1
|
Oshima A, Joho A, Kuwahara M, Kagiwada S. The stability of the Opi1p repressor for phospholipid biosynthetic gene expression in Saccharomyces cerevisiae is dependent on its interactions with Scs2p and Ino2p. Biochem Biophys Res Commun 2024; 735:150849. [PMID: 39432922 DOI: 10.1016/j.bbrc.2024.150849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
The yeast Saccharomyces cerevisiae Opi1p negatively regulates phospholipid biosynthetic genes. Under derepressing conditions, Opi1p binds to the endoplasmic reticulum/nuclear membrane with the aid of the membrane protein Scs2p and phosphatidic acids under derepressing conditions. Under repressing conditions, it enters the nucleus to inhibit the positive transcription factors Ino2p and Ino4p. While the spatial regulation of Opi1p is understood, the regulation of its abundance remains unclear. We investigated the role of Scs2p and Ino2p in Opi1p stability by overexpressing these proteins in yeast cells. Opi1p was stable in the presence of Scs2p, but mutations in residues required for interaction with Scs2p caused Opi1p unstable. Even in the absence of Scs2p, Opi1p remained stable in the strain having a mutation to increase phosphatidic acid levels. Conversely, overproduction of Ino2p reduced Opi1p stability, whereas a mutant Ino2p that cannot interact with Opi1p did not. Additionally, Opi1p was stable in strains lacking Ino2p or with a mutated Ino2p-binding domain. These findings suggest that regulation, adding another layer to the regulation of phospholipid biosynthetic gene expression by Opi1p.
Collapse
Affiliation(s)
- Ayaka Oshima
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Ayu Joho
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Masako Kuwahara
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Satoshi Kagiwada
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan; Faculty of Science, Nara Women's University, Nara, 630-8506, Japan.
| |
Collapse
|
2
|
Panessa GM, Tassoni-Tsuchida E, Pires MR, Felix RR, Jekabson R, de Souza-Pinto NC, da Cunha FM, Brandman O, Cussiol JRR. Opi1-mediated transcriptional modulation orchestrates genotoxic stress response in budding yeast. Genetics 2023; 225:iyad130. [PMID: 37440469 PMCID: PMC10691878 DOI: 10.1093/genetics/iyad130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
In budding yeast, the transcriptional repressor Opi1 regulates phospholipid biosynthesis by repressing expression of genes containing inositol-sensitive upstream activation sequences. Upon genotoxic stress, cells activate the DNA damage response to coordinate a complex network of signaling pathways aimed at preserving genomic integrity. Here, we reveal that Opi1 is important to modulate transcription in response to genotoxic stress. We find that cells lacking Opi1 exhibit hypersensitivity to genotoxins, along with a delayed G1-to-S-phase transition and decreased gamma-H2A levels. Transcriptome analysis using RNA sequencing reveals that Opi1 plays a central role in modulating essential biological processes during methyl methanesulfonate (MMS)-associated stress, including repression of phospholipid biosynthesis and transduction of mating signaling. Moreover, Opi1 induces sulfate assimilation and amino acid metabolic processes, such as arginine and histidine biosynthesis and glycine catabolism. Furthermore, we observe increased mitochondrial DNA instability in opi1Δ cells upon MMS treatment. Notably, we show that constitutive activation of the transcription factor Ino2-Ino4 is responsible for genotoxin sensitivity in Opi1-deficient cells, and the production of inositol pyrophosphates by Kcs1 counteracts Opi1 function specifically during MMS-induced stress. Overall, our findings highlight Opi1 as a critical sensor of genotoxic stress in budding yeast, orchestrating gene expression to facilitate appropriate stress responses.
Collapse
Affiliation(s)
- Giovanna Marques Panessa
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Eduardo Tassoni-Tsuchida
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Marina Rodrigues Pires
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Rodrigo Rodrigues Felix
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Rafaella Jekabson
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | | | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - José Renato Rosa Cussiol
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| |
Collapse
|
3
|
Zhao Y, Zuo F, Shu Q, Yang X, Deng Y. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae. Appl Environ Microbiol 2023; 89:e0053523. [PMID: 37212714 PMCID: PMC10304745 DOI: 10.1128/aem.00535-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
Glucaric acid is a valuable chemical with applications in the detergent, polymer, pharmaceutical and food industries. In this study, two key enzymes for glucaric acid biosynthesis, MIOX4 (myo-inositol oxygenase) and Udh (uronate dehydrogenase), were fused and expressed with different peptide linkers. It was found that a strain harboring the fusion protein MIOX4-Udh linked by the peptide (EA3K)3 produced the highest glucaric acid titer and thereby resulted in glucaric acid production that was 5.7-fold higher than that of the free enzymes. Next, the fusion protein MIOX4-Udh linked by (EA3K)3 was integrated into delta sequence sites of the Saccharomyces cerevisiae opi1 mutant, and a strain, GA16, that produced a glucaric acid titer of 4.9 g/L in a shake flask fermentation was identified by a high-throughput screening method using an Escherichia coli glucaric acid biosensor. Strain improvement by further engineering was performed to regulate the metabolic flux of myo-inositol to increase the supply of glucaric acid precursors. The downregulation of ZWF1 and the overexpression of INM1 and ITR1 increased glucaric acid production significantly, and glucaric acid production was increased to 8.49 g/L in the final strain GA-ZII in a shake flask fermentation. Finally, in a 5-L bioreactor, GA-ZII produced a glucaric acid titer of 15.6 g/L through fed-batch fermentation. IMPORTANCE Glucaric acid is a value-added dicarboxylic acid that was synthesized mainly through the oxidation of glucose chemically. Due to the problems of the low selectivity, by-products, and highly polluting waste of this process, producing glucaric acid biologically has attracted great attention. The activity of key enzymes and the intracellular myo-inositol level were both rate-limiting factors for glucaric acid biosynthesis. To increase glucaric acid production, this work improved the activity of the key enzymes in the glucaric acid biosynthetic pathway through the expression of a fusion of Arabidopsis thaliana MIOX4 and Pseudomonas syringae Udh as well as a delta sequence-based integration. Furthermore, intracellular myo-inositol flux was optimized by a series of metabolic strategies to increase the myo-inositol supply, which improved glucaric acid production to a higher level. This study provided a way for constructing a glucaric acid-producing strain with good synthetic performance, making glucaric acid production biologically in yeast cells much more competitive.
Collapse
Affiliation(s)
- Yunying Zhao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fangyu Zuo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
| | - Quanxian Shu
- Shandong Provincial Key Laboratory of Fat and Oil Deep-Processing, Shandong Bohi Industry Co., Ltd., Binzhou, Shandong, China
| | - Xiaoyan Yang
- Shandong Provincial Key Laboratory of Fat and Oil Deep-Processing, Shandong Bohi Industry Co., Ltd., Binzhou, Shandong, China
| | - Yu Deng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Su XB, Ko ALA, Saiardi A. Regulations of myo-inositol homeostasis: Mechanisms, implications, and perspectives. Adv Biol Regul 2023; 87:100921. [PMID: 36272917 DOI: 10.1016/j.jbior.2022.100921] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Phosphorylation is the most common module of cellular signalling pathways. The dynamic nature of phosphorylation, which is conferred by the balancing acts of kinases and phosphatases, allows this modification to finely control crucial cellular events such as growth, differentiation, and cell cycle progression. Although most research to date has focussed on protein phosphorylation, non-protein phosphorylation substrates also play vital roles in signal transduction. The most well-established substrate of non-protein phosphorylation is inositol, whose phosphorylation generates many important signalling molecules such as the second messenger IP3, a key factor in calcium signalling. A fundamental question to our understanding of inositol phosphorylation is how the levels of cellular inositol are controlled. While the availability of protein phosphorylation substrates is known to be readily controlled at the levels of transcription, translation, and/or protein degradation, the regulatory mechanisms that control the uptake, synthesis, and removal of inositol are underexplored. Potentially, such mechanisms serve as an important layer of regulation of cellular signal transduction pathways. There are two ways in which mammalian cells acquire inositol. The historic use of radioactive 3H-myo-inositol revealed that inositol is promptly imported from the extracellular environment by three specific symporters SMIT1/2, and HMIT, coupling sodium or proton entry, respectively. Inositol can also be synthesized de novo from glucose-6P, thanks to the enzymatic activity of ISYNA1. Intriguingly, emerging evidence suggests that in mammalian cells, de novo myo-inositol synthesis occurs irrespective of inositol availability in the environment, prompting the question of whether the two sources of inositol go through independent metabolic pathways, thus serving distinct functions. Furthermore, the metabolic stability of myo-inositol, coupled with the uptake and endogenous synthesis, determines that there must be exit pathways to remove this extraordinary sugar from the cells to maintain its homeostasis. This essay aims to review our current knowledge of myo-inositol homeostatic metabolism, since they are critical to the signalling events played by its phosphorylated forms.
Collapse
Affiliation(s)
- Xue Bessie Su
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - An-Li Andrea Ko
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
5
|
Kim DH, Choi HJ, Lee YR, Kim SJ, Lee S, Lee WH. Comprehensive Characterization of Mutant Pichia stipitis Co-Fermenting Cellobiose and Xylose through Genomic and Transcriptomic Analyses. J Microbiol Biotechnol 2022; 32:1485-1495. [PMID: 36317418 PMCID: PMC9720078 DOI: 10.4014/jmb.2209.09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022]
Abstract
The development of a yeast strain capable of fermenting mixed sugars efficiently is crucial for producing biofuels and value-added materials from cellulosic biomass. Previously, a mutant Pichia stipitis YN14 strain capable of co-fermenting xylose and cellobiose was developed through evolutionary engineering of the wild-type P. stipitis CBS6054 strain, which was incapable of cofermenting xylose and cellobiose. In this study, through genomic and transcriptomic analyses, we sought to investigate the reasons for the improved sugar metabolic performance of the mutant YN14 strain in comparison with the parental CBS6054 strain. Unfortunately, comparative wholegenome sequencing (WGS) showed no mutation in any of the genes involved in the cellobiose metabolism between the two strains. However, comparative RNA sequencing (RNA-seq) revealed that the YN14 strain had 101.2 times and 5.9 times higher expression levels of HXT2.3 and BGL2 genes involved in cellobiose metabolism, and 6.9 times and 75.9 times lower expression levels of COX17 and SOD2.2 genes involved in respiration, respectively, compared with the CBS6054 strain. This may explain how the YN14 strain enhanced cellobiose metabolic performance and shifted the direction of cellobiose metabolic flux from respiration to fermentation in the presence of cellobiose compared with the CBS6054 strain.
Collapse
Affiliation(s)
- Dae-Hwan Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea,Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyo-Jin Choi
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea,Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yu Rim Lee
- Interdisciplinary Program of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea,Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea,
S.M. Lee Phone: +82-62-717-2425 Fax: +82-62-717-2453 E-mail:
| | - Won-Heong Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea,Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea,Interdisciplinary Program of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea,Corresponding authors W.H. Lee Phone: +82-62-530-2046 Fax: +82-62-530-2047 E-mail:
| |
Collapse
|
6
|
Tanemoto F, Nangaku M, Mimura I. Epigenetic memory contributing to the pathogenesis of AKI-to-CKD transition. Front Mol Biosci 2022; 9:1003227. [PMID: 36213117 PMCID: PMC9532834 DOI: 10.3389/fmolb.2022.1003227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Epigenetic memory, which refers to the ability of cells to retain and transmit epigenetic marks to their daughter cells, maintains unique gene expression patterns. Establishing programmed epigenetic memory at each stage of development is required for cell differentiation. Moreover, accumulating evidence shows that epigenetic memory acquired in response to environmental stimuli may be associated with diverse diseases. In the field of kidney diseases, the “memory” of acute kidney injury (AKI) leads to progression to chronic kidney disease (CKD); epidemiological studies show that patients who recover from AKI are at high risk of developing CKD. The underlying pathological processes include nephron loss, maladaptive epithelial repair, inflammation, and endothelial injury with vascular rarefaction. Further, epigenetic alterations may contribute as well to the pathophysiology of this AKI-to-CKD transition. Epigenetic changes induced by AKI, which can be recorded in cells, exert long-term effects as epigenetic memory. Considering the latest findings on the molecular basis of epigenetic memory and the pathophysiology of AKI-to-CKD transition, we propose here that epigenetic memory contributing to AKI-to-CKD transition can be classified according to the presence or absence of persistent changes in the associated regulation of gene expression, which we designate “driving” memory and “priming” memory, respectively. “Driving” memory, which persistently alters the regulation of gene expression, may contribute to disease progression by activating fibrogenic genes or inhibiting renoprotective genes. This process may be involved in generating the proinflammatory and profibrotic phenotypes of maladaptively repaired tubular cells after kidney injury. “Priming” memory is stored in seemingly successfully repaired tubular cells in the absence of detectable persistent phenotypic changes, which may enhance a subsequent transcriptional response to the second stimulus. This type of memory may contribute to AKI-to-CKD transition through the cumulative effects of enhanced expression of profibrotic genes required for wound repair after recurrent AKI. Further understanding of epigenetic memory will identify therapeutic targets of future epigenetic intervention to prevent AKI-to-CKD transition.
Collapse
|
7
|
Sump B, Brickner J. Establishment and inheritance of epigenetic transcriptional memory. Front Mol Biosci 2022; 9:977653. [PMID: 36120540 PMCID: PMC9479176 DOI: 10.3389/fmolb.2022.977653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
For certain inducible genes, the rate and molecular mechanism of transcriptional activation depends on the prior experiences of the cell. This phenomenon, called epigenetic transcriptional memory, accelerates reactivation and requires both changes in chromatin structure and recruitment of poised RNA Polymerase II (RNAPII) to the promoter. Forms of epigenetic transcriptional memory have been identified in S. cerevisiae, D. melanogaster, C. elegans, and mammals. A well-characterized model of memory is found in budding yeast where memory of inositol starvation involves a positive feedback loop between gene-and condition-specific transcription factors, which mediate an interaction with the nuclear pore complex and a characteristic histone modification: histone H3 lysine 4 dimethylation (H3K4me2). This histone modification permits recruitment of a memory-specific pre-initiation complex, poising RNAPII at the promoter. During memory, H3K4me2 is essential for recruitment of RNAPII and faster reactivation, but RNAPII is not required for H3K4me2. Unlike the RNAPII-dependent H3K4me2 associated with active transcription, RNAPII-independent H3K4me2 requires Nup100, SET3C, the Leo1 subunit of the Paf1 complex and can be inherited through multiple cell cycles upon disrupting the interaction with the Nuclear Pore Complex. The H3K4 methyltransferase (COMPASS) physically interacts with the potential reader (SET3C), suggesting a molecular mechanism for the spreading and re-incorporation of H3K4me2 following DNA replication. Thus, epigenetic transcriptional memory is a conserved adaptation that utilizes a heritable chromatin state, allowing cells and organisms to alter their gene expression programs in response to recent experiences over intermediate time scales.
Collapse
|
8
|
Khan MH, Xue L, Yue J, Schüller HJ, Zhu Z, Niu L. Structural Analysis of Ino2p/Ino4p Mutual Interactions and Their Binding Interface with Promoter DNA. Int J Mol Sci 2022; 23:7600. [PMID: 35886947 PMCID: PMC9315497 DOI: 10.3390/ijms23147600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Gene expression is mediated by a series of regulatory proteins, i.e., transcription factors. Under different growth conditions, the transcriptional regulation of structural genes is associated with the recognition of specific regulatory elements (REs) in promoter DNA. The manner by which transcription factors recognize distinctive REs is a key question in structural biology. Previous research has demonstrated that Ino2p/Ino4p heterodimer is associated with the transcriptional regulation of phospholipid biosynthetic genes. Mechanistically, Ino2p/Ino4p could specifically recognize the inositol/choline-responsive element (ICRE), followed by the transcription activation of the phospholipid biosynthetic gene. While the promoter DNA sequence for Ino2p has already been characterized, the structural basis for the mutual interaction between Ino2p/Ino4p and their binding interface with promoter DNA remain relatively unexplored. Here, we have determined the crystalline structure of the Ino2pDBD/Ino4pDBD/DNA ternary complex, which highlights some residues (Ino2pHis12/Glu16/Arg20/Arg44 and Ino4pHis12/Glu16/Arg19/Arg20) associated with the sequence-specific recognition of promoter DNA. Our biochemical analysis showed that mutating these residues could completely abolish protein-DNA interaction. Despite the requirement of Ino2p and Ino4p for interprotein-DNA interaction, both proteins can still interact-even in the absence of DNA. Combined with the structural analysis, our in vitro binding analysis demonstrated that residues (Arg35, Asn65, and Gln69 of Ino2pDBD and Leu59 of Ino4pDBD) are critical for interprotein interactions. Together, these results have led to the conclusion that these residues are critical to establishing interprotein-DNA and protein-DNA mutual interactions.
Collapse
Affiliation(s)
- Muhammad Hidayatullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei 230026, China; (M.H.K.); (L.X.); (J.Y.)
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Lu Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei 230026, China; (M.H.K.); (L.X.); (J.Y.)
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Jian Yue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei 230026, China; (M.H.K.); (L.X.); (J.Y.)
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hans-Joachim Schüller
- Institut für Genetik und Funktionelle Genomforschung, Felix-Hausdorff-Str. 8, 17487 Greifswald, Germany;
| | - Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei 230026, China; (M.H.K.); (L.X.); (J.Y.)
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei 230026, China; (M.H.K.); (L.X.); (J.Y.)
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Gaspar ML, Aregullin MA, Chang YF, Jesch SA, Henry SA. Phosphatidic acid species 34:1 mediates expression of the myo-inositol 3-phosphate synthase gene INO1 for lipid synthesis in yeast. J Biol Chem 2022; 298:102148. [PMID: 35716778 PMCID: PMC9283935 DOI: 10.1016/j.jbc.2022.102148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Depletion of exogenous inositol in yeast results in rising levels of phosphatidic acid (PA) and is correlated with increased expression of genes containing the inositol-dependent upstream activating sequence promoter element (UASINO). INO1, encoding myo-inositol 3-phosphate synthase, is the most highly regulated of the inositol-dependent upstream activating sequence-containing genes, but its mechanism of regulation is not clear. In the current study, we determined the relative timing and kinetics of appearance of individual molecular species of PA following removal of exogenous inositol in actively growing wild type, pah1Δ, and ole1ts strains. We report that the pah1Δ strain, lacking the PA phosphatase, exhibits a delay of about 60 min in comparison to wildtype before initiating derepression of INO1 expression. The ole1ts mutant on the other hand, defective in fatty acid desaturation, when grown at a semirestrictive temperature, exhibited reduced synthesis of PA species 34:1 and elevated synthesis of PA species 32:1. Importantly, we found these changes in the fatty acid composition in the PA pool of the ole1ts strain were associated with reduced expression of INO1, indicating that synthesis of PA 34:1 is involved in optimal expression of INO1 in the absence of inositol. Using deuterium-labeled glycerol in short-duration labeling assays, we found that changes associated with PA species 34:1 were uniquely correlated with increased expression of INO1 in all three strains. These data indicate that the signal for activation of INO1 transcription is not necessarily the overall level of PA but rather levels of a specific species of newly synthesized PA 34:1.
Collapse
Affiliation(s)
- Maria Laura Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| | - Manuel A Aregullin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Yu-Fang Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Stephen A Jesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Susan A Henry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Sump B, Brickner DG, D'Urso A, Kim SH, Brickner JH. Mitotically heritable, RNA polymerase II-independent H3K4 dimethylation stimulates INO1 transcriptional memory. eLife 2022; 11:e77646. [PMID: 35579426 PMCID: PMC9129879 DOI: 10.7554/elife.77646] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/15/2022] [Indexed: 11/13/2022] Open
Abstract
For some inducible genes, the rate and molecular mechanism of transcriptional activation depend on the prior experiences of the cell. This phenomenon, called epigenetic transcriptional memory, accelerates reactivation, and requires both changes in chromatin structure and recruitment of poised RNA polymerase II (RNAPII) to the promoter. Memory of inositol starvation in budding yeast involves a positive feedback loop between transcription factor-dependent interaction with the nuclear pore complex and histone H3 lysine 4 dimethylation (H3K4me2). While H3K4me2 is essential for recruitment of RNAPII and faster reactivation, RNAPII is not required for H3K4me2. Unlike RNAPII-dependent H3K4me2 associated with transcription, RNAPII-independent H3K4me2 requires Nup100, SET3C, the Leo1 subunit of the Paf1 complex and, upon degradation of an essential transcription factor, is inherited through multiple cell cycles. The writer of this mark (COMPASS) physically interacts with the potential reader (SET3C), suggesting a molecular mechanism for the spreading and re-incorporation of H3K4me2 following DNA replication.
Collapse
Affiliation(s)
- Bethany Sump
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Donna G Brickner
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Agustina D'Urso
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Seo Hyun Kim
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
11
|
Quon E, Nenadic A, Zaman MF, Johansen J, Beh CT. ER-PM membrane contact site regulation by yeast ORPs and membrane stress pathways. PLoS Genet 2022; 18:e1010106. [PMID: 35239652 PMCID: PMC8923467 DOI: 10.1371/journal.pgen.1010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/15/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
In yeast, at least seven proteins (Ice2p, Ist2p, Scs2/22p, Tcb1-Tcb3p) affect cortical endoplasmic reticulum (ER) tethering and contact with the plasma membrane (PM). In Δ-super-tether (Δ-s-tether) cells that lack these tethers, cortical ER-PM association is all but gone. Yeast OSBP homologue (Osh) proteins are also implicated in membrane contact site (MCS) assembly, perhaps as subunits for multicomponent tethers, though their function at MCSs involves intermembrane lipid transfer. Paradoxically, when analyzed by fluorescence and electron microscopy, the elimination of the OSH gene family does not reduce cortical ER-PM association but dramatically increases it. In response to the inactivation of all Osh proteins, the yeast E-Syt (extended-synaptotagmin) homologue Tcb3p is post-transcriptionally upregulated thereby generating additional Tcb3p-dependent ER-PM MCSs for recruiting more cortical ER to the PM. Although the elimination of OSH genes and the deletion of ER-PM tether genes have divergent effects on cortical ER-PM association, both elicit the Environmental Stress Response (ESR). Through comparisons of transcriptomic profiles of cells lacking OSH genes or ER-PM tethers, changes in ESR expression are partially manifested through the induction of the HOG (high-osmolarity glycerol) PM stress pathway or the ER-specific UPR (unfolded protein response) pathway, respectively. Defects in either UPR or HOG pathways also increase ER-PM MCSs, and expression of extra “artificial ER-PM membrane staples” rescues growth of UPR mutants challenged with lethal ER stress. Transcriptome analysis of OSH and Δ-s-tether mutants also revealed dysregulation of inositol-dependent phospholipid gene expression, and the combined lethality of osh4Δ and Δ-s-tether mutations is suppressed by overexpression of the phosphatidic acid biosynthetic gene, DGK1. These findings establish that the Tcb3p tether is induced by ER and PM stresses and ER-PM MCSs augment responses to membrane stresses, which are integrated through the broader ESR pathway. Membrane contact sites (MCSs) between the two largest cellular membranes, the endoplasmic reticulum (ER) and the plasma membrane (PM), are regulatory interfaces for lipid synthesis and bidirectional transport. The yeast Osh protein family, which represents the seven yeast oxysterol-binding protein related proteins (ORPs), is implicated in MCS regulation and lipid transfer between membranes. Ironically, we find that when all Osh proteins eliminated, ER-PM association is not reduced but significantly increases. We hypothesized this increase is due to compensatory increases in levels of tether proteins that physically link the ER and PM. In fact, in response to inactivating Osh protein expression, amounts of the tether protein Tcb3 increase and more ER-PM MCSs are produced. By testing the genomic transcriptional responses to the elimination of OSH and ER-PM tether genes, we find these mutants disrupt phospholipid regulation and they elicit the Environmental Stress Response (ESR) pathway, which integrates many different responses needed for recovery after cellular stress. OSH and ER-PM tether genes affect specific stress response pathways that impact the PM and ER, respectively. Combining OSH and tether mutations results in cell lethality, but these cells survive by increased expression of a key phospholipid biosynthetic gene. Based on these results, we propose that OSH and ER-PM tether genes affect phospholipid regulation and protect the PM and ER through membrane stress responses integrated through the ESR pathway.
Collapse
Affiliation(s)
- Evan Quon
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mohammad F. Zaman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jesper Johansen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher T. Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
- * E-mail:
| |
Collapse
|
12
|
Dong H, Yu D, Wang B, Pan L. Identification and Characterization of a Novel Basic Helix-Loop-Helix Transcription Factor of Phospholipid Synthesis Regulation in Aspergillus niger. Front Microbiol 2020; 10:2985. [PMID: 31993030 PMCID: PMC6962311 DOI: 10.3389/fmicb.2019.02985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/10/2019] [Indexed: 11/13/2022] Open
Abstract
The synthesis of phospholipids relies on a sort of genes, whose promoter regions contain inositol-sensitive upstream activation sequence (UASINO) and are regulated by the basic helix-loop-helix (bHLH)-type ino2/ino4 transcription factor (TF) pair. Ten putative bHLH TFs have been found through whole genome sequencing of Aspergillus niger, but none of these TFs have been characterized. In this study, we identified and characterized the bHLH-type TF ino2(An02g04350) in A. niger. Electrophoretic mobility shift assay (EMSA) and yeast two-hybrid assay demonstrated that ino2 functions as a homodimer in UASINO genes (e.g., ino1 and cho1) and binds to opi1(An1g02370) in vitro. Real-time quantitative PCR of ino1 and quantification of total phospholipid indicated that the ino2 disruptant downregulated the transcription of ino1 and the amount of total cellular phosphatidylinositol. In addition, phenotype analyses showed that a loss of ino2 led to resistance to cell wall interference and DNA damage. Comparative transcriptome analyses showed that more than 1000 genes and GO terms associated with UASINO, endoplasmic reticulum-associated protein degradation, phosphatidylinositol synthesis, chitin synthesis, and fatty acid synthesis were differentially expressed in Δino2 compared to the wild type (WT). Taken together, these observations indicate that the bHLH TF ino2 functions as a homodimer that regulates the synthesis of phosphatidylinositol, fatty acid, and chitin and influences the homeostasis of the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- Hongzhi Dong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Dou Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Case KC, Salsaa M, Yu W, Greenberg ML. Regulation of Inositol Biosynthesis: Balancing Health and Pathophysiology. Handb Exp Pharmacol 2020; 259:221-260. [PMID: 30591968 DOI: 10.1007/164_2018_181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inositol is the precursor for all inositol compounds and is essential for viability of eukaryotic cells. Numerous cellular processes and signaling functions are dependent on inositol compounds, and perturbation of their synthesis leads to a wide range of human diseases. Although considerable research has been directed at understanding the function of inositol compounds, especially phosphoinositides and inositol phosphates, a focus on regulatory and homeostatic mechanisms controlling inositol biosynthesis has been largely neglected. Consequently, little is known about how synthesis of inositol is regulated in human cells. Identifying physiological regulators of inositol synthesis and elucidating the molecular mechanisms that regulate inositol synthesis will contribute fundamental insight into cellular processes that are mediated by inositol compounds and will provide a foundation to understand numerous disease processes that result from perturbation of inositol homeostasis. In addition, elucidating the mechanisms of action of inositol-depleting drugs may suggest new strategies for the design of second-generation pharmaceuticals to treat psychiatric disorders and other illnesses.
Collapse
Affiliation(s)
- Kendall C Case
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Michael Salsaa
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
14
|
Hofbauer HF, Gecht M, Fischer SC, Seybert A, Frangakis AS, Stelzer EHK, Covino R, Hummer G, Ernst R. The molecular recognition of phosphatidic acid by an amphipathic helix in Opi1. J Cell Biol 2018; 217:3109-3126. [PMID: 29941475 PMCID: PMC6122994 DOI: 10.1083/jcb.201802027] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/28/2018] [Accepted: 06/18/2018] [Indexed: 01/09/2023] Open
Abstract
Phosphatidic acid (PA) lipids have a dual role as building blocks for membrane biogenesis and as active signaling molecules. This study establishes the molecular details of selective PA recognition by the transcriptional regulator Opi1 from baker’s yeast. A key event in cellular physiology is the decision between membrane biogenesis and fat storage. Phosphatidic acid (PA) is an important intermediate at the branch point of these pathways and is continuously monitored by the transcriptional repressor Opi1 to orchestrate lipid metabolism. In this study, we report on the mechanism of membrane recognition by Opi1 and identify an amphipathic helix (AH) for selective binding of PA over phosphatidylserine (PS). The insertion of the AH into the membrane core renders Opi1 sensitive to the lipid acyl chain composition and provides a means to adjust membrane biogenesis. By rational design of the AH, we tune the membrane-binding properties of Opi1 and control its responsiveness in vivo. Using extensive molecular dynamics simulations, we identify two PA-selective three-finger grips that tightly bind the PA phosphate headgroup while interacting less intimately with PS. This work establishes lipid headgroup selectivity as a new feature in the family of AH-containing membrane property sensors.
Collapse
Affiliation(s)
- Harald F Hofbauer
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany .,Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Medical Biochemistry and Molecular Biology, School of Medicine, University of Saarland, Homburg, Germany
| | - Michael Gecht
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Sabine C Fischer
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Physical Biology, Interdisciplinary Center for Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Anja Seybert
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Ernst H K Stelzer
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Physical Biology, Interdisciplinary Center for Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Roberto Covino
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany.,Institute for Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Ernst
- Institute of Medical Biochemistry and Molecular Biology, School of Medicine, University of Saarland, Homburg, Germany
| |
Collapse
|
15
|
Chen N, Wang J, Zhao Y, Deng Y. Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer. Microb Cell Fact 2018; 17:67. [PMID: 29729665 PMCID: PMC5935971 DOI: 10.1186/s12934-018-0914-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/24/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Glucaric acid is a high-value-added chemical that can be used in various fields. Because chemical oxidation of glucose to produce glucaric acid is not environmentally friendly, microbial production has attracted increasing interest recently. Biological pathways to synthesize glucaric acid from glucose in both Escherichia coli and Saccharomyces cerevisiae by co-expression of genes encoding myo-inositol-1-phosphate synthase (Ino1), myo-inositol oxygenase (MIOX), and uronate dehydrogenase (Udh) have been constructed. However, low activity and instability of MIOX from Mus musculus was proved to be the bottleneck in this pathway. RESULTS A more stable miox4 from Arabidopsis thaliana was chosen in the present study. In addition, high copy delta-sequence integration of miox4 into the S. cerevisiae genome was performed to increase its expression level further. Enzymatic assay and quantitative real-time PCR analysis revealed that delta-sequence-based integrative expression increased MIOX4 activity and stability, thus increasing glucaric acid titer about eight times over that of episomal expression. By fed-batch fermentation supplemented with 60 mM (10.8 g/L) inositol, the multi-copy integrative expression S. cerevisiae strain produced 6 g/L (28.6 mM) glucaric acid from myo-inositol, the highest titer that had been ever reported in S. cerevisiae. CONCLUSIONS In this study, glucaric acid titer was increased to 6 g/L in S. cerevisiae by integrating the miox4 gene from A. thaliana and the udh gene from Pseudomonas syringae into the delta sequence of genomes. Delta-sequence-based integrative expression increased both the number of target gene copies and their stabilities. This approach could be used for a wide range of metabolic pathway engineering applications with S. cerevisiae.
Collapse
Affiliation(s)
- Na Chen
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Jingya Wang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| |
Collapse
|
16
|
Role of the inositol pyrophosphate multikinase Kcs1 in Cryptococcus inositol metabolism. Fungal Genet Biol 2018; 113:42-51. [PMID: 29357302 DOI: 10.1016/j.fgb.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/08/2018] [Accepted: 01/14/2018] [Indexed: 12/20/2022]
Abstract
Cryptococcus neoformans is the most common cause of deadly fungal meningitis. This fungus has a complex inositol acquisition and utilization system, and our previous studies have shown the importance of inositol utilization in cryptococcal development and virulence. However, how inositol utilization is regulated in this fungus remains unknown. In this study, we found that inositol, irrespective of the presence of glucose in the media, represses the expression of C. neoformans genes involved in inositol pyrophosphate biosynthesis, including the gene encoding inositol hexakisphosphate kinase Kcs1. Kcs1 was recently reported to regulate inositol metabolism in Saccharomyces cerevisiae and to impact virulence in C. neoformans. To examine the potential role of Kcs1 in inositol regulation in C. neoformans, we generated the kcs1Δ mutant and compared its phenotype with the wild type strain. We found that Kcs1 negatively regulates inositol uptake and catabolism in C. neoformans, but, in contrast to Kcs1 function in S. cerevisiae, does not appear to regulate inositol biosynthesis. Together, these results show that Kcs1 functions to fine-tune inositol acquisition to maintain inositol homeostasis in C. neoformans.
Collapse
|
17
|
Randise-Hinchliff C, Brickner JH. Transcription factors dynamically control the spatial organization of the yeast genome. Nucleus 2016; 7:369-74. [PMID: 27442220 PMCID: PMC5039007 DOI: 10.1080/19491034.2016.1212797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In yeast, inducible genes such as INO1, PRM1 and HIS4 reposition from the nucleoplasm to nuclear periphery upon activation. This leads to a physical interaction with nuclear pore complex (NPC), interchromosomal clustering, and stronger transcription. Repositioning to the nuclear periphery is controlled by cis-acting transcription factor (TF) binding sites located within the promoters of these genes and the TFs that bind to them. Such elements are both necessary and sufficient to control positioning of genes to the nuclear periphery. We have identified 4 TFs capable of controlling the regulated positioning of genes to the nuclear periphery in budding yeast under different conditions: Put3, Cbf1, Gcn4 and Ste12. In each case, we have defined the molecular basis of regulated relocalization to the nuclear periphery. Put3- and Cbf1-mediated targeting to nuclear periphery is regulated through local recruitment of Rpd3(L) histone deacetylase complex by transcriptional repressors. Rpd3(L), through its histone deacetylase activity, prevents TF-mediated gene positioning by blocking TF binding. Many yeast transcriptional repressors were capable of blocking Put3-mediated recruitment; 11 of these required Rpd3. Thus, it is a general function of transcription repressors to regulate TF-mediated recruitment. However, Ste12 and Gcn4-mediated recruitment is regulated independently of Rpd3(L) and transcriptional repressors. Ste12-mediated recruitment is regulated by phosphorylation of an inhibitor called Dig2, and Gcn4-mediated gene targeting is up-regulated by increasing Gcn4 protein levels. The ability to control spatial position of genes in yeast represents a novel function for TFs and different regulatory strategies provide dynamic control of the yeast genome through different time scales.
Collapse
Affiliation(s)
| | - Jason H Brickner
- a Department of Molecular Biosciences , Northwestern University , Evanston , IL , USA
| |
Collapse
|
18
|
Randise-Hinchliff C, Coukos R, Sood V, Sumner MC, Zdraljevic S, Meldi Sholl L, Garvey Brickner D, Ahmed S, Watchmaker L, Brickner JH. Strategies to regulate transcription factor-mediated gene positioning and interchromosomal clustering at the nuclear periphery. J Cell Biol 2016; 212:633-46. [PMID: 26953353 PMCID: PMC4792077 DOI: 10.1083/jcb.201508068] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/02/2016] [Indexed: 11/23/2022] Open
Abstract
In yeast, transcription factors mediate gene positioning at the nuclear periphery and interchromosomal clustering. These phenomena are regulated by several different strategies that lead to dynamic changes in the spatial arrangement of genes over different time scales. In budding yeast, targeting of active genes to the nuclear pore complex (NPC) and interchromosomal clustering is mediated by transcription factor (TF) binding sites in the gene promoters. For example, the binding sites for the TFs Put3, Ste12, and Gcn4 are necessary and sufficient to promote positioning at the nuclear periphery and interchromosomal clustering. However, in all three cases, gene positioning and interchromosomal clustering are regulated. Under uninducing conditions, local recruitment of the Rpd3(L) histone deacetylase by transcriptional repressors blocks Put3 DNA binding. This is a general function of yeast repressors: 16 of 21 repressors blocked Put3-mediated subnuclear positioning; 11 of these required Rpd3. In contrast, Ste12-mediated gene positioning is regulated independently of DNA binding by mitogen-activated protein kinase phosphorylation of the Dig2 inhibitor, and Gcn4-dependent targeting is up-regulated by increasing Gcn4 protein levels. These different regulatory strategies provide either qualitative switch-like control or quantitative control of gene positioning over different time scales.
Collapse
Affiliation(s)
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| | - Varun Sood
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| | - Michael Chas Sumner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| | - Lauren Meldi Sholl
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| | | | - Sara Ahmed
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| | - Lauren Watchmaker
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| |
Collapse
|
19
|
Masuda M, Oshima A, Noguchi T, Kagiwada S. Induction of intranuclear membranes by overproduction of Opi1p and Scs2p, regulators for yeast phospholipid biosynthesis, suggests a mechanism for Opi1p nuclear translocation. J Biochem 2015; 159:351-61. [PMID: 26590299 DOI: 10.1093/jb/mvv105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the expression of phospholipid biosynthetic genes is suppressed by the Opi1p negative regulator. Opi1p enters into the nucleoplasm from the nuclear membrane to suppress the gene expression under repressing conditions. The binding of Opi1p to the nuclear membrane requires an integral membrane protein, Scs2p and phosphatidic acid (PA). Although it is demonstrated that the association of Opi1p with membranes is affected by PA levels, how Opi1p dissociates from Scs2p is unknown. Here, we found that fluorescently labelled Opi1p accumulated on a perinuclear region in an Scs2p-dependent manner. Electron microscopic analyses indicated that the perinuclear region consists of intranuclear membranes, which may be formed by the invagination of the nuclear membrane due to the accumulation of Opi1p and Scs2p in a restricted area. As expected, localization of Opi1p and Scs2p in the intranuclear membranes was detected by immunoelectron microscopy. Biochemical analysis showed that Opi1p recovered in the membrane fraction was detergent insoluble while Scs2p was soluble, implying that Opi1p behaves differently from Scs2p in the fraction. We hypothesize that Opi1p dissociates from Scs2p after targeting to the nuclear membrane, making it possible to be released from the membrane quickly when PA levels decrease.
Collapse
Affiliation(s)
- Miki Masuda
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Ayaka Oshima
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Tetsuko Noguchi
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Satoshi Kagiwada
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
20
|
Hashim Z, Teoh ST, Bamba T, Fukusaki E. Construction of a metabolome library for transcription factor-related single gene mutants of Saccharomyces cerevisiae. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 966:83-92. [PMID: 24974314 DOI: 10.1016/j.jchromb.2014.05.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 05/17/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023]
Abstract
Transcription factors (TFs) play an important role in gene regulation, providing control for cells to adapt to ever changing environments and different physiological states. Although great effort has been taken to study TFs through DNA-protein binding and microarray gene expression experiments, the understanding of transcriptional regulation is still lacking, due to lack of information that links TF regulatory events and final phenotypic change. Here, we focused on metabolites as the final readouts of gene transcription process. We performed metabolite profiling of 154 Saccharomyces cerevisiae's single gene knockouts each defective in a gene encoding transcription factor and built a metabolome library consists of 84 metabolites with good reproducibility. Using the metabolome dataset, we obtained significant correlations and identified differential strains that exhibit altered metabolism compared to control. This work presents a novel metabolome dataset library which will be invaluable for researchers working on transcriptional regulation and yeast biology in general.
Collapse
Affiliation(s)
- Zanariah Hashim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shao Thing Teoh
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Bamba
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
21
|
High-resolution profiling of stationary-phase survival reveals yeast longevity factors and their genetic interactions. PLoS Genet 2014; 10:e1004168. [PMID: 24586198 PMCID: PMC3937222 DOI: 10.1371/journal.pgen.1004168] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 12/23/2013] [Indexed: 01/09/2023] Open
Abstract
Lifespan is influenced by a large number of conserved proteins and gene-regulatory pathways. Here, we introduce a strategy for systematically finding such longevity factors in Saccharomyces cerevisiae and scoring the genetic interactions (epistasis) among these factors. Specifically, we developed an automated competition-based assay for chronological lifespan, defined as stationary-phase survival of yeast populations, and used it to phenotype over 5,600 single- or double-gene knockouts at unprecedented quantitative resolution. We found that 14% of the viable yeast mutant strains were affected in their stationary-phase survival; the extent of true-positive chronological lifespan factors was estimated by accounting for the effects of culture aeration and adaptive regrowth. We show that lifespan extension by dietary restriction depends on the Swr1 histone-exchange complex and that a functional link between autophagy and the lipid-homeostasis factor Arv1 has an impact on cellular lifespan. Importantly, we describe the first genetic interaction network based on aging phenotypes, which successfully recapitulated the core-autophagy machinery and confirmed a role of the human tumor suppressor PTEN homologue in yeast lifespan and phosphatidylinositol phosphate metabolism. Our quantitative analysis of longevity factors and their genetic interactions provides insights into the gene-network interactions of aging cells.
Collapse
|
22
|
The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast. Chem Phys Lipids 2014; 180:23-43. [PMID: 24418527 DOI: 10.1016/j.chemphyslip.2013.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 12/26/2013] [Indexed: 12/13/2022]
Abstract
This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed.
Collapse
|
23
|
Lee SW, Kim E, Kim JS, Oh MK. Artificial transcription regulator as a tool for improvement of cellular property in Saccharomyces cerevisiae. Chem Eng Sci 2013. [DOI: 10.1016/j.ces.2012.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Chumnanpuen P, Nookaew I, Nielsen J. Integrated analysis, transcriptome-lipidome, reveals the effects of INO-level (INO2 and INO4) on lipid metabolism in yeast. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 3:S7. [PMID: 24456840 PMCID: PMC3852131 DOI: 10.1186/1752-0509-7-s3-s7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background In the yeast Saccharomyces cerevisiae, genes containing UASINO sequences are regulated by the Ino2/Ino4 and Opi1 transcription factors, and this regulation controls lipid biosynthesis. The expression level of INO2 and INO4 genes (INO-level) at different nutrient limited conditions might lead to various responses in yeast lipid metabolism. Methods In this study, we undertook a global study on how INO-levels (transcription level of INO2 and INO4) affect lipid metabolism in yeast and we also studied the effects of single and double deletions of the two INO-genes (deficient effect). Using 2 types of nutrient limitations (carbon and nitrogen) in chemostat cultures operated at a fixed specific growth rate of 0.1 h-1 and strains having different INO-level, we were able to see the effect on expression level of the genes involved in lipid biosynthesis and the fluxes towards the different lipid components. Through combined measurements of the transcriptome, metabolome, and lipidome it was possible to obtain a large dataset that could be used to identify how the INO-level controls lipid metabolism and also establish correlations between the different components. Results In this study, we undertook a global study on how INO-levels (transcription level of INO2 and INO4) affect lipid metabolism in yeast and we also studied the effects of single and double deletions of the two INO-genes (deficient effect). Using 2 types of nutrient limitations (carbon and nitrogen) in chemostat cultures operated at a fixed specific growth rate of 0.1 h-1 and strains having different INO-level, we were able to see the effect on expression level of the genes involved in lipid biosynthesis and the fluxes towards the different lipid components. Through combined measurements of the transcriptome, metabolome, and lipidome it was possible to obtain a large dataset that could be used to identify how the INO-level controls lipid metabolism and also establish correlations between the different components. Conclusions Our analysis showed the strength of using a combination of transcriptome and lipidome analysis to illustrate the effect of INO-levels on phospholipid metabolism and based on our analysis we established a global regulatory map.
Collapse
|
25
|
Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol–choline and Snf1 in controlling lipid biosynthesis in yeast. Mol Genet Genomics 2012; 287:541-54. [DOI: 10.1007/s00438-012-0697-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/08/2012] [Indexed: 01/31/2023]
|
26
|
Role for gene looping in intron-mediated enhancement of transcription. Proc Natl Acad Sci U S A 2012; 109:8505-10. [PMID: 22586116 DOI: 10.1073/pnas.1112400109] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intron-containing genes are often transcribed more efficiently than nonintronic genes. The effect of introns on transcription of genes is an evolutionarily conserved feature, being exhibited by such diverse organisms as yeast, plants, flies, and mammals. The mechanism of intron-mediated transcriptional activation, however, is not entirely clear. To address this issue, we inserted an intron in INO1, which is a nonintronic gene, and deleted the intron from ASC1, which contains a natural intron. We then compared transcription of INO1 and ASC1 genes in the presence and absence of an intron. Transcription of both genes was significantly stimulated by the intron. The introns have a direct role in enhancing transcription of INO1 and ASC1 because there was a marked increase in nascent transcripts from these genes in the presence of an intron. Intron-mediated enhancement of transcription required a splicing competent intron. Interestingly, both INO1 and ASC1 were in a looped configuration when their genes contained an intron. Intron-dependent gene looping involved a physical interaction of the promoter and the terminator regions. In addition, the promoter region interacted with the 5' splice site and the terminator with the 3' splice site. Intron-mediated enhancement of transcription was completely abolished in the looping defective sua7-1 strain. No effect on splicing, however, was observed in sua7-1 strain. On the basis of these results, we propose a role for gene looping in intron-mediated transcriptional activation of genes in yeast.
Collapse
|
27
|
Two major inositol transporters and their role in cryptococcal virulence. EUKARYOTIC CELL 2011; 10:618-28. [PMID: 21398509 DOI: 10.1128/ec.00327-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cryptococcus neoformans is an AIDS-associated human fungal pathogen and the most common cause of fungal meningitis, with a mortality rate over 40% in AIDS patients. Significant advances have been achieved in understanding its disease mechanisms. Yet the underlying mechanism of a high frequency of cryptococcal meningitis remains unclear. The existence of high inositol concentrations in brain and our earlier discovery of a large inositol transporter (ITR) gene family in C. neoformans led us to investigate the potential role of inositol in Cryptococcus-host interactions. In this study, we focus on functional analyses of two major ITR genes to understand their role in virulence of C. neoformans. Our results show that ITR1A and ITR3C are the only two ITR genes among 10 candidates that can complement the growth defect of a Saccharomyces cerevisiae strain lacking inositol transporters. Both S. cerevisiae strains heterologously expressing ITR1A or ITR3C showed high inositol uptake activity, an indication that they are major inositol transporters. Significantly, itr1a itr3c double mutants showed significant virulence attenuation in murine infection models. Mutating both ITR1A and ITR3C in an ino1 mutant background activates the expression of several remaining ITR candidates and does not show more severe virulence attenuation, suggesting that both inositol uptake and biosynthetic pathways are important for inositol acquisition. Overall, our study provides evidence that host inositol and fungal inositol transporters are important for Cryptococcus pathogenicity.
Collapse
|
28
|
Chen L, Lopes JM. Multiple bHLH proteins regulate CIT2 expression in Saccharomyces cerevisiae. Yeast 2010; 27:345-59. [PMID: 20162531 DOI: 10.1002/yea.1757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The basic helix-loop-helix (bHLH) proteins comprise a eukaryotic transcription factor family involved in multiple biological processes. They have the ability to form multiple dimer combinations and most of them also bind a 6 bp site (E-box) with limited specificity. These properties make them ideal for combinatorial regulation of gene expression. The Saccharomyces cerevisiae CIT2 gene, which encodes citrate synthase, was previously known to be induced by the bHLH proteins Rtg1p and Rtg3p in response to mitochondrial damage. Rtg1p-Rtg3p dimers bind two R-boxes (modified E-boxes) in the CIT2 promoter. The current study tested the ability of all nine S. cerevisiae bHLH proteins to regulate the CIT2 gene. The results showed that expression of CIT2-lacZ reporter was induced in a rho(0) strain by the presence of inositol via the Ino2p and Ino4p bHLH proteins, which are known regulators of phospholipid synthesis. Promoter mutations revealed that inositol induction required a distal E-box in the CIT2 promoter. Interestingly, deleting the INO2, INO4 genes or the cognate E-box revealed phosphate induction of CIT2 expression. This layer of expression required the two R-boxes and the Pho4p bHLH protein, which is known to be required for phosphate-specific regulation. Lastly, the data show that the Hms1p and Sgc1p bHLH proteins also play important roles in repression of CIT2-lacZ expression. Collectively, these results support the model that yeast bHLH proteins coordinate different biological pathways.
Collapse
Affiliation(s)
- Linan Chen
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
29
|
Bethea EK, Carver BJ, Montedonico AE, Reynolds TB. The inositol regulon controls viability in Candida glabrata. MICROBIOLOGY-SGM 2009; 156:452-462. [PMID: 19875437 DOI: 10.1099/mic.0.030072-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inositol is essential in eukaryotes, and must be imported or synthesized. Inositol biosynthesis in Saccharomyces cerevisiae is controlled by three non-essential genes that make up the inositol regulon: ScINO2 and ScINO4, which together encode a heterodimeric transcriptional activator, and ScOPI1, which encodes a transcriptional repressor. ScOpi1p inhibits the ScIno2-ScIno4p activator in response to extracellular inositol levels. An important gene controlled by the inositol regulon is ScINO1, which encodes inositol-3-phosphate synthase, a key enzyme in inositol biosynthesis. In the pathogenic yeast Candida albicans, homologues of the S. cerevisiae inositol regulon genes are 'transcriptionally rewired'. Instead of regulating the CaINO1 gene, CaINO2 and CaINO4 regulate ribosomal genes. Another Candida species that is a prevalent cause of infections is Candida glabrata; however, C. glabrata is phylogenetically more closely related to S. cerevisiae than C. albicans. Experiments were designed to determine if C. glabrata homologues of the inositol regulon genes function similarly to S. cerevisiae or are transcriptionally rewired. CgINO2, CgINO4 and CgOPI1 regulate CgINO1 in a manner similar to that observed in S. cerevisiae. However, unlike in S. cerevisiae, CgOPI1 is essential. Genetic data indicate that CgOPI1 is a repressor that affects viability by regulating activation of a target of the inositol regulon.
Collapse
Affiliation(s)
- Emily K Bethea
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Billy J Carver
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
30
|
Mansour S, Bailly J, Delettre J, Bonnarme P. A proteomic and transcriptomic view of amino acids catabolism in the yeastYarrowia lipolytica. Proteomics 2009; 9:4714-25. [DOI: 10.1002/pmic.200900161] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Reynolds TB. Strategies for acquiring the phospholipid metabolite inositol in pathogenic bacteria, fungi and protozoa: making it and taking it. MICROBIOLOGY-SGM 2009; 155:1386-1396. [PMID: 19383710 PMCID: PMC2889408 DOI: 10.1099/mic.0.025718-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
myo-Inositol (inositol) is an essential nutrient that is used for building phosphatidylinositol and its derivatives in eukaryotes and even in some eubacteria such as the mycobacteria. As a consequence, fungal, protozoan and mycobacterial pathogens must be able to acquire inositol in order to proliferate and cause infection in their hosts. There are two primary mechanisms for acquiring inositol. One is to synthesize inositol from glucose 6-phosphate using two sequentially acting enzymes: inositol-3-phosphate synthase (Ino1p) converts glucose 6-phosphate to inositol 3-phosphate, and then inositol monophosphatase (IMPase) dephosphorylates inositol 3-phosphate to generate inositol. The other mechanism is to import inositol from the environment via inositol transporters. Inositol is readily abundant in the bloodstream of mammalian hosts, providing a source from which many pathogens could potentially import inositol. However, despite this abundance of inositol in the host, some pathogens such as the bacterium Mycobacterium tuberculosis and the protist parasite Trypanosoma brucei must be able to make inositol de novo in order to cause disease (M. tuberculosis) or even grow (T. brucei). Other pathogens such as the fungus Candida albicans are equally adept at causing disease by importing inositol or by making it de novo. The role of inositol acquisition in the biology and pathogenesis of the parasite Leishmania and the fungus Cryptococcus are being explored as well. The specific strategies used by these pathogens to acquire inositol while in the host are discussed in relation to each pathogen's unique metabolic requirements.
Collapse
Affiliation(s)
- Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
32
|
Jani NM, Lopes JM. Transcription regulation of the Saccharomyces cerevisiae PIS1 gene by inositol and the pleiotropic regulator, Ume6p. Mol Microbiol 2008; 70:1529-39. [PMID: 19019152 DOI: 10.1111/j.1365-2958.2008.06506.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Saccharomyces cerevisiae, transcription of most of the phospholipid biosynthetic genes (e.g. INO1, CHO1, CHO2 and OPI3) is repressed by growth in the presence of inositol and choline and derepressed in their absence. This regulation requires the Ino2p and Ino4p activators and the Opi1p repressor. The PIS1 structural gene is required for the synthesis of the essential lipid phosphatidylinositol. Previous reports show that PIS1 expression is uncoupled from inositol/choline regulation, but is regulated by carbon source, hypoxia and zinc. However, in this study we found that the expression of PIS1 is induced twofold by inositol. This regulation did not require Ino2p and Ino4p, although Ino4p was required for full expression. Ino4p is a basic helix-loop-helix protein that requires a binding partner. Curiously, none of the other basic helix-loop-helix proteins affected PIS1 expression. Inositol induction did require another general regulator of phospholipid biosynthesis, Ume6p. Ume6p was found to be a positive regulator of PIS1 gene expression. Ume6p, and several associated factors, were required for inositol-mediated induction and chromatin immunoprecipitation analysis showed that Ume6p directly regulates PIS1 expression. Thus, we demonstrate novel regulation of the PIS1 gene by Ume6p.
Collapse
Affiliation(s)
- Niketa M Jani
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
33
|
Lev S, Ben Halevy D, Peretti D, Dahan N. The VAP protein family: from cellular functions to motor neuron disease. Trends Cell Biol 2008; 18:282-90. [PMID: 18468439 DOI: 10.1016/j.tcb.2008.03.006] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 03/24/2008] [Accepted: 03/31/2008] [Indexed: 01/10/2023]
Abstract
The VAMP-associated proteins (VAPs) are highly conserved integral endoplasmic reticulum membrane proteins implicated in diverse cellular functions, including the regulation of lipid transport and homeostasis, membrane trafficking, neurotransmitter release, stabilization of presynaptic microtubules, and the unfolded protein response. Recently, a single missense mutation within the human VAP-B gene was identified in three forms of familial motor neuron disease. In this review, we integrate results from studies of yeast, fly and mammalian VAPs that provide insight into the structural features of these proteins, the network of VAP-interacting proteins, their possible physiological functions, and their involvement in motor neuron disease.
Collapse
Affiliation(s)
- Sima Lev
- The Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
34
|
Reynolds TB. The Opi1p transcription factor affects expression of FLO11, mat formation, and invasive growth in Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 5:1266-75. [PMID: 16896211 PMCID: PMC1539139 DOI: 10.1128/ec.00022-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mat formation in the bakers' yeast Saccharomyces cerevisiae is a surface-associated phenomenon in which yeast cells spread over the surface of a low-density agar petri plate as a complex film. This spreading growth occurs by sliding motility and is dependent on the adhesion protein (adhesin) Flo11p. In order to identify molecular pathways that govern mat formation, whole-genome transcriptional profiling was used to compare cells growing as a mat to cells growing in a suspension culture (planktonic cells). This analysis revealed that S. cerevisiae upregulates a subset of genes in response to growth on a surface. These genes included the INO1 gene, which encodes the myo-inositol-1-phosphate synthase, which carries out the rate-limiting step in inositol biosynthesis. Further inquiry revealed that a transcription factor that controls INO1 expression, called Opi1p, participates in the regulation of mat formation. Opi1p appears to modulate mat formation by influencing the expression of FLO11. The opi1Delta mutant was found to exhibit reduced FLO11 levels. Consequently, the opi1Delta mutant perturbs the FLO11-dependent phenotype of invasive growth. The opi1Delta mutant's defects in mat formation and invasive growth are dependent on the transcriptional activator Ino2p. These results indicate that Opi1p affects mat formation and invasive growth by participating in the regulation of FLO11.
Collapse
Affiliation(s)
- Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
35
|
Affiliation(s)
- Lilia R Nunez
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
36
|
Shirra MK, Rogers SE, Alexander DE, Arndt KM. The Snf1 protein kinase and Sit4 protein phosphatase have opposing functions in regulating TATA-binding protein association with the Saccharomyces cerevisiae INO1 promoter. Genetics 2005; 169:1957-72. [PMID: 15716495 PMCID: PMC1449608 DOI: 10.1534/genetics.104.038075] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To identify the mechanisms by which multiple signaling pathways coordinately affect gene expression, we investigated regulation of the S. cerevisiae INO1 gene. Full activation of INO1 transcription occurs in the absence of inositol and requires the Snf1 protein kinase in addition to other signaling molecules and transcription factors. Here, we present evidence that the Sit4 protein phosphatase negatively regulates INO1 transcription. A mutation in SIT4 was uncovered as a suppressor of the inositol auxotrophy of snf1Delta strains. We found that sit4 mutant strains exhibit an Spt(-) phenotype, suggesting a more general role for Sit4 in transcription. In fact, like the gene-specific regulators of INO1 transcription, Opi1, Ino2, and Ino4, both Snf1 and Sit4 regulate binding of TBP to the INO1 promoter, as determined by chromatin immunoprecipitation analysis. Experiments involving double-mutant strains indicate that the negative effect of Sit4 on INO1 transcription is unlikely to occur through dephosphorylation of histone H3 or Opi1. Sit4 is a known component of the target of rapamycin (TOR) signaling pathway, and treatment of cells with rapamycin reduces INO1 activation. However, analysis of rapamycin-treated cells suggests that Sit4 represses INO1 transcription through multiple mechanisms, only one of which may involve inhibition of TOR signaling.
Collapse
Affiliation(s)
- Margaret K Shirra
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
37
|
Jesch SA, Zhao X, Wells MT, Henry SA. Genome-wide analysis reveals inositol, not choline, as the major effector of Ino2p-Ino4p and unfolded protein response target gene expression in yeast. J Biol Chem 2004; 280:9106-18. [PMID: 15611057 PMCID: PMC1352320 DOI: 10.1074/jbc.m411770200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the transcription of many genes encoding enzymes of phospholipid biosynthesis are repressed in cells grown in the presence of the phospholipid precursors inositol and choline. A genome-wide approach using cDNA microarray technology was used to profile the changes in the expression of all genes in yeast that respond to the exogenous presence of inositol and choline. We report that the global response to inositol is completely distinct from the effect of choline. Whereas the effect of inositol on gene expression was primarily repressing, the effect of choline on gene expression was activating. Moreover, the combination of inositol and choline increased the number of repressed genes compared with inositol alone and enhanced the repression levels of a subset of genes that responded to inositol. In all, 110 genes were repressed in the presence of inositol and choline. Two distinct sets of genes exhibited differential expression in response to inositol or the combination of inositol and choline in wild-type cells. One set of genes contained the UASINO sequence and were bound by Ino2p and Ino4p. Many of these genes were also negatively regulated by OPI1, suggesting a common regulatory mechanism for Ino2p, Ino4p, and Opi1p. Another nonoverlapping set of genes was coregulated by the unfolded protein response pathway, an ER-localized stress response pathway, but was not dependent on OPI1 and did not show further repression when choline was present together with inositol. These results suggest that inositol is the major effector of target gene expression, whereas choline plays a minor role.
Collapse
Affiliation(s)
| | - Xin Zhao
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853
| | - Martin T. Wells
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853
| | - Susan A. Henry
- Department of Molecular Biology and Genetics
- *To whom all correspondence should be addressed: Susan A. Henry, Ph.D. College of Agriculture and Life Sciences, Cornell University, 260 Roberts Hall, Ithaca, NY 14853, 607-255-2241 (TEL), 607-255-3803 (FAX), E-mail:
| |
Collapse
|
38
|
Carman GM, Kersting MC. Phospholipid synthesis in yeast: regulation by phosphorylation. Biochem Cell Biol 2004; 82:62-70. [PMID: 15052328 DOI: 10.1139/o03-064] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is a model eukaryotic organism for the study of the regulation of phospholipid synthesis. The major phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine) are synthesized by complementary (CDP-diacylglycerol and Kennedy) pathways. The regulation of these pathways is complex and is controlled by genetic and biochemical mechanisms. Inositol plays a major role in the regulation of phospholipid synthesis. Inositol-mediated regulation involves the expression of genes and the modulation of enzyme activities. Phosphorylation is a major mechanism by which enzymes and transcription factors are regulated, and indeed, key phospholipid biosynthetic enzymes have been identified as targets of phosphorylation. Protein kinase A phosphorylates CTP synthetase, choline kinase, Mg2+-dependent phosphatidate phosphatase, phosphatidylserine synthase, and the transcription factor Opi1p. CTP synthetase and Opi1p are also phosphorylated by protein kinase C. The phosphorylation of these proteins plays a role in regulating their activities and (or) function in phospholipid synthesis.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
39
|
Reijans M, Lascaris R, Groeneger AO, Wittenberg A, Wesselink E, van Oeveren J, de Wit E, Boorsma A, Voetdijk B, van der Spek H, Grivell LA, Simons G. Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae. Genomics 2004; 82:606-18. [PMID: 14611802 DOI: 10.1016/s0888-7543(03)00179-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
cDNA-AFLP is a genome-wide expression analysis technology that does not require any prior knowledge of gene sequences. This PCR-based technique combines a high sensitivity with a high specificity, allowing detection of rarely expressed genes and distinguishing between homologous genes. In this report, we validated quantitative expression data of 110 cDNA-AFLP fragments in yeast with DNA microarrays and GeneChip data. The best correlation was found between cDNA-AFLP and GeneChip data. The cDNA-AFLP data revealed a low number of inconsistent profiles that could be explained by gel artifact, overexposure, or mismatch amplification. In addition, 18 cDNA-AFLP fragments displayed homology to genomic yeast DNA, but could not be linked unambiguously to any known ORF. These fragments were most probably derived from 5' or 3' noncoding sequences or might represent previously unidentified ORFs. Genes liable to cross hybridization showed identical results in cDNA-AFLP and GeneChip analysis. Three genes, which were readily detected with cDNA-AFLP, showed no significant expression in GeneChip experiments. We show that cDNA-AFLP is a very good alternative to microarrays and since no preexisting biological or sequence information is required, it is applicable to any species.
Collapse
|
40
|
Almaguer C, Cheng W, Nolder C, Patton-Vogt J. Glycerophosphoinositol, a novel phosphate source whose transport is regulated by multiple factors in Saccharomyces cerevisiae. J Biol Chem 2004; 279:31937-42. [PMID: 15145930 DOI: 10.1074/jbc.m403648200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Git1p mediates the transport of the phospholipid metabolite, glycerophosphoinositol, into Saccharomyces cerevisiae. We report that phosphate limitation and inositol limitation affect GIT1 expression and Git1p transport activity via distinct mechanisms that involve multiple transcription factors. GIT1 transcript levels and Git1p activity are greater in cells starved for phosphate, with or without inositol limitation, than in cells only limited for inositol. Furthermore, the kinetics of GIT1 transcript accumulation and Git1p activity upon transfer of cells to phosphate starvation media are different from those obtained upon transfer of cells to inositol-free media. Pho2p and Pho4p are required for GIT1 expression and for Git1p transport activity under all growth conditions tested. In contrast, Ino2p and Ino4p are required for full GIT1 expression when inositol is limiting, with or without phosphate limitation, but not when only phosphate is limiting. Greatly reduced transport activity was detected in ino2Delta and ino4Delta cells under all growth conditions. A 300-base pair region of the GIT1 promoter containing potential Pho4p binding sites was shown to be required for full GIT1 expression. Git1p appears to act as a H(+)-symporter, and neither inositol nor phosphate effectively compete with glycerophosphoinositol for transport by Git1p. Glycerophosphoinositol was shown previously to support the growth of an inositol auxotroph. Remarkably, we now report that glycerophosphoinositol can act as the sole source of phosphate for the cell, providing functional relevance for the regulation of Git1p transport activity by phosphate.
Collapse
Affiliation(s)
- Claudia Almaguer
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | | | |
Collapse
|
41
|
Ju S, Shaltiel G, Shamir A, Agam G, Greenberg ML. Human 1-D-myo-Inositol-3-phosphate Synthase Is Functional in Yeast. J Biol Chem 2004; 279:21759-65. [PMID: 15024000 DOI: 10.1074/jbc.m312078200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned, sequenced, and expressed a human cDNA encoding 1-d-myo-inositol-3-phosphate (MIP) synthase (hINO1). The encoded 62-kDa human enzyme converted d-glucose 6-phosphate to 1-d-myo-inositol 3-phosphate, the rate-limiting step for de novo inositol biosynthesis. Activity of the recombinant human MIP synthase purified from Escherichia coli was optimal at pH 8.0 at 37 degrees C and exhibited K(m) values of 0.57 mm and 8 microm for glucose 6-phosphate and NAD(+), respectively. NH(4)(+) and K(+) were better activators than other cations tested (Na(+), Li(+), Mg(2+), Mn(2+)), and Zn(2+) strongly inhibited activity. Expression of the protein in the yeast ino1Delta mutant lacking MIP synthase (ino1Delta/hINO1) complemented the inositol auxotrophy of the mutant and led to inositol excretion. MIP synthase activity and intracellular inositol were decreased about 35 and 25%, respectively, when ino1Delta/hINO1 was grown in the presence of a therapeutically relevant concentration of the anti-bipolar drug valproate (0.6 mm). However, in vitro activity of purified MIP synthase was not inhibited by valproate at this concentration, suggesting that inhibition by the drug is indirect. Because inositol metabolism may play a key role in the etiology and treatment of bipolar illness, functional conservation of the key enzyme in inositol biosynthesis underscores the power of the yeast model in studies of this disorder.
Collapse
Affiliation(s)
- Shulin Ju
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
42
|
Sreenivas A, Carman GM. Phosphorylation of the yeast phospholipid synthesis regulatory protein Opi1p by protein kinase A. J Biol Chem 2003; 278:20673-80. [PMID: 12668681 DOI: 10.1074/jbc.m300132200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Opi1p transcription factor plays a negative regulatory role in the expression of UASINO-containing genes involved in phospholipid synthesis in the yeast Saccharomyces cerevisiae. The phosphorylation of Opi1p by protein kinase A (cAMP-dependent protein kinase) was examined in this work. Using a maltose-binding protein-Opi1p fusion protein as a substrate, protein kinase A activity was time- and dose-dependent and dependent on the concentrations of Opi1p and ATP. Protein kinase A phosphorylated Opi1p on multiple serine residues. The synthetic peptides SCRQKSQPSE and SQVRESLLNL containing the protein kinase A motif for Ser31 and Ser251, respectively, within Opi1p were substrates for protein kinase A. Phosphorylation of S31A and S251A mutant maltose-binding protein-Opi1p fusion proteins by protein kinase A was reduced when compared with the wild type protein, and phosphopeptides present in wild type Opi1p were absent from the S31A and S251A mutant proteins. In vivo labeling experiments showed that the extent of phosphorylation of the S31A and S251A mutant proteins was reduced when compared with the wild type protein. The physiological consequence of the phosphorylation of Opi1p at Ser31 and Ser251 was examined by measuring the effects of the S31A and S251A mutations on the expression of the UASINO-containing gene INO1. The beta-galactosidase activity driven by an INO1-CYC-lacZ reporter gene in opi1Delta mutant cells expressing the S31A and S251A mutant Opi1p proteins was elevated 42 and 35%, respectively, in the absence of inositol and 55 and 52%, respectively, in the presence of inositol when compared with cells expressing wild type Opi1p. These data supported the conclusion that phosphorylation of Opi1p at Ser31 and Ser251 mediated the stimulation of the negative regulatory function of Opi1p on the expression of the INO1 gene.
Collapse
Affiliation(s)
- Avula Sreenivas
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
43
|
Kaadige MR, Lopes JM. Opi1p, Ume6p and Sin3p control expression from the promoter of the INO2 regulatory gene via a novel regulatory cascade. Mol Microbiol 2003; 48:823-32. [PMID: 12694624 DOI: 10.1046/j.1365-2958.2003.03472.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The INO2 gene of Saccharomyces cerevisiae is required for expression of most of the phospholipid biosynthetic genes. INO2 expression is regulated by a complex cascade that includes autoregulation, Opi1p-mediated repression and Ume6p-mediated activation. To screen for mutants with altered INO2 expression directly, we constructed an INO2-HIS3 reporter that provides a plate assay for INO2 promoter activity. This reporter was used to isolate mutants (dim1) that fail to repress expression of the INO2 gene in an otherwise wild-type strain. The dim1 mutants contain mutations in the OPI1 gene. To define further the mechanism for Ume6p regulation of INO2 expression, we isolated suppressors (rum1, 2, 3) of the ume6Delta mutation that overexpress the INO2-HIS3 gene. Two of the rum mutant groups contain mutations in the OPI1 and SIN3 genes showing that opi1 and sin3 mutations are epistatic to the ume6Delta mutation. These results are surprising given that Ume6p, Sin3p and Rpd3p are known to form a complex that represses the expression of a diverse set of yeast genes. This prompted us to examine the effect of sin3Delta and rpd3Delta mutants on INO2-cat expression. Surprisingly, the sin3Delta allele overexpressed INO2-cat, whereas the rpd3Delta mutant had no effect. We also show that the UME6 gene does not affect the expression of an OPI1-cat reporter. This suggests that Ume6p does not regulate INO2 expression indirectly by regulating OPI1 expression.
Collapse
Affiliation(s)
- Mohan R Kaadige
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
44
|
Block-Alper L, Webster P, Zhou X, Supeková L, Wong WH, Schultz PG, Meyer DI. IN02, a positive regulator of lipid biosynthesis, is essential for the formation of inducible membranes in yeast. Mol Biol Cell 2002; 13:40-51. [PMID: 11809821 PMCID: PMC65071 DOI: 10.1091/mbc.01-07-0366] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2001] [Revised: 10/04/2001] [Accepted: 10/10/2001] [Indexed: 12/23/2022] Open
Abstract
Expression of the 180-kDa canine ribosome receptor in Saccharomyces cerevisiae leads to the accumulation of ER-like membranes. Gene expression patterns in strains expressing various forms of p180, each of which gives rise to unique membrane morphologies, were surveyed by microarray analysis. Several genes whose products regulate phospholipid biosynthesis were determined by Northern blotting to be differentially expressed in all strains that undergo membrane proliferation. Of these, the INO2 gene product was found to be essential for formation of p180-inducible membranes. Expression of p180 in ino2Delta cells failed to give rise to the p180-induced membrane proliferation seen in wild-type cells, whereas p180 expression in ino4Delta cells gave rise to membranes indistinguishable from wild type. Thus, Ino2p is required for the formation of p180-induced membranes and, in this case, appears to be functional in the absence of its putative binding partner, Ino4p.
Collapse
Affiliation(s)
- Laura Block-Alper
- Department of Biological Chemistry, University of California Los Angeles School of Medicine, Los Angeles, CA 90024, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Howe AG, McMaster CR. Regulation of vesicle trafficking, transcription, and meiosis: lessons learned from yeast regarding the disparate biologies of phosphatidylcholine. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1534:65-77. [PMID: 11786293 DOI: 10.1016/s1388-1981(01)00181-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphatidylcholine (PtdCho) is the major phospholipid present in eukaryotic cell membranes generally comprising 50% of the phospholipid mass of most cells and their requisite organelles. PtdCho has a major structural role in maintaining cell and organelle integrity, and thus its synthesis must be tightly monitored to ensure appropriate PtdCho levels are present to allow for its coordination with cell growth regulatory mechanisms. One would also expect that there needs to be coordinated regulation of PtdCho synthesis with its transport from its site of synthesis to cellular organelles to ensure organellar structures and functions are maintained. Each of these processes need to be intimately coordinated with cellular growth decision making processes. To this end, it has recently been revealed that ongoing PtdCho synthesis is required for global transcriptional regulation of phospholipid synthesis. PtdCho is also a major component of intracellular transport vesicles and the synthesis of PtdCho is intimately involved in the regulation of vesicle transport from the Golgi apparatus to the cell surface and the vacuole (yeast equivalent of the mammalian lysosome). This review details some of the more recent advances in our knowledge concerning the role of PtdCho in the regulation of global lipid homeostasis through (i) its restriction of the trafficking of intracellular vesicles that distribute lipids and proteins from their sites of synthesis to their ultimate cellular destinations, (ii) its regulation of specific transcriptional processes that coordinate lipid biosynthetic pathways, and (iii) the role of PtdCho catabolism in the regulation of meiosis. Combined, these regulatory roles for PtdCho ensure vesicular, organellar, and cellular membrane biogenesis occur in a coordinated manner.
Collapse
Affiliation(s)
- A G Howe
- Departments of Pediatrics and Biochemistry and Molecular Biology, Atlantic Research Centre, IWK Health Centre, Dalhousie University, 5849 University Avenue, Halifax, NS B3H 4H7, Canada
| | | |
Collapse
|
46
|
Sreenivas A, Villa-Garcia MJ, Henry SA, Carman GM. Phosphorylation of the yeast phospholipid synthesis regulatory protein Opi1p by protein kinase C. J Biol Chem 2001; 276:29915-23. [PMID: 11395523 DOI: 10.1074/jbc.m105147200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Opi1p is a negative regulator of expression of phospholipid-synthesizing enzymes in the yeast Saccharomyces cerevisiae. In this work, we examined the phosphorylation of Opi1p by protein kinase C. Using a purified maltose-binding protein-Opi1p fusion protein as a substrate, protein kinase C activity was time- and dose-dependent, and dependent on the concentrations of Opi1p and ATP. Protein kinase C phosphorylated Opi1p on a serine residue. The Opi1p synthetic peptide GVLKQSCRQK, which contained a protein kinase C sequence motif at Ser(26), was a substrate for protein kinase C. Phosphorylation of a purified S26A mutant maltose-binding protein-Opi1p fusion protein by the kinase was reduced when compared with the wild-type protein. A major phosphopeptide present in purified wild-type Opi1p was absent from the purified S26A mutant protein. In vivo labeling experiments showed that the phosphorylation of Opi1p was physiologically relevant, and that the extent of phosphorylation of the S26A mutant protein was reduced by 50% when compared with the wild-type protein. The physiological consequence of the phosphorylation of Opi1p at Ser(26) was examined by measuring the effect of the S26A mutation on the expression of the phospholipid synthesis gene INO1. The beta-galactosidase activity driven by an INO1-CYC-lacI'Z reporter gene in opi1Delta mutant cells expressing the S26A mutant Opi1p was about 50% lower than that of cells expressing the wild-type Opi1p protein. These data supported the conclusion that phosphorylation of Opi1p at Ser(26) mediated the attenuation of the negative regulatory function of Opi1p on the expression of the INO1 gene.
Collapse
Affiliation(s)
- A Sreenivas
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | |
Collapse
|
47
|
Oshiro J, Rangaswamy S, Chen X, Han GS, Quinn JE, Carman GM. Regulation of the DPP1-encoded diacylglycerol pyrophosphate (DGPP) phosphatase by inositol and growth phase. Inhibition of DGPP phosphatase activity by CDP-diacylglyceron and activation of phosphatidylserine synthase activity by DGPP. J Biol Chem 2000; 275:40887-96. [PMID: 11016943 DOI: 10.1074/jbc.m008144200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of the Saccharomyces cerevisiae DPP1-encoded diacylglycerol pyrophosphate (DGPP) phosphatase by inositol supplementation and growth phase was examined. Addition of inositol to the growth medium resulted in a dose-dependent increase in the level of DGPP phosphatase activity in both exponential and stationary phase cells. Activity was greater in stationary phase cells when compared with exponential phase cells, and the inositol- and growth phase-dependent regulations of DGPP phosphatase were additive. Analyses of DGPP phosphatase mRNA and protein levels, and expression of beta-galactosidase activity driven by a P(DPP1)-lacZ reporter gene, indicated that a transcriptional mechanism was responsible for this regulation. Regulation of DGPP phosphatase by inositol and growth phase occurred in a manner that was opposite that of many phospholipid biosynthetic enzymes. Regulation of DGPP phosphatase expression by inositol supplementation, but not growth phase, was altered in opi1Delta, ino2Delta, and ino4Delta phospholipid synthesis regulatory mutants. CDP-diacylglycerol, a phospholipid pathway intermediate used for the synthesis of phosphatidylserine and phosphatidylinositol, inhibited DGPP phosphatase activity by a mixed mechanism that caused an increase in K(m) and a decrease in V(max). DGPP stimulated the activity of pure phosphatidylserine synthase by a mechanism that increased the affinity of the enzyme for its substrate CDP-diacylglycerol. Phospholipid composition analysis of a dpp1Delta mutant showed that DGPP phosphatase played a role in the regulation of phospholipid metabolism by inositol, as well as regulating the cellular levels of phosphatidylinositol.
Collapse
Affiliation(s)
- J Oshiro
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | | | | | |
Collapse
|