1
|
Serey M, Retamales E, Ibañez G, Riadi G, Orio P, Castillo JP, Calixto A. Interspecies relationships of natural amoebae and bacteria with C. elegans create environments propitious for multigenerational diapause. mSystems 2025; 10:e0156624. [PMID: 40111038 PMCID: PMC12013276 DOI: 10.1128/msystems.01566-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
The molecular and physical communication within the microscopic world underpins the entire web of life as we know it. However, how organisms, such as bacteria, amoebae, and nematodes-all ubiquitous-interact to sustain their ecological niches, particularly how their associations generate and influence behavior, remains largely unknown. In this study, we developed a framework to examine long-term interactions between microbes and animals. From soil samples collected in a temperate, semi-arid climate, we isolated culturable bacterial genera, including Comamonas, Stenotrophomonas, Chryseobacterium, and Rhodococcus, as well as the amoeba, Tetramitus. This microbial ensemble was fed to the nematode C. elegans in experiments spanning over 20 nematode generations to assess developmental rate, dauer entry, fertility, and feeding behavior. Our findings reveal that microbes and nematodes create a stable environment where no species are exhausted, and where nematodes enter diapause after several generations. We have termed this phenomenon dauer formation on naturally derived ensembles (DaFNE). DaFNE occurs across a range of optimal temperatures, from 15°C to 25°C, and is dependent on the nematode's pheromone biosynthesis pathway. The phenomenon intensifies with each passing generation, exhibiting both strong intergenerational and transgenerational effects. Moreover, the RNA interference (RNAi) pathway-both systemic and cell-autonomous-is essential for initiating DaFNE, while heritable RNAi effectors are required for its transgenerational effects. These findings indicate that RNA-mediated communication plays a critical role in bacterially induced behaviors in natural environments.IMPORTANCEMicroscopic nematodes are the most abundant multicellular animals on Earth, which implies they have evolved highly successful relationships with their associated microbiota. However, little is known about how nematode behavior is influenced within complex ecosystems where multiple organisms interact. In this study, we used four bacteria and an amoeba from a natural ecosystem to explore behavioral responses in the nematode Caenorhabditis elegans over an 8 week period. The most striking finding was the nematodes' commitment to a form of hibernation known as diapause. We have termed this phenomenon dauer formation on naturally derived ensembles (DaFNE). Our results suggest that nematodes in nature may frequently enter hibernation as a result of communication with their microbial partners. DaFNE requires the production of nematode pheromones, as well as the RNA interference pathway, indicating that the RNA communication between nematodes and their microbiota may play a critical role. Interestingly, at higher temperatures, fewer animals are needed to trigger DaFNE, suggesting that a mild increase in temperature may promote diapause in natural environments without causing stress to the animals.
Collapse
Affiliation(s)
- Marcela Serey
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Valparaíso Region, Chile
| | - Esteban Retamales
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Valparaíso Region, Chile
| | | | - Gonzalo Riadi
- Department of Bioinformatics, ANID–Millennium Science Initiative Program Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, University of Talca, Talca, Maule Region, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Valparaíso Region, Chile
| | - Juan P. Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Valparaíso Region, Chile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Valparaíso Region, Chile
| |
Collapse
|
2
|
Wu X, Liu H, Guo YR. Insights into Virus-Host Interactions: Lessons from Caenorhabditis elegans-Orsay Virus Model. Curr Med Sci 2025; 45:169-184. [PMID: 40029496 DOI: 10.1007/s11596-025-00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 03/05/2025]
Abstract
The study of virus-host interactions has been significantly advanced using model organisms, with nematodes being a prominent example. Caenorhabditis elegans (C. elegans) nematodes have provided valuable insights into the mechanisms of viral infections, host defense strategies, and the development of antiviral therapies. With the discovery of natural viral pathogens of nematodes, Orsay virus, Le Blanc virus, Santeuil virus, and Mělník virus, the exploration of the virus-host interaction model based on nematodes has entered a new era. The virus-host interaction network consists of viruses, hosts, and the antagonistic effects of viruses on host immunity. The nematode virus-host interaction model is a concrete manifestation used to study the complex relationships among these three elements. Previous studies have indicated that during the entire process of nematode infection by viruses, antiviral RNA interference (RNAi) plays a crucial role. Additionally, the host's innate immune responses, such as the antiviral-specific intracellular pathogen response (IPR) and certain signaling pathways homologous to those in humans, are particularly important in the natural immune and antiviral processes of nematodes. These processes are regulated by multiple genes in the host. The reverse genetics system for Orsay virus has been successfully developed to study viral gene function and virus-host interactions. Nematodes serve as simple host models for understanding RNA virus replication, related cellular components, and virus-host interaction mechanisms. These findings will likely contribute to the development of antiviral treatment strategies based on novel targets.
Collapse
Affiliation(s)
- Xun Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Heng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yusong R Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Krishnan H, Ahmed S, Hubbard SR, Miller WT. Catalytic activities of wild-type C. elegans DAF-2 kinase and dauer-associated mutants. FEBS J 2024; 291:5435-5454. [PMID: 39428852 DOI: 10.1111/febs.17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
DAF-2, the Caenorhabditis elegans insulin-like receptor homolog, regulates larval development, metabolism, stress response, and lifespan. The availability of numerous daf-2 mutant alleles has made it possible to elucidate the genetic mechanisms underlying these physiological processes. The DAF-2 pathway is significantly conserved with the human insulin/IGF-1 signaling pathway; it includes proteins homologous to human IRS, GRB-2, and PI3K, making it an important model to investigate human pathological conditions. We expressed and purified the kinase domain of wild-type DAF-2 to examine the catalytic activity and substrate specificity of the enzyme. Like the human insulin receptor kinase, DAF-2 kinase phosphorylates tyrosines within specific YxN or YxxM motifs, which are important for recruiting downstream effectors. DAF-2 kinase phosphorylated peptides derived from the YxxM and YxN motifs located in the C-terminal extension of the receptor tyrosine kinase, consistent with the idea that the DAF-2 receptor may possess independent signaling capacity. Unlike the human insulin or IGF-1 receptor kinases, DAF-2 kinase was poorly inhibited by the small-molecule inhibitor linsitinib. We also expressed and purified mutant kinases corresponding to daf-2 alleles that result in partial loss-of-function phenotypes in C. elegans. These mutations caused a complete loss of kinase function in vitro. Our biochemical investigations provide new insights into DAF-2 kinase function, and the approach should be useful for studying other mutations to shed light on DAF-2 signaling in C. elegans physiology.
Collapse
Affiliation(s)
- Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
| | - Sultan Ahmed
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NY, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
- Department of Veterans Affairs Medical Center, Northport, NY, USA
| |
Collapse
|
4
|
Corchado JC, Godthi A, Selvarasu K, Prahlad V. Robustness and variability in Caenorhabditis elegans dauer gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608164. [PMID: 39229130 PMCID: PMC11370353 DOI: 10.1101/2024.08.15.608164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Both plasticity and robustness are pervasive features of developmental programs. The dauer in Caenorhabditis elegans is an arrested, hypometabolic alternative to the third larval stage of the nematode. Dauers undergo dramatic tissue remodeling and extensive physiological, metabolic, behavioral, and gene expression changes compared to conspecifics that continue development and can be induced by several adverse environments or genetic mutations that act as independent and parallel inputs into the larval developmental program. Therefore, dauer induction is an example of phenotypic plasticity. However, whether gene expression in dauer larvae induced to arrest development by different genetic or environmental triggers is invariant or varies depending on their route into dauer has not been examined. By using RNA-sequencing to characterize gene expression in different types of dauer larvae and computing the variance and concordance within Gene Ontologies (GO) and gene expression networks, we find that the expression patterns within most pathways are strongly correlated between dauer larvae, suggestive of transcriptional robustness. However, gene expression within specific defense pathways, pathways regulating some morphological traits, and several metabolic pathways differ between the dauer larvae. We speculate that the transcriptional robustness of core dauer pathways allows for the buffering of variation in the expression of genes involved in adaptation, allowing the dauers induced by different stimuli to survive in and exploit different niches.
Collapse
Affiliation(s)
- Johnny Cruz Corchado
- Department of Cell Stress Biology, Roswell Park - Comprehensive Cancer Center, Elm and Carlton Streets, CGP-BLSC L3-307, Buffalo, New York 14263
| | - Abhishiktha Godthi
- Department of Cell Stress Biology, Roswell Park - Comprehensive Cancer Center, Elm and Carlton Streets, CGP-BLSC L3-307, Buffalo, New York 14263
| | - Kavinila Selvarasu
- Department of Cell Stress Biology, Roswell Park - Comprehensive Cancer Center, Elm and Carlton Streets, CGP-BLSC L3-307, Buffalo, New York 14263
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park - Comprehensive Cancer Center, Elm and Carlton Streets, CGP-BLSC L3-307, Buffalo, New York 14263
| |
Collapse
|
5
|
Haque R, Kurien SP, Setty H, Salzberg Y, Stelzer G, Litvak E, Gingold H, Rechavi O, Oren-Suissa M. Sex-specific developmental gene expression atlas unveils dimorphic gene networks in C. elegans. Nat Commun 2024; 15:4273. [PMID: 38769103 PMCID: PMC11106331 DOI: 10.1038/s41467-024-48369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Sex-specific traits and behaviors emerge during development by the acquisition of unique properties in the nervous system of each sex. However, the genetic events responsible for introducing these sex-specific features remain poorly understood. In this study, we create a comprehensive gene expression atlas of pure populations of hermaphrodites and males of the nematode Caenorhabditis elegans across development. We discover numerous differentially expressed genes, including neuronal gene families like transcription factors, neuropeptides, and G protein-coupled receptors. We identify INS-39, an insulin-like peptide, as a prominent male-biased gene expressed specifically in ciliated sensory neurons. We show that INS-39 serves as an early-stage male marker, facilitating the effective isolation of males in high-throughput experiments. Through complex and sex-specific regulation, ins-39 plays pleiotropic sexually dimorphic roles in various behaviors, while also playing a shared, dimorphic role in early life stress. This study offers a comparative sexual and developmental gene expression database for C. elegans. Furthermore, it highlights conserved genes that may underlie the sexually dimorphic manifestation of different human diseases.
Collapse
Affiliation(s)
- Rizwanul Haque
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Sonu Peedikayil Kurien
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Hagar Setty
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yehuda Salzberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Stelzer
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Einav Litvak
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Li R, Xu Y, Wen X, Chen YH, Wang PZ, Zhao JL, Wu PP, Wu JJ, Liu H, Huang JH, Li SJ, Wu ZX. GCY-20 signaling controls suppression of Caenorhabditis elegans egg laying by moderate cold. Cell Rep 2024; 43:113708. [PMID: 38294902 DOI: 10.1016/j.celrep.2024.113708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/19/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Organisms sensing environmental cues and internal states and integrating the sensory information to control fecundity are essential for survival and proliferation. The present study finds that a moderate cold temperature of 11°C reduces egg laying in Caenorhabditis elegans. ASEL and AWC neurons sense the cold via GCY-20 signaling and act antagonistically on egg laying through the ASEL and AWC/AIA/HSN circuits. Upon cold stimulation, ASEL and AWC release glutamate to activate and inhibit AIA interneurons by acting on highly and lowly sensitive ionotropic GLR-2 and GLC-3 receptors, respectively. AIA inhibits HSN motor neuron activity via acetylcholinergic ACR-14 receptor signaling and suppresses egg laying. Thus, ASEL and AWC initiate and reduce the cold suppression of egg laying. ASEL's action on AIA and egg laying dominates AWC's action. The biased opposite actions of these neurons on egg laying provide animals with a precise adaptation of reproductive behavior to environmental temperatures.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wen
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuan-Hua Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ping-Zhou Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Lu Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Piao-Ping Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hao Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Jia Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Easwaran S, Montell DJ. The molecular mechanisms of diapause and diapause-like reversible arrest. Biochem Soc Trans 2023; 51:1847-1856. [PMID: 37800560 PMCID: PMC10657177 DOI: 10.1042/bst20221431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Diapause is a protective mechanism that many organisms deploy to overcome environmental adversities. Diapause extends lifespan and fertility to enhance the reproductive success and survival of the species. Although diapause states have been known and employed for commercial purposes, for example in the silk industry, detailed molecular and cell biological studies are an exciting frontier. Understanding diapause-like protective mechanisms will shed light on pathways that steer organisms through adverse conditions. One hope is that an understanding of the mechanisms that support diapause might be leveraged to extend the lifespan and/or health span of humans as well as species threatened by climate change. In addition, recent findings suggest that cancer cells that persist after treatment mimic diapause-like states, implying that these programs may facilitate cancer cell survival from chemotherapy and cause relapse. Here, we review the molecular mechanisms underlying diapause programs in a variety of organisms, and we discuss pathways supporting diapause-like states in tumor persister cells.
Collapse
Affiliation(s)
- Sreesankar Easwaran
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, U.S.A
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, U.S.A
| |
Collapse
|
8
|
Harris N, Bates SG, Zhuang Z, Bernstein M, Stonemetz JM, Hill TJ, Yu YV, Calarco JA, Sengupta P. Molecular encoding of stimulus features in a single sensory neuron type enables neuronal and behavioral plasticity. Curr Biol 2023; 33:1487-1501.e7. [PMID: 36977417 PMCID: PMC10133190 DOI: 10.1016/j.cub.2023.02.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Neurons modify their transcriptomes in response to an animal's experience. How specific experiences are transduced to modulate gene expression and precisely tune neuronal functions are not fully defined. Here, we describe the molecular profile of a thermosensory neuron pair in C. elegans experiencing different temperature stimuli. We find that distinct salient features of the temperature stimulus, including its duration, magnitude of change, and absolute value, are encoded in the gene expression program in this single neuron type, and we identify a novel transmembrane protein and a transcription factor whose specific transcriptional dynamics are essential to drive neuronal, behavioral, and developmental plasticity. Expression changes are driven by broadly expressed activity-dependent transcription factors and corresponding cis-regulatory elements that nevertheless direct neuron- and stimulus-specific gene expression programs. Our results indicate that coupling of defined stimulus characteristics to the gene regulatory logic in individual specialized neuron types can customize neuronal properties to drive precise behavioral adaptation.
Collapse
Affiliation(s)
- Nathan Harris
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | - Samuel G Bates
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Zihao Zhuang
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Matthew Bernstein
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Jamie M Stonemetz
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Tyler J Hill
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Yanxun V Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - John A Calarco
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON M5S 3G5, Canada
| | - Piali Sengupta
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
9
|
Kandoor A, Fierst J. Dauer fate in a Caenorhabditis elegans Boolean network model. PeerJ 2023; 11:e14713. [PMID: 36710867 PMCID: PMC9879150 DOI: 10.7717/peerj.14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023] Open
Abstract
Cellular fates are determined by genes interacting across large, complex biological networks. A critical question is how to identify causal relationships spanning distinct signaling pathways and underlying organismal phenotypes. Here, we address this question by constructing a Boolean model of a well-studied developmental network and analyzing information flows through the system. Depending on environmental signals Caenorhabditis elegans develop normally to sexual maturity or enter a reproductively delayed, developmentally quiescent 'dauer' state, progressing to maturity when the environment changes. The developmental network that starts with environmental signal and ends in the dauer/no dauer fate involves genes across 4 signaling pathways including cyclic GMP, Insulin/IGF-1, TGF-β and steroid hormone synthesis. We identified three stable motifs leading to normal development, each composed of genes interacting across the Insulin/IGF-1, TGF-β and steroid hormone synthesis pathways. Three genes known to influence dauer fate, daf-2, daf-7 and hsf-1, acted as driver nodes in the system. Using causal logic analysis, we identified a five gene cyclic subgraph integrating the information flow from environmental signal to dauer fate. Perturbation analysis showed that a multifactorial insulin profile determined the stable motifs the system entered and interacted with daf-12 as the switchpoint driving the dauer/no dauer fate. Our results show that complex organismal systems can be distilled into abstract representations that permit full characterization of the causal relationships driving developmental fates. Analyzing organismal systems from this perspective of logic and function has important implications for studies examining the evolution and conservation of signaling pathways.
Collapse
Affiliation(s)
- Alekhya Kandoor
- Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
| | - Janna Fierst
- Biomolecular Sciences Institute and Department of Biology, Florida International University, Miami, FL, United States of America
| |
Collapse
|
10
|
Harris N, Bates S, Zhuang Z, Bernstein M, Stonemetz J, Hill T, Yu YV, Calarco JA, Sengupta P. Molecular encoding of stimulus features in a single sensory neuron type enables neuronal and behavioral plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525070. [PMID: 36711719 PMCID: PMC9882311 DOI: 10.1101/2023.01.22.525070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neurons modify their transcriptomes in response to an animal’s experience. How specific experiences are transduced to modulate gene expression and precisely tune neuronal functions are not fully defined. Here, we describe the molecular profile of a thermosensory neuron pair in C. elegans experiencing different temperature stimuli. We find that distinct salient features of the temperature stimulus including its duration, magnitude of change, and absolute value are encoded in the gene expression program in this single neuron, and identify a novel transmembrane protein and a transcription factor whose specific transcriptional dynamics are essential to drive neuronal, behavioral, and developmental plasticity. Expression changes are driven by broadly expressed activity-dependent transcription factors and corresponding cis -regulatory elements that nevertheless direct neuron- and stimulus-specific gene expression programs. Our results indicate that coupling of defined stimulus characteristics to the gene regulatory logic in individual specialized neuron types can customize neuronal properties to drive precise behavioral adaptation.
Collapse
Affiliation(s)
- Nathan Harris
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Samuel Bates
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Zihao Zhuang
- Department of Biology, Brandeis University, Waltham, MA, USA
- Current address: Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | | | - Jamie Stonemetz
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Tyler Hill
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - John A. Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
11
|
Ermakova G, Hou C, Boudreau J, Bendena WG, Chin-Sang ID. Characterizing Variants of Unknown Significance of the PTEN tumour suppressorHomolog DAF-18. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000689. [PMID: 36530472 PMCID: PMC9748723 DOI: 10.17912/micropub.biology.000689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Insulin and insulin-like growth factor signaling (IIS) is an anabolic pathway conserved among humans and Caenorhabditis elegans . In humans, the tumour suppressor protein Phosphatase and Tensin Homolog (PTEN) inhibits IIS, preventing excessive growth. PTEN variants are associated with disease, but how they affect PTEN function is not well understood. Here, we characterized variants of unknown significance (VUSs) implicated in autism spectrum disorder by studying homologous mutations in the C. elegans protein DAF-18 to infer how they play a role in human disease.We found that variants D66E and L115V are likely benign, H168Q is intermediate while variants H138R and T176I are likely pathogenic.
Collapse
Affiliation(s)
| | - Chadwick Hou
- Queen’s University, Department of Biology, Kingston ON Canada
| | | | | | - Ian D Chin-Sang
- Queen’s University, Department of Biology, Kingston ON Canada
| |
Collapse
|
12
|
Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost. Nat Commun 2022; 13:6339. [PMID: 36284093 PMCID: PMC9596710 DOI: 10.1038/s41467-022-33850-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Twenty-nine years following the breakthrough discovery that a single-gene mutation of daf-2 doubles Caenorhabditis elegans lifespan, it remains unclear where this insulin/IGF-1 receptor gene is expressed and where it acts to regulate ageing. Using knock-in fluorescent reporters, we determined that daf-2 and its downstream transcription factor daf-16 are expressed ubiquitously. Using tissue-specific targeted protein degradation, we determined that intracellular DAF-2-to-DAF-16 signaling in the intestine plays a major role in lifespan regulation, while that in the hypodermis, neurons, and germline plays a minor role. Notably, intestine-specific loss of DAF-2 activates DAF-16 in and outside the intestine, causes almost no adverse effects on development and reproduction, and extends lifespan by 94% in a way that partly requires non-intestinal DAF-16. Consistent with intestine supplying nutrients to the entire body, evidence from this and other studies suggests that altered metabolism, particularly down-regulation of protein and RNA synthesis, mediates longevity by reduction of insulin/IGF-1 signaling.
Collapse
|
13
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
14
|
Miyazaki S, Kawano T, Yanagisawa M, Hayashi Y. Intracellular Ca2+ dynamics in the ALA neuron reflect sleep pressure and regulate sleep in Caenorhabditis elegans. iScience 2022; 25:104452. [PMID: 35707721 PMCID: PMC9189131 DOI: 10.1016/j.isci.2022.104452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/03/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
The mechanisms underlying sleep homeostasis are poorly understood. The nematode Caenorhabditis elegans exhibits 2 types of sleep: lethargus, or developmentally timed, and stress-induced sleep. Lethargus is characterized by alternating cycles of sleep and motion bouts. Sleep bouts are homeostatically regulated, i.e., prolonged active bouts lead to prolonged sleep bouts. Here we reveal that the interneuron ALA is crucial for homeostatic regulation during lethargus. Intracellular Ca2+ in ALA gradually increased during active bouts and rapidly decayed upon transitions to sleep bouts. Longer active bouts were accompanied by higher intracellular Ca2+ peaks. Optogenetic activation of ALA during active bouts caused transitions to sleep bouts. Dysfunction of CEH-17, which is an LIM homeodomain transcription factor selectively expressed in ALA, impaired the characteristic patterns of ALA intracellular Ca2+ and abolished the homeostatic regulation of sleep bouts. These findings indicate that ALA encodes sleep pressure and contributes to sleep homeostasis. ALA gradually increases its activity during motion bouts during lethargus in C. elegans Dysfunction or artificial activation of ALA perturbs the sleep structure ALA plays a crucial role in homeostatic sleep regulation
Collapse
Affiliation(s)
- Shinichi Miyazaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Taizo Kawano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 603-8363, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Corresponding author
| |
Collapse
|
15
|
Zhang MG, Sternberg PW. Both entry to and exit from diapause arrest in Caenorhabditis elegans are regulated by a steroid hormone pathway. Development 2022; 149:274989. [PMID: 35394033 PMCID: PMC9148571 DOI: 10.1242/dev.200173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/24/2022] [Indexed: 11/20/2022]
Abstract
Diapause arrest in animals such as Caenorhabditis elegans is tightly regulated so that animals make appropriate developmental decisions amidst environmental challenges. Fully understanding diapause requires mechanistic insight of both entry and exit from the arrested state. Although a steroid hormone pathway regulates the entry decision into C. elegans dauer diapause, its role in the exit decision is less clear. A complication to understanding steroid hormonal regulation of dauer has been the peculiar fact that steroid hormone mutants such as daf-9 form partial dauers under normal growth conditions. Here, we corroborate previous findings that daf-9 mutants remain capable of forming full dauers under unfavorable growth conditions and establish that the daf-9 partial dauer state is likely a partially exited dauer that has initiated but cannot complete the dauer exit process. We show that the steroid hormone pathway is both necessary for and promotes complete dauer exit, and that the spatiotemporal dynamics of steroid hormone regulation during dauer exit resembles that of dauer entry. Overall, dauer entry and dauer exit are distinct developmental decisions that are both controlled by steroid hormone signaling. Summary: In animals such as Caenorhabditis elegans, a steroid hormone pathway controls both the entry and exit decisions into and out of the developmentally arrested dauer state in response to environmental signaling.
Collapse
Affiliation(s)
- Mark G. Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
16
|
Jofré DM, Hoffman DK, Cervino AS, Hahn GM, Grundy M, Yun S, Amrit FRG, Stolz DB, Godoy LF, Salvatore E, Rossi FA, Ghazi A, Cirio MC, Yanowitz JL, Hochbaum D. The CHARGE syndrome ortholog CHD-7 regulates TGF-β pathways in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2022; 119:e2109508119. [PMID: 35394881 PMCID: PMC9169646 DOI: 10.1073/pnas.2109508119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
CHARGE syndrome is a complex developmental disorder caused by mutations in the chromodomain helicase DNA-binding protein-7 (CHD7) and characterized by retarded growth and malformations in the heart and nervous system. Despite the public health relevance of this disorder, relevant cellular pathways and targets of CHD7 that relate to disease pathology are still poorly understood. Here we report that chd-7, the nematode ortholog of Chd7, is required for dauer morphogenesis, lifespan determination, stress response, and body size determination. Consistent with our discoveries, we found chd-7 to be allelic to scd-3, a previously identified dauer suppressor from the DAF-7/ tumor growth factor-β (TGF-β) pathway. Epistatic analysis places CHD-7 at the level of the DAF-3/DAF-5 complex, but we found that CHD-7 also directly impacts the expression of multiple components of this pathway. Transcriptomic analysis revealed that chd-7 mutants fail to repress daf-9 for execution of the dauer program. In addition, CHD-7 regulates the DBL-1/BMP pathway components and shares roles in male tail development and cuticle synthesis. To explore a potential conserved function for chd-7 in vertebrates, we used Xenopus laevis embryos, an established model to study craniofacial development. Morpholino-mediated knockdown of Chd7 led to a reduction in col2a1 messenger RNA (mRNA) levels, a collagen whose expression depends on TGF-β signaling. Both embryonic lethality and craniofacial defects in Chd7-depleted tadpoles were partially rescued by overexpression of col2a1 mRNA. We suggest that Chd7 has conserved roles in regulation of the TGF-β signaling pathway and pathogenic Chd7 could lead to a defective extracellular matrix deposition.
Collapse
Affiliation(s)
- Diego M. Jofré
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | | | - Ailen S. Cervino
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Gabriella M. Hahn
- Interdisciplinary Biomedical Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | - Sijung Yun
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Francis R. G. Amrit
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Donna B. Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA 15213
| | - Luciana F. Godoy
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Esteban Salvatore
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Fabiana A. Rossi
- Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Austral, B1630 Pilar, Argentina
| | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Cell Biology & Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - M. Cecilia Cirio
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Judith L. Yanowitz
- Magee-Womens Research Institute, Pittsburgh, PA 15213
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Daniel Hochbaum
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| |
Collapse
|
17
|
Dogra D, Kulalert W, Schroeder FC, Kim DH. Neuronal KGB-1 JNK MAPK signaling regulates the dauer developmental decision in response to environmental stress in Caenorhabditis elegans. Genetics 2022; 220:iyab186. [PMID: 34726729 PMCID: PMC8733477 DOI: 10.1093/genetics/iyab186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/15/2021] [Indexed: 11/14/2022] Open
Abstract
In response to stressful growth conditions of high population density, food scarcity, and elevated temperature, young larvae of nematode Caenorhabditis elegans can enter a developmentally arrested stage called dauer that is characterized by dramatic anatomic and metabolic remodeling. Genetic analysis of dauer formation of C. elegans has served as an experimental paradigm for the identification and characterization of conserved neuroendocrine signaling pathways. Here, we report the identification and characterization of a conserved c-Jun N-terminal Kinase-like mitogen-activated protein kinase (MAPK) pathway that is required for dauer formation in response to environmental stressors. We observed that loss-of-function mutations in the MLK-1-MEK-1-KGB-1 MAPK pathway suppress dauer entry. A loss-of-function mutation in the VHP-1 MAPK phosphatase, a negative regulator of KGB-1 signaling, results in constitutive dauer formation, which is dependent on the presence of dauer pheromone but independent of diminished food levels or elevated temperatures. Our data suggest that the KGB-1 pathway acts in the sensory neurons, in parallel to established insulin and TGF-β signaling pathways, to transduce the dauer-inducing environmental cues of diminished food levels and elevated temperature.
Collapse
Affiliation(s)
- Deepshikha Dogra
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Warakorn Kulalert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dennis H Kim
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Vlaar LE, Bertran A, Rahimi M, Dong L, Kammenga JE, Helder J, Goverse A, Bouwmeester HJ. On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. Parasit Vectors 2021; 14:554. [PMID: 34706780 PMCID: PMC8555053 DOI: 10.1186/s13071-021-04953-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Nematodes are presumably the most abundant Metazoa on Earth, and can even be found in some of the most hostile environments of our planet. Various types of hypobiosis evolved to adapt their life cycles to such harsh environmental conditions. The five most distal major clades of the phylum Nematoda (Clades 8-12), formerly referred to as the Secernentea, contain many economically relevant parasitic nematodes. In this group, a special type of hypobiosis, dauer, has evolved. The dauer signalling pathway, which culminates in the biosynthesis of dafachronic acid (DA), is intensively studied in the free-living nematode Caenorhabditis elegans, and it has been hypothesized that the dauer stage may have been a prerequisite for the evolution of a wide range of parasitic lifestyles among other nematode species. Biosynthesis of DA is not specific for hypobiosis, but if it results in exit of the hypobiotic state, it is one of the main criteria to define certain behaviour as dauer. Within Clades 9 and 10, the involvement of DA has been validated experimentally, and dauer is therefore generally accepted to occur in those clades. However, for other clades, such as Clade 12, this has hardly been explored. In this review, we provide clarity on the nomenclature associated with hypobiosis and dauer across different nematological subfields. We discuss evidence for dauer-like stages in Clades 8 to 12 and support this with a meta-analysis of available genomic data. Furthermore, we discuss indications for a simplified dauer signalling pathway in parasitic nematodes. Finally, we zoom in on the host cues that induce exit from the hypobiotic stage and introduce two hypotheses on how these signals might feed into the dauer signalling pathway for plant-parasitic nematodes. With this work, we contribute to the deeper understanding of the molecular mechanisms underlying hypobiosis in parasitic nematodes. Based on this, novel strategies for the control of parasitic nematodes can be developed.
Collapse
Affiliation(s)
- Lieke E Vlaar
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Andre Bertran
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Mehran Rahimi
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Thomas MJ, Cassidy ER, Robinson DS, Walstrom KM. Kinetic characterization and thermostability of C. elegans cytoplasmic and mitochondrial malate dehydrogenases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1870:140722. [PMID: 34619358 DOI: 10.1016/j.bbapap.2021.140722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Malate dehydrogenase (MDH) catalyzes the conversion of NAD+ and malate to NADH and oxaloacetate in the citric acid cycle. Eukaryotes have one MDH isozyme that is imported into the mitochondria and one in the cytoplasm. We overexpressed and purified Caenorhabditis elegans cytoplasmic MDH-1 and mitochondrial MDH-2 in E. coli. Our goal was to compare the kinetic and structural properties of these enzymes because C. elegans can survive adverse environmental conditions, such as lack of food and elevated temperatures. In steady-state enzyme kinetics assays, we measured KM values for oxaloacetate of 54 and 52 μM and KM values for NADH of 61 and 107 μM for MDH-1 and MDH-2, respectively. We partially purified endogenous MDH-1 and MDH-2 from a mixed population of worms and separated them using anion exchange chromatography. Both endogenous enzymes had a KM for oxaloacetate similar to that of the corresponding recombinant enzyme. Recombinant MDH-1 and MDH-2 had maximum activity at 40 °C and 35 °C, respectively. In a thermotolerance assay, MDH-1 was much more thermostable than MDH-2. Protein homology modeling predicted that MDH-1 had more intersubunit salt-bridges than mammalian MDH1 enzymes, and these ionic interactions may contribute to its thermostability. In contrast, the MDH-2 homology model predicted fewer intersubunit ionic interactions compared to mammalian MDH2 enzymes. These results suggest that the increased stability of MDH-1 may facilitate its ability to remain active in adverse environmental conditions. In contrast, MDH-2 may use other strategies, such as protein binding partners, to function under similar conditions.
Collapse
Affiliation(s)
- Matthew J Thomas
- Department of Natural Sciences, State College of Florida, Bradenton, FL 34207, USA
| | - Emma R Cassidy
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA
| | - Devin S Robinson
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA
| | | |
Collapse
|
20
|
Hwang HY, Wang J. Fast genetic mapping using insertion-deletion polymorphisms in Caenorhabditis elegans. Sci Rep 2021; 11:11017. [PMID: 34040027 PMCID: PMC8155061 DOI: 10.1038/s41598-021-90190-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/07/2021] [Indexed: 11/09/2022] Open
Abstract
Genetic mapping is used in forward genetics to narrow the list of candidate mutations and genes corresponding to the mutant phenotype of interest. Even with modern advances in biology such as efficient identification of candidate mutations by whole-genome sequencing, mapping remains critical in pinpointing the responsible mutation. Here we describe a simple, fast, and affordable mapping toolkit that is particularly suitable for mapping in Caenorhabditis elegans. This mapping method uses insertion-deletion polymorphisms or indels that could be easily detected instead of single nucleotide polymorphisms in commonly used Hawaiian CB4856 mapping strain. The materials and methods were optimized so that mapping could be performed using tiny amount of genetic material without growing many large populations of mutants for DNA purification. We performed mapping of previously known and unknown mutations to show strengths and weaknesses of this method and to present examples of completed mapping. For situations where Hawaiian CB4856 is unsuitable, we provide an annotated list of indels as a basis for fast and easy mapping using other wild isolates. Finally, we provide rationale for using this mapping method over other alternatives as a part of a comprehensive strategy also involving whole-genome sequencing and other methods.
Collapse
Affiliation(s)
- Ho-Yon Hwang
- Department of Biochemistry and Molecular Biology, Department of Neuroscience, Johns Hopkins University, 615 N. Wolfe Street, E8410, Baltimore, MD, 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Department of Neuroscience, Johns Hopkins University, 615 N. Wolfe Street, E8410, Baltimore, MD, 21205, USA.
| |
Collapse
|
21
|
Aslanidi KB, Kharakoz DP. Limits of temperature adaptation and thermopreferendum. Cell Biosci 2021; 11:69. [PMID: 33823918 PMCID: PMC8025563 DOI: 10.1186/s13578-021-00574-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Managing the limits of temperature adaptation is relevant both in medicine and in biotechnology. There are numerous scattered publications on the identification of the temperature limits of existence for various organisms and using different methods. Dmitry Petrovich Kharakoz gave a general explanation for many of these experimental results. The hypothesis implied that each cycle of synaptic exocytosis includes reversible phase transitions of lipids of the presynaptic membrane due to the entry and subsequent removal of calcium ions from the synaptic terminal. The correspondence of the times of phase transitions has previously been experimentally shown on isolated lipids in vitro. In order to test the hypothesis of D.P. Kharakoz in vivo, we investigated the influence of the temperature of long-term acclimatization on the temperature of heat and cold shock, as well as on the kinetics of temperature adaptation in zebrafish. Testing the hypothesis included a comparison of our experimental results with the results of other authors obtained on various models from invertebrates to humans. RESULTS The viability polygon for Danio rerio was determined by the minimum temperature of cold shock (about 6 °C), maximum temperature of heat shock (about 43 °C), and thermopreferendum temperature (about 27 °C). The ratio of the temperature range of cold shock to the temperature range of heat shock was about 1.3. These parameters obtained for Danio rerio describe with good accuracy those for the planarian Girardia tigrina, the ground squirrel Sermophilus undulatus, and for Homo sapiens. CONCLUSIONS The experimental values of the temperatures of cold shock and heat shock and the temperature of the thermal preferendum correspond to the temperatures of phase transitions of the lipid-protein composition of the synaptic membrane between the liquid and solid states. The viability range for zebrafish coincides with the temperature range, over which enzymes function effectively and also coincides with the viability polygons for the vast majority of organisms. The boundaries of the viability polygon are characteristic biological constants. The viability polygon of a particular organism is determined not only by the genome, but also by the physicochemical properties of lipids that make up the membrane structures of synaptic endings. The limits of temperature adaptation of any biological species are determined by the temperature range of the functioning of its nervous system.
Collapse
Affiliation(s)
- K B Aslanidi
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia, 142290.
| | - D P Kharakoz
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia, 142290
| |
Collapse
|
22
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
23
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
24
|
Ellis RE. Evolution: A Developmental Tradeoff that Wins in Changing Environments. Curr Biol 2020; 30:R1314-R1316. [DOI: 10.1016/j.cub.2020.08.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Billard B, Vigne P, Braendle C. A Natural Mutational Event Uncovers a Life History Trade-Off via Hormonal Pleiotropy. Curr Biol 2020; 30:4142-4154.e9. [PMID: 32888477 DOI: 10.1016/j.cub.2020.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
Environmental signals often control central life history decisions, including the choice between reproduction and somatic maintenance. Such adaptive developmental plasticity occurs in the nematode Caenorhabditis elegans, where environmental cues govern whether larvae will develop directly into reproducing adults or arrest their development to become stress-resistant dauer larvae. Here, we identified a natural variant underlying enhanced sensitivity to dauer-inducing cues in C. elegans: a 92-bp deletion in the cis-regulatory region of the gene eak-3. This deletion reduces synthesis or activity of the steroid hormone dafachronic acid (DA), thereby increasing environmental sensitivity for dauer induction. Consistent with known pleiotropic roles of DA, this eak-3 variant significantly slows down reproductive growth. We experimentally show that, although the eak-3 deletion can provide a fitness advantage through facilitated dauer production in stressful environments, this allele becomes rapidly outcompeted in favorable environments. The identified eak-3 variant therefore reveals a trade-off in how hormonal responses influence both the pace of developmental timing and the way in which environmental sensitivity controls adaptive plasticity. Together, our results show how a single mutational event altering hormonal signaling can lead to the emergence of a complex life history trade-off.
Collapse
Affiliation(s)
| | - Paul Vigne
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | | |
Collapse
|
26
|
Ke T, Antunes Soares FA, Santamaría A, Bowman AB, Skalny AV, Aschner M. N,N' bis-(2-mercaptoethyl) isophthalamide induces developmental delay in Caenorhabditis elegans by promoting DAF-16 nuclear localization. Toxicol Rep 2020; 7:930-937. [PMID: 32793422 PMCID: PMC7406974 DOI: 10.1016/j.toxrep.2020.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022] Open
Abstract
NBMI induces developmental delays in C. elegans. The nuclear translocation of DAF-16 is involved in the developmental effects of NBMI. NBMI represses the expression of detoxifying genes (skn-1, gst-4 and gcs-1).
N,N’ bis-(2-mercaptoethyl) isophthalamide (NBMI) is a lipophilic thiol-containing agent that has high affinity for toxic metal ions, such as Hg2+, Pb2+, and Cd2+. Studies have shown that NBMI is a potent chelator of heavy metals, yet its potential toxicity in animals has yet to be determined. Using the model organism Caenorhabditis elegans (C. elegans), we show no significant change in worms’ death rate or lifespan following NBMI treatment (10−1000 μM). However, NBMI treatment was associated with a significant developmental delay. To determine if the daf-2/age-1/daf-16 pathway is involved in NBMI toxicity, mRNA levels of these genes were assessed in worms treated with NBMI. Here, we found that while NBMI failed to significantly alter the expression of daf-16 or daf-2; age-1 was significantly downregulated by NBMI. Furthermore, NBMI significantly increased DAF-16 nuclear localization. Consistent with a role for this pathway in NBMI toxicity, the developmental arrest by NBMI was more prominent in the DAF-16 transgenic strain than in the wild type N2 strain. Moreover, in the mutant strains harboring null alleles of daf-16, NBMI had no effect on development. In addition, NBMI repressed the expression of detoxifying genes (skn-1, gst-4 and gcs-1). In summary, NBMI has a low developmental toxicity in the C. elegans model, and the nuclear translocation of DAF-16 is involved in the developmental effect of NBMI.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | | | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States
| | - Anatoly V Skalny
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl 150000, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| |
Collapse
|
27
|
Chemosensory mechanisms of host seeking and infectivity in skin-penetrating nematodes. Proc Natl Acad Sci U S A 2020; 117:17913-17923. [PMID: 32651273 DOI: 10.1073/pnas.1909710117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Approximately 800 million people worldwide are infected with one or more species of skin-penetrating nematodes. These parasites persist in the environment as developmentally arrested third-stage infective larvae (iL3s) that navigate toward host-emitted cues, contact host skin, and penetrate the skin. iL3s then reinitiate development inside the host in response to sensory cues, a process called activation. Here, we investigate how chemosensation drives host seeking and activation in skin-penetrating nematodes. We show that the olfactory preferences of iL3s are categorically different from those of free-living adults, which may restrict host seeking to iL3s. The human-parasitic threadworm Strongyloides stercoralis and hookworm Ancylostoma ceylanicum have highly dissimilar olfactory preferences, suggesting that these two species may use distinct strategies to target humans. CRISPR/Cas9-mediated mutagenesis of the S. stercoralis tax-4 gene abolishes iL3 attraction to a host-emitted odorant and prevents activation. Our results suggest an important role for chemosensation in iL3 host seeking and infectivity and provide insight into the molecular mechanisms that underlie these processes.
Collapse
|
28
|
A DAF-3 co-Smad molecule functions in Haemonchus contortus development. Parasit Vectors 2019; 12:609. [PMID: 31881930 PMCID: PMC6935219 DOI: 10.1186/s13071-019-3855-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/16/2019] [Indexed: 11/10/2022] Open
Abstract
Background The Smad proteins function in TGF-β signalling transduction. In the model nematode Caenorhabditis elegans, the co-Smad, DAF-3 mediates R-Smads and performs a central role in DAF-7 signal transduction, regulating dauer formation and reproductive processes. Considering the divergent evolutionary patterns of the DAF-7 signalling pathway in parasitic nematodes, it is meaningful to explore the structure and function of DAF-3 in parasitic nematodes, such as Haemonchus contortus. Methods A daf-3 gene (Hc-daf-3) and its predicted product (Hc-DAF-3) were identified from H. contortus and characterised using integrated genomic and genetic approaches. In addition to immunohistochemistry employed to localise Hc-DAF-3 within adult worm sections, real-time PCR was conducted to assess the transcriptional profiles in different developmental stages of H. contortus and RNA interference (RNAi) was performed in vitro to assess the functional importance of Hc-daf-3 in the development of H. contortus. Results Hc-DAF-3 sequences predicted from Hc-daf-3 displayed typical features of the co-Smad subfamily. The native Hc-DAF-3 was localised to the gonad and cuticle of adult parasites. In addition, Hc-daf-3 was transcribed in all developmental stages studied, with a higher level in the third-stage larvae (L3) and adult females. Moreover, silencing Hc-daf-3 by RNAi retarded L4 development. Conclusion The findings of the present study demonstrated an important role of Hc-DAF-3 in the development of H. contortus larvae.
Collapse
|
29
|
Marks ND, Winter AD, Gu HY, Maitland K, Gillan V, Ambroz M, Martinelli A, Laing R, MacLellan R, Towne J, Roberts B, Hanks E, Devaney E, Britton C. Profiling microRNAs through development of the parasitic nematode Haemonchus identifies nematode-specific miRNAs that suppress larval development. Sci Rep 2019; 9:17594. [PMID: 31772378 PMCID: PMC6879476 DOI: 10.1038/s41598-019-54154-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Parasitic nematodes transition between dramatically different free-living and parasitic stages, with correctly timed development and migration crucial to successful completion of their lifecycle. However little is known of the mechanisms controlling these transitions. microRNAs (miRNAs) negatively regulate gene expression post-transcriptionally and regulate development of diverse organisms. Here we used microarrays to determine the expression profile of miRNAs through development and in gut tissue of the pathogenic nematode Haemonchus contortus. Two miRNAs, mir-228 and mir-235, were enriched in infective L3 larvae, an arrested stage analogous to Caenorhabditis elegans dauer larvae. We hypothesized that these miRNAs may suppress development and maintain arrest. Consistent with this, inhibitors of these miRNAs promoted H. contortus development from L3 to L4 stage, while genetic deletion of C. elegans homologous miRNAs reduced dauer arrest. Epistasis studies with C. elegans daf-2 mutants showed that mir-228 and mir-235 synergise with FOXO transcription factor DAF-16 in the insulin signaling pathway. Target prediction suggests that these miRNAs suppress metabolic and transcription factor activity required for development. Our results provide novel insight into the expression and functions of specific miRNAs in regulating nematode development and identify miRNAs and their target genes as potential therapeutic targets to limit parasite survival within the host.
Collapse
Affiliation(s)
- Neil D Marks
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Alan D Winter
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
- West of Scotland Genetic Services, Level 2B, Laboratory Medicine, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, UK
| | - Henry Y Gu
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Kirsty Maitland
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Victoria Gillan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Martin Ambroz
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Axel Martinelli
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10, Kita-ku, Sapporo, Japan
| | - Roz Laing
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Rachel MacLellan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Jessica Towne
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Brett Roberts
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University Avenue, Glasgow, G12 8QQ, UK
| | - Eve Hanks
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| | - Collette Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
30
|
Biology is the root of variability: cautionary tales in Caenorhabditis elegans biology. Biochem Soc Trans 2019; 47:887-896. [PMID: 31127069 DOI: 10.1042/bst20190001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022]
Abstract
Abstract
Reproducibility is critical for the standardization, interpretation, and progression of research. However, many factors increase variability and reduce reproducibility. In Caenorhabditis elegans research, there are many possible causes of variability that may explain why experimental outcomes sometimes differ between laboratories and between experiments. Factors contributing to experimental variability include the genetic background of both C. elegans and its bacterial diet, differences in media composition, intergenerational and transgenerational effects that may be carried over for generations, and the use of chemicals or reagents that may have unexpected consequences. This review summarizes sources of variability in C. elegans research and serves to identify laboratory practices that could influence reproducibility.
Collapse
|
31
|
Caneo M, Julian V, Byrne AB, Alkema MJ, Calixto A. Diapause induces functional axonal regeneration after necrotic insult in C. elegans. PLoS Genet 2019; 15:e1007863. [PMID: 30640919 PMCID: PMC6347329 DOI: 10.1371/journal.pgen.1007863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 01/25/2019] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Many neurons are unable to regenerate after damage. The ability to regenerate after an insult depends on life stage, neuronal subtype, intrinsic and extrinsic factors. C. elegans is a powerful model to test the genetic and environmental factors that affect axonal regeneration after damage, since its axons can regenerate after neuronal insult. Here we demonstrate that diapause promotes the complete morphological regeneration of truncated touch receptor neuron (TRN) axons expressing a neurotoxic MEC-4(d) DEG/ENaC channel. Truncated axons of different lengths were repaired during diapause and we observed potent axonal regrowth from somas alone. Complete morphological regeneration depends on DLK-1 but neuronal sprouting and outgrowth is DLK-1 independent. We show that TRN regeneration is fully functional since animals regain their ability to respond to mechanical stimulation. Thus, diapause induced regeneration provides a simple model of complete axonal regeneration which will greatly facilitate the study of environmental and genetic factors affecting the rate at which neurons die.
Collapse
Affiliation(s)
- Mauricio Caneo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago de Chile, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Victoria Julian
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Alexandra B. Byrne
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Mark J. Alkema
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Andrea Calixto
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago de Chile, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- * E-mail: ,
| |
Collapse
|
32
|
Abstract
Dauer diapause is a stress-resistant, developmentally quiescent, and long-lived larval stage adopted by Caenorhabditis elegans when conditions are unfavorable for growth and reproduction. This chapter contains methods to induce dauer larva formation, to isolate dauer larvae, and to study pre- and post-dauer stages.
Collapse
Affiliation(s)
- Xantha Karp
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859 USA
| |
Collapse
|
33
|
de Souza TAJ, Pereira TC. Caenorhabditis elegans Tolerates Hyperaccelerations up to 400,000 x g. ASTROBIOLOGY 2018; 18:825-833. [PMID: 29746159 DOI: 10.1089/ast.2017.1802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
One of the most important laboratory animal species is the nematode Caenorhabditis elegans, which has been used in a range of research fields such as neurobiology, body development, and molecular biology. The scientific progress obtained by employing C. elegans as a model in these areas has encouraged its use in new fields. One of the new potential applications concerns the biological responses to hyperacceleration stress (g-force), but only a few studies have evaluated the response of multicellular organisms to extreme hypergravity conditions at the order of magnitude 105 x g, which is the theorized force experienced by rocks ejected from Mars (or similar planets). Therefore, we subjected the nematode C. elegans to 400,000 x g (equivalent to that force) and evaluated viability, general morphology, and behavior of C. elegans after exposure to this stress. The metabolic activity of this nematode in response to the gravitational spectrum of 50-400,000 x g was also evaluated by means of the MTT assay. Surprisingly, we found that this organism showed no decrease in viability, no changes in behavior and development, and no drastic metabolic depression after hyperacceleration. Thus, we demonstrated for the first time that this multicellular research model can withstand extremely high g-forces, which prompts the use of C. elegans as a new model for extreme hypergravity. Key Words: Caenorhabditis elegans-Hypergravity-Ultracentrifugation-Acceleration-Panspermia-Astrobiology. Astrobiology 18, 825-833.
Collapse
Affiliation(s)
- Tiago Alves Jorge de Souza
- 1 Department of Genetics, Graduate Program in Genetics, FMRP, University of São Paulo , Ribeirao Preto, Brazil
- 2 Department of Biology, FFCLRP, University of São Paulo , Ribeirao Preto, Brazil
| | - Tiago Campos Pereira
- 1 Department of Genetics, Graduate Program in Genetics, FMRP, University of São Paulo , Ribeirao Preto, Brazil
- 2 Department of Biology, FFCLRP, University of São Paulo , Ribeirao Preto, Brazil
| |
Collapse
|
34
|
Zhang Z, Shen Y, Luo H, Zhang F, Peng D, Jing L, Wu Y, Xia X, Song Y, Li W, Jin L. MANF protects dopamine neurons and locomotion defects from a human α-synuclein induced Parkinson's disease model in C. elegans by regulating ER stress and autophagy pathways. Exp Neurol 2018; 308:59-71. [PMID: 29959908 DOI: 10.1016/j.expneurol.2018.06.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/03/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
Many studies have demonstrated that mesencephalic astrocyte-derived neurotrophic factor (MANF) has been shown protective effects on neurotoxin based models of Parkinson's disease (PD). It still remains unclear whether MANF can rescue dopaminergic (DA) neurons in an α-synuclein model. Glial cell line-derived neurotrophic factor (GDNF) and its related neurturin (NRTN) can protect DA neurons in the neurotoxin but not α-synuclein animal models of PD, it failed in the clinical trials. Since α-synuclein model can better mimic the progression of human PD, in our study we overexpressed MANF specifically in DA neurons by using an α-synuclein Caenorhabditis elegans (C. elegans) model. Our results showed MANF alleviated progressive neuronal degeneration and prevented locomotion defects. Indeed, MANF can protect cilia of DA neurons at an early stage, suggested that MANF participated in the whole process of neuronal degeneration. Furthermore, we found MANF facilitated the removal of misfolded α-synuclein proteins and rescued the function of damaged DA neurons. By using RNAi approach, we inhibited ER stress and autophagy related genes and effects of MANF were decreased, which demonstrated ER stress and autophagy pathways were involved in the MANF-mediated neuroprotection. Our study suggests MANF exhibits potential as a neuroprotective agent for PD therapy.
Collapse
Affiliation(s)
- Zhuoyu Zhang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, People's Republic of China
| | - Yijue Shen
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, People's Republic of China
| | - Hang Luo
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, People's Republic of China
| | - Fen Zhang
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Dan Peng
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Li Jing
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Yuanyuan Wu
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Xiaofei Xia
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Yunping Song
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Wei Li
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, People's Republic of China; School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China.
| | - Lingjing Jin
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, People's Republic of China.
| |
Collapse
|
35
|
O’Donnell MP, Chao PH, Kammenga JE, Sengupta P. Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLoS Genet 2018; 14:e1007213. [PMID: 29415022 PMCID: PMC5819832 DOI: 10.1371/journal.pgen.1007213] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/20/2018] [Accepted: 01/22/2018] [Indexed: 01/03/2023] Open
Abstract
Animals integrate external cues with information about internal conditions such as metabolic state to execute the appropriate behavioral and developmental decisions. Information about food quality and quantity is assessed by the intestine and transmitted to modulate neuronal functions via mechanisms that are not fully understood. The conserved Target of Rapamycin complex 2 (TORC2) controls multiple processes in response to cellular stressors and growth factors. Here we show that TORC2 coordinates larval development and adult behaviors in response to environmental cues and feeding state in the bacterivorous nematode C. elegans. During development, pheromone, bacterial food, and temperature regulate expression of the daf-7 TGF-β and daf-28 insulin-like peptide in sensory neurons to promote a binary decision between reproductive growth and entry into the alternate dauer larval stage. We find that TORC2 acts in the intestine to regulate neuronal expression of both daf-7 and daf-28, which together reflect bacterial-diet dependent feeding status, thus providing a mechanism for integration of food signals with external cues in the regulation of neuroendocrine gene expression. In the adult, TORC2 similarly acts in the intestine to modulate food-regulated foraging behaviors via a PDF-2/PDFR-1 neuropeptide signaling-dependent pathway. We also demonstrate that genetic variation affects food-dependent larval and adult phenotypes, and identify quantitative trait loci (QTL) associated with these traits. Together, these results suggest that TORC2 acts as a hub for communication of feeding state information from the gut to the brain, thereby contributing to modulation of neuronal function by internal state. Decision-making in all animals, including humans, involves weighing available information about the external environment as well as the animals’ internal conditions. Information about the environment is obtained via the sensory nervous system, whereas internal state can be assessed via cues such as levels of hormones or nutrients. How multiple external and internal inputs are processed in the nervous system to drive behavior or development is not fully understood. In this study, we examine how the nematode C. elegans integrates dietary information received by the gut with environmental signals to alter nervous system function. We have found that a signaling complex, called TORC2, acts in the gut to relay nutrition signals to alter hormonal signaling by the nervous system in C. elegans. Altered neuronal signaling in turn affects a food-dependent binary developmental decision in larvae, as well as food-dependent foraging behaviors in adults. Our results provide a mechanism by which animals prioritize specific signals such as feeding status to appropriately alter their development and/or behavior.
Collapse
Affiliation(s)
- Michael P. O’Donnell
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| | - Pin-Hao Chao
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| |
Collapse
|
36
|
Letizia MC, Cornaglia M, Tranchida G, Trouillon R, Gijs MAM. A design of experiment approach for efficient multi-parametric drug testing using a Caenorhabditis elegans model. Integr Biol (Camb) 2018; 10:48-56. [PMID: 29333560 DOI: 10.1039/c7ib00184c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
When studying the drug effectiveness towards a target model, one should distinguish the effects of the drug itself and of all the other factors that could influence the screening outcome. This comprehensive knowledge is crucial, especially when model organisms are used to study the drug effect at a systemic level, as a higher number of factors can influence the drug-testing outcome. Covering the entire experimental domain and studying the effect of the simultaneous change in several factors would require numerous experiments, which are costly and time-consuming. Therefore, a design of experiment (DoE) approach in drug-testing is emerging as a robust and efficient method to reduce the use of resources, while maximizing the knowledge of the process. Here, we used a 3-factor-Doehlert DoE to characterize the concentration-dependent effect of the drug doxycycline on the development duration of the nematode Caenorhabditis elegans. To cover the experimental space, 13 experiments were designed and performed, where different doxycycline concentrations were tested, while also varying the temperature and the food amount, which are known to influence the duration of C. elegans development. A microfluidic platform was designed to isolate and culture C. elegans larvae, while testing the doxycycline effect with full control of temperature and feeding over the entire development. Our approach allowed predicting the doxycycline effect on C. elegans development in the complete drug concentration/temperature/feeding experimental space, maximizing the understanding of the effect of this antibiotic on the C. elegans development and paving the way towards a standardized and optimized drug-testing process.
Collapse
Affiliation(s)
- M C Letizia
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne, EPFL-STI-IMT-LMIS2, Station 17, Ch-1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
37
|
Dagenhardt J, Trinh A, Sumner H, Scott J, Aamodt E, Dwyer DS. Insulin Signaling Deficiency Produces Immobility in Caenorhabditis elegans That Models Diminished Motivation States in Man and Responds to Antidepressants. MOLECULAR NEUROPSYCHIATRY 2017; 3:97-107. [PMID: 29230398 PMCID: PMC5701274 DOI: 10.1159/000478049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023]
Abstract
Defects in insulin signaling have been reported in schizophrenia and major depressive disorder, which also share certain negative symptoms such as avolition, anhedonia, and apathy. These symptoms reflect diminished motivational states, which have been modeled in rodents as increased immobility in the forced swimming test. We have discovered that loss-of-function mutations in the insulin receptor (daf-2) and syntaxin (unc-64) genes in Caenorhabditis elegans, brief food deprivation, and exposure to DMSO produce immobility and avolition in non-dauer adults. The animals remain responsive to external stimuli; however, they fail to forage and will remain in place for >12 days or until they die. Their immobility can be prevented with drugs used to treat depression and schizophrenia and that reduce immobility in the forced swimming test. This includes amitriptyline, amoxapine, clozapine, and olanzapine, but not benzodiazepines and haloperidol. Recovery experiments confirm that immobility is induced and maintained by excessive signaling via serotonergic and muscarinic cholinergic pathways. The immobility response described here represents a potential protophenotype for avolition/anhedonia in man. This work may provide clues about why there is a significant increase in depression in patients with diabetes and suggest new therapeutic pathways for disorders featuring diminished motivation as a prominent symptom.
Collapse
Affiliation(s)
- Julie Dagenhardt
- Department of Pharmacology, Toxicology and Neuroscience, Los Angeles, USA
| | - Angeline Trinh
- Department of Psychiatry, LSU Health Sciences Center at Shreveport, Los Angeles, USA
| | - Halen Sumner
- Department of Centenary College, Shreveport, Los Angeles, USA
| | - Jeffrey Scott
- Department of Centenary College, Shreveport, Los Angeles, USA
| | - Eric Aamodt
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center at Shreveport, Los Angeles, USA
| | - Donard S. Dwyer
- Department of Pharmacology, Toxicology and Neuroscience, Los Angeles, USA
- Department of Psychiatry, LSU Health Sciences Center at Shreveport, Los Angeles, USA
| |
Collapse
|
38
|
Ewald CY, Castillo-Quan JI, Blackwell TK. Untangling Longevity, Dauer, and Healthspan in Caenorhabditis elegans Insulin/IGF-1-Signalling. Gerontology 2017; 64:96-104. [PMID: 28934747 DOI: 10.1159/000480504] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/22/2017] [Indexed: 01/18/2023] Open
Abstract
The groundbreaking discovery that lower levels of insulin/IGF-1 signaling (IIS) can induce lifespan extension was reported 24 years ago in the nematode Caenorhabditis elegans. In this organism, mutations in the insulin/IGF-1 receptor gene daf-2 or other genes in this pathway can double lifespan. Subsequent work has revealed that reduced IIS (rIIS) extends lifespan across diverse species, possibly including humans. In C. elegans, IIS also regulates development into the diapause state known as dauer, a quiescent larval form that enables C. elegans to endure harsh environments through morphological adaptation, improved cellular repair, and slowed metabolism. Considerable progress has been made uncovering mechanisms that are affected by C. elegans rIIS. However, from the beginning it has remained unclear to what extent rIIS extends C. elegans lifespan by mobilizing dauer-associated mechanisms in adults. As we discuss, recent work has shed light on this question by determining that rIIS can extend C. elegans lifespan comparably through downstream processes that are either dauer-related or -independent. Importantly, these two lifespan extension programs can be distinguished genetically. It will now be critical to tease apart these programs, because each may involve different longevity-promoting mechanisms that may be relevant to higher organisms. A recent analysis of organismal "healthspan" has questioned the value of C. elegans rIIS as a paradigm for understanding healthy aging, as opposed to simply extending life. We discuss other work that argues strongly that C. elegans rIIS is indeed an invaluable model and consider the likely possibility that dauer-related processes affect parameters associated with health under rIIS conditions. Together, these studies indicate that C. elegans and analyses of rIIS in this organism will continue to provide unexpected and exciting results, and new paradigms that will be valuable for understanding healthy aging in humans.
Collapse
Affiliation(s)
- Collin Yvès Ewald
- Eidgenössische Technische Hochschule (ETH) Zürich, Health Sciences and Technology, Schwerzenbach, Switzerland
| | | | | |
Collapse
|
39
|
Androwski RJ, Flatt KM, Schroeder NE. Phenotypic plasticity and remodeling in the stress-induced Caenorhabditis elegans dauer. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.278. [PMID: 28544390 PMCID: PMC5626018 DOI: 10.1002/wdev.278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/23/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
Organisms are often capable of modifying their development to better suit their environment. Under adverse conditions, the nematode Caenorhabditis elegans develops into a stress-resistant alternative larval stage called dauer. The dauer stage is the primary survival stage for C. elegans in nature. Large-scale tissue remodeling during dauer conveys resistance to harsh environments. The environmental and genetic regulation of the decision to enter dauer has been extensively studied. However, less is known about the mechanisms regulating tissue remodeling. Changes to the cuticle and suppression of feeding in dauers lead to an increased resistance to external stressors. Meanwhile reproductive development arrests during dauer while preserving the ability to reproduce once favorable environmental conditions return. Dramatic remodeling of neurons, glia, and muscles during dauer likely facilitate dauer-specific behaviors. Dauer-specific pulsation of the excretory duct likely mediates a response to osmotic stress. The power of C. elegans genetics has uncovered some of the molecular pathways regulating dauer tissue remodeling. In addition to genes that regulate single remodeling events, several mutants result in pleiotropic defects in dauer remodeling. This review details the individual aspects of morphological changes that occur during dauer formation and discusses molecular mechanisms regulating these processes. The dauer stage provides us with an excellent model for understanding phenotypic plasticity and remodeling from the individual cell to an entire animal. WIREs Dev Biol 2017, 6:e278. doi: 10.1002/wdev.278 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rebecca J Androwski
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Kristen M Flatt
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Nathan E Schroeder
- Neuroscience Program and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
40
|
Bharadwaj PS, Hall SE. Endogenous RNAi Pathways Are Required in Neurons for Dauer Formation in Caenorhabditis elegans. Genetics 2017; 205:1503-1516. [PMID: 28122825 PMCID: PMC5378109 DOI: 10.1534/genetics.116.195438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/21/2017] [Indexed: 12/16/2022] Open
Abstract
Animals can adapt to unfavorable environments through changes in physiology or behavior. In the nematode, Caenorhabditis elegans, environmental conditions perceived early in development determine whether the animal enters either the reproductive cycle, or enters into an alternative diapause stage named dauer. Here, we show that endogenous RNAi pathways play a role in dauer formation in crowding (high pheromone), starvation, and high temperature conditions. Disruption of the Mutator proteins or the nuclear Argonaute CSR-1 result in differential dauer-deficient phenotypes that are dependent upon the experienced environmental stress. We provide evidence that the RNAi pathways function in chemosensory neurons for dauer formation, upstream of the TGF-β and insulin signaling pathways. In addition, we show that Mutator MUT-16 expression in a subset of individual pheromone-sensing neurons is sufficient for dauer formation in high pheromone conditions, but not in starvation or high temperature conditions. Furthermore, we also show that MUT-16 and CSR-1 are required for expression of a subset of G proteins with functions in the detection of pheromone components. Together, our data suggest a model where Mutator-amplified siRNAs that associate with the CSR-1 pathway promote expression of genes required for the detection and signaling of environmental conditions to regulate development and behavior in C. elegans This study highlights a mechanism whereby RNAi pathways mediate the link between environmental stress and adaptive phenotypic plasticity in animals.
Collapse
Affiliation(s)
| | - Sarah E Hall
- Department of Biology, Syracuse University, New York 13244
| |
Collapse
|
41
|
Borbolis F, Flessa CM, Roumelioti F, Diallinas G, Stravopodis DJ, Syntichaki P. Neuronal function of the mRNA decapping complex determines survival of Caenorhabditis elegans at high temperature through temporal regulation of heterochronic gene expression. Open Biol 2017; 7:160313. [PMID: 28250105 PMCID: PMC5376704 DOI: 10.1098/rsob.160313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/04/2017] [Indexed: 12/18/2022] Open
Abstract
In response to adverse environmental cues, Caenorhabditis elegans larvae can temporarily arrest development at the second moult and form dauers, a diapause stage that allows for long-term survival. This process is largely regulated by certain evolutionarily conserved signal transduction pathways, but it is also affected by miRNA-mediated post-transcriptional control of gene expression. The 5'-3' mRNA decay mechanism contributes to miRNA-mediated silencing of target mRNAs in many organisms but how it affects developmental decisions during normal or stress conditions is largely unknown. Here, we show that loss of the mRNA decapping complex activity acting in the 5'-3' mRNA decay pathway inhibits dauer formation at the stressful high temperature of 27.5°C, and instead promotes early developmental arrest. Our genetic data suggest that this arrest phenotype correlates with dysregulation of heterochronic gene expression and an aberrant stabilization of lin-14 mRNA at early larval stages. Restoration of neuronal dcap-1 activity was sufficient to rescue growth phenotypes of dcap-1 mutants at both high and normal temperatures, implying the involvement of common developmental timing mechanisms. Our work unveils the crucial role of 5'-3' mRNA degradation in proper regulation of heterochronic gene expression programmes, which proved to be essential for survival under stressful conditions.
Collapse
Affiliation(s)
- Fivos Borbolis
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | - Christina-Maria Flessa
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | - Fani Roumelioti
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
- School of Medicine, University of Athens, Athens, Greece
| | - George Diallinas
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | | | - Popi Syntichaki
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
| |
Collapse
|
42
|
Yang D, Chen C, Liu Q, Jian H. Comparative analysis of pre- and post-parasitic transcriptomes and mining pioneer effectors of Heterodera avenae. Cell Biosci 2017; 7:11. [PMID: 28289537 PMCID: PMC5309974 DOI: 10.1186/s13578-017-0138-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The cereal cyst nematode (CCN, Heterodera avenae) is a devastating pathogen of wheat and barley crops in many countries. We aimed to prioritize genetic and molecular targets for H. avenae control via the powerful and integrative bioinformatics platform. RESULTS Here, we sequenced mRNA isolated from Chinese H. avenae at pre-parasitic (consisting of egg, J1 and hatched-J2) stages and post-parasitic (consisting of parasitic-J2, J3, J4 and adults) stages. Total 1,066,719 reads of whole life cycle transcriptomes were assembled into 10,811 contigs with N50 length of 1754 bp and 71,401 singletons. Comparative analyses of orthologous among H. avenae and 7 other nematodes with various life-styles revealed the significance and peculiarity of neurological system for sedentary phytonematode. KEGG pathway enrichment demonstrated active crosstalk events of nervous system at pre-parasitic stages, and 6 FMRFamide-like neuropeptides were verified to display an expression peak at the hatched-J2 stage in H. avenae. Furthermore, multiple approaches were undertaken to mine putative effectors and parasitism-specific genes. Notably, H. avenae might represent the first phytonematode reported to possess the pioneer effectors with RxLR motif and potential effectors with homologies to Ant-5/Ant-34. CONCLUSION Our work provides valuable resources for in-depth understanding the parasitism and pathogenicity of H. avenae, as well as developing new targets-oriented strategies on effective managements.
Collapse
Affiliation(s)
- Dan Yang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Changlong Chen
- Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
- Institute of Crop Research, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Qian Liu
- Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Heng Jian
- Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
43
|
Bainbridge C, Rodriguez A, Schuler A, Cisneros M, Vidal-Gadea AG. Magnetic orientation in C. elegans relies on the integrity of the villi of the AFD magnetosensory neurons. ACTA ACUST UNITED AC 2016; 110:76-82. [PMID: 27940210 DOI: 10.1016/j.jphysparis.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 01/07/2023]
Abstract
The magnetic field of the earth provides many organisms with sufficient information to successfully navigate through their environments. While evidence suggests the widespread use of this sensory modality across many taxa, it remains an understudied sensory modality. We have recently showed that the nematode C. elegans orients to earth-strength magnetic fields using the first pair of described magnetosensory neurons, AFDs. The AFD cells are a pair of ciliated sensory neurons crowned by fifty villi known to be implicated in temperature sensation. We investigated the potential importance of these subcellular structures for the performance of magnetic orientation. We show that ciliary integrity and villi number are essential for magnetic orientation. Mutants with impairments AFD cilia or villi structure failed to orient to magnetic fields. Similarly, C. elegans larvae possessing immature AFD neurons with fewer villi were also unable to orient to magnetic fields. Larvae of every stage however retained the ability to orient to thermal gradients. To our knowledge, this is the first behavioral separation of magnetic and thermal orientation in C. elegans. We conclude that magnetic orientation relies on the function of both cilia and villi in the AFD neurons. The role of villi in multiple sensory transduction pathways involved in the sensory transduction of vectorial stimuli further supports the likely role of the villi of the AFD neurons as the site for magnetic field transduction. The genetic and behavioral tractability of C. elegans make it a promising system for uncovering potentially conserved molecular mechanisms by which animals across taxa detect and orient to magnetic fields.
Collapse
Affiliation(s)
- Chance Bainbridge
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Anjelica Rodriguez
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Andrew Schuler
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Michael Cisneros
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Andrés G Vidal-Gadea
- School of Biological Sciences, Illinois State University, Normal, IL, USA. http://biology.illinoisstate.edu/avidal
| |
Collapse
|
44
|
A Bystander Mechanism Explains the Specific Phenotype of a Broadly Expressed Misfolded Protein. PLoS Genet 2016; 12:e1006450. [PMID: 27926939 PMCID: PMC5142776 DOI: 10.1371/journal.pgen.1006450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022] Open
Abstract
Misfolded proteins in transgenic models of conformational diseases interfere with proteostasis machinery and compromise the function of many structurally and functionally unrelated metastable proteins. This collateral damage to cellular proteins has been termed 'bystander' mechanism. How a single misfolded protein overwhelms the proteostasis, and how broadly-expressed mutant proteins cause cell type-selective phenotypes in disease are open questions. We tested the gain-of-function mechanism of a R37C folding mutation in an endogenous IGF-like C.elegans protein DAF-28. DAF-28(R37C) is broadly expressed, but only causes dysfunction in one specific neuron, ASI, leading to a distinct developmental phenotype. We find that this phenotype is caused by selective disruption of normal biogenesis of an unrelated endogenous protein, DAF-7/TGF-β. The combined deficiency of DAF-28 and DAF-7 biogenesis, but not of DAF-28 alone, explains the gain-of-function phenotype—deficient pro-growth signaling by the ASI neuron. Using functional, fluorescently-tagged protein, we find that, in animals with mutant DAF-28/IGF, the wild-type DAF-7/TGF-β is mislocalized to and accumulates in the proximal axon of the ASI neuron. Activation of two different branches of the unfolded protein response can modulate both the developmental phenotype and DAF-7 mislocalization in DAF-28(R37C) animals, but appear to act through divergent mechanisms. Our finding that bystander targeting of TGF-β explains the phenotype caused by a folding mutation in an IGF-like protein suggests that, in conformational diseases, bystander misfolding may specify the distinct phenotypes caused by different folding mutations. Correct protein folding and localization ensures cellular health. Dedicated proteostasis machinery assists in protein folding and protects against misfolding. Yet, folding mutations cause many conformational diseases, including neurodegenerative diseases and certain types of diabetes and cancer. Misfolded disease-related proteins interfere with proteostasis machinery, causing global misfolding in the cell. How this global mechanism leads to the specific phenotypes in different conformational diseases is unknown. Moreover, mutant misfolded proteins that only damage specific cell-types in disease often lose this cell-selectivity when overexpressed in genetic models. Here we use an endogenous folding mutation in a C. elegans secreted IGF-like protein, DAF-28, that causes dysfunction in one neuron and a specific developmental phenotype, despite expression in many cells. We find that misfolding of mutant DAF-28 causes mislocalization and defective function of another, wild-type growth factor that is expressed in the affected neuron, the TGF-β protein DAF-7. Decrease in DAF-7 function explains the observed developmental phenotype. This targeting of the bystander protein DAF-7 by the misfolded mutant DAF-28 is specific and is not caused by the global stress. Our data suggest that rather than global effects, it is the selective targeting of specific susceptible bystander proteins that defines the specific phenotypes in conformational diseases.
Collapse
|
45
|
Isik M, Blackwell TK, Berezikov E. MicroRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans. Sci Rep 2016; 6:36766. [PMID: 27905558 PMCID: PMC5131338 DOI: 10.1038/srep36766] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/20/2016] [Indexed: 12/16/2022] Open
Abstract
Diverse stresses and aging alter expression levels of microRNAs, suggesting a role for these posttranscriptional regulators of gene expression in stress modulation and longevity. Earlier studies demonstrated a central role for the miR-34 family in promoting cell cycle arrest and cell death following stress in human cells. However, the biological significance of this response was unclear. Here we show that in C. elegans mir-34 upregulation is necessary for developmental arrest, correct morphogenesis, and adaptation to a lower metabolic state to protect animals against stress-related damage. Either deletion or overexpression of mir-34 lead to an impaired stress response, which can largely be explained by perturbations in DAF-16/FOXO target gene expression. We demonstrate that mir-34 expression is regulated by the insulin signaling pathway via a negative feedback loop between miR-34 and DAF-16/FOXO. We propose that mir-34 provides robustness to stress response programs by controlling noise in the DAF-16/FOXO-regulated gene network.
Collapse
Affiliation(s)
- Meltem Isik
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.,Joslin Diabetes Center, Harvard Stem Cell Institute and Harvard Medical School Department of Genetics, Boston, Massachusetts, United States of America
| | - T Keith Blackwell
- Joslin Diabetes Center, Harvard Stem Cell Institute and Harvard Medical School Department of Genetics, Boston, Massachusetts, United States of America
| | - Eugene Berezikov
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.,European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
46
|
Kalinnikova TB, Kolsanova RR, Belova EB, Shagidullin RR, Gainutdinov MK. Opposite effects of moderate heat stress and hyperthermia on cholinergic system of soil nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Therm Biol 2016; 62:37-49. [PMID: 27839548 DOI: 10.1016/j.jtherbio.2016.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 10/20/2022]
Abstract
Cholinergic system plays important role in all functions of organisms of free-living soil nematodes C. elegans and C. briggsae. Using pharmacological analysis we showed the existence of two opposite responses of nematodes cholinergic system to moderate and extreme heat stress. Short-term (15min) noxious heat (31-32°C) caused activation of cholinergic synaptic transmission in C. elegans and C. briggsae organisms by sensitization of nicotinic ACh receptors. In contrast, hyperthermia blocked cholinergic synaptic transmission by inhibition of ACh secretion by neurons. The resistance of behavior to extreme high temperature (36-37°C) was significantly higher in C. briggsae than in C. elegans, and thermostability of cholinergic transmission correlated with resistance of behavior to hyperthermia. Activation of cholinergic transmission by moderate heat stress can be the reason of movement speed increase in such adaptive behavior as noxious heat escape. Inhibition of ACh release is one of reasons for behavior failure caused by extreme high temperature since partial inhibition of ACh-esterase by aldicarb protected C. elegans and C. briggsae behavior against hyperthermia. Antagonist of mAChRs atropine almost completely prevented the rise in behavior thermotolerance caused by aldicarb. Pilocarpine, agonist of mAChRs, protected nematodes behavior against hyperthermia similarly with aldicarb. Therefore it is evident that it is the deficiency of mAChRs activity that is the reason for nematodes' behavior failure by hyperthermia.
Collapse
Affiliation(s)
- Tatiana B Kalinnikova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia.
| | - Rufina R Kolsanova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| | - Evgenia B Belova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| | - Rifgat R Shagidullin
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| | - Marat Kh Gainutdinov
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| |
Collapse
|
47
|
Somvanshi VS, Gahoi S, Banakar P, Thakur PK, Kumar M, Sajnani M, Pandey P, Rao U. A transcriptomic insight into the infective juvenile stage of the insect parasitic nematode, Heterorhabditis indica. BMC Genomics 2016; 17:166. [PMID: 26931371 PMCID: PMC4774024 DOI: 10.1186/s12864-016-2510-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/22/2016] [Indexed: 01/02/2023] Open
Abstract
Background Nematodes are the most numerous animals in the soil. Insect parasitic nematodes of the genus Heterorhabditis are capable of selectively seeking, infecting and killing their insect-hosts in the soil. The infective juvenile (IJ) stage of the Heterorhabditis nematodes is analogous to Caenorhabditis elegans dauer juvenile stage, which remains in ‘arrested development’ till it finds and infects a new insect-host in the soil. H. indica is the most prevalent species of Heterorhabditis in India. To understand the genes and molecular processes that govern the biology of the IJ stage, and to create a resource to facilitate functional genomics and genetic exploration, we sequenced the transcriptome of H. indica IJs. Results The de-novo sequence assembly using Velvet-Oases pipeline resulted in 13,593 unique transcripts at N50 of 1,371 bp, of which 53 % were annotated by blastx. H. indica transcripts showed higher orthology with parasitic nematodes as compared to free living nematodes. In-silico expression analysis showed 30 % of transcripts expressing with ≥100 FPKM value. All the four canonical dauer formation pathways like cGMP-PKG, insulin, dafachronic acid and TGF-β were active in the IJ stage. Several other signaling pathways were highly represented in the transcriptome. Twenty-four orthologs of C. elegans RNAi pathway effector genes were discovered in H. indica, including nrde-3 that is reported for the first time in any of the parasitic nematodes. An ortholog of C. elegans tol-1 was also identified. Further, 272 kinases belonging to 137 groups, and several previously unidentified members of important gene classes were identified. Conclusions We generated high-quality transcriptome sequence data from H. indica IJs for the first time. The transcripts showed high similarity with the parasitic nematodes, M. hapla, and A. suum as opposed to C. elegans, a species to which H. indica is more closely related. The high representation of transcripts from several signaling pathways in the IJs indicates that despite being a developmentally arrested stage; IJs are a hotbed of signaling and are actively interacting with their environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2510-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vishal S Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Shachi Gahoi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Prakash Banakar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Prasoon Kumar Thakur
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Mukesh Kumar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Manisha Sajnani
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Priyatama Pandey
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
48
|
Maruyama IN. Receptor Guanylyl Cyclases in Sensory Processing. Front Endocrinol (Lausanne) 2016; 7:173. [PMID: 28123378 PMCID: PMC5225109 DOI: 10.3389/fendo.2016.00173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/28/2016] [Indexed: 11/18/2022] Open
Abstract
Invertebrate models have generated many new insights into transmembrane signaling by cell-surface receptors. This review focuses on receptor guanylyl cyclases (rGCs) and describes recent advances in understanding their roles in sensory processing in the nematode, Caenorhabditis elegans. A complete analysis of the C. elegans genome elucidated 27 rGCs, an unusually large number compared with mammalian genomes, which encode 7 rGCs. Most C. elegans rGCs are expressed in sensory neurons and play roles in sensory processing, including gustation, thermosensation, olfaction, and phototransduction, among others. Recent studies have found that by producing a second messenger, guanosine 3',5'-cyclic monophosphate, some rGCs act as direct sensor molecules for ions and temperatures, while others relay signals from G protein-coupled receptors. Interestingly, genetic and biochemical analyses of rGCs provide the first example of an obligate heterodimeric rGC. Based on recent structural studies of rGCs in mammals and other organisms, molecular mechanisms underlying activation of rGCs are also discussed in this review.
Collapse
Affiliation(s)
- Ichiro N. Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- *Correspondence: Ichiro N. Maruyama,
| |
Collapse
|
49
|
Neal SJ, Takeishi A, O'Donnell MP, Park J, Hong M, Butcher RA, Kim K, Sengupta P. Feeding state-dependent regulation of developmental plasticity via CaMKI and neuroendocrine signaling. eLife 2015; 4. [PMID: 26335407 PMCID: PMC4558564 DOI: 10.7554/elife.10110] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/31/2015] [Indexed: 01/03/2023] Open
Abstract
Information about nutrient availability is assessed via largely unknown mechanisms to drive developmental decisions, including the choice of Caenorhabditis elegans larvae to enter into the reproductive cycle or the dauer stage. In this study, we show that CMK-1 CaMKI regulates the dauer decision as a function of feeding state. CMK-1 acts cell-autonomously in the ASI, and non cell-autonomously in the AWC, sensory neurons to regulate expression of the growth promoting daf-7 TGF-β and daf-28 insulin-like peptide (ILP) genes, respectively. Feeding state regulates dynamic subcellular localization of CMK-1, and CMK-1-dependent expression of anti-dauer ILP genes, in AWC. A food-regulated balance between anti-dauer ILP signals from AWC and pro-dauer signals regulates neuroendocrine signaling and dauer entry; disruption of this balance in cmk-1 mutants drives inappropriate dauer formation under well-fed conditions. These results identify mechanisms by which nutrient information is integrated in a small neuronal network to modulate neuroendocrine signaling and developmental plasticity. DOI:http://dx.doi.org/10.7554/eLife.10110.001 Living organisms have the remarkable ability to adapt to changes in their external environment. For example, when conditions are favorable, the larvae of the tiny roundworm C. elegans rapidly mature into adults and reproduce. However, when faced with starvation, over-crowding or other adverse conditions, they can stop growing and enter a type of stasis called the dauer stage, which enables them to survive in harsh conditions for extended periods of time. The worms enter the dauer stage if they detect high levels of a pheromone mixture that is produced by other worms—which indicates that the local population is over-crowded. However, temperature, food availability, and other environmental cues also influence this decision. A protein called TGF-β and other proteins called insulin-like peptides are produced by a group of sensory neurons in the worm's head. These proteins usually promote the growth of the worms by increasing the production of particular steroid hormones. However, high levels of the pheromone mixture, an inadequate supply of food and other adverse conditions decrease the expression of the genes that encode these proteins, which allows the worm to enter the dauer state. It is not clear how the worm senses food, nor how this is integrated with the information provided by the pheromones to influence this decision. To address these questions, Neal et al. studied a variety of mutant worms that lacked proteins involved in different aspects of food sensing. The experiments show that worms missing a protein called CaMKI enter the dauer state even under conditions in which food is plentiful and normal worms continue to grow. CaMKI inhibits entry into the dauer stage by increasing the expression of the genes that encode TGF-β and the insulin-like peptides in sensory neurons in response to food. Neal et al.'s findings reveal how CaMKI enables information about food availability to be integrated with other environmental cues to influence whether young worms enter the dauer state. Understanding how food sensing is linked to changes in hormone levels will help us appreciate why and how the availability of food has complex effects on animal biology and behavior. DOI:http://dx.doi.org/10.7554/eLife.10110.002
Collapse
Affiliation(s)
- Scott J Neal
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Asuka Takeishi
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Michael P O'Donnell
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - JiSoo Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Myeongjin Hong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, United States
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Piali Sengupta
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| |
Collapse
|
50
|
Oláhová M, Veal EA. A peroxiredoxin, PRDX-2, is required for insulin secretion and insulin/IIS-dependent regulation of stress resistance and longevity. Aging Cell 2015; 14:558-68. [PMID: 25808059 PMCID: PMC4531070 DOI: 10.1111/acel.12321] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2014] [Indexed: 12/22/2022] Open
Abstract
Peroxiredoxins (Prx) are abundant thiol peroxidases with a conserved anti-ageing role. In contrast to most animals, the nematode worm, Caenorhabditis elegans, encodes a single cytosolic 2-Cys Prx, PRDX-2, rendering it an excellent model for examining how peroxiredoxins affect animal physiology and ageing. Our previous work revealed that, although PRDX-2 protects against the toxicity of peroxides, enigmatically, prdx-2-mutant animals are hyper-resistant to other forms of oxidative stress. Here, we have investigated the basis for this increased resistance. Mammalian FOXO and Nrf2 transcription factors directly promote the expression of a range of detoxification enzymes. We show that the FOXO orthologue, DAF-16, and the Nrf2 orthologue, SKN-1, are required for the increased stress resistance of prdx-2-mutant worms. Our data suggest that PRDX-2 is required for normal levels of insulin secretion and hence the inhibition of DAF-16 and SKN-1 by insulin/IGF-1-like signalling (IIS) under nutrient-rich conditions. Intriguingly, loss of PRDX-2 increases DAF-16 and SKN-1 activities sufficiently to increase arsenite resistance without initiating other IIS-inhibited processes. Together, these data suggest that loss of peroxiredoxin function may increase stress resistance by reducing insulin secretion, but that further changes in insulin signalling are required for the reprogramming of development and fat metabolism. In addition, we reveal that the temperature-dependent prolongevity function of PRDX-2 is required for the extended lifespan associated with several pathways, including further reductions in IIS.
Collapse
Affiliation(s)
- Monika Oláhová
- Institute for Cell and Molecular Biosciences Newcastle University Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Elizabeth A. Veal
- Institute for Cell and Molecular Biosciences Newcastle University Framlington Place Newcastle upon Tyne NE2 4HH UK
| |
Collapse
|