoulos
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Alter I, Gragert L, Fingerson S, Maiers M, Louzoun Y. HLA class I haplotype diversity is consistent with selection for frequent existing haplotypes. PLoS Comput Biol 2017; 13:e1005693. [PMID: 28846675 PMCID: PMC5590998 DOI: 10.1371/journal.pcbi.1005693] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/08/2017] [Accepted: 07/20/2017] [Indexed: 01/03/2023] Open
Abstract
The major histocompatibility complex (MHC) contains the most polymorphic genetic system in humans, the human leukocyte antigen (HLA) genes of the adaptive immune system. High allelic diversity in HLA is argued to be maintained by balancing selection, such as negative frequency-dependent selection or heterozygote advantage. Selective pressure against immune escape by pathogens can maintain appreciable frequencies of many different HLA alleles. The selection pressures operating on combinations of HLA alleles across loci, or haplotypes, have not been extensively evaluated since the high HLA polymorphism necessitates very large sample sizes, which have not been available until recently. We aimed to evaluate the effect of selection operating at the HLA haplotype level by analyzing HLA A~C~B~DRB1~DQB1 haplotype frequencies derived from over six million individuals genotyped by the National Marrow Donor Program registry. In contrast with alleles, HLA haplotype diversity patterns suggest purifying selection, as certain HLA allele combinations co-occur in high linkage disequilibrium. Linkage disequilibrium is positive (Dij'>0) among frequent haplotypes and negative (Dij'<0) among rare haplotypes. Fitting the haplotype frequency distribution to several population dynamics models, we found that the best fit was obtained when significant positive frequency-dependent selection (FDS) was incorporated. Finally, the Ewens-Watterson test of homozygosity showed excess homozygosity for 5-locus haplotypes within 23 US populations studied, with an average Fnd of 28.43. Haplotype diversity is most consistent with purifying selection for HLA Class I haplotypes (HLA-A, -B, -C), and was not inferred for HLA Class II haplotypes (-DRB1 and—DQB1). We discuss our empirical results in the context of evolutionary theory, exploring potential mechanisms of selection that maintain high linkage disequilibrium in MHC haplotype blocks. The adaptive immune system presents antigens derived from pathogenic and normal self proteins on the cell surface using human leukocyte antigen (HLA) molecules. The HLA loci coding for these molecules are found in major histocompatibility complex (MHC) region, the most polymorphic region in the human genome, with over 15,000 HLA alleles observed so far in the world population. A high frequency of many different HLA alleles is thought be sustained by balancing selection. New HLA alleles may have an advantage over existing frequent alleles since immune escape mutations in pathogens within a population are maintained primarily in epitopes presented on frequent HLA alleles. Host immune function is not determined by single HLA alleles, but by both copies of autosomal HLA genes together (genotypes). Complementarity in function across the two potentially-variant copies of HLA at each locus can result in overdominance and heterozygote advantage at the genotype level. Less explored are selection mechanisms that may be operating across combinations of HLA alleles across loci (haplotypes). Indeed, in addition to high allelic diversity, HLA also has distinctive patterns of haplotype diversity, as certain HLA alleles co-occur in high linkage disequilibrium across five classical HLA loci (HLA-A, -B, -C, -DRB1, -DQB1). We applied multiple population genetic models to a dataset of HLA haplotype frequencies derived from over six million individuals with the goal of determining what type of selection may impact HLA haplotype diversity. We found frequent haplotypes were preferentially maintained in the population across 23 US populations studied. Thus, balancing selection at the allele level and purifying selection at the haplotype level may together affect HLA diversity in human populations.
Collapse
Affiliation(s)
- Idan Alter
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Loren Gragert
- National Marrow Donor Program, Minneapolis, Minnesota, United States of America
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Stephanie Fingerson
- National Marrow Donor Program, Minneapolis, Minnesota, United States of America
| | - Martin Maiers
- National Marrow Donor Program, Minneapolis, Minnesota, United States of America
| | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
- * E-mail:
| |
Collapse
|
12
|
HLA-A, B, DRB1, DQA1, DQB1 alleles and haplotype frequencies in Dene and Cree cohorts in Manitoba, Canada. Hum Immunol 2017; 78:401-411. [PMID: 28359736 DOI: 10.1016/j.humimm.2017.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/01/2017] [Accepted: 03/18/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND First Nations in the Canadian province of Manitoba have disproportionately high rates of epidemic and endemic TB. Gene polymorphisms that modulate HLA Class I and II antigens are among the risk markers for TB, along with other biologic, and social determinants of health. HLA-A, B, DRB1, DQA1, DQB1 were typed in two Manitoba First Nation indigenous groups to identify and compare the frequency of gene polymorphisms that may influence susceptibility or resistance to TB. METHODS Participants who self-identified as either Dene or Cree enrolled into the study from two First Nation communities in Manitoba, Canada. Genomic DNA was extracted from blood samples collected with informed consent from Dene (N=63) and Cree (N=42) First Nation study participants. Participants self-reported having treated active TB, treated latent TB or no TB. HLA Class I and II molecules were typed using sequence-specific oligonucleotide (SSO) probes from commercially available kits. RESULTS The rates of treated active and latent TB were marginally higher among the Dene than the Cree participants (p=0.112). Class I and II HLA loci were in Hardy-Weinberg equilibrium in both the Dene and Cree groups. In this exploratory analysis of TB and HLA allele frequencies in Dene and Cree cohorts HLA-A*03 and HLA-DQB1*05:03 were significantly associated with TB. CONCLUSIONS The high incidence of TB in both Dene and Cree populations in Canada requires both biomedical and socioeconomic prevention and control measures. Among the former, an understanding of HLA diversity among First Nations groups may aid the development of new effective vaccine and therapeutic modalities that depend on the interaction between small molecules and specific HLA epitopes.
Collapse
|
13
|
Kashyap M, Farooq U, Jaiswal V. Homology modelling of frequent HLA class-II alleles: A perspective to improve prediction of HLA binding peptide and understand the HLA associated disease susceptibility. INFECTION GENETICS AND EVOLUTION 2016; 44:234-244. [PMID: 27421208 DOI: 10.1016/j.meegid.2016.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 11/30/2022]
Abstract
Human leukocyte antigen (HLA) plays significant role via the regulation of immune system and contribute in the progression and protection of many diseases. HLA molecules bind and present peptides to T- cell receptors which generate the immune response. HLA peptide interaction and molecular function of HLA molecule is the key to predict peptide binding and understanding its role in different diseases. The availability of accurate three dimensional (3D) structures is the initial step towards this direction. In the present work, homology modelling of important and frequent HLA-DRB1 alleles (07:01, 11:01 and 09:01) was done and acceptable models were generated. These modelled alleles were further refined and cross validated by using several methods including Ramachandran plot, Z-score, ERRAT analysis and root mean square deviation (RMSD) calculations. It is known that numbers of allelic variants are related to the susceptibility or protection of various infectious diseases. Difference in amino acid sequences and structures of alleles were also studied to understand the association of HLA with disease susceptibility and protection. Susceptible alleles showed more amino acid variations than protective alleles in three selected diseases caused by different pathogens. Amino acid variations at binding site were found to be more than other part of alleles. RMSD values were also higher at variable positions within binding site. Higher RMSD values indicate that mutations occurring at peptide binding site alter protein structure more than rest of the protein. Hence, these findings and modelled structures can be used to design HLA-DRB1 binding peptides to overcome low prediction accuracy of HLA class II binding peptides. Furthermore, it may help to understand the allele specific molecular mechanisms involved in susceptibility/resistance against pathogenic diseases.
Collapse
Affiliation(s)
- Manju Kashyap
- Faculty of Applied sciences and Biotechnology, Shoolini University, Solan, Himachal, Pradesh, India
| | - Umar Farooq
- Faculty of Applied sciences and Biotechnology, Shoolini University, Solan, Himachal, Pradesh, India
| | - Varun Jaiswal
- School of Electrical and Computer Science Engineering, Shoolini University, Solan, Himachal Pradesh, India.
| |
Collapse
|
14
|
Abstract
For multiallelic loci, standard measures of linkage disequilibrium provide an incomplete description of the correlation of variation at two loci, especially when there are different numbers of alleles at the two loci. We have developed a complementary pair of conditional asymmetric linkage disequilibrium (ALD) measures. Since these measures do not assume symmetry, they more accurately describe the correlation between two loci and can identify heterogeneity in genetic variation not captured by other symmetric measures. For biallelic loci the ALD are symmetric and equivalent to the correlation coefficient r. The ALD measures are particularly relevant for disease-association studies to identify cases in which an analysis can be stratified by one of more loci. A stratified analysis can aid in detecting primary disease-predisposing genes and additional disease genes in a genetic region. The ALD measures are also informative for detecting selection acting independently on loci in high linkage disequilibrium or on specific amino acids within genes. For SNP data, the ALD statistics provide a measure of linkage disequilibrium on the same scale for comparisons among SNPs, among SNPs and more polymorphic loci, among haplotype blocks of SNPs, and for fine mapping of disease genes. The ALD measures, combined with haplotype-specific homozygosity, will be increasingly useful as next-generation sequencing methods identify additional allelic variation throughout the genome.
Collapse
|
15
|
Norman PJ, Hollenbach JA, Nemat-Gorgani N, Guethlein LA, Hilton HG, Pando MJ, Koram KA, Riley EM, Abi-Rached L, Parham P. Co-evolution of human leukocyte antigen (HLA) class I ligands with killer-cell immunoglobulin-like receptors (KIR) in a genetically diverse population of sub-Saharan Africans. PLoS Genet 2013; 9:e1003938. [PMID: 24204327 PMCID: PMC3814319 DOI: 10.1371/journal.pgen.1003938] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/16/2013] [Indexed: 02/06/2023] Open
Abstract
Interactions between HLA class I molecules and killer-cell immunoglobulin-like receptors (KIR) control natural killer cell (NK) functions in immunity and reproduction. Encoded by genes on different chromosomes, these polymorphic ligands and receptors correlate highly with disease resistance and susceptibility. Although studied at low-resolution in many populations, high-resolution analysis of combinatorial diversity of HLA class I and KIR is limited to Asian and Amerindian populations with low genetic diversity. At the other end of the spectrum is the West African population investigated here: we studied 235 individuals, including 104 mother-child pairs, from the Ga-Adangbe of Ghana. This population has a rich diversity of 175 KIR variants forming 208 KIR haplotypes, and 81 HLA-A, -B and -C variants forming 190 HLA class I haplotypes. Each individual we studied has a unique compound genotype of HLA class I and KIR, forming 1-14 functional ligand-receptor interactions. Maintaining this exceptionally high polymorphism is balancing selection. The centromeric region of the KIR locus, encoding HLA-C receptors, is highly diverse whereas the telomeric region encoding Bw4-specific KIR3DL1, lacks diversity in Africans. Present in the Ga-Adangbe are high frequencies of Bw4-bearing HLA-B*53:01 and Bw4-lacking HLA-B*35:01, which otherwise are identical. Balancing selection at key residues maintains numerous HLA-B allotypes having and lacking Bw4, and also those of stronger and weaker interaction with LILRB1, a KIR-related receptor. Correspondingly, there is a balance at key residues of KIR3DL1 that modulate its level of cell-surface expression. Thus, capacity to interact with NK cells synergizes with peptide binding diversity to drive HLA-B allele frequency distribution. These features of KIR and HLA are consistent with ongoing co-evolution and selection imposed by a pathogen endemic to West Africa. Because of the prevalence of malaria in the Ga-Adangbe and previous associations of cerebral malaria with HLA-B*53:01 and KIR, Plasmodium falciparum is a candidate pathogen.
Collapse
Affiliation(s)
- Paul J. Norman
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Jill A. Hollenbach
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Neda Nemat-Gorgani
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lisbeth A. Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Hugo G. Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marcelo J. Pando
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kwadwo A. Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Eleanor M. Riley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Laurent Abi-Rached
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Centre National de la Recherche Scientifique, Laboratoire d'Analyse, Topologie, Probabilités - Unité Mixte de Recherche 7353, Equipe ATIP, Aix-Marseille Université, Marseille, France
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
16
|
Mack SJ, Cano P, Hollenbach JA, He J, Hurley CK, Middleton D, Moraes ME, Pereira SE, Kempenich JH, Reed EF, Setterholm M, Smith AG, Tilanus MG, Torres M, Varney MD, Voorter CEM, Fischer GF, Fleischhauer K, Goodridge D, Klitz W, Little AM, Maiers M, Marsh SGE, Müller CR, Noreen H, Rozemuller EH, Sanchez-Mazas A, Senitzer D, Trachtenberg E, Fernandez-Vina M. Common and well-documented HLA alleles: 2012 update to the CWD catalogue. ACTA ACUST UNITED AC 2013; 81:194-203. [PMID: 23510415 DOI: 10.1111/tan.12093] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 11/26/2022]
Abstract
We have updated the catalogue of common and well-documented (CWD) human leukocyte antigen (HLA) alleles to reflect current understanding of the prevalence of specific allele sequences. The original CWD catalogue designated 721 alleles at the HLA-A, -B, -C, -DRB1, -DRB3/4/5, -DQA1, -DQB1, and -DPB1 loci in IMGT (IMmunoGeneTics)/HLA Database release 2.15.0 as being CWD. The updated CWD catalogue designates 1122 alleles at the HLA-A, -B, -C, -DRB1, -DRB3/4/5, -DQA1, -DQB1, -DPA1 and -DPB1 loci as being CWD, and represents 14.3% of the HLA alleles in IMGT/HLA Database release 3.9.0. In particular, we identified 415 of these alleles as being 'common' (having known frequencies) and 707 as being 'well-documented' on the basis of ~140,000 sequence-based typing observations and available HLA haplotype data. Using these allele prevalence data, we have also assigned CWD status to specific G and P designations. We identified 147/151 G groups and 290/415 P groups as being CWD. The CWD catalogue will be updated on a regular basis moving forward, and will incorporate changes to the IMGT/HLA Database as well as empirical data from the histocompatibility and immunogenetics community. This version 2.0.0 of the CWD catalogue is available online at cwd.immunogenomics.org, and will be integrated into the Allele Frequencies Net Database, the IMGT/HLA Database and National Marrow Donor Program's bioinformatics web pages.
Collapse
Affiliation(s)
- S J Mack
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
O'Farrell B, Dennis C, Benzie JA, McGinnity P, Carlsson J, de Eyto E, Coughlan JP, Igoe F, Meehan R, Cross TF. Balancing selection on MHC class I in wild brown trout Salmo trutta. JOURNAL OF FISH BIOLOGY 2012; 81:1357-1374. [PMID: 22957875 DOI: 10.1111/j.1095-8649.2012.03421.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Evidence is reported for balancing selection acting on variation at major histocompatibility complex (MHC) in wild populations of brown trout Salmo trutta. First, variation at an MHC class I (satr-uba)-linked microsatellite locus (mhc1) is retained in small S. trutta populations isolated above waterfalls although variation is lost at neutral microsatellite markers. Second, populations across several catchments are less differentiated at mhc1 than at neutral markers, as predicted by theory. The population structure of these fish was also elucidated.
Collapse
Affiliation(s)
- B O'Farrell
- Environmental Research Institute, University College Cork, Cork, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Invernizzi P, Ransom M, Raychaudhuri S, Kosoy R, Lleo A, Shigeta R, Franke A, Bossa F, Amos CI, Gregersen PK, Siminovitch KA, Cusi D, de Bakker PI, Podda M, Gershwin ME, Seldin MF, and the Italian PBC Genetics Study Group. Classical HLA-DRB1 and DPB1 alleles account for HLA associations with primary biliary cirrhosis. Genes Immun 2012; 13:461-468. [PMID: 22573116 PMCID: PMC3423484 DOI: 10.1038/gene.2012.17] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 02/07/2023]
Abstract
Susceptibility to primary biliary cirrhosis (PBC) is strongly associated with human leukocyte antigen (HLA)-region polymorphisms. To determine if associations can be explained by classical HLA determinants, we studied Italian, 676 cases and 1440 controls, genotyped with dense single-nucleotide polymorphisms (SNPs) for which classical HLA alleles and amino acids were imputed. Although previous genome-wide association studies and our results show stronger SNP associations near DQB1, we demonstrate that the HLA signals can be attributed to classical DRB1 and DPB1 genes. Strong support for the predominant role of DRB1 is provided by our conditional analyses. We also demonstrate an independent association of DPB1. Specific HLA-DRB1 genes (*08, *11 and *14) account for most of the DRB1 association signal. Consistent with previous studies, DRB1*08 (P=1.59 × 10(-11)) was the strongest predisposing allele, whereas DRB1*11 (P=1.42 × 10(-10)) was protective. Additionally, DRB1*14 and the DPB1 association (DPB1*03:01; P=9.18 × 10(-7)) were predisposing risk alleles. No signal was observed in the HLA class 1 or class 3 regions. These findings better define the association of PBC with HLA and specifically support the role of classical HLA-DRB1 and DPB1 genes and alleles in susceptibility to PBC.
Collapse
Affiliation(s)
- Pietro Invernizzi
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, University of California, Davis, Davis, CA
- Center for Autoimmune Liver Diseases, Department of Medicine, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | - Michael Ransom
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA
| | - Soumya Raychaudhuri
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Partners HealthCare Center for Personalized Genetic Medicine, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Roman Kosoy
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA
| | - Ana Lleo
- Center for Autoimmune Liver Diseases, Department of Medicine, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | - Russell Shigeta
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Fabrizio Bossa
- Division of Gastroenterology, IRCCS-CSS Hospital, San Giovanni Rotondo, Italy
| | - Christopher I. Amos
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Peter K. Gregersen
- The Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, North Shore LIJ Health System, Manhasset, NY, New York, USA
| | - Katherine A. Siminovitch
- Mount Sinai Hospital, Samuel Lunenfeld Research Institute and Toronto General Research Institute, Toronto, Ontario, Canada
- Departments of Immunology and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Daniele Cusi
- Department of Medicine, Surgery & Dentistry, Università degli Studi di Milano, Milan, Italy
- Genomics and Bioinformatics Unit, Fondazione Filarete, Milan, Italy
| | - Paul I.W. de Bakker
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Julius Center for Health Sciences and Primary Care, and Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mauro Podda
- Center for Autoimmune Liver Diseases, Department of Medicine, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, University of California, Davis, Davis, CA
| | - Michael F. Seldin
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, University of California, Davis, Davis, CA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA
| | | |
Collapse
|
19
|
Hollenbach JA, Madbouly A, Gragert L, Vierra-Green C, Flesch S, Spellman S, Begovich A, Noreen H, Trachtenberg E, Williams T, Yu N, Shaw B, Fleischhauer K, Fernandez-Vina M, Maiers M. A combined DPA1~DPB1 amino acid epitope is the primary unit of selection on the HLA-DP heterodimer. Immunogenetics 2012; 64:559-69. [PMID: 22526601 PMCID: PMC3395342 DOI: 10.1007/s00251-012-0615-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/18/2012] [Indexed: 01/05/2023]
Abstract
Here, we present results for DPA1 and DPB1 four-digit allele-level typing in a large (n = 5,944) sample of unrelated European American stem cell donors previously characterized for other class I and class II loci. Examination of genetic data for both chains of the DP heterodimer in the largest cohort to date, at the amino acid epitope, allele, genotype, and haplotype level, allows new insights into the functional units of selection and association for the DP heterodimer. The data in this study suggest that for the DPA1-DPB1 heterodimer, the unit of selection is the combined amino acid epitope contributed by both the DPA1 and DPB1 genes, rather than the allele, and that patterns of LD are driven primarily by dimer stability and conformation of the P1 pocket. This may help explain the differential pattern of allele frequency distribution observed for this locus relative to the other class II loci. These findings further support the notion that allele-level associations in disease and transplantation may not be the most important unit of analysis, and that they should be considered instead in the molecular context.
Collapse
|
20
|
Mack SJ, Gourraud PA, Single RM, Thomson G, Hollenbach JA. Analytical methods for immunogenetic population data. Methods Mol Biol 2012; 882:215-44. [PMID: 22665237 PMCID: PMC4209087 DOI: 10.1007/978-1-61779-842-9_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we describe analyses commonly applied to immunogenetic population data, along with software tools that are currently available to perform those analyses. Where possible, we focus on tools that have been developed specifically for the analysis of highly polymorphic immunogenetic data. These analytical methods serve both as a means to examine the appropriateness of a dataset for testing a specific hypothesis, as well as a means of testing hypotheses. Rather than treat this chapter as a protocol for analyzing any population dataset, each researcher and analyst should first consider their data, the possible analyses, and any available tools in light of the hypothesis being tested. The extent to which the data and analyses are appropriate to each other should be determined before any analyses are performed.
Collapse
Affiliation(s)
- Steven J Mack
- Center for Genetics, Children's Hospital and Research Center Oakland, Oakland, CA, USA.
| | | | | | | | | |
Collapse
|
21
|
Cagliani R, Riva S, Pozzoli U, Fumagalli M, Comi GP, Bresolin N, Clerici M, Sironi M. Balancing selection is common in the extended MHC region but most alleles with opposite risk profile for autoimmune diseases are neutrally evolving. BMC Evol Biol 2011; 11:171. [PMID: 21682861 PMCID: PMC3141431 DOI: 10.1186/1471-2148-11-171] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/17/2011] [Indexed: 11/23/2022] Open
Abstract
Background Several susceptibility genetic variants for autoimmune diseases have been identified. A subset of these polymorphisms displays an opposite risk profile in different autoimmune conditions. This observation open interesting questions on the evolutionary forces shaping the frequency of these alleles in human populations. We aimed at testing the hypothesis whereby balancing selection has shaped the frequency of opposite risk alleles. Results Since balancing selection signatures are expected to extend over short genomic portions, we focused our analyses on 11 regions carrying putative functional polymorphisms that may represent the disease variants (and the selection targets). No exceptional nucleotide diversity was observed for ZSCAN23, HLA-DMB, VARS2, PTPN22, BAT3, C6orf47, and IL10; summary statistics were consistent with evolutionary neutrality for these gene regions. Conversely, CDSN/PSORS1C1, TRIM10/TRIM40, BTNL2, and TAP2 showed extremely high nucleotide diversity and most tests rejected neutrality, suggesting the action of balancing selection. For TAP2 and BTNL2 these signatures are not secondary to linkage disequilibrium with HLA class II genes. Nonetheless, with the exception of variants in TRIM40 and CDSN, our data suggest that opposite risk SNPs are not selection targets but rather have accumulated as neutral variants. Conclusion Data herein indicate that balancing selection is common within the extended MHC region and involves several non-HLA loci. Yet, the evolutionary history of most SNPs with an opposite effect for autoimmune diseases is consistent with evolutionary neutrality. We suggest that variants with an opposite effect on autoimmune diseases should not be considered a distinct class of disease alleles from the evolutionary perspective and, in a few cases, the opposite effect on distinct diseases may derive from complex haplotype structures in regions with high genetic diversity.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E, Medea, 23842 Bosisio Parini, LC, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
The characteristics of allelic polymorphism in killer-immunoglobulin-like receptor framework genes in African Americans. Immunogenetics 2011; 63:549-59. [PMID: 21607693 DOI: 10.1007/s00251-011-0536-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
The frequencies of alleles of killer cell immunoglobulin-like receptor genes, KIR3DL3 and KIR3DL2, and the carrier frequency of KIR2DL4 alleles have been determined from a population of African Americans (n = 100) by DNA sequencing of the coding regions. Fifty alleles of KIR3DL3 were observed with the most frequent, KIR3DL3*00901 (13%). KIR3DL2 was also diverse; 32 alleles with KIR3DL2*00103 the most frequent (17%). For KIR2DL4, of the 18 alleles observed, one allele, KIR2DL4*00103, was found in 64 of the 100 individuals. Thirty-six novel alleles encoding a total of 28 unique receptors are described. Pairwise comparisons among all of the alleles at each locus suggest a predominance of synonymous substitutions. The variation at all three framework loci fits a neutral model of evolution.
Collapse
|
23
|
Matevosyan L, Chattopadhyay S, Madelian V, Avagyan S, Nazaretyan M, Hyussian A, Vardapetyan E, Arutunyan R, Jordan F. HLA-A, HLA-B, and HLA-DRB1 allele distribution in a large Armenian population sample. ACTA ACUST UNITED AC 2011; 78:21-30. [PMID: 21501120 DOI: 10.1111/j.1399-0039.2011.01668.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human leukocyte antigen (HLA)-A, HLA-B, and HLA-DRB1 gene frequencies were investigated in 4279 unrelated Armenian bone marrow donors. HLA alleles were defined by using PCR amplification with sequence specific primers (PCR-SSP) high- and low-resolution kits. The aim of this study was to examine the HLA diversity at the high-resolution level in a large Armenian population sample, and to compare HLA allele group distribution in Armenian subpopulations. The most frequently observed alleles in the HLA class I were HLA-A*0201, A*0101, A*2402, A*0301, HLA-B*5101, HLA-B*3501, and B*4901. Among DRB1 alleles, high frequencies of DRB1*1104 and DRB1*1501 were observed, followed by DRB1*1101 and DRB1*1401. The most common three-locus haplotype found in the Armenian population was A*33-B*14-DRB1*01, followed by A*03-B*35-DRB1*01. Our results show a similar distribution of alleles in Armenian subpopulations from different countries, and from different regions of the Republics of Armenia and Karabagh. The low level of genetic distances between subpopulations indicates a high level of population homogeneity, and the genetic distances between Armenians and other populations show Armenians as a distinct ethnic group relative to others, reflecting the fact that Armenians have been an 'isolated population' throughout centuries. This study is the first comprehensive investigation of HLA-allele group distribution in a subset of Armenian populations, and the first to provide HLA-allele and haplotype frequencies at a high-resolution level. It is a valuable reference for organ transplantation and for future studies of HLA-associated diseases in Armenian populations.
Collapse
Affiliation(s)
- L Matevosyan
- Armenian Bone Marrow Donors Registry, Yerevan, Republic of Armenia
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sanchez-Mazas A, Fernandez-Viña M, Middleton D, Hollenbach JA, Buhler S, Di D, Rajalingam R, Dugoujon JM, Mack SJ, Thorsby E. Immunogenetics as a tool in anthropological studies. Immunology 2011; 133:143-64. [PMID: 21480890 DOI: 10.1111/j.1365-2567.2011.03438.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The genes coding for the main molecules involved in the human immune system--immunoglobulins, human leucocyte antigen (HLA) molecules and killer-cell immunoglobulin-like receptors (KIR)--exhibit a very high level of polymorphism that reveals remarkable frequency variation in human populations. 'Genetic marker' (GM) allotypes located in the constant domains of IgG antibodies have been studied for over 40 years through serological typing, leading to the identification of a variety of GM haplotypes whose frequencies vary sharply from one geographic region to another. An impressive diversity of HLA alleles, which results in amino acid substitutions located in the antigen-binding region of HLA molecules, also varies greatly among populations. The KIR differ between individuals according to both gene content and allelic variation, and also display considerable population diversity. Whereas the molecular evolution of these polymorphisms has most likely been subject to natural selection, principally driven by host-pathogen interactions, their patterns of genetic variation worldwide show significant signals of human geographic expansion, demographic history and cultural diversification. As current developments in population genetic analysis and computer simulation improve our ability to discriminate among different--either stochastic or deterministic--forces acting on the genetic evolution of human populations, the study of these systems shows great promise for investigating both the peopling history of modern humans in the time since their common origin and human adaptation to past environmental (e.g. pathogenic) changes. Therefore, in addition to mitochondrial DNA, Y-chromosome, microsatellites, single nucleotide polymorphisms and other markers, immunogenetic polymorphisms represent essential and complementary tools for anthropological studies.
Collapse
Affiliation(s)
- Alicia Sanchez-Mazas
- Department of Genetics and Evolution, Anthropology unit, Laboratory of Anthropology, Genetics and peopling history, University of Geneva, 12 rue Gustave-Revilliod, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mack SJ, Tu B, Yang R, Masaberg C, Ng J, Hurley CK. Human leukocyte antigen-A, -B, -C, -DRB1 allele and haplotype frequencies in Americans originating from southern Europe: contrasting patterns of population differentiation between Italian and Spanish Americans. Hum Immunol 2010; 72:144-9. [PMID: 20974205 DOI: 10.1016/j.humimm.2010.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 10/03/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
High-resolution DNA sequencing was used to identify the human leukocyte antigen (HLA) -A, -B, -C, and -DRB1 alleles found in 552 individuals from the United States indicating Southern European (Italian or Spanish) heritage. A total of 46 HLA-A, 80 HLA-B, 32 HLA-C, and 50 DRB1 alleles were identified. Frequent alleles included A*02:01:01G (allele frequency = 0.26 in Italian Americans and 0.22 in Spanish Americans); B*07:02:01G (Italian Americans allele frequency = 0.11); B*44:03 (Spanish Americans allele frequency = 0.07); C*04:01:01G and C*07:01:01G (allele frequency = 0.13 and 0.16, respectively, in Italian Americans; 0.15 and 0.12, respectively, in Spanish Americans); and DRB1*07:01:01 (allele frequency = 0.12 in each population). The action of balancing selection was inferred at the HLA-B and -C loci in both populations. The A*01:01:01G-C*07:01:01G-B*08:01:01G-DRB1*03:01:01 haplotype was the most frequent A-C-B-DRB1 haplotype in Italian Americans (haplotype frequency = 0.049), and was the second most frequent haplotype in Spanish Americans (haplotype frequency = 0.021). A*29:02:01-C*16:01:01-B*44:03-DRB1*07:01:01 was the most frequent A-C-B-DRB1 in Spanish Americans (haplotype frequency = 0.023), and was observed at a frequency of 0.015 in Italian Americans. Pairwise F'(st) values measuring the degree of differentiation between these Southern European American populations as well as European and European American populations suggest that Spanish Americans constitute a distinct subset of the European American population, most similar to Mexican Americans, whereas Italian Americans cannot be distinguished from the larger European American population.
Collapse
Affiliation(s)
- Steven J Mack
- Children's Hospital Oakland Research Institute, Oakland, California, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Cagliani R, Fumagalli M, Riva S, Pozzoli U, Comi GP, Bresolin N, Sironi M. Genetic variability in the ACE gene region surrounding the Alu I/D polymorphism is maintained by balancing selection in human populations. Pharmacogenet Genomics 2010; 20:131-4. [DOI: 10.1097/fpc.0b013e3283333532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Yao Y, Shi L, Shi L, Matsushita M, Yu L, Lin K, Tao Y, Huang X, Yi W, Oka T, Tokunaga K, Chu J. Distribution of HLA-A, -B, -Cw, and -DRB1 alleles and haplotypes in an isolated Han population in Southwest China. ACTA ACUST UNITED AC 2009; 73:561-8. [PMID: 19493233 DOI: 10.1111/j.1399-0039.2009.01237.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, polymorphisms of human leukocyte antigen (HLA) class I (A, B, and Cw) and class II (DRB1) loci were analyzed in an isolated Han population living in Fengyandong in the Yunnan province of Southwest China (FYDH) using a high-resolution polymerase chain reaction-Luminex typing method. A total of 13 A, 26 B, 15 Cw, and 23 DRB1 alleles of HLA were found in FYDH. The frequencies of A*1101, A*0207, A*2402, B*4601, B*1502, Cw*0102, Cw*0801, DRB1*0901, and DRB1*1202 were >10%. The following haplotypes were common with frequencies >5%: three A-B, four Cw-B, two B-DRB1, two A-B-DRB1, three A-B-Cw, two B-Cw-DRB1, and two A-B-Cw-DRB1 phylogenetic tree and multidimensional scaling analysis based on HLA-A, -B, and -DRB1 allele frequencies of 18 Han populations suggested that FYDH was an isolated Han population, but the analytic result also provided a suggestion that FYDH was genetically related to Chinese Southern Han. According to the characteristics of the HLA allele and haplotype distributions and significantly reduced allelic and haplotypic diversity in FYDH, we deduced that genetic drift and/or selection and subsequent geographic isolation had influenced the distribution characteristics of the HLA gene in FYDH. In addition, significantly reduced allelic and haplotypic diversity in FYDH makes it an ideal homogenous population and very useful model for future investigations of issues related to immunogenetic diseases in the Han population.
Collapse
Affiliation(s)
- Y Yao
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ryu HJ, Kim YJ, Park YK, Kim JJ, Park MY, Seo EJ, Yoo HW, Park IS, Oh BS, Lee JK. Identification and Characterization of Human Genes Targeted by Natural Selection. Genomics Inform 2008. [DOI: 10.5808/gi.2008.6.4.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Mack SJ, Tu B, Lazaro A, Yang R, Lancaster AK, Cao K, Ng J, Hurley CK. HLA-A, -B, -C, and -DRB1 allele and haplotype frequencies distinguish Eastern European Americans from the general European American population. ACTA ACUST UNITED AC 2008; 73:17-32. [PMID: 19000140 DOI: 10.1111/j.1399-0039.2008.01151.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequence-based typing was used to identify human leukocyte antigen (HLA)-A, -B, -C, and -DRB1 alleles from 558 consecutively recruited US volunteers with Eastern European ancestry for an unrelated hematopoietic stem cell registry. Four of 31 HLA-A alleles, 29 HLA-C alleles, 59 HLA-B alleles, and 42 HLA-DRB1 alleles identified (A*0325, B*440204, Cw*0332, and *0732N) are novel. The HLA-A*02010101g allele was observed at a frequency of 0.28. Two-, three-, and four-locus haplotypes were estimated using the expectation-maximization algorithm. The highest frequency extended haplotypes (A*010101g-Cw*070101g-B*0801g-DRB1*0301 and A*03010101g-Cw*0702-B*0702-DRB1*1501) were observed at frequencies of 0.04 and 0.03, respectively. Linkage disequilibrium values (Dij') of the constituent two-locus haplotypes were highly significant for both extended haplotypes (P values were less than 8 x 10(-10)) but were consistently higher for the more frequent haplotype. Balancing selection was inferred to be acting on all the four loci, with the strongest evidence of balancing selection observed for the HLA-C locus. Comparisons of the A-C-B haplotypes and DRB1 frequencies in this population with those for African, European, and western Asian populations showed high degrees of identity with Czech, Polish, and Slovenian populations and significant differences from the general European American population.
Collapse
Affiliation(s)
- S J Mack
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Balancing selection and heterogeneity across the classical human leukocyte antigen loci: a meta-analytic review of 497 population studies. Hum Immunol 2008; 69:443-64. [PMID: 18638659 DOI: 10.1016/j.humimm.2008.05.001] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/03/2008] [Accepted: 05/07/2008] [Indexed: 12/21/2022]
Abstract
This paper presents a meta-analysis of high-resolution human leukocyte antigen (HLA) allele frequency data describing 497 population samples. Most of the datasets were compiled from studies published in eight journals from 1990 to 2007; additional datasets came from the International Histocompatibility Workshops and from the AlleleFrequencies.net database. In all, these data represent approximately 66,800 individuals from throughout the world, providing an opportunity to observe trends that may not have been evident at the time the data were originally analyzed, especially with regard to the relative importance of balancing selection among the HLA loci. Population genetic measures of allele frequency distributions were summarized across populations by locus and geographic region. A role for balancing selection maintaining much of HLA variation was confirmed. Further, the breadth of this meta-analysis allowed the ranking of the HLA loci, with DQA1 and HLA-C showing the strongest balancing selection and DPB1 being compatible with neutrality. Comparisons of the allelic spectra reported by studies since 1990 indicate that most of the HLA alleles identified since 2000 are very-low-frequency alleles. The literature-based allele-count data, as well as maps summarizing the geographic distributions for each allele, are available online.
Collapse
|
31
|
Genetic variation and population structure of interleukin genes among seven ethnic populations from Karnataka, India. J Genet 2008; 86:189-94. [DOI: 10.1007/s12041-007-0026-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Single RM, Martin MP, Gao X, Meyer D, Yeager M, Kidd JR, Kidd KK, Carrington M. Global diversity and evidence for coevolution of KIR and HLA. Nat Genet 2007; 39:1114-9. [PMID: 17694058 DOI: 10.1038/ng2077] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 06/13/2007] [Indexed: 11/08/2022]
Abstract
The killer immunoglobulin-like receptor (KIR) gene cluster shows extensive genetic diversity, as do the HLA class I loci, which encode ligands for KIR molecules. We genotyped 1,642 individuals from 30 geographically distinct populations to examine population-level evidence for coevolution of these two functionally related but unlinked gene clusters. We observed strong negative correlations between the presence of activating KIR genes and their corresponding HLA ligand groups across populations, especially KIR3DS1 and its putative HLA-B Bw4-80I ligands (r = -0.66, P = 0.038). In contrast, we observed weak positive relationships between the various inhibitory KIR genes and their ligands. We observed a negative correlation between distance from East Africa and frequency of activating KIR genes and their corresponding ligands, suggesting a balance between selection on HLA and KIR loci. Most KIR-HLA genetic association studies indicate a primary influence of activating KIR-HLA genotypes in disease risk; concomitantly, activating receptor-ligand pairs in this study show the strongest signature of coevolution of these two complex genetic systems as compared with inhibitory receptor-ligand pairs.
Collapse
Affiliation(s)
- Richard M Single
- The Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Thomson G, Valdes AM, Noble JA, Kockum I, Grote MN, Najman J, Erlich HA, Cucca F, Pugliese A, Steenkiste A, Dorman JS, Caillat-Zucman S, Hermann R, Ilonen J, Lambert AP, Bingley PJ, Gillespie KM, Lernmark A, Sanjeevi CB, Rønningen KS, Undlien DE, Thorsby E, Petrone A, Buzzetti R, Koeleman BPC, Roep BO, Saruhan-Direskeneli G, Uyar FA, Günoz H, Gorodezky C, Alaez C, Boehm BO, Mlynarski W, Ikegami H, Berrino M, Fasano ME, Dametto E, Israel S, Brautbar C, Santiago-Cortes A, Frazer de Llado T, She JX, Bugawan TL, Rotter JI, Raffel L, Zeidler A, Leyva-Cobian F, Hawkins BR, Chan SH, Castano L, Pociot F, Nerup J. Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. ACTA ACUST UNITED AC 2007; 70:110-27. [PMID: 17610416 DOI: 10.1111/j.1399-0039.2007.00867.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The direct involvement of the human leukocyte antigen class II DR-DQ genes in type 1 diabetes (T1D) is well established, and these genes display a complex hierarchy of risk effects at the genotype and haplotype levels. We investigated, using data from 38 studies, whether the DR-DQ haplotypes and genotypes show the same relative predispositional effects across populations and ethnic groups. Significant differences in risk within a population were considered, as well as comparisons across populations using the patient/control (P/C) ratio. Within a population, the ratio of the P/C ratios for two different genotypes or haplotypes is a function only of the absolute penetrance values, allowing ranking of risk effects. Categories of consistent predisposing, intermediate ('neutral'), and protective haplotypes were identified and found to correlate with disease prevalence and the marked ethnic differences in DRB1-DQB1 frequencies. Specific effects were identified, for example for predisposing haplotypes, there was a statistically significant and consistent hierarchy for DR4 DQB1*0302s: DRB1*0405 =*0401 =*0402 > *0404 > *0403, with DRB1*0301 DQB1*0200 (DR3) being significantly less predisposing than DRB1*0402 and more than DRB1*0404. The predisposing DRB1*0401 DQB1*0302 haplotype was relatively increased compared with the protective haplotype DRB1*0401 DQB1*0301 in heterozygotes with DR3 compared with heterozygotes with DRB1*0101 DQB1*0501 (DR1). Our results show that meta-analyses and use of the P/C ratio and rankings thereof can be valuable in determining T1D risk factors at the haplotype and amino acid residue levels.
Collapse
Affiliation(s)
- G Thomson
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Single RM, Meyer D, Mack SJ, Lancaster A, Erlich HA, Thomson G. 14th International HLA and Immunogenetics Workshop: report of progress in methodology, data collection, and analyses. ACTA ACUST UNITED AC 2007; 69 Suppl 1:185-7. [PMID: 17445197 DOI: 10.1111/j.1399-0039.2006.00767.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Biostatistics Component of the 13th International Histocompatibility Workshop (IHWS) developed the PyPop (Python for Population Genomics) software framework for high-throughput analysis and quality control (QC) assessments of highly polymorphic genotype data. Since its initial release, the software has had several new analysis modules added to it. These additions, combined with improved data filtering and QC modules, facilitate analyses of data at different levels (allele, haplotype, amino acid sequence, and nucleotide sequence). Since the 13th IHWS, much of the human leukocyte antigen (HLA) data from the workshop, QCed via PyPop and other methods, have been made publicly available through the Major Histocompatibility Complex database web site at the National Center for Biotechnology Information (http://ncbi.nih.gov/mhc/). The Anthropology/Human Genetic Diversity component (AHGDC) data have been used in a variety of studies. Prugnolle et al. used this data to corroborate a model of pathogen-driven selection as a factor related to high levels of diversity at HLA loci. Using a comparative genomics approach contrasting results for HLA and non-HLA markers, Meyer et al. analyzed a subset of the 13th IHWS AHGDC data and showed that HLA loci show detectable signs of both natural selection and the demographic history of populations.
Collapse
Affiliation(s)
- R M Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Lancaster AK, Single RM, Solberg OD, Nelson MP, Thomson G. PyPop update--a software pipeline for large-scale multilocus population genomics. ACTA ACUST UNITED AC 2007; 69 Suppl 1:192-7. [PMID: 17445199 PMCID: PMC4369784 DOI: 10.1111/j.1399-0039.2006.00769.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Population genetic statistics from multilocus genotype data inform our understanding of the patterns of genetic variation and their implications for evolutionary studies, generally, and human disease studies in particular. In any given population one can estimate haplotype frequencies, identify deviation from Hardy-Weinberg equilibrium, test for balancing or directional selection, and investigate patterns of linkage disequilibrium. Existing software packages are oriented primarily toward the computation of such statistics on a population-by-population basis, not on comparisons among populations and across different statistics. We developed PyPop (Python for Population Genomics) to facilitate the analyses of population genetic statistics across populations and the relationships among different statistics within and across populations. PyPop is an open-source framework for performing large-scale population genetic analyses on multilocus genotype data. It computes the statistics described above, among others. PyPop deploys a standard Extensible Markup Language (XML) output format and can integrate the results of multiple analyses on various populations that were performed at different times into a common output format that can be read into a spreadsheet. The XML output format allows PyPop to be embedded as part of a larger analysis pipeline. Originally developed to analyze the highly polymorphic genetic data of the human leukocyte antigen region of the human genome, PyPop has applicability to any kind of multilocus genetic data. It is the primary analysis platform for analyzing data collected for the Anthropological component of the 13th and 14th International Histocompatibility Workshops. PyPop has also been successfully used in studies by our group, with collaborators, and in publications by several independent research teams.
Collapse
Affiliation(s)
- A K Lancaster
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.
| | | | | | | | | |
Collapse
|
36
|
Ewerton PD, Leite MDM, Magalhães M, Sena L, Melo dos Santos EJ. Amazonian Amerindians exhibit high variability of KIR profiles. Immunogenetics 2007; 59:625-30. [PMID: 17551723 DOI: 10.1007/s00251-007-0229-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 05/01/2007] [Indexed: 12/24/2022]
Abstract
Natural killer cell immunoglobulin-like receptors (KIRs) mediate cell lysis through the recognition of human leukocyte antigen class I complexes in target cells, playing an important role in innate immune response. In this context, disease-based selective pressures could be relevant, leaving signatures detected by population studies. However, most population studies on KIR variability have focused on Europe and Asia, while Americas, Oceania, and Africa remain poorly studied. The aim of this study was to analyze the variability of KIR genes in Amerindian tribes from the Amazon region to infer about their evolutionary history. KIR profiles were estimated in 40 individuals from six Amazonian Amerindian tribes using single specific primer polymerase chain reaction. Twenty-five different profiles were identified, and surprisingly, the haplogroup A frequency was the lowest observed in human populations (16%). Results showed also that KIR variability was higher in this group in contrast to Venezuelan Amerindians. Principal components analysis evidenced that Amerindians formed a separated group from other worldwide populations and showed a higher intraethnic differentiation in comparison to other ethnic groups. Such pattern may reflect small effective size and intense genetic drift. However, because of the role of KIR in immune response, selective pressures cannot be entirely ruled out.
Collapse
Affiliation(s)
- Paloma Daguer Ewerton
- Laboratório de Genética Humana e Médica, Departamento de Patologia, Centro de Ciências Biológicas, Universidade Federal do Pará, Caixa Postal 8615, 66075-900 Belém, Pará, Brazil
| | | | | | | | | |
Collapse
|
37
|
Tu B, Mack SJ, Lazaro A, Lancaster A, Thomson G, Cao K, Chen M, Ling G, Hartzman R, Ng J, Hurley CK. HLA-A, -B, -C, -DRB1 allele and haplotype frequencies in an African American population. ACTA ACUST UNITED AC 2007; 69:73-85. [PMID: 17212710 DOI: 10.1111/j.1399-0039.2006.00728.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sequence-based typing was used to identify human leukocyte antigen (HLA)-A, -B, -C, and -DRB1 alleles from 564 consecutively recruited African American volunteers for an unrelated hematopoietic stem cell registry. The number of known alleles identified at each locus was 42 for HLA-A, HLA-B 67, HLA-C 33, and HLA-DRB1 44. Six novel alleles (A*260104, A*7411, Cw*0813, Cw*1608, Cw*1704, and DRB1*130502) not observed in the initial sequence-specific oligonucleotide probe testing were characterized. The action of balancing selection, shaping more 'even' than expected allele frequency distributions, was inferred for all four loci and significantly so for the HLA-A and DRB1 loci. Two-, three-, and four-locus haplotypes were estimated using the expectation maximization algorithm. Comparisons with other populations from Africa and Europe suggest that the degree of European admixture in the African American population described here is lower than that in other African American populations previously reported, although HLA-A:B haplotype frequencies similar to those in previous studies of African American individuals were also noted.
Collapse
Affiliation(s)
- B Tu
- CW Bill Young Marrow Donor Recruitment and Research Program, Department of Pediatrics, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cano P, Klitz W, Mack SJ, Maiers M, Marsh SGE, Noreen H, Reed EF, Senitzer D, Setterholm M, Smith A, Fernández-Viña M. Common and well-documented HLA alleles: report of the Ad-Hoc committee of the american society for histocompatiblity and immunogenetics. Hum Immunol 2007; 68:392-417. [PMID: 17462507 DOI: 10.1016/j.humimm.2007.01.014] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
In histocompatibility testing some genotype ambiguities are almost always resolved into the genotype with the most common alleles. To achieve unambiguous assignments additional unwieldy tests are performed. The American Society for Histocompatibility and Immunogenetics formed a committee to define what human leukocyte antigen (HLA) genotypes do not need to be resolved in external proficiency testing. The tasks included detailed analysis of large datasets of high-resolution typing and thorough review of the pertinent scientific literature. Strict criteria were used to create a catalogue of common and well-documented (CWD) alleles. In total, 130, 245, 81, and 143 of the highly polymorphic HLA-A, -B, -C, and DRB1 loci fell into the CWD category; these represent 27%-30% of all alleles recognized. For the loci DRB3/4/5, DQA1, DQB1, and DPB1, a total of 29, 16, 26, and 52 CWD alleles were identified. A recommendation indicated that an acceptable report should only include one possible genotype; multiple genotypes can only be reported if only one of these includes two alleles of the CWD group. Exceptions in which resolution is not necessary are ambiguities involving functional alleles with identical sequences in the antigen recognition site. The criteria were established for proficiency testing, which could be a valuable tool when making clinical histocompatibility decisions.
Collapse
Affiliation(s)
- Pedro Cano
- University of Texas M. D. Anderson Cancer Center, HLA Typing Laboratory, Houston, Texas 77054, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chattopadhyay S, Feldgarden M, Weissman SJ, Dykhuizen DE, van Belle G, Sokurenko EV. Haplotype diversity in "source-sink" dynamics of Escherichia coli urovirulence. J Mol Evol 2006; 64:204-14. [PMID: 17177088 DOI: 10.1007/s00239-006-0063-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 10/03/2006] [Indexed: 10/23/2022]
Abstract
FimH, the mannose-specific, type 1 fimbrial adhesin of Escherichia coli, acquires amino acid replacements adaptive in extraintestinal niches (the genitourinary tract) but detrimental in the main habitat (the large intestine). This microevolutionary dynamics is reminiscent of an ecological "source-sink" model of continuous species spread from a stable primary habitat (source) into transient secondary niches (sink), with eventual extinction of the sink-evolved populations. Here, we have adapted two ecological analytical tools-diversity indexes DS and alpha--to compare size and frequency distributions of fimH haplotypes between evolutionarily conserved FimH variants ("source" haplotypes) and FimH variants with adaptive mutations (putative "sink" haplotypes). Both indexes show two- to threefold increased diversity of the sink fimH haplotypes relative to the source haplotypes, a pattern that ran opposite to those seen with nonstructural fimbrial genes (fimC and fimI) and housekeeping loci (adk and fumC) but similar to that seen with another fimbrial adhesin of E. coli, papG-II, also implicated in extraintestinal infections. The increased diversity of the sink pool of adhesin genes is due to the increased richness of the haplotypes (the number of unique haplotypes), rather than their evenness (the extent of similarity in relative abundances). Taken together, this pattern supports a continuous emergence and extinction of the gene alleles adaptive to virulence sink habitats of E. coli, rather than a one-time change in the habitat conditions. Thus, ecological methods of species diversity analysis can be successfully adapted to characterize the emergence of microbial virulence in bacterial pathogens subject to source-sink dynamics.
Collapse
Affiliation(s)
- Sujay Chattopadhyay
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
40
|
Hedrick PW. Genetic Polymorphism in Heterogeneous Environments: The Age of Genomics. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2006. [DOI: 10.1146/annurev.ecolsys.37.091305.110132] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Philip W. Hedrick
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501;
| |
Collapse
|
41
|
Fredman D, Sawyer SL, Strömqvist L, Mottagui-Tabar S, Kidd KK, Wahlestedt C, Chanock SJ, Brookes AJ. Nonsynonymous SNPs: validation characteristics, derived allele frequency patterns, and suggestive evidence for natural selection. Hum Mutat 2006; 27:173-86. [PMID: 16429399 DOI: 10.1002/humu.20289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We experimentally investigated more than 1,200 entries in dbSNP that would change amino-acids (nsSNPs), using various subsets of DNA samples drawn from 18 global populations (approximately 1,000 subjects in total). First, we mined the data for any SNP features that correlated with a high validation rate. Useful predictors of valid SNPs included multiple submissions to dbSNP, having a dbSNP validation statement, and being present in a low number of ESTs. Together, these features improved validation rates by almost 10-fold. Higher-abundance SNPs (e.g., T/C variants) also validated more frequently. Second, we considered derived alleles and noted a considerably (approximately 10%) increased average derived allele frequency (DAF) in Europeans vs. Africans, plus a further increase in some other populations. This was not primarily due to an SNP ascertainment bias, nor to the effects of natural selection. Instead, it can be explained as a drift-based, progressive increase in DAF that occurs over many generations and becomes exaggerated during population bottlenecks. This observation could be used as the basis for novel DAF-based tests for comparing demographic histories. Finally, we considered individual marker patterns and identified 37 SNPs with allele frequency variance or FST values consistent with the effects of population-specific natural selection. Four particularly striking clusters of these markers were apparent, and three of these coincide with genes/regions from among only several dozen such domains previously suggested by others to carry signatures of selection.
Collapse
Affiliation(s)
- David Fredman
- Center for Genomics and Bioinformatics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang C, Bailey DK, Awad T, Liu G, Xing G, Cao M, Valmeekam V, Retief J, Matsuzaki H, Taub M, Seielstad M, Kennedy GC. A whole genome long-range haplotype (WGLRH) test for detecting imprints of positive selection in human populations. Bioinformatics 2006; 22:2122-8. [PMID: 16845142 DOI: 10.1093/bioinformatics/btl365] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The identification of signatures of positive selection can provide important insights into recent evolutionary history in human populations. Current methods mostly rely on allele frequency determination or focus on one or a small number of candidate chromosomal regions per study. With the availability of large-scale genotype data, efficient approaches for an unbiased whole genome scan are becoming necessary. METHODS We have developed a new method, the whole genome long-range haplotype test (WGLRH), which uses genome-wide distributions to test for recent positive selection. Adapted from the long-range haplotype (LRH) test, the WGLRH test uses patterns of linkage disequilibrium (LD) to identify regions with extremely low historic recombination. Common haplotypes with significantly longer than expected ranges of LD given their frequencies are identified as putative signatures of recent positive selection. In addition, we have also determined the ancestral alleles of SNPs by genotyping chimpanzee and gorilla DNA, and have identified SNPs where the non-ancestral alleles have risen to extremely high frequencies in human populations, termed 'flipped SNPs'. Combining the haplotype test and the flipped SNPs determination, the WGLRH test serves as an unbiased genome-wide screen for regions under putative selection, and is potentially applicable to the study of other human populations. RESULTS Using WGLRH and high-density oligonucleotide arrays interrogating 116 204 SNPs, we rapidly identified putative regions of positive selection in three populations (Asian, Caucasian, African-American), and extended these observations to a fourth population, Yoruba, with data obtained from the International HapMap consortium. We mapped significant regions to annotated genes. While some regions overlap with genes previously suggested to be under positive selection, many of the genes have not been previously implicated in natural selection and offer intriguing possibilities for further study. AVAILABILITY the programs for the WGLRH algorithm are freely available and can be downloaded at http://www.affymetrix.com/support/supplement/WGLRH_program.zip.
Collapse
Affiliation(s)
- Chun Zhang
- Affymetrix Inc, 3380 Central Expressway, Santa Clara, CA 95051, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Meyer D, Single RM, Mack SJ, Erlich HA, Thomson G. Signatures of demographic history and natural selection in the human major histocompatibility complex Loci. Genetics 2006; 173:2121-42. [PMID: 16702436 PMCID: PMC1569707 DOI: 10.1534/genetics.105.052837] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many lines of evidence show that several HLA loci have experienced balancing selection. However, distinguishing among demographic and selective explanations for patterns of variation observed with HLA genes remains a challenge. In this study we address this issue using data from a diverse set of human populations at six classical HLA loci and, employing a comparative genomics approach, contrast results for HLA loci to those for non-HLA markers. Using a variety of analytic methods, we confirm and extend evidence for selection acting on several HLA loci. We find that allele frequency distributions for four of the six HLA loci deviate from neutral expectations and show that this is unlikely to be explained solely by demographic factors. Other features of HLA variation are explained in part by demographic history, including decreased heterozygosity and increased LD for populations at greater distances from Africa and a similar apportionment of genetic variation for HLA loci compared to putatively neutral non-HLA loci. On the basis of contrasts among different HLA loci and between HLA and non-HLA loci, we conclude that HLA loci bear detectable signatures of both natural selection and demographic history.
Collapse
Affiliation(s)
- Diogo Meyer
- Departmento de Genética e Evolução, Universidade de São Paulo, Brazil, and Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | | | | | | | |
Collapse
|
44
|
Aguilar A, Garza JC. A comparison of variability and population structure for major histocompatibility complex and microsatellite loci in California coastal steelhead (Oncorhynchus mykiss Walbaum). Mol Ecol 2006; 15:923-37. [PMID: 16599957 DOI: 10.1111/j.1365-294x.2006.02843.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The major histocompatibility complex (MHC) contains genes integral to immune response in vertebrates. MHC genes have been shown to be under selection in a number of vertebrate taxa, making them intriguing for population genetic studies. We have conducted a survey of genetic variation in an MHC class II gene for steelhead trout from 24 sites in coastal California and compared this variation to that observed at 16 presumably neutral microsatellite loci. A high amount of allelic variation was observed at the MHC when compared to previously published studies on other Pacific salmonids. Elevated nonsynonymous substitutions, relative to synonymous substitutions, were detected at the MHC gene, indicating the signature of historical balancing selection. The MHC data were tested for correlations to and deviations from the patterns found with the microsatellite data. Estimates of allelic richness for the MHC gene and for the microsatellites were positively correlated, as were estimates of population differentiation (F(ST)). An analysis for F(ST) outliers indicates that the MHC locus has an elevated F(ST) relative to the neutral expectation, although a significant result was found for only one particular geographical subgroup. Relatively uniform allele frequency distributions were detected in four populations, although this finding may be partially due to recent population bottlenecks. These results indicate that, at the scale studied here, drift and migration play a major role in the observed geographical variability of MHC genes in steelhead, and that contemporary selection is relatively weak and difficult to detect.
Collapse
Affiliation(s)
- Andres Aguilar
- NOAA Southwest Fisheries Science Center, 110 Shaffer Road, Santa Cruz, CA 95060, USA.
| | | |
Collapse
|
45
|
Abstract
The variability of the sheep major histocompatibility complex (MHC) class II DRB1 locus has been analyzed in this work. Exon 2 of Ovar-DRB1 was amplified by polymerase chain reaction (PCR) with the primers designed by Amills et al. for goats. In a total of 187 sheep of Latxa breed, we identified by PCR-single-strand conformation polymorphism (SSCP) 19 alleles, eight of them previously unpublished. Moreover, the observed heterozygosity reached 91-95%. A new allelic type named DRB*14 was defined, which brings to light once more the discussion as to the ancestor of the domestic sheep. Although all the defined alleles can be discriminated by PCR-SSCP, sequence-based typing is proposed as the technique of choice for sheep DRB1 gene typing.
Collapse
Affiliation(s)
- I Arrieta-Aguirre
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Bilbao, Spain
| | | | | |
Collapse
|
46
|
Worley K, Carey J, Veitch A, Coltman DW. Detecting the signature of selection on immune genes in highly structured populations of wild sheep (Ovis dalli). Mol Ecol 2006; 15:623-37. [PMID: 16499690 DOI: 10.1111/j.1365-294x.2006.02829.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The confounding effects of population structure complicate efforts to identify regions of the genome under the influence of selection in natural populations. Here we test for evidence of selection in three genes involved in vertebrate immune function - the major histocompatibility complex (MHC), interferon gamma (IFNG) and natural resistance associated macrophage polymorphism (NRAMP) - in highly structured populations of wild thinhorn sheep (Ovis dalli). We examined patterns of variation at microsatellite loci linked to these gene regions and at the DNA sequence level. Simple Watterson's tests indicated balancing selection at all three gene regions. However, evidence for selection was confounded by population structure, as the Watterson's test statistics from linked markers were not outside of the range of values from unlinked and presumably neutral microsatellites. The translated coding sequences of thinhorn IFNG and NRAMP are fixed and identical to those of domestic sheep (Ovis aries). In contrast, the thinhorn MHC DRB locus shows significant evidence of overdominance through both an excess of nonsynonymous substitution and trans-species polymorphism. The failure to detect balancing selection at microsatellite loci linked to the MHC is likely the result of recombination between the markers and expressed gene regions.
Collapse
Affiliation(s)
- K Worley
- Department of Animal and Plant Sciences, University of Sheffield, UK.
| | | | | | | |
Collapse
|
47
|
Takahashi M, Yasunami M, Kubota S, Tamai H, Kimura A. HLA-DPB1*0202 Is Associated with a Predictor of Good Prognosis of Graves’ Disease in the Japanese. Hum Immunol 2006; 67:47-52. [PMID: 16698425 DOI: 10.1016/j.humimm.2006.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Indexed: 11/26/2022]
Abstract
Whereas most patients with Graves' disease (GD) have antibodies against the thyrotropin receptor, which are measured as thyrotropin-binding inhibitory immunoglobulin (TBII), the TBII of 10% or less of Japanese patients with GD is undetectable at the first visit and throughout the entire clinical course, and these patients tend to respond well to medications and follow the better clinical course. Therefore, the absence of TBII at the first visit may be a predictor of good prognosis. Ninety-seven patients with GD who had remained TBII negative for at least 2 years from the onset, as well as 142 typical TBII-positive GD patients, were examined to reveal the HLA-linked immunogenetic background for this predictor. Compared with a healthy control population, the frequencies of HLA-A*0206 (OR=2.17, p=9.73x10(-4)) and DPB1*0501 (OR=3.26, p=3.31x10(-7)) carriers were increased in the typical patients, whereas those of HLA-A*0201 (OR=2.16, p=1.92x10(-3)), A*0207 (OR=3.19, p=7.17x10(-4)), and DPB1*0202 (OR=3.13, p=3.97x10(-4)) were increased in the TBII-negative group. These two patient groups were associated with similar HLA-A alleles and different HLA-DPB1 alleles, suggesting the presence of two genetic factors for GD within the HLA region; one is HLA-A linked and may be related to thyroid organ specificity, the other is HLA-DP linked and may control the severity of autoimmunity.
Collapse
Affiliation(s)
- Megumi Takahashi
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, and Kuma Hospital, Hyogo, Japan
| | | | | | | | | |
Collapse
|
48
|
Hasselmann M, Beye M. Signatures of selection among sex-determining alleles of the honey bee. Proc Natl Acad Sci U S A 2004; 101:4888-93. [PMID: 15051879 PMCID: PMC387344 DOI: 10.1073/pnas.0307147101] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patterns of DNA polymorphisms are a primary tool for dissecting signatures of selection; however, the underlying selective forces are poorly understood for most genes. A classical example of diversifying selection is the complementary sex-determining locus that is found in the very large insect order Hymenoptera (bees, wasps, ants, and sawflies). The gene responsible for sex determination, the complementary sex determiner (csd), has been most recently identified in the honey bee. Females are heterozygous at this locus. Males result when there is only one functional allele present, as a result of either homozygosity (fertilized eggs) or, more commonly, hemizygosity (unfertilized eggs). The homozygotes, diploid males, do not reproduce and have zero fitness, which implies positive selection in favor of rare alleles. Large differences in csd cDNA sequences within and between four populations were found that fall into two major groups, types I and II. Type I consists of several allelic lineages that were maintained over an extended period, an indication of balancing selection. Diversifying selection has operated on several confined parts of the protein, as shown by an excess of nonsynonymous differences. Elevated sequence differences indicate another selected part near a repeat region. These findings have general implications about the understanding of both the function of the multiallelic mechanism and the adaptive processes on the level of nucleotide sequences. Moreover, the first csd sequence data are a notable basis for the avoidance of diploid males in bee selection programs by allele-assisted breeding.
Collapse
Affiliation(s)
- Martin Hasselmann
- Institut für Zoologie, Biozentrum, Martin-Luther-Universität Halle/Wittenberg, Weinberg Weg 22, 06120 Halle, Germany.
| | | |
Collapse
|
49
|
Abstract
In the 1960s, when population geneticists first began to collect data on the amount of genetic variation in natural populations, balancing selection was invoked as a possible explanation for how such high levels of molecular variation are maintained. However, the predictions of the neutral theory of molecular evolution have since become the standard by which cases of balancing selection may be inferred. Here we review the evidence for balancing selection acting on the major histocompatibility complex (MHC) of vertebrates, a genetic system that defies many of the predictions of neutrality. We apply many widely used tests of neutrality to MHC data as a benchmark for assessing the power of these tests. These tests can be categorized as detecting selection in the current generation, over the history of populations, or over the histories of species. We find that selection is not detectable in MHC datasets in every generation, population, or every evolutionary lineage. This suggests either that selection on the MHC is heterogeneous or that many of the current neutrality tests lack sufficient power to detect the selection consistently. Additionally, we identify a potential inference problem associated with several tests of neutrality. We demonstrate that the signals of selection may be generated in a relatively short period of microevolutionary time, yet these signals may take exceptionally long periods of time to be erased in the absence of selection. This is especially true for the neutrality test based on the ratio of nonsynonymous to synonymous substitutions. Inference of the nature of the selection events that create such signals should be approached with caution. However, a combination of tests on different time scales may overcome such problems.
Collapse
Affiliation(s)
- Daniel Garrigan
- Department of Biology, Arizona State University, Tempe, Arizona 85287-1501, USA.
| | | |
Collapse
|
50
|
Tishkoff SA, Verrelli BC. Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu Rev Genomics Hum Genet 2003; 4:293-340. [PMID: 14527305 DOI: 10.1146/annurev.genom.4.070802.110226] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the completion of the human genome sequencing project, the discovery and characterization of human genetic variation is a principal focus for future research. Comparative studies across ethnically diverse human populations and across human and nonhuman primate species is important for reconstructing human evolutionary history and for understanding the genetic basis of human disease. In this review, we summarize data on patterns of human genetic diversity and the evolutionary forces (mutation, genetic drift, migration, and selection) that have shaped these patterns of variation across both human populations and the genome. African population samples typically have higher levels of genetic diversity, a complex population substructure, and low levels of linkage disequilibrium (LD) relative to non-African populations. We discuss these differences and their implications for mapping disease genes and for understanding how population and genomic diversity have been important in the evolution, differentiation, and adaptation of humans.
Collapse
Affiliation(s)
- Sarah A Tishkoff
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|