1
|
Dudka D, Nguyen AL, Boese KG, Marescal O, Akins RB, Black BE, Cheeseman IM, Lampson MA. Adaptive evolution of CENP-T modulates centromere binding. Curr Biol 2025; 35:1012-1022.e5. [PMID: 39947176 PMCID: PMC11903153 DOI: 10.1016/j.cub.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/19/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
Centromeric DNA and proteins evolve rapidly despite conserved function in mediating kinetochore-microtubule attachments during cell division. This paradox is explained by selfish DNA sequences preferentially binding centromeric proteins to disrupt attachments and bias their segregation into the egg (drive) during female meiosis. Adaptive centromeric protein evolution is predicted to prevent preferential binding to these sequences and suppress drive. Here, we test this prediction by defining the impact of adaptive evolution of the DNA-binding histone fold domain of CENP-T, a major link between centromeric DNA and microtubules. We reversed adaptive changes by creating chimeric variants of mouse CENP-T with the histone fold domain from closely related species, expressed exogenously in mouse oocytes or in a transgenic mouse model. We show that adaptive evolution of mouse CENP-T reduced centromere binding, which supports robust female gametogenesis. However, this innovation is independent of the centromeric DNA sequence, as shown by comparing the binding of divergent CENP-T variants to distinct centromere satellite arrays in mouse oocytes and in somatic cells from other species. Overall, our findings support a model in which selfish sequences drive to fixation, disrupting attachments of all centromeres to the spindle. DNA sequence-specific innovations are not needed to mitigate fitness costs in this model, so centromeric proteins adapt by modulating their binding to all centromeres in the aftermath of drive.
Collapse
Affiliation(s)
- Damian Dudka
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra L Nguyen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Katelyn G Boese
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Océane Marescal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - R Brian Akins
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Iain M Cheeseman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Lin SY, Futeran H, Levine MT. Adaptive protein coevolution preserves telomere integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623029. [PMID: 39605578 PMCID: PMC11601235 DOI: 10.1101/2024.11.11.623029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Many essential conserved functions depend, paradoxically, on proteins that evolve rapidly under positive selection. How such adaptively evolving proteins promote biological innovation while preserving conserved, essential functions remains unclear. Here, we experimentally test the hypothesis that adaptive protein-protein coevolution within an essential multi-protein complex mitigates the deleterious incidental byproducts of innovation under pressure from selfish genetic elements. We swapped a single, adaptively evolving subunit of a telomere protection complex from Drosophila yakuba into its close relative, D. melanogaster. The heterologous subunit uncovered a catastrophic interspecies incompatibility that caused lethal telomere fusions. Restoring six adaptively evolving sites on the protein-protein interaction surface, or introducing the D. yakuba interaction partner, rescued telomere integrity and viability. Our in vivo, evolution-guided manipulations illuminate how adaptive protein-protein coevolution preserves essential functions threatened by an evolutionary pressure to innovate.
Collapse
Affiliation(s)
- Sung-Ya Lin
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Hannah Futeran
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Mia T. Levine
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Courret C, Hemmer LW, Wei X, Patel PD, Chabot BJ, Fuda NJ, Geng X, Chang CH, Mellone BG, Larracuente AM. Turnover of retroelements and satellite DNA drives centromere reorganization over short evolutionary timescales in Drosophila. PLoS Biol 2024; 22:e3002911. [PMID: 39570997 PMCID: PMC11620609 DOI: 10.1371/journal.pbio.3002911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/05/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Centromeres reside in rapidly evolving, repeat-rich genomic regions, despite their essential function in chromosome segregation. Across organisms, centromeres are rich in selfish genetic elements such as transposable elements and satellite DNAs that can bias their transmission through meiosis. However, these elements still need to cooperate at some level and contribute to, or avoid interfering with, centromere function. To gain insight into the balance between conflict and cooperation at centromeric DNA, we take advantage of the close evolutionary relationships within the Drosophila simulans clade-D. simulans, D. sechellia, and D. mauritiana-and their relative, D. melanogaster. Using chromatin profiling combined with high-resolution fluorescence in situ hybridization on stretched chromatin fibers, we characterize all centromeres across these species. We discovered dramatic centromere reorganization involving recurrent shifts between retroelements and satellite DNAs over short evolutionary timescales. We also reveal the recent origin (<240 Kya) of telocentric chromosomes in D. sechellia, where the X and fourth centromeres now sit on telomere-specific retroelements. Finally, the Y chromosome centromeres, which are the only chromosomes that do not experience female meiosis, do not show dynamic cycling between satDNA and TEs. The patterns of rapid centromere turnover in these species are consistent with genetic conflicts in the female germline and have implications for centromeric DNA function and karyotype evolution. Regardless of the evolutionary forces driving this turnover, the rapid reorganization of centromeric sequences over short evolutionary timescales highlights their potential as hotspots for evolutionary innovation.
Collapse
Affiliation(s)
- Cécile Courret
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Lucas W. Hemmer
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Xiaolu Wei
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Prachi D. Patel
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Bryce J. Chabot
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Nicholas J. Fuda
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Xuewen Geng
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Barbara G. Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Amanda M. Larracuente
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
4
|
Grishko EO, Borodin PM. Structure and evolution of metapolycentromeres. Vavilovskii Zhurnal Genet Selektsii 2024; 28:592-601. [PMID: 39440311 PMCID: PMC11492452 DOI: 10.18699/vjgb-24-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 10/25/2024] Open
Abstract
Metapolycentromeres consist of multiple sequential domains of centromeric chromatin associated with a centromere-specific variant of histone H3 (CENP-A), functioning collectively as a single centromere. To date, they have been revealed in nine flowering plant, five insect and six vertebrate species. In this paper, we focus on their structure and possible mechanisms of emergence and evolution. The metapolycentromeres may vary in the number of centromeric domains and in their genetic content and epigenetic modifications. However, these variations do not seem to affect their function. The emergence of metapolycentromeres has been attributed to multiple Robertsonian translocations and segmental duplications. Conditions of genomic instability, such as interspecific hybridization and malignant neoplasms, are suggested as triggers for the de novo emergence of metapolycentromeres. Addressing the "centromere paradox" - the rapid evolution of centromeric DNA and proteins despite their conserved cellular function - we explore the centromere drive hypothesis as a plausible explanation for the dynamic evolution of centromeres in general, and in particular the emergence of metapolycentromeres and holocentromeres. Apparently, metapolycentromeres are more common across different species than it was believed until recently. Indeed, a systematic review of the available cytogenetic publications allowed us to identify 27 candidate species with metapolycentromeres. Тhe list of the already established and newly revealed candidate species thus spans 27 species of flowering plants and eight species of gymnosperm plants, five species of insects, and seven species of vertebrates. This indicates an erratic phylogenetic distribution of the species with metapolycentromeres and may suggest an independent emergence of the metapolycentromeres in the course of evolution. However, the current catalog of species with identified and likely metapolycentromeres remains too short to draw reliable conclusions about their evolution, particularly in the absence of knowledge about related species without metapolycentromeres for comparative analysis. More studies are necessary to shed light on the mechanisms of metapolycentromere formation and evolution.
Collapse
Affiliation(s)
- E O Grishko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - P M Borodin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
5
|
Arora UP, Dumont BL. Molecular evolution of the mammalian kinetochore complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600994. [PMID: 38979348 PMCID: PMC11230421 DOI: 10.1101/2024.06.27.600994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mammalian centromeres are satellite-rich chromatin domains that serve as sites for kinetochore complex assembly. Centromeres are highly variable in sequence and satellite organization across species, but the processes that govern the co-evolutionary dynamics between rapidly evolving centromeres and their associated kinetochore proteins remain poorly understood. Here, we pursue a course of phylogenetic analyses to investigate the molecular evolution of the complete kinetochore complex across primate and rodent species with divergent centromere repeat sequences and features. We show that many protein components of the core centromere associated network (CCAN) harbor signals of adaptive evolution, consistent with their intimate association with centromere satellite DNA and roles in the stability and recruitment of additional kinetochore proteins. Surprisingly, CCAN and outer kinetochore proteins exhibit comparable rates of adaptive divergence, suggesting that changes in centromere DNA can ripple across the kinetochore to drive adaptive protein evolution within distant domains of the complex. Our work further identifies kinetochore proteins subject to lineage-specific adaptive evolution, including rapidly evolving proteins in species with centromere satellites characterized by higher-order repeat structure and lacking CENP-B boxes. Thus, features of centromeric chromatin beyond the linear DNA sequence may drive selection on kinetochore proteins. Overall, our work spotlights adaptively evolving proteins with diverse centromere-associated functions, including centromere chromatin structure, kinetochore protein assembly, kinetochore-microtubule association, cohesion maintenance, and DNA damage response pathways. These adaptively evolving kinetochore protein candidates present compelling opportunities for future functional investigations exploring how their concerted changes with centromere DNA ensure the maintenance of genome stability.
Collapse
Affiliation(s)
- Uma P. Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor ME 04609
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston MA 02111
| | - Beth L. Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor ME 04609
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston MA 02111
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, 04469
| |
Collapse
|
6
|
Oliveira L, Neumann P, Mata-Sucre Y, Kuo YT, Marques A, Schubert V, Macas J. KNL1 and NDC80 represent new universal markers for the detection of functional centromeres in plants. Chromosome Res 2024; 32:3. [PMID: 38403686 DOI: 10.1007/s10577-024-09747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Centromere is the chromosomal site of kinetochore assembly and microtubule attachment for chromosome segregation. Given its importance, markers that allow specific labeling of centromeric chromatin throughout the cell cycle and across all chromosome types are sought for facilitating various centromere studies. Antibodies against the N-terminal region of CENH3 are commonly used for this purpose, since CENH3 is the near-universal marker of functional centromeres. However, because the N-terminal region of CENH3 is highly variable among plant species, antibodies directed against this region usually function only in a small group of closely related species. As a more versatile alternative, we present here antibodies targeted to the conserved domains of two outer kinetochore proteins, KNL1 and NDC80. Sequence comparison of these domains across more than 350 plant species revealed a high degree of conservation, particularly within a six amino acid motif, FFGPVS in KNL1, suggesting that both antibodies would function in a wide range of plant species. This assumption was confirmed by immunolabeling experiments in angiosperm (monocot and dicot) and gymnosperm species, including those with mono-, holo-, and meta-polycentric chromosomes. In addition to centromere labeling on condensed chromosomes during cell division, both antibodies detected the corresponding regions in the interphase nuclei of most species tested. These results demonstrated that KNL1 and NDC80 are better suited for immunolabeling centromeres than CENH3, because antibodies against these proteins offer incomparably greater versatility across different plant species which is particularly convenient for studying the organization and function of the centromere in non-model species.
Collapse
Affiliation(s)
- Ludmila Oliveira
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Pavel Neumann
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Yennifer Mata-Sucre
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratório de Citogenética E Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Yi-Tzu Kuo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jiří Macas
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
7
|
Wang ML, Lin XJ, Mo BX, Kong WW. Plant Artificial Chromosomes: Construction and Transformation. ACS Synth Biol 2024; 13:15-24. [PMID: 38163256 DOI: 10.1021/acssynbio.3c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
With the decline of cultivated land and increase of the population in recent years, an agricultural revolution is urgently needed to produce more food to improve the living standards of humans. As one of the foundations of synthetic biology, artificial chromosomes hold great potential for advancing crop improvement. They offer opportunities to increase crop yield and quality, while enhancing crop resistance to disease. The progress made in plant artificial chromosome technology enables selective modification of existing chromosomes or the synthesis of new ones to improve crops and study gene function. However, current artificial chromosome technologies still face limitations, particularly in the synthesis of repeat sequences and the transformation of large DNA fragments. In this review, we will introduce the structure of plant centromeres, the construction of plant artificial chromosomes, and possible methods for transforming large fragments into plant cells.
Collapse
Affiliation(s)
- Ming L Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiao J Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Bei X Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wen W Kong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
8
|
Kyriacou E, Heun P. Centromere structure and function: lessons from Drosophila. Genetics 2023; 225:iyad170. [PMID: 37931172 PMCID: PMC10697814 DOI: 10.1093/genetics/iyad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 11/08/2023] Open
Abstract
The fruit fly Drosophila melanogaster serves as a powerful model organism for advancing our understanding of biological processes, not just by studying its similarities with other organisms including ourselves but also by investigating its differences to unravel the underlying strategies that evolved to achieve a common goal. This is particularly true for centromeres, specialized genomic regions present on all eukaryotic chromosomes that function as the platform for the assembly of kinetochores. These multiprotein structures play an essential role during cell division by connecting chromosomes to spindle microtubules in mitosis and meiosis to mediate accurate chromosome segregation. Here, we will take a historical perspective on the study of fly centromeres, aiming to highlight not only the important similarities but also the differences identified that contributed to advancing centromere biology. We will discuss the current knowledge on the sequence and chromatin organization of fly centromeres together with advances for identification of centromeric proteins. Then, we will describe both the factors and processes involved in centromere organization and how they work together to provide an epigenetic identity to the centromeric locus. Lastly, we will take an evolutionary point of view of centromeres and briefly discuss current views on centromere drive.
Collapse
Affiliation(s)
- Eftychia Kyriacou
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Patrick Heun
- Wellcome Centre of Cell Biology, School of Biological Sciences, University of Edinburgh, EH9 3BF Edinburgh, UK
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
9
|
Arora UP, Sullivan BA, Dumont BL. Variation in the CENP-A sequence association landscape across diverse inbred mouse strains. Cell Rep 2023; 42:113178. [PMID: 37742188 PMCID: PMC10873113 DOI: 10.1016/j.celrep.2023.113178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Centromeres are crucial for chromosome segregation, but their underlying sequences evolve rapidly, imposing strong selection for compensatory changes in centromere-associated kinetochore proteins to assure the stability of genome transmission. While this co-evolution is well documented between species, it remains unknown whether population-level centromere diversity leads to functional differences in kinetochore protein association. Mice (Mus musculus) exhibit remarkable variation in centromere size and sequence, but the amino acid sequence of the kinetochore protein CENP-A is conserved. Here, we apply k-mer-based analyses to CENP-A chromatin profiling data from diverse inbred mouse strains to investigate the interplay between centromere variation and kinetochore protein sequence association. We show that centromere sequence diversity is associated with strain-level differences in both CENP-A positioning and sequence preference along the mouse core centromere satellite. Our findings reveal intraspecies sequence-dependent differences in CENP-A/centromere association and open additional perspectives for understanding centromere-mediated variation in genome stability.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Box 3054, Durham, NC 27710, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA; Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Room 46, Orono, ME 04469, USA.
| |
Collapse
|
10
|
Lynch M. Mutation pressure, drift, and the pace of molecular coevolution. Proc Natl Acad Sci U S A 2023; 120:e2306741120. [PMID: 37364099 PMCID: PMC10319038 DOI: 10.1073/pnas.2306741120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Most aspects of the molecular biology of cells involve tightly coordinated intermolecular interactions requiring specific recognition at the nucleotide and/or amino acid levels. This has led to long-standing interest in the degree to which constraints on interacting molecules result in conserved vs. accelerated rates of sequence evolution, with arguments commonly being made that molecular coevolution can proceed at rates exceeding the neutral expectation. Here, a fairly general model is introduced to evaluate the degree to which the rate of evolution at functionally interacting sites is influenced by effective population sizes (Ne), mutation rates, strength of selection, and the magnitude of recombination between sites. This theory is of particular relevance to matters associated with interactions between organelle- and nuclear-encoded proteins, as the two genomic environments often exhibit dramatic differences in the power of mutation and drift. Although genes within low Ne environments can drive the rate of evolution of partner genes experiencing higher Ne, rates exceeding the neutral expectation require that the former also have an elevated mutation rate. Testable predictions, some counterintuitive, are presented on how patterns of coevolutionary rates should depend on the relative intensities of drift, selection, and mutation.
Collapse
Affiliation(s)
- Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ85287
| |
Collapse
|
11
|
Ding W, Zhu Y, Han J, Zhang H, Xu Z, Khurshid H, Liu F, Hasterok R, Shen X, Wang K. Characterization of centromeric DNA of Gossypium anomalum reveals sequence-independent enrichment dynamics of centromeric repeats. Chromosome Res 2023; 31:12. [PMID: 36971835 DOI: 10.1007/s10577-023-09721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023]
Abstract
Centromeres in eukaryotes are composed of highly repetitive DNAs, which evolve rapidly and are thought to achieve a favorable structure in mature centromeres. However, how the centromeric repeat evolves into an adaptive structure is largely unknown. We characterized the centromeric sequences of Gossypium anomalum through chromatin immunoprecipitation against CENH3 antibodies. We revealed that the G. anomalum centromeres contained only retrotransposon-like repeats but were depleted in long arrays of satellites. These retrotransposon-like centromeric repeats were present in the African-Asian and Australian lineage species, suggesting that they might have arisen in the common ancestor of these diploid species. Intriguingly, we observed a substantial increase and decrease in copy numbers among African-Asian and Australian lineages, respectively, for the retrotransposon-derived centromeric repeats without apparent structure or sequence variation in cotton. This result indicates that the sequence content is not a decisive aspect of the adaptive evolution of centromeric repeats or at least retrotransposon-like centromeric repeats. In addition, two active genes with potential roles in gametogenesis or flowering were identified in CENH3 nucleosome-binding regions. Our results provide new insights into the constitution of centromeric repetitive DNA and the adaptive evolution of centromeric repeats in plants.
Collapse
Affiliation(s)
- Wenjie Ding
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Yuanbin Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, 44500, Pakistan
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland.
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China.
| |
Collapse
|
12
|
Yang Q, Lo TW, Brejc K, Schartner C, Ralston EJ, Lapidus DM, Meyer BJ. X-chromosome target specificity diverged between dosage compensation mechanisms of two closely related Caenorhabditis species. eLife 2023; 12:e85413. [PMID: 36951246 PMCID: PMC10076027 DOI: 10.7554/elife.85413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/21/2023] [Indexed: 03/24/2023] Open
Abstract
An evolutionary perspective enhances our understanding of biological mechanisms. Comparison of sex determination and X-chromosome dosage compensation mechanisms between the closely related nematode species Caenorhabditis briggsae (Cbr) and Caenorhabditis elegans (Cel) revealed that the genetic regulatory hierarchy controlling both processes is conserved, but the X-chromosome target specificity and mode of binding for the specialized condensin dosage compensation complex (DCC) controlling X expression have diverged. We identified two motifs within Cbr DCC recruitment sites that are highly enriched on X: 13 bp MEX and 30 bp MEX II. Mutating either MEX or MEX II in an endogenous recruitment site with multiple copies of one or both motifs reduced binding, but only removing all motifs eliminated binding in vivo. Hence, DCC binding to Cbr recruitment sites appears additive. In contrast, DCC binding to Cel recruitment sites is synergistic: mutating even one motif in vivo eliminated binding. Although all X-chromosome motifs share the sequence CAGGG, they have otherwise diverged so that a motif from one species cannot function in the other. Functional divergence was demonstrated in vivo and in vitro. A single nucleotide position in Cbr MEX can determine whether Cel DCC binds. This rapid divergence of DCC target specificity could have been an important factor in establishing reproductive isolation between nematode species and contrasts dramatically with the conservation of target specificity for X-chromosome dosage compensation across Drosophila species and for transcription factors controlling developmental processes such as body-plan specification from fruit flies to mice.
Collapse
Affiliation(s)
- Qiming Yang
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Te-Wen Lo
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Katjuša Brejc
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Caitlin Schartner
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Edward J Ralston
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Denise M Lapidus
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Barbara J Meyer
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
13
|
Logsdon GA, Eichler EE. The Dynamic Structure and Rapid Evolution of Human Centromeric Satellite DNA. Genes (Basel) 2022; 14:92. [PMID: 36672831 PMCID: PMC9859433 DOI: 10.3390/genes14010092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
The complete sequence of a human genome provided our first comprehensive view of the organization of satellite DNA associated with heterochromatin. We review how our understanding of the genetic architecture and epigenetic properties of human centromeric DNA have advanced as a result. Preliminary studies of human and nonhuman ape centromeres reveal complex, saltatory mutational changes organized around distinct evolutionary layers. Pockets of regional hypomethylation within higher-order α-satellite DNA, termed centromere dip regions, appear to define the site of kinetochore attachment in all human chromosomes, although such epigenetic features can vary even within the same chromosome. Sequence resolution of satellite DNA is providing new insights into centromeric function with potential implications for improving our understanding of human biology and health.
Collapse
Affiliation(s)
- Glennis A. Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Talbert P, Henikoff S. Centromere drive: chromatin conflict in meiosis. Curr Opin Genet Dev 2022; 77:102005. [PMID: 36372007 DOI: 10.1016/j.gde.2022.102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Centromeres are essential loci in eukaryotes that are necessary for the faithful segregation of chromosomes in mitosis and meiosis. Centromeres organize the kinetochore, the protein machine that attaches sister chromatids or homologous chromosomes to spindle microtubules and regulates their disjunction. Centromeres have both genetic and epigenetic determinants, which can come into conflict in asymmetric female meiosis in seed plants and animals. The centromere drive model was proposed to describe this conflict and explain how it leads to the rapid evolution of both centromeres and kinetochores. Recent studies confirm key aspects of the centromere drive model, clarify its mechanisms, and implicate rapid centromere/kinetochore evolution in hybrid inviability between species.
Collapse
Affiliation(s)
- Paul Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| |
Collapse
|
15
|
Malik HS. Driving lessons: a brief (personal) history of centromere drive. Genetics 2022; 222:iyac155. [PMID: 39255401 PMCID: PMC9713404 DOI: 10.1093/genetics/iyac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Affiliation(s)
- Harmit S Malik
- Division of Basic Sciences & Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
16
|
Caro L, Raman P, Steiner FA, Ailion M, Malik HS. Recurrent but Short-Lived Duplications of Centromeric Proteins in Holocentric Caenorhabditis Species. Mol Biol Evol 2022; 39:6731087. [PMID: 36173809 PMCID: PMC9577544 DOI: 10.1093/molbev/msac206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Centromeric histones (CenH3s) are essential for chromosome inheritance during cell division in most eukaryotes. CenH3 genes have rapidly evolved and undergone repeated gene duplications and diversification in many plant and animal species. In Caenorhabditis species, two independent duplications of CenH3 (named hcp-3 for HoloCentric chromosome-binding Protein 3) were previously identified in C. elegans and C. remanei. Using phylogenomic analyses in 32 Caenorhabditis species, we find strict retention of the ancestral hcp-3 gene and 10 independent duplications. Most hcp-3L (hcp-3-like) paralogs are only found in 1-2 species, are expressed in both males and females/hermaphrodites, and encode histone fold domains with 69-100% identity to ancestral hcp-3. We identified novel N-terminal protein motifs, including putative kinetochore protein-interacting motifs and a potential separase cleavage site, which are well conserved across Caenorhabditis HCP-3 proteins. Other N-terminal motifs vary in their retention across paralogs or species, revealing potential subfunctionalization or functional loss following duplication. An N-terminal extension in the hcp-3L gene of C. afra revealed an unprecedented protein fusion, where hcp-3L fused to duplicated segments from hcp-4 (nematode CENP-C). By extending our analyses beyond CenH3, we found gene duplications of six inner and outer kinetochore genes in Caenorhabditis, which appear to have been retained independent of hcp-3 duplications. Our findings suggest that centromeric protein duplications occur frequently in Caenorhabditis nematodes, are selectively retained for short evolutionary periods, then degenerate or are lost entirely. We hypothesize that unique challenges associated with holocentricity in Caenorhabditis may lead to this rapid "revolving door" of kinetochore protein paralogs.
Collapse
Affiliation(s)
- Lews Caro
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.,Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Pravrutha Raman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Florian A Steiner
- Department of Molecular Biology and Cellular Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Michael Ailion
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.,Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
17
|
Kitaoka M, Smith OK, Straight AF, Heald R. Molecular conflicts disrupting centromere maintenance contribute to Xenopus hybrid inviability. Curr Biol 2022; 32:3939-3951.e6. [PMID: 35973429 PMCID: PMC9529917 DOI: 10.1016/j.cub.2022.07.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022]
Abstract
Although central to evolution, the causes of hybrid inviability that drive reproductive isolation are poorly understood. Embryonic lethality occurs when the eggs of the frog X. tropicalis are fertilized with either X. laevis or X. borealis sperm. We observed that distinct subsets of paternal chromosomes failed to assemble functional centromeres, causing their mis-segregation during embryonic cell divisions. Core centromere DNA sequence analysis revealed little conservation among the three species, indicating that epigenetic mechanisms that normally operate to maintain centromere integrity are disrupted on specific paternal chromosomes in hybrids. In vitro reactions combining X. tropicalis egg extract with either X. laevis or X. borealis sperm chromosomes revealed that paternally matched or overexpressed centromeric histone CENP-A and its chaperone HJURP could rescue centromere assembly on affected chromosomes in interphase nuclei. However, although the X. laevis chromosomes maintained centromeric CENP-A in metaphase, X. borealis chromosomes did not and also displayed ultra-thin regions containing ribosomal DNA. Both centromere assembly and morphology of X. borealis mitotic chromosomes could be rescued by inhibiting RNA polymerase I or preventing the collapse of stalled DNA replication forks. These results indicate that specific paternal centromeres are inactivated in hybrids due to the disruption of associated chromatin regions that interfere with CENP-A incorporation, at least in some cases due to conflicts between replication and transcription machineries. Thus, our findings highlight the dynamic nature of centromere maintenance and its susceptibility to disruption in vertebrate interspecies hybrids.
Collapse
Affiliation(s)
- Maiko Kitaoka
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Owen K Smith
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
18
|
Arora UP, Dumont BL. Meiotic drive in house mice: mechanisms, consequences, and insights for human biology. Chromosome Res 2022; 30:165-186. [PMID: 35829972 PMCID: PMC9509409 DOI: 10.1007/s10577-022-09697-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
Meiotic drive occurs when one allele at a heterozygous site cheats its way into a disproportionate share of functional gametes, violating Mendel's law of equal segregation. This genetic conflict typically imposes a fitness cost to individuals, often by disrupting the process of gametogenesis. The evolutionary impact of meiotic drive is substantial, and the phenomenon has been associated with infertility and reproductive isolation in a wide range of organisms. However, cases of meiotic drive in humans remain elusive, a finding that likely reflects the inherent challenges of detecting drive in our species rather than unique features of human genome biology. Here, we make the case that house mice (Mus musculus) present a powerful model system to investigate the mechanisms and consequences of meiotic drive and facilitate translational inferences about the scope and potential mechanisms of drive in humans. We first detail how different house mouse resources have been harnessed to identify cases of meiotic drive and the underlying mechanisms utilized to override Mendel's rules of inheritance. We then summarize the current state of knowledge of meiotic drive in the mouse genome. We profile known mechanisms leading to transmission bias at several established drive elements. We discuss how a detailed understanding of meiotic drive in mice can steer the search for drive elements in our own species. Lastly, we conclude with a prospective look into how new technologies and molecular tools can help resolve lingering mysteries about the prevalence and mechanisms of selfish DNA transmission in mammals.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
19
|
Kumon T, Lampson MA. Evolution of eukaryotic centromeres by drive and suppression of selfish genetic elements. Semin Cell Dev Biol 2022; 128:51-60. [PMID: 35346579 PMCID: PMC9232976 DOI: 10.1016/j.semcdb.2022.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/20/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
Despite the universal requirement for faithful chromosome segregation, eukaryotic centromeres are rapidly evolving. It is hypothesized that rapid centromere evolution represents an evolutionary arms race between selfish genetic elements that drive, or propagate at the expense of organismal fitness, and mechanisms that suppress fitness costs. Selfish centromere DNA achieves preferential inheritance in female meiosis by recruiting more effector proteins that alter spindle microtubule interaction dynamics. Parallel pathways for effector recruitment are adaptively evolved to suppress functional differences between centromeres. Opportunities to drive are not limited to female meiosis, and selfish transposons, plasmids and B chromosomes also benefit by maximizing their inheritance. Rapid evolution of selfish genetic elements can diversify suppressor mechanisms in different species that may cause hybrid incompatibility.
Collapse
Affiliation(s)
- Tomohiro Kumon
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Brand CL, Levine MT. Cross-species incompatibility between a DNA satellite and the Drosophila Spartan homolog poisons germline genome integrity. Curr Biol 2022; 32:2962-2971.e4. [PMID: 35643081 PMCID: PMC9283324 DOI: 10.1016/j.cub.2022.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 12/19/2022]
Abstract
Satellite DNA spans megabases of eukaryotic sequence and evolves rapidly.1-6 Paradoxically, satellite-rich genomic regions mediate strictly conserved, essential processes such as chromosome segregation and nuclear structure.7-10 A leading resolution to this paradox posits that satellite DNA and satellite-associated chromosomal proteins coevolve to preserve these essential functions.11 We experimentally test this model of intragenomic coevolution by conducting the first evolution-guided manipulation of both chromosomal protein and DNA satellite. The 359bp satellite spans an 11 Mb array in Drosophila melanogaster that is absent from its sister species, Drosophila simulans.12-14 This species-specific DNA satellite colocalizes with the adaptively evolving, ovary-enriched protein, maternal haploid (MH), the Drosophila homolog of Spartan.15 To determine if MH and 359bp coevolve, we swapped the D. simulans version of MH ("MH[sim]") into D. melanogaster. MH[sim] triggers ovarian cell death, reduced ovary size, and loss of mature eggs. Surprisingly, the D. melanogaster mh-null mutant has no such ovary phenotypes,15 suggesting that MH[sim] is toxic in a D. melanogaster background. Using both cell biology and genetics, we discovered that MH[sim] poisons oogenesis through a DNA-damage pathway. Remarkably, deleting the D. melanogaster-specific 359bp satellite array completely restores mh[sim] germline genome integrity and fertility, consistent with a history of coevolution between these two fast-evolving loci. Germline genome integrity and fertility are also restored by overexpressing topoisomerase II (Top2), suggesting that MH[sim] interferes with Top2-mediated processing of 359bp. The observed 359bp-MH[sim] cross-species incompatibility supports a model under which seemingly inert repetitive DNA and essential chromosomal proteins must coevolve to preserve germline genome integrity.
Collapse
Affiliation(s)
- Cara L Brand
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Dudka D, Lampson MA. Centromere drive: model systems and experimental progress. Chromosome Res 2022; 30:187-203. [PMID: 35731424 DOI: 10.1007/s10577-022-09696-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
Abstract
Centromeres connect chromosomes and spindle microtubules to ensure faithful chromosome segregation. Paradoxically, despite this conserved function, centromeric DNA evolves rapidly and centromeric proteins show signatures of positive selection. The centromere drive hypothesis proposes that centromeric DNA can act like a selfish genetic element and drive non-Mendelian segregation during asymmetric female meiosis. Resulting fitness costs lead to genetic conflict with the rest of the genome and impose a selective pressure for centromeric proteins to adapt by suppressing the costs. Here, we describe experimental model systems for centromere drive in yellow monkeyflowers and mice, summarize key findings demonstrating centromere drive, and explain molecular mechanisms. We further discuss efforts to test if centromeric proteins are involved in suppressing drive-associated fitness costs, highlight a model for centromere drive and suppression in mice, and put forth outstanding questions for future research.
Collapse
Affiliation(s)
- Damian Dudka
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Population Scale Analysis of Centromeric Satellite DNA Reveals Highly Dynamic Evolutionary Patterns and Genomic Organization in Long-Tailed and Rhesus Macaques. Cells 2022; 11:cells11121953. [PMID: 35741082 PMCID: PMC9221937 DOI: 10.3390/cells11121953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Centromeric satellite DNA (cen-satDNA) consists of highly divergent repeat monomers, each approximately 171 base pairs in length. Here, we investigated the genetic diversity in the centromeric region of two primate species: long-tailed (Macaca fascicularis) and rhesus (Macaca mulatta) macaques. Fluorescence in situ hybridization and bioinformatic analysis showed the chromosome-specific organization and dynamic nature of cen-satDNAsequences, and their substantial diversity, with distinct subfamilies across macaque populations, suggesting increased turnovers. Comparative genomics identified high level polymorphisms spanning a 120 bp deletion region and a remarkable interspecific variability in cen-satDNA size and structure. Population structure analysis detected admixture patterns within populations, indicating their high divergence and rapid evolution. However, differences in cen-satDNA profiles appear to not be involved in hybrid incompatibility between the two species. Our study provides a genomic landscape of centromeric repeats in wild macaques and opens new avenues for exploring their impact on the adaptive evolution and speciation of primates.
Collapse
|
23
|
Kretschmer R, Goes CAG, Bertollo LAC, Ezaz T, Porto-Foresti F, Toma GA, Utsunomia R, de Bello Cioffi M. Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes). Chromosoma 2022; 131:29-45. [PMID: 35099570 DOI: 10.1007/s00412-022-00768-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
Abstract
Satellites are an abundant source of repetitive DNAs that play an essential role in the chromosomal organization and are tightly linked with the evolution of sex chromosomes. Among fishes, Triportheidae stands out as the only family where almost all species have a homeologous ZZ/ZW sex chromosomes system. While the Z chromosome is typically conserved, the W is always smaller, with variations in size and morphology between species. Here, we report an analysis of the satellitome of Triportheus auritus (TauSat) by integrating genomic and chromosomal data, with a special focus on the highly abundant and female-biased satDNAs. In addition, we investigated the evolutionary trajectories of the ZW sex chromosomes in the Triportheidae family by mapping satDNAs in selected representative species of this family. The satellitome of T. auritus comprised 53 satDNA families of which 24 were also hybridized by FISH. Most satDNAs differed significantly between sexes, with 19 out of 24 being enriched on the W chromosome of T. auritus. The number of satDNAs hybridized into the W chromosomes of T. signatus and T. albus decreased to six and four, respectively, in accordance with the size of their W chromosomes. No TauSat probes produced FISH signals on the chromosomes of Agoniates halecinus. Despite its apparent conservation, our results indicate that each species differs in the satDNA accumulation on the Z chromosome. Minimum spanning trees (MSTs), generated for three satDNA families with different patterns of FISH mapping data, revealed different homogenization rates between the Z and W chromosomes. These results were linked to different levels of recombination between them. The most abundant satDNA family (TauSat01) was exclusively hybridized in the centromeres of all 52 chromosomes of T. auritus, and its putative role in the centromere evolution was also highlighted. Our results identified a high differentiation of both ZW chromosomes regarding satellites composition, highlighting their dynamic role in the sex chromosomes evolution.
Collapse
Affiliation(s)
- Rafael Kretschmer
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | | | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Ricardo Utsunomia
- Instituto de Ciências Biológicas e da Saúde, ICBS, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil.
| |
Collapse
|
24
|
Jeffery D, Lochhead M, Almouzni G. CENP-A: A Histone H3 Variant with Key Roles in Centromere Architecture in Healthy and Diseased States. Results Probl Cell Differ 2022; 70:221-261. [PMID: 36348109 DOI: 10.1007/978-3-031-06573-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Centromeres are key architectural components of chromosomes. Here, we examine their construction, maintenance, and functionality. Focusing on the mammalian centromere- specific histone H3 variant, CENP-A, we highlight its coevolution with both centromeric DNA and its chaperone, HJURP. We then consider CENP-A de novo deposition and the importance of centromeric DNA recently uncovered with the added value from new ultra-long-read sequencing. We next review how to ensure the maintenance of CENP-A at the centromere throughout the cell cycle. Finally, we discuss the impact of disrupting CENP-A regulation on cancer and cell fate.
Collapse
Affiliation(s)
- Daniel Jeffery
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Marina Lochhead
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Geneviève Almouzni
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France.
| |
Collapse
|
25
|
Abstract
We are entering a new era in genomics where entire centromeric regions are accurately represented in human reference assemblies. Access to these high-resolution maps will enable new surveys of sequence and epigenetic variation in the population and offer new insight into satellite array genomics and centromere function. Here, we focus on the sequence organization and evolution of alpha satellites, which are credited as the genetic and genomic definition of human centromeres due to their interaction with inner kinetochore proteins and their importance in the development of human artificial chromosome assays. We provide an overview of alpha satellite repeat structure and array organization in the context of these high-quality reference data sets; discuss the emergence of variation-based surveys; and provide perspective on the role of this new source of genetic and epigenetic variation in the context of chromosome biology, genome instability, and human disease.
Collapse
Affiliation(s)
- Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA; .,Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Ivan A Alexandrov
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; .,Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199004, Russia.,Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
26
|
Abstract
Repeat-enriched genomic regions evolve rapidly and yet support strictly conserved functions like faithful chromosome transmission and the preservation of genome integrity. The leading resolution to this paradox is that DNA repeat-packaging proteins evolve adaptively to mitigate deleterious changes in DNA repeat copy number, sequence, and organization. Exciting new research has tested this model of coevolution by engineering evolutionary mismatches between adaptively evolving chromatin proteins of one species and the DNA repeats of a close relative. Here, we review these innovative evolution-guided functional analyses. The studies demonstrate that vital, chromatin-mediated cellular processes, including transposon suppression, faithful chromosome transmission, and chromosome retention depend on species-specific versions of chromatin proteins that package species-specific DNA repeats. In many cases, the ever-evolving repeats are selfish genetic elements, raising the possibility that chromatin is a battleground of intragenomic conflict.
Collapse
Affiliation(s)
- Cara L Brand
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
27
|
Kumon T, Ma J, Akins RB, Stefanik D, Nordgren CE, Kim J, Levine MT, Lampson MA. Parallel pathways for recruiting effector proteins determine centromere drive and suppression. Cell 2021; 184:4904-4918.e11. [PMID: 34433012 PMCID: PMC8448984 DOI: 10.1016/j.cell.2021.07.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/07/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
Selfish centromere DNA sequences bias their transmission to the egg in female meiosis. Evolutionary theory suggests that centromere proteins evolve to suppress costs of this "centromere drive." In hybrid mouse models with genetically different maternal and paternal centromeres, selfish centromere DNA exploits a kinetochore pathway to recruit microtubule-destabilizing proteins that act as drive effectors. We show that such functional differences are suppressed by a parallel pathway for effector recruitment by heterochromatin, which is similar between centromeres in this system. Disrupting the kinetochore pathway with a divergent allele of CENP-C reduces functional differences between centromeres, whereas disrupting heterochromatin by CENP-B deletion amplifies the differences. Molecular evolution analyses using Murinae genomes identify adaptive evolution in proteins in both pathways. We propose that centromere proteins have recurrently evolved to minimize the kinetochore pathway, which is exploited by selfish DNA, relative to the heterochromatin pathway that equalizes centromeres, while maintaining essential functions.
Collapse
Affiliation(s)
- Tomohiro Kumon
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Ma
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Brian Akins
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derek Stefanik
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - C Erik Nordgren
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mia T Levine
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Abstract
Centromeres are specialized regions on chromosomes recruiting a set of proteins required for faithful chromosome segregation. Differences in centromere strength can potentially bias chromosome segregation toward one of the daughter cells during division. Kumon et al. propose a new model of evolutionary impact on the balance of centromere strength.
Collapse
Affiliation(s)
- Elvira Nikalayevich
- Center for Interdisciplinary Research in Biology, Collège de France, UMR7241/U1050, PSL Research University, Paris 75005, France.
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology, Collège de France, UMR7241/U1050, PSL Research University, Paris 75005, France
| |
Collapse
|
29
|
Blanco-Pastor JL, Liberal IM, Sakiroglu M, Wei Y, Brummer EC, Andrew RL, Pfeil BE. Annual and perennial Medicago show signatures of parallel adaptation to climate and soil in highly conserved genes. Mol Ecol 2021; 30:4448-4465. [PMID: 34217151 DOI: 10.1111/mec.16061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
Human induced environmental change may require rapid adaptation of plant populations and crops, but the genomic basis of environmental adaptation remain poorly understood. We analysed polymorphic loci from the perennial crop Medicago sativa (alfalfa or lucerne) and the annual legume model species M. truncatula to search for a common set of candidate genes that might contribute to adaptation to abiotic stress in both annual and perennial Medicago species. We identified a set of candidate genes of adaptation associated with environmental gradients along the distribution of the two Medicago species. Candidate genes for each species were detected in homologous genomic linkage blocks using genome-environment (GEA) and genome-phenotype association analyses. Hundreds of GEA candidate genes were species-specific, of these, 13.4% (M. sativa) and 24% (M. truncatula) were also significantly associated with phenotypic traits. A set of 168 GEA candidates were shared by both species, which was 25.4% more than expected by chance. When combined, they explained a high proportion of variance for certain phenotypic traits associated with adaptation. Genes with highly conserved functions dominated among the shared candidates and were enriched in gene ontology terms that have shown to play a central role in drought avoidance and tolerance mechanisms by means of cellular shape modifications and other functions associated with cell homeostasis. Our results point to the existence of a molecular basis of adaptation to abiotic stress in Medicago determined by highly conserved genes and gene functions. We discuss these results in light of the recently proposed omnigenic model of complex traits.
Collapse
Affiliation(s)
- José Luis Blanco-Pastor
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.,INRAE, Centre Nouvelle-Aquitaine-Poitiers, UR4 (URP3F), Lusignan, France
| | - Isabel M Liberal
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.,Real Jardín Botánico de Madrid (RJB-CSIC), Madrid, Spain
| | - Muhammet Sakiroglu
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Yanling Wei
- Plant Breeding Center, Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - E Charles Brummer
- Plant Breeding Center, Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Rose L Andrew
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Bernard E Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
30
|
Kursel LE, McConnell H, de la Cruz AFA, Malik HS. Gametic specialization of centromeric histone paralogs in Drosophila virilis. Life Sci Alliance 2021; 4:e202000992. [PMID: 33986021 PMCID: PMC8200288 DOI: 10.26508/lsa.202000992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023] Open
Abstract
In most eukaryotes, centromeric histone (CenH3) proteins mediate mitosis and meiosis and ensure epigenetic inheritance of centromere identity. We hypothesized that disparate chromatin environments in soma versus germline might impose divergent functional requirements on single CenH3 genes, which could be ameliorated by gene duplications and subsequent specialization. Here, we analyzed the cytological localization of two recently identified CenH3 paralogs, Cid1 and Cid5, in Drosophila virilis using specific antibodies and epitope-tagged transgenic strains. We find that only ancestral Cid1 is present in somatic cells, whereas both Cid1 and Cid5 are expressed in testes and ovaries. However, Cid1 is lost in male meiosis but retained throughout oogenesis, whereas Cid5 is lost during female meiosis but retained in mature sperm. Following fertilization, only Cid1 is detectable in the early embryo, suggesting that maternally deposited Cid1 is rapidly loaded onto paternal centromeres during the protamine-to-histone transition. Our studies reveal mutually exclusive gametic specialization of divergent CenH3 paralogs. Duplication and divergence might allow essential centromeric genes to resolve an intralocus conflict between maternal and paternal centromeric requirements in many animal species.
Collapse
Affiliation(s)
- Lisa E Kursel
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hannah McConnell
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Aida Flor A de la Cruz
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
31
|
Morrison O, Thakur J. Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin. Int J Mol Sci 2021; 22:6922. [PMID: 34203193 PMCID: PMC8268097 DOI: 10.3390/ijms22136922] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/19/2023] Open
Abstract
Chromatin consists of a complex of DNA and histone proteins as its core components and plays an important role in both packaging DNA and regulating DNA metabolic pathways such as DNA replication, transcription, recombination, and chromosome segregation. Proper functioning of chromatin further involves a network of interactions among molecular complexes that modify chromatin structure and organization to affect the accessibility of DNA to transcription factors leading to the activation or repression of the transcription of target DNA loci. Based on its structure and compaction state, chromatin is categorized into euchromatin, heterochromatin, and centromeric chromatin. In this review, we discuss distinct chromatin factors and molecular complexes that constitute euchromatin-open chromatin structure associated with active transcription; heterochromatin-less accessible chromatin associated with silencing; centromeric chromatin-the site of spindle binding in chromosome segregation.
Collapse
Affiliation(s)
| | - Jitendra Thakur
- Department of Biology, Emory University, 1510 Clifton Rd #2006, Atlanta, GA 30322, USA;
| |
Collapse
|
32
|
Matsuo Y. The Adenine/Thymine Deleterious Selection Model for GC Content Evolution at the Third Codon Position of the Histone Genes in Drosophila. Genes (Basel) 2021; 12:721. [PMID: 34065869 PMCID: PMC8150595 DOI: 10.3390/genes12050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/02/2022] Open
Abstract
The evolution of the GC (guanine cytosine) content at the third codon position of the histone genes (H1, H2A, H2B, H3, H4, H2AvD, H3.3A, H3.3B, and H4r) in 12 or more Drosophila species is reviewed. For explaining the evolution of the GC content at the third codon position of the genes, a model assuming selection with a deleterious effect for adenine/thymine and a size effect is presented. The applicability of the model to whole-genome genes is also discussed.
Collapse
Affiliation(s)
- Yoshinori Matsuo
- Division of Science and Technology, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| |
Collapse
|
33
|
Despot-Slade E, Mravinac B, Širca S, Castagnone-Sereno P, Plohl M, Meštrović N. The Centromere Histone Is Conserved and Associated with Tandem Repeats Sharing a Conserved 19-bp Box in the Holocentromere of Meloidogyne Nematodes. Mol Biol Evol 2021; 38:1943-1965. [PMID: 33399875 PMCID: PMC8097292 DOI: 10.1093/molbev/msaa336] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although centromeres have conserved function, centromere-specific histone H3 (CenH3) and centromeric DNA evolve rapidly. The centromere drive model explains this phenomenon as a consequence of the conflict between fast-evolving DNA and CenH3, suggesting asymmetry in female meiosis as a crucial factor. We characterized evolution of the CenH3 protein in three closely related, polyploid mitotic parthenogenetic species of the Meloidogyne incognita group, and in the distantly related meiotic parthenogen Meloidogyne hapla. We identified duplication of the CenH3 gene in a putative sexual ancestral Meloidogyne. We found that one CenH3 (αCenH3) remained conserved in all extant species, including in distant Meloidogyne hapla, whereas the other evolved rapidly and under positive selection into four different CenH3 variants. This pattern of CenH3 evolution in Meloidogyne species suggests the subspecialization of CenH3s in ancestral sexual species. Immunofluorescence performed on mitotic Meloidogyne incognita revealed a dominant role of αCenH3 on its centromere, whereas the other CenH3s have lost their function in mitosis. The observed αCenH3 chromosome distribution disclosed cluster-like centromeric organization. The ChIP-Seq analysis revealed that in M. incognita αCenH3-associated DNA dominantly comprises tandem repeats, composed of divergent monomers which share a completely conserved 19-bp long box. Conserved αCenH3-associated DNA is also confirmed in the related mitotic Meloidogyne incognita group species suggesting preservation of both centromere protein and DNA constituents. We hypothesize that the absence of centromere drive in mitosis might allow for CenH3 and its associated DNA to achieve an equilibrium in which they can persist for long periods of time.
Collapse
Affiliation(s)
| | | | - Saša Širca
- Agricultural Institute Slovenia, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
34
|
Selfish chromosomal drive shapes recent centromeric histone evolution in monkeyflowers. PLoS Genet 2021; 17:e1009418. [PMID: 33886547 PMCID: PMC8061799 DOI: 10.1371/journal.pgen.1009418] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Centromeres are essential mediators of chromosomal segregation, but both centromeric DNA sequences and associated kinetochore proteins are paradoxically diverse across species. The selfish centromere model explains rapid evolution by both components via an arms-race scenario: centromeric DNA variants drive by distorting chromosomal transmission in female meiosis and attendant fitness costs select on interacting proteins to restore Mendelian inheritance. Although it is clear than centromeres can drive and that drive often carries costs, female meiotic drive has not been directly linked to selection on kinetochore proteins in any natural system. Here, we test the selfish model of centromere evolution in a yellow monkeyflower (Mimulus guttatus) population polymorphic for a costly driving centromere (D). We show that the D haplotype is structurally and genetically distinct and swept to a high stable frequency within the past 1500 years. We use quantitative genetic mapping to demonstrate that context-dependence in the strength of drive (from near-100% D transmission in interspecific hybrids to near-Mendelian in within-population crosses) primarily reflects variable vulnerability of the non-driving competitor chromosomes, but also map an unlinked modifier of drive coincident with kinetochore protein Centromere-specific Histone 3 A (CenH3A). Finally, CenH3A exhibits a recent (<1000 years) selective sweep in our focal population, implicating local interactions with D in ongoing adaptive evolution of this kinetochore protein. Together, our results demonstrate an active co-evolutionary arms race between DNA and protein components of the meiotic machinery in Mimulus, with important consequences for individual fitness and molecular divergence. Centromeres must mediate faithful chromosomal transmission during cell division and sexual reproduction, but both the DNA and protein components of centromeres diverge rapidly across species. The selfish centromere model argues that this paradoxical diversity results from a genetic conflict between centromeric DNA variants driving through female meiosis to gain over-transmission and kinetochore proteins co-evolving to re-establish Mendelian segregation. We use whole genome sequencing and genetic crossing experiments to demonstrate active evolutionary interactions between a selfish centromere and a key kinetochore protein (CenH3A) in the wildflower Mimulus guttatus. We show that both inter-specific and intra-population differences in CenH3A affect centromeric drive in hybrids, and that adaptive evolution of CenH3A has followed the recent and costly spread of the driver in a wild population. This work provides novel empirical support for the proposed antagonistic co-evolution of the DNA and protein components of centromeres, with important consequences for understanding cellular function, individual fitness, and species divergence.
Collapse
|
35
|
Thakur J, Packiaraj J, Henikoff S. Sequence, Chromatin and Evolution of Satellite DNA. Int J Mol Sci 2021; 22:ijms22094309. [PMID: 33919233 PMCID: PMC8122249 DOI: 10.3390/ijms22094309] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Satellite DNA consists of abundant tandem repeats that play important roles in cellular processes, including chromosome segregation, genome organization and chromosome end protection. Most satellite DNA repeat units are either of nucleosomal length or 5–10 bp long and occupy centromeric, pericentromeric or telomeric regions. Due to high repetitiveness, satellite DNA sequences have largely been absent from genome assemblies. Although few conserved satellite-specific sequence motifs have been identified, DNA curvature, dyad symmetries and inverted repeats are features of various satellite DNAs in several organisms. Satellite DNA sequences are either embedded in highly compact gene-poor heterochromatin or specialized chromatin that is distinct from euchromatin. Nevertheless, some satellite DNAs are transcribed into non-coding RNAs that may play important roles in satellite DNA function. Intriguingly, satellite DNAs are among the most rapidly evolving genomic elements, such that a large fraction is species-specific in most organisms. Here we describe the different classes of satellite DNA sequences, their satellite-specific chromatin features, and how these features may contribute to satellite DNA biology and evolution. We also discuss how the evolution of functional satellite DNA classes may contribute to speciation in plants and animals.
Collapse
Affiliation(s)
- Jitendra Thakur
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
- Correspondence:
| | - Jenika Packiaraj
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
36
|
Arora UP, Charlebois C, Lawal RA, Dumont BL. Population and subspecies diversity at mouse centromere satellites. BMC Genomics 2021; 22:279. [PMID: 33865332 PMCID: PMC8052823 DOI: 10.1186/s12864-021-07591-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mammalian centromeres are satellite-rich chromatin domains that execute conserved roles in kinetochore assembly and chromosome segregation. Centromere satellites evolve rapidly between species, but little is known about population-level diversity across these loci. RESULTS We developed a k-mer based method to quantify centromere copy number and sequence variation from whole genome sequencing data. We applied this method to diverse inbred and wild house mouse (Mus musculus) genomes to profile diversity across the core centromere (minor) satellite and the pericentromeric (major) satellite repeat. We show that minor satellite copy number varies more than 10-fold among inbred mouse strains, whereas major satellite copy numbers span a 3-fold range. In contrast to widely held assumptions about the homogeneity of mouse centromere repeats, we uncover marked satellite sequence heterogeneity within single genomes, with diversity levels across the minor satellite exceeding those at the major satellite. Analyses in wild-caught mice implicate subspecies and population origin as significant determinants of variation in satellite copy number and satellite heterogeneity. Intriguingly, we also find that wild-caught mice harbor dramatically reduced minor satellite copy number and elevated satellite sequence heterogeneity compared to inbred strains, suggesting that inbreeding may reshape centromere architecture in pronounced ways. CONCLUSION Taken together, our results highlight the power of k-mer based approaches for probing variation across repetitive regions, provide an initial portrait of centromere variation across Mus musculus, and lay the groundwork for future functional studies on the consequences of natural genetic variation at these essential chromatin domains.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA.
| | | | | | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
37
|
Saint-Leandre B, Christopher C, Levine MT. Adaptive evolution of an essential telomere protein restricts telomeric retrotransposons. eLife 2020; 9:e60987. [PMID: 33350936 PMCID: PMC7755394 DOI: 10.7554/elife.60987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Essential, conserved cellular processes depend not only on essential, strictly conserved proteins but also on essential proteins that evolve rapidly. To probe this poorly understood paradox, we exploited the rapidly evolving Drosophila telomere-binding protein, cav/HOAP, which protects chromosomes from lethal end-to-end fusions. We replaced the D. melanogaster HOAP with a highly diverged version from its close relative, D. yakuba. The D. yakuba HOAP ('HOAP[yak]') localizes to D. melanogaster telomeres and protects D. melanogaster chromosomes from fusions. However, HOAP[yak] fails to rescue a previously uncharacterized HOAP function: silencing of the specialized telomeric retrotransposons that, instead of telomerase, maintain chromosome length in Drosophila. Whole genome sequencing and cytogenetics of experimentally evolved populations revealed that HOAP[yak] triggers telomeric retrotransposon proliferation, resulting in aberrantly long telomeres. This evolution-generated, separation-of-function allele resolves the paradoxical observation that a fast-evolving essential gene directs an essential, strictly conserved function: telomeric retrotransposon containment, not end-protection, requires evolutionary innovation at HOAP.
Collapse
Affiliation(s)
- Bastien Saint-Leandre
- Department of Biology and Epigenetics Institute, University of PennsylvaniaPhiladelphiaUnited States
| | - Courtney Christopher
- Department of Biology and Epigenetics Institute, University of PennsylvaniaPhiladelphiaUnited States
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
38
|
Abstract
The kinetochore is a complex structure whose function is absolutely essential. Unlike the centromere, the kinetochore at first appeared remarkably well conserved from yeast to humans, especially the microtubule-binding outer kinetochore. However, recent efforts towards biochemical reconstitution of diverse kinetochores challenge the notion of a similarly conserved architecture for the constitutively centromere-associated network of the inner kinetochore. This review briefly summarizes the evidence from comparative genomics for interspecific variability in inner kinetochore composition and focuses on novel biochemical evidence indicating that even homologous inner kinetochore protein complexes are put to different uses in different organisms.
Collapse
Affiliation(s)
- G E Hamilton
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - T N Davis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Kasinathan B, Colmenares SU, McConnell H, Young JM, Karpen GH, Malik HS. Innovation of heterochromatin functions drives rapid evolution of essential ZAD-ZNF genes in Drosophila. eLife 2020; 9:e63368. [PMID: 33169670 PMCID: PMC7655104 DOI: 10.7554/elife.63368] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Contrary to dogma, evolutionarily young and dynamic genes can encode essential functions. We find that evolutionarily dynamic ZAD-ZNF genes, which encode the most abundant class of insect transcription factors, are more likely to encode essential functions in Drosophila melanogaster than ancient, conserved ZAD-ZNF genes. We focus on the Nicknack ZAD-ZNF gene, which is evolutionarily young, poorly retained in Drosophila species, and evolves under strong positive selection. Yet we find that it is necessary for larval development in D. melanogaster. We show that Nicknack encodes a heterochromatin-localizing protein like its paralog Oddjob, also an evolutionarily dynamic yet essential ZAD-ZNF gene. We find that the divergent D. simulans Nicknack protein can still localize to D. melanogaster heterochromatin and rescue viability of female but not male Nicknack-null D. melanogaster. Our findings suggest that innovation for rapidly changing heterochromatin functions might generally explain the essentiality of many evolutionarily dynamic ZAD-ZNF genes in insects.
Collapse
Affiliation(s)
- Bhavatharini Kasinathan
- Medical Scientist Training Program, University of Washington School of MedicineSeattleUnited States
- Molecular and Cellular Biology Graduate program, University of Washington School of MedicineSeattleUnited States
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Serafin U Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California at BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Hannah McConnell
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Gary H Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California at BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
40
|
Weisman CM, Murray AW, Eddy SR. Many, but not all, lineage-specific genes can be explained by homology detection failure. PLoS Biol 2020; 18:e3000862. [PMID: 33137085 PMCID: PMC7660931 DOI: 10.1371/journal.pbio.3000862] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/12/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
Genes for which homologs can be detected only in a limited group of evolutionarily related species, called “lineage-specific genes,” are pervasive: Essentially every lineage has them, and they often comprise a sizable fraction of the group’s total genes. Lineage-specific genes are often interpreted as “novel” genes, representing genetic novelty born anew within that lineage. Here, we develop a simple method to test an alternative null hypothesis: that lineage-specific genes do have homologs outside of the lineage that, even while evolving at a constant rate in a novelty-free manner, have merely become undetectable by search algorithms used to infer homology. We show that this null hypothesis is sufficient to explain the lack of detected homologs of a large number of lineage-specific genes in fungi and insects. However, we also find that a minority of lineage-specific genes in both clades are not well explained by this novelty-free model. The method provides a simple way of identifying which lineage-specific genes call for special explanations beyond homology detection failure, highlighting them as interesting candidates for further study. Lineage-specific gene families may arise from evolutionary innovations such as de novo gene origination, or may simply mean that a similarity search program failed to identify more distant homologs. A new computational method for modeling the expected decay of similarity search scores with evolutionary distance allows distinction between the two explanations.
Collapse
Affiliation(s)
- Caroline M. Weisman
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Andrew W. Murray
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sean R. Eddy
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
41
|
Gržan T, Despot-Slade E, Meštrović N, Plohl M, Mravinac B. CenH3 distribution reveals extended centromeres in the model beetle Tribolium castaneum. PLoS Genet 2020; 16:e1009115. [PMID: 33125365 PMCID: PMC7598501 DOI: 10.1371/journal.pgen.1009115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022] Open
Abstract
Centromeres are chromosomal domains essential for kinetochore assembly and correct chromosome segregation. Inconsistent in their underlying DNA sequences, centromeres are defined epigenetically by the presence of the centromere-specific histone H3 variant CenH3. Most of the analyzed eukaryotes have monocentric chromosomes in which CenH3 proteins deposit into a single, primary constriction visible at metaphase chromosomes. Contrary to monocentrics, evolutionary sporadic holocentric chromosomes lack a primary constriction and have kinetochore activity distributed along the entire chromosome length. In this work, we identified cCENH3 protein, the centromeric H3 histone of the coleopteran model beetle Tribolium castaneum. By ChIP-seq analysis we disclosed that cCENH3 chromatin assembles upon a repertoire of repetitive DNAs. cCENH3 in situ mapping revealed unusually elongated T. castaneum centromeres that comprise approximately 40% of the chromosome length. Being the longest insect regional centromeres evidenced so far, T. castaneum centromeres are characterized by metapolycentric structure composed of several individual cCENH3-containing domains. We suggest that the model beetle T. castaneum with its metapolycentromeres could represent an excellent model for further studies of non-canonical centromeres in insects.
Collapse
Affiliation(s)
- Tena Gržan
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Nevenka Meštrović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- * E-mail: (MP); (BM)
| | - Brankica Mravinac
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- * E-mail: (MP); (BM)
| |
Collapse
|
42
|
Vijay N. Loss of inner kinetochore genes is associated with the transition to an unconventional point centromere in budding yeast. PeerJ 2020; 8:e10085. [PMID: 33062452 PMCID: PMC7531349 DOI: 10.7717/peerj.10085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/11/2020] [Indexed: 01/28/2023] Open
Abstract
Background The genomic sequences of centromeres, as well as the set of proteins that recognize and interact with centromeres, are known to quickly diverge between lineages potentially contributing to post-zygotic reproductive isolation. However, the actual sequence of events and processes involved in the divergence of the kinetochore machinery is not known. The patterns of gene loss that occur during evolution concomitant with phenotypic changes have been used to understand the timing and order of molecular changes. Methods I screened the high-quality genomes of twenty budding yeast species for the presence of well-studied kinetochore genes. Based on the conserved gene order and complete genome assemblies, I identified gene loss events. Subsequently, I searched the intergenic regions to identify any un-annotated genes or gene remnants to obtain additional evidence of gene loss. Results My analysis identified the loss of four genes (NKP1, NKP2, CENPL/IML3 and CENPN/CHL4) of the inner kinetochore constitutive centromere-associated network (CCAN/also known as CTF19 complex in yeast) in both the Naumovozyma species for which genome assemblies are available. Surprisingly, this collective loss of four genes of the CCAN/CTF19 complex coincides with the emergence of unconventional centromeres in N. castellii and N. dairenensis. My study suggests a tentative link between the emergence of unconventional point centromeres and the turnover of kinetochore genes in budding yeast.
Collapse
Affiliation(s)
- Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| |
Collapse
|
43
|
Prosée RF, Wenda JM, Steiner FA. Adaptations for centromere function in meiosis. Essays Biochem 2020; 64:193-203. [PMID: 32406496 PMCID: PMC7475650 DOI: 10.1042/ebc20190076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023]
Abstract
The aim of mitosis is to segregate duplicated chromosomes equally into daughter cells during cell division. Meiosis serves a similar purpose, but additionally separates homologous chromosomes to produce haploid gametes for sexual reproduction. Both mitosis and meiosis rely on centromeres for the segregation of chromosomes. Centromeres are the specialized regions of the chromosomes that are attached to microtubules during their segregation. In this review, we describe the adaptations and layers of regulation that are required for centromere function during meiosis, and their role in meiosis-specific processes such as homolog-pairing and recombination. Since female meiotic divisions are asymmetric, meiotic centromeres are hypothesized to evolve quickly in order to favor their own transmission to the offspring, resulting in the rapid evolution of many centromeric proteins. We discuss this observation using the example of the histone variant CENP-A, which marks the centromere and is essential for centromere function. Changes in both the size and the sequence of the CENP-A N-terminal tail have led to additional functions of the protein, which are likely related to its roles during meiosis. We highlight the importance of CENP-A in the inheritance of centromere identity, which is dependent on the stabilization, recycling, or re-establishment of CENP-A-containing chromatin during meiosis.
Collapse
Affiliation(s)
- Reinier F Prosée
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Joanna M Wenda
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Florian A Steiner
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
44
|
Arunkumar G, Melters DP. Centromeric Transcription: A Conserved Swiss-Army Knife. Genes (Basel) 2020; 11:E911. [PMID: 32784923 PMCID: PMC7463856 DOI: 10.3390/genes11080911] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
In most species, the centromere is comprised of repetitive DNA sequences, which rapidly evolve. Paradoxically, centromeres fulfill an essential function during mitosis, as they are the chromosomal sites wherein, through the kinetochore, the mitotic spindles bind. It is now generally accepted that centromeres are transcribed, and that such transcription is associated with a broad range of functions. More than a decade of work on this topic has shown that centromeric transcripts are found across the eukaryotic tree and associate with heterochromatin formation, chromatin structure, kinetochore structure, centromeric protein loading, and inner centromere signaling. In this review, we discuss the conservation of small and long non-coding centromeric RNAs, their associations with various centromeric functions, and their potential roles in disease.
Collapse
Affiliation(s)
| | - Daniël P. Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
45
|
Kursel LE, Welsh FC, Malik HS. Ancient Coretention of Paralogs of Cid Centromeric Histones and Cal1 Chaperones in Mosquito Species. Mol Biol Evol 2020; 37:1949-1963. [PMID: 32125433 PMCID: PMC7306699 DOI: 10.1093/molbev/msaa056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite their essential role in chromosome segregation in most eukaryotes, centromeric histones (CenH3s) evolve rapidly and are subject to gene turnover. We previously identified four instances of gene duplication and specialization of Cid, which encodes for the CenH3 in Drosophila. We hypothesized that retention of specialized Cid paralogs could be selectively advantageous to resolve the intralocus conflict that occurs on essential genes like Cid, which are subject to divergent selective pressures to perform multiple functions. We proposed that intralocus conflict could be a widespread phenomenon that drives evolutionary innovation in centromeric proteins. If this were the case, we might expect to find other instances of coretention and specialization of centromeric proteins during animal evolution. Consistent with this hypothesis, we find that most mosquito species encode two CenH3 (mosqCid) genes, mosqCid1 and mosqCid2, which have been coretained for over 150 My. In addition, Aedes species encode a third mosqCid3 gene, which arose from an independent gene duplication of mosqCid1. Like Drosophila Cid paralogs, mosqCid paralogs evolve under different selective constraints and show tissue-specific expression patterns. Analysis of mosqCid N-terminal protein motifs further supports the model that mosqCid paralogs have functionally diverged. Extending our survey to other centromeric proteins, we find that all Anopheles mosquitoes encode two CAL1 paralogs, which are the chaperones that deposit CenH3 proteins at centromeres in Diptera, but a single CENP-C paralog. The ancient coretention of paralogs of centromeric proteins adds further support to the hypothesis that intralocus conflict can drive their coretention and functional specialization.
Collapse
Affiliation(s)
- Lisa E Kursel
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Biology, University of Utah, Salt Lake City, UT
| | - Frances C Welsh
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Puget Sound, Tacoma, WA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
46
|
Shatskikh AS, Kotov AA, Adashev VE, Bazylev SS, Olenina LV. Functional Significance of Satellite DNAs: Insights From Drosophila. Front Cell Dev Biol 2020; 8:312. [PMID: 32432114 PMCID: PMC7214746 DOI: 10.3389/fcell.2020.00312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Since their discovery more than 60 years ago, satellite repeats are still one of the most enigmatic parts of eukaryotic genomes. Being non-coding DNA, satellites were earlier considered to be non-functional “junk,” but recently this concept has been extensively revised. Satellite DNA contributes to the essential processes of formation of crucial chromosome structures, heterochromatin establishment, dosage compensation, reproductive isolation, genome stability and development. Genomic abundance of satellites is under stabilizing selection owing of their role in the maintenance of vital regions of the genome – centromeres, pericentromeric regions, and telomeres. Many satellites are transcribed with the generation of long or small non-coding RNAs. Misregulation of their expression is found to lead to various defects in the maintenance of genomic architecture, chromosome segregation and gametogenesis. This review summarizes our current knowledge concerning satellite functions, the mechanisms of regulation and evolution of satellites, focusing on recent findings in Drosophila. We discuss here experimental and bioinformatics data obtained in Drosophila in recent years, suggesting relevance of our analysis to a wide range of eukaryotic organisms.
Collapse
Affiliation(s)
- Aleksei S Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies on the Organismal Level, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
47
|
Saint-Leandre B, Levine MT. The Telomere Paradox: Stable Genome Preservation with Rapidly Evolving Proteins. Trends Genet 2020; 36:232-242. [PMID: 32155445 DOI: 10.1016/j.tig.2020.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 01/08/2023]
Abstract
Telomeres ensure chromosome length homeostasis and protection from catastrophic end-to-end chromosome fusions. All eukaryotes require this essential, strictly conserved telomere-dependent genome preservation. However, recent evolutionary analyses of mammals, plants, and flies report pervasive rapid evolution of telomere proteins. The causes of this paradoxical observation - that unconserved machinery underlies an essential, conserved function - remain enigmatic. Indeed, these fast-evolving telomere proteins bind, extend, and protect telomeric DNA, which itself evolves slowly in most systems. We hypothesize that the universally fast-evolving subtelomere - the telomere-adjacent, repetitive sequence - is a primary driver of the 'telomere paradox'. Under this model, radical sequence changes in the subtelomere perturb subtelomere-dependent, telomere functions. Compromised telomere function then spurs adaptation of telomere proteins to maintain telomere length homeostasis and protection. We propose an experimental framework that leverages both protein divergence and subtelomeric sequence divergence to test the hypothesis that subtelomere sequence evolution shapes recurrent innovation of telomere machinery.
Collapse
Affiliation(s)
- Bastien Saint-Leandre
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Mia T Levine
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
48
|
King TD, Leonard CJ, Cooper JC, Nguyen S, Joyce EF, Phadnis N. Recurrent Losses and Rapid Evolution of the Condensin II Complex in Insects. Mol Biol Evol 2020; 36:2195-2204. [PMID: 31270536 PMCID: PMC6759200 DOI: 10.1093/molbev/msz140] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Condensins play a crucial role in the organization of genetic material by compacting and disentangling chromosomes. Based on studies in a few model organisms, the condensins I and II complexes are considered to have distinct functions, with the condensin II complex playing a role in meiosis and somatic pairing of homologous chromosomes in Drosophila. Intriguingly, the Cap-G2 subunit of condensin II is absent in Drosophila melanogaster, and this loss may be related to the high levels of chromosome pairing seen in flies. Here, we find that all three non-SMC subunits of condensin II (Cap-G2, Cap-D3, and Cap-H2) have been repeatedly and independently lost in taxa representing multiple insect orders, with some taxa lacking all three. We also find that all non-Dipteran insects display near-uniform low-pairing levels regardless of their condensin II complex composition, suggesting that some key aspects of genome organization are robust to condensin II subunit losses. Finally, we observe consistent signatures of positive selection in condensin subunits across flies and mammals. These findings suggest that these ancient complexes are far more evolutionarily labile than previously suspected, and are at the crossroads of several forms of genomic conflicts. Our results raise fundamental questions about the specific functions of the two condensin complexes in taxa that have experienced subunit losses, and open the door to further investigations to elucidate the diversity of molecular mechanisms that underlie genome organization across various life forms.
Collapse
Affiliation(s)
- Thomas D King
- School of Biological Sciences, University of Utah, Salt Lake City, UT
| | | | - Jacob C Cooper
- School of Biological Sciences, University of Utah, Salt Lake City, UT
| | - Son Nguyen
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nitin Phadnis
- School of Biological Sciences, University of Utah, Salt Lake City, UT
| |
Collapse
|
49
|
Fishman L, McIntosh M. Standard Deviations: The Biological Bases of Transmission Ratio Distortion. Annu Rev Genet 2019; 53:347-372. [DOI: 10.1146/annurev-genet-112618-043905] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - Mariah McIntosh
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
50
|
Melters DP, Pitman M, Rakshit T, Dimitriadis EK, Bui M, Papoian GA, Dalal Y. Intrinsic elasticity of nucleosomes is encoded by histone variants and calibrated by their binding partners. Proc Natl Acad Sci U S A 2019; 116:24066-24074. [PMID: 31712435 PMCID: PMC6883791 DOI: 10.1073/pnas.1911880116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histone variants fine-tune transcription, replication, DNA damage repair, and faithful chromosome segregation. Whether and how nucleosome variants encode unique mechanical properties to their cognate chromatin structures remains elusive. Here, using in silico and in vitro nanoindentation methods, extending to in vivo dissections, we report that histone variant nucleosomes are intrinsically more elastic than their canonical counterparts. Furthermore, binding proteins, which discriminate between histone variant nucleosomes, suppress this innate elasticity and also compact chromatin. Interestingly, when we overexpress the binding proteins in vivo, we also observe increased compaction of chromatin enriched for histone variant nucleosomes, correlating with diminished access. Taken together, these data suggest a plausible link between innate mechanical properties possessed by histone variant nucleosomes, the adaptability of chromatin states in vivo, and the epigenetic plasticity of the underlying locus.
Collapse
Affiliation(s)
- Daniël P Melters
- Laboratory Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Mary Pitman
- Laboratory Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
- Department of Chemistry and Biochemistry, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Tatini Rakshit
- Laboratory Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Emilios K Dimitriadis
- Scanning Probe Microscopy Unit, Biomedical Engineering and Physical Science Shared Resource, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Minh Bui
- Laboratory Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Garegin A Papoian
- Department of Chemistry and Biochemistry, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742;
| | - Yamini Dalal
- Laboratory Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892;
| |
Collapse
|