1
|
Letsou A. Positive-negative Selection: The counterselection breakthrough that conventionalized reverse genetics in the mouse. Dev Biol 2025; 523:139-143. [PMID: 40254260 DOI: 10.1016/j.ydbio.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
Mario Capecchi, 2007 Nobel Laureate and Distinguished Professor of Human Genetics at the University of Utah School of Medicine, was instrumental in establishing the mouse as the premier reverse genetic model for studying mammalian development. The Capecchi lab's innovative research, which combined studies of homologous recombination and mammalian embryo manipulation, changed the trajectory of experimental developmental biology. Crucial in the field was the breakthrough study of Suzanne Mansour, Kirk Thomas, and Mario Capecchi: Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes (Mansour et al., 1988). Published in Nature in 1988, the manuscript which describes positive-negative selection strategies for gene knockout has been cited close to 2500 times. The impact of the work was to revolutionize mouse genetics by enabling the efficient creation of targeted mutations and sophisticated animal models for the analysis of any gene's function in mammalian development and health. These models have been integral to our understanding of fundamental biological processes and disease mechanisms.
Collapse
Affiliation(s)
- Anthea Letsou
- Department of Human Genetics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
2
|
Sun S, Ting CT, Wu CI. Selection with two alleles of X-linkage and its application to the fitness component analysis of OdsH in Drosophila. G3 (BETHESDA, MD.) 2024; 14:jkae157. [PMID: 39001870 PMCID: PMC11537805 DOI: 10.1093/g3journal/jkae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 04/29/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
In organisms with the XY sex-determination system, there is an imbalance in the inheritance and transmission of the X chromosome between males and females. Unlike an autosomal allele, an X-linked recessive allele in a female will have phenotypic effects on its male counterpart. Thus, genes located on the X chromosome are of particular interest to researchers in molecular evolution and genetics. Here we present a model for selection with two alleles of X-linkage to understand fitness components associated with genes on the X chromosome. We apply this model to the fitness analysis of an X-linked gene, OdsH (16D), in the fruit fly Drosophila melanogaster. The function of OdsH is involved in sperm production and the gene is rapidly evolving under positive selection. Using site-directed gene targeting, we generated functional and defective OdsH variants tagged with the eye-color marker gene white. We compare the allele frequency changes of the two OdsH variants, each directly competing against a wild-type OdsH allele in concurrent but separate experimental populations. After 20 generations, the two genetically modified OdsH variants displayed a 40% difference in allele frequencies, with the functional OdsH variant demonstrating an advantage over the defective variant. Using maximum likelihood estimation, we determined the fitness components associated with the OdsH alleles in males and females. Our analysis revealed functional aspects of the fitness determinants associated with OdsH, and that sex-specific fertility and viability consequences both contribute to selection on an X-linked gene.
Collapse
Affiliation(s)
- Sha Sun
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Chau-Ti Ting
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 106, Taiwan
| | - Chung-I Wu
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Steinmetz EL, Noh S, Klöppel C, Fuhr MF, Bach N, Raffael ME, Hildebrandt K, Wittling F, Jann D, Walldorf U. Generation of Mutants from the 57B Region of Drosophila melanogaster. Genes (Basel) 2023; 14:2047. [PMID: 38002990 PMCID: PMC10671637 DOI: 10.3390/genes14112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The 57B region of Drosophila melanogaster includes a cluster of the three homeobox genes orthopedia (otp), Drosophila Retinal homeobox (DRx), and homeobrain (hbn). In an attempt to isolate mutants for these genes, we performed an EMS mutagenesis and isolated lethal mutants from the 57B region, among them mutants for otp, DRx, and hbn. With the help of two newly generated deletions from the 57B region, we mapped additional mutants to specific chromosomal intervals and identified several of these mutants from the 57B region molecularly. In addition, we generated mutants for CG15651 and RIC-3 by gene targeting and mutants for the genes CG9344, CG15649, CG15650, and ND-B14.7 using the CRISPR/Cas9 system. We determined the lethality period during development for most isolated mutants. In total, we analysed alleles from nine different genes from the 57B region of Drosophila, which could now be used to further explore the functions of the corresponding genes in the future.
Collapse
Affiliation(s)
- Eva Louise Steinmetz
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Zoology & Physiology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building B2.1, D-66123 Saarbrücken, Germany
| | - Sandra Noh
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Christine Klöppel
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Martin F. Fuhr
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Nicole Bach
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Mona Evelyn Raffael
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Kirsten Hildebrandt
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Fabienne Wittling
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Building E8.1, D-66123 Saarbrücken, Germany
| | - Doris Jann
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Medical Biochemistry & Molecular Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 45.2, D-66421 Homburg, Germany
| | - Uwe Walldorf
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| |
Collapse
|
4
|
Hildebrandt K, Kolb D, Klöppel C, Kaspar P, Wittling F, Hartwig O, Federspiel J, Findji I, Walldorf U. Regulatory modules mediating the complex neural expression patterns of the homeobrain gene during Drosophila brain development. Hereditas 2022; 159:2. [PMID: 34983686 PMCID: PMC8728971 DOI: 10.1186/s41065-021-00218-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The homeobox gene homeobrain (hbn) is located in the 57B region together with two other homeobox genes, Drosophila Retinal homeobox (DRx) and orthopedia (otp). All three genes encode transcription factors with important functions in brain development. Hbn mutants are embryonic lethal and characterized by a reduction in the anterior protocerebrum, including the mushroom bodies, and a loss of the supraoesophageal brain commissure. RESULTS In this study we conducted a detailed expression analysis of Hbn in later developmental stages. In the larval brain, Hbn is expressed in all type II lineages and the optic lobes, including the medulla and lobula plug. The gene is expressed in the cortex of the medulla and the lobula rim in the adult brain. We generated a new hbnKOGal4 enhancer trap strain by reintegrating Gal4 in the hbn locus through gene targeting, which reflects the complete hbn expression during development. Eight different enhancer-Gal4 strains covering 12 kb upstream of hbn, the two large introns and 5 kb downstream of the gene, were established and hbn expression was investigated. We characterized several enhancers that drive expression in specific areas of the brain throughout development, from embryo to the adulthood. Finally, we generated deletions of four of these enhancer regions through gene targeting and analysed their effects on the expression and function of hbn. CONCLUSION The complex expression of Hbn in the developing brain is regulated by several specific enhancers within the hbn locus. Each enhancer fragment drives hbn expression in several specific cell lineages, and with largely overlapping patterns, suggesting the presence of shadow enhancers and enhancer redundancy. Specific enhancer deletion strains generated by gene targeting display developmental defects in the brain. This analysis opens an avenue for a deeper analysis of hbn regulatory elements in the future.
Collapse
Affiliation(s)
- Kirsten Hildebrandt
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Dieter Kolb
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Christine Klöppel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Petra Kaspar
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: COS Heidelberg, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Fabienne Wittling
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Hemholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Building E8.1, 66123, Saarbrücken, Germany
| | - Olga Hartwig
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Hemholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Building E8.1, 66123, Saarbrücken, Germany
| | - Jannic Federspiel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - India Findji
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany.
| |
Collapse
|
5
|
Hildebrandt K, Kübel S, Minet M, Fürst N, Klöppel C, Steinmetz E, Walldorf U. Enhancer analysis of the Drosophila zinc finger transcription factor Earmuff by gene targeting. Hereditas 2021; 158:41. [PMID: 34732265 PMCID: PMC8567707 DOI: 10.1186/s41065-021-00209-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Many transcription factors are involved in the formation of the brain during the development of Drosophila melanogaster. The transcription factor Earmuff (Erm), a member of the forebrain embryonic zinc finger family (Fezf), is one of these important factors for brain development. One major function of Earmuff is the regulation of proliferation within type II neuroblast lineages in the brain; here, Earmuff is expressed in intermediate neural progenitor cells (INPs) and balances neuronal differentiation versus stem cell maintenance. Erm expression during development is regulated by several enhancers. RESULTS In this work we show a functional analysis of erm and some of its enhancers. We generated a new erm mutant allele by gene targeting and reintegrated Gal4 to make an erm enhancer trap strain that could also be used on an erm mutant background. The deletion of three of the previously analysed enhancers showing the most prominent expression patterns of erm by gene targeting resulted in specific temporal and spatial defects in defined brain structures. These defects were already known but here could be assigned to specific enhancer regions. CONCLUSION This analysis is to our knowledge the first systematic analysis of several large enhancer deletions of a Drosophila gene by gene targeting and will enable deeper analysis of erm enhancer functions in the future.
Collapse
Affiliation(s)
- Kirsten Hildebrandt
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Sabrina Kübel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Clinical and Molecular Virology, Friedrich-Alexander University, 91054, Erlangen, Germany
| | - Marie Minet
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Human Genetics, Saarland University, Building 60, 66421, Homburg/Saar, Germany
| | - Nora Fürst
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Genetics/Epigenetics, Saarland University, Building A2.4, 66123, Saarbrücken, Germany
| | - Christine Klöppel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Eva Steinmetz
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Zoology and Physiology, Saarland University, Building B2.1, 66123, Saarbrücken, Germany
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany.
| |
Collapse
|
6
|
Hildebrandt K, Bach N, Kolb D, Walldorf U. The homeodomain transcription factor Orthopedia is involved in development of the Drosophila hindgut. Hereditas 2020; 157:46. [PMID: 33213520 PMCID: PMC7678101 DOI: 10.1186/s41065-020-00160-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background The Drosophila hindgut is commonly used model for studying various aspects of organogenesis like primordium establishment, further specification, patterning, and morphogenesis. During embryonic development of Drosophila, many transcriptional activators are involved in the formation of the hindgut. The transcription factor Orthopedia (Otp), a member of the 57B homeobox gene cluster, is expressed in the hindgut and nervous system of developing Drosophila embryos, but due to the lack of mutants no functional analysis has been conducted yet. Results We show that two different otp transcripts, a hindgut-specific and a nervous system-specific form, are present in the Drosophila embryo. Using an Otp antibody, a detailed expression analysis during hindgut development was carried out. Otp was not only expressed in the embryonic hindgut, but also in the larval and adult hindgut. To analyse the function of otp, we generated the mutant otp allele otpGT by ends-out gene targeting. In addition, we isolated two EMS-induced otp alleles in a genetic screen for mutants of the 57B region. All three otp alleles showed embryonic lethality with a severe hindgut phenotype. Anal pads were reduced and the large intestine was completely missing. This phenotype is due to apoptosis in the hindgut primordium and the developing hindgut. Conclusion Our data suggest that Otp is another important factor for hindgut development of Drosophila. As a downstream factor of byn Otp is most likely present only in differentiated hindgut cells during all stages of development rather than in stem cells.
Collapse
Affiliation(s)
- Kirsten Hildebrandt
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany
| | - Nicole Bach
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany
| | - Dieter Kolb
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany.
| |
Collapse
|
7
|
Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. Nutrients 2019; 11:nu11030504. [PMID: 30818813 PMCID: PMC6471790 DOI: 10.3390/nu11030504] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) protects against redox stress by providing reducing equivalents to antioxidants such as glutathione and thioredoxin. NADPH levels decline with aging in several tissues, but whether this is a major driving force for the aging process has not been well established. Global or neural overexpression of several cytoplasmic enzymes that synthesize NADPH have been shown to extend lifespan in model organisms such as Drosophila suggesting a positive relationship between cytoplasmic NADPH levels and longevity. Mitochondrial NADPH plays an important role in the protection against redox stress and cell death and mitochondrial NADPH-utilizing thioredoxin reductase 2 levels correlate with species longevity in cells from rodents and primates. Mitochondrial NADPH shuttles allow for some NADPH flux between the cytoplasm and mitochondria. Since a decline of nicotinamide adenine dinucleotide (NAD+) is linked with aging and because NADP+ is exclusively synthesized from NAD+ by cytoplasmic and mitochondrial NAD+ kinases, a decline in the cytoplasmic or mitochondrial NADPH pool may also contribute to the aging process. Therefore pro-longevity therapies should aim to maintain the levels of both NAD+ and NADPH in aging tissues.
Collapse
|
8
|
Deng B, Li Q, Liu X, Cao Y, Li B, Qian Y, Xu R, Mao R, Zhou E, Zhang W, Huang J, Rao Y. Chemoconnectomics: Mapping Chemical Transmission in Drosophila. Neuron 2019; 101:876-893.e4. [PMID: 30799021 DOI: 10.1016/j.neuron.2019.01.045] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/02/2018] [Accepted: 01/17/2019] [Indexed: 12/27/2022]
Abstract
We define the chemoconnectome (CCT) as the entire set of neurotransmitters, neuromodulators, neuropeptides, and their receptors underlying chemotransmission in an animal. We have generated knockout lines of Drosophila CCT genes for functional investigations and knockin lines containing Gal4 and other tools for examining gene expression and manipulating neuronal activities, with a versatile platform allowing genetic intersections and logic gates. CCT reveals the coexistence of specific transmitters but mutual exclusion of the major inhibitory and excitatory transmitters in the same neurons. One neuropeptide and five receptors were detected in glia, with octopamine β2 receptor functioning in glia. A pilot screen implicated 41 genes in sleep regulation, with the dopamine receptor Dop2R functioning in neurons expressing the peptides Dilp2 and SIFa. Thus, CCT is a novel concept, chemoconnectomics a new approach, and CCT tool lines a powerful resource for systematic investigations of chemical-transmission-mediated neural signaling circuits underlying behavior and cognition.
Collapse
Affiliation(s)
- Bowen Deng
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Qi Li
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Xinxing Liu
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Yue Cao
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Bingfeng Li
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Yongjun Qian
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Renbo Mao
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Enxing Zhou
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Wenxia Zhang
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Juan Huang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yi Rao
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China.
| |
Collapse
|
9
|
Abstract
Vector control programs based on population reduction by matings with mass-released sterile insects require the release of only male mosquitoes, as the release of females, even if sterile, would increase the number of biting and potentially disease-transmitting individuals. While small-scale releases demonstrated the applicability of sterile males releases to control the yellow fever mosquito Aedes aegypti, large-scale programs for mosquitoes are currently prevented by the lack of efficient sexing systems in any of the vector species.Different approaches of sexing are pursued, including classical genetic and mechanical methods of sex separation. Another strategy is the development of transgenic sexing systems. Such systems already exist in other insect pests. Genome modification tools could be used to apply similar strategies to mosquitoes. Three major tools to modify mosquito genomes are currently used: transposable elements, site-specific recombination systems, and genome editing via TALEN or CRISPR/Cas. All three can serve the purpose of developing sexing systems and vector control strains in mosquitoes in two ways: first, via their use in basic research. A better understanding of mosquito biology, including the sex-determining pathways and the involved genes can greatly facilitate the development of sexing strains. Moreover, basic research can help to identify other regulatory elements and genes potentially useful for the construction of transgenic sexing systems. Second, these genome modification tools can be used to apply the gained knowledge to build and test mosquito sexing strains for vector control.
Collapse
Affiliation(s)
- Irina Häcker
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Marc F Schetelig
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
10
|
Miller SW, Posakony JW. Lateral inhibition: Two modes of non-autonomous negative autoregulation by neuralized. PLoS Genet 2018; 14:e1007528. [PMID: 30028887 PMCID: PMC6070291 DOI: 10.1371/journal.pgen.1007528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/01/2018] [Accepted: 07/01/2018] [Indexed: 11/18/2022] Open
Abstract
Developmental patterning involves the progressive subdivision of tissue into different cell types by invoking different genetic programs. In particular, cell-cell signaling is a universally deployed means of specifying distinct cell fates in adjacent cells. For this mechanism to be effective, it is essential that an asymmetry be established in the signaling and responding capacities of the participating cells. Here we focus on the regulatory mechanisms underlying the role of the neuralized gene and its protein product in establishing and maintaining asymmetry of signaling through the Notch pathway. The context is the classical process of “lateral inhibition” within Drosophila proneural clusters, which is responsible for distinguishing the sensory organ precursor (SOP) and non-SOP fates among adjacent cells. We find that neur is directly regulated in proneural clusters by both proneural transcriptional activators and Enhancer of split basic helix-loop-helix repressors (bHLH-Rs), via two separate cis-regulatory modules within the neur locus. We show that this bHLH-R regulation is required to prevent the early, pre-SOP expression of neur from being maintained in a subset of non-SOPs following SOP specification. Lastly, we demonstrate that Neur activity in the SOP is required to inhibit, in a cell non-autonomous manner, both neur expression and Neur function in non-SOPs, thus helping to secure the robust establishment of distinct cell identities within the developing proneural cluster. Much of the process of animal development is concerned with giving cells specific instructions as to what type of cell they are to become—their “fate”. Often, it is even necessary to assign very different fates to cells that are adjacent to each other in the tissue. In such cases, cell-to-cell signaling is frequently utilized as the means of distinguishing the cells’ fates. For example, one cell might send a signal to its neighbors that inhibits them from adopting the same fate as itself. Here, it is obviously vital that there is an asymmetry between the “sending” and “receiving” cells in the ability to transmit such a signal. In the fruit fly Drosophila, the gene neuralized encodes a protein that plays a critical role in establishing the capacity to send such an inhibitory signal. The work we describe here reveals specifically how the receiving cells are prevented from acquiring the ability to send the signal. Remarkably, the Neuralized protein itself is deeply involved in this process. Neuralized function in the sending cell generates two distinct mechanisms that inhibit its own activity in the receiving cells.
Collapse
Affiliation(s)
- Steven W. Miller
- Division of Biological Sciences, Section of Cell & Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - James W. Posakony
- Division of Biological Sciences, Section of Cell & Developmental Biology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Limpitikul WB, Viswanathan MC, O'Rourke B, Yue DT, Cammarato A. Conservation of cardiac L-type Ca 2+ channels and their regulation in Drosophila: A novel genetically-pliable channelopathic model. J Mol Cell Cardiol 2018; 119:64-74. [PMID: 29684406 PMCID: PMC6154789 DOI: 10.1016/j.yjmcc.2018.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 01/28/2023]
Abstract
Dysregulation of L-type Ca2+ channels (LTCCs) underlies numerous cardiac pathologies. Understanding their modulation with high fidelity relies on investigating LTCCs in their native environment with intact interacting proteins. Such studies benefit from genetic manipulation of endogenous channels in cardiomyocytes, which often proves cumbersome in mammalian models. Drosophila melanogaster, however, offers a potentially efficient alternative as it possesses a relatively simple heart, is genetically pliable, and expresses well-conserved genes. Fluorescence in situ hybridization confirmed an abundance of Ca-α1D and Ca-α1T mRNA in fly myocardium, which encode subunits that specify hetero-oligomeric channels homologous to mammalian LTCCs and T-type Ca2+ channels, respectively. Cardiac-specific knockdown of Ca-α1D via interfering RNA abolished cardiac contraction, suggesting Ca-α1D (i.e. A1D) represents the primary functioning Ca2+ channel in Drosophila hearts. Moreover, we successfully isolated viable single cardiomyocytes and recorded Ca2+ currents via patch clamping, a feat never before accomplished with the fly model. The profile of Ca2+ currents recorded in individual cells when Ca2+ channels were hypomorphic, absent, or under selective LTCC blockage by nifedipine, additionally confirmed the predominance of A1D current across all activation voltages. T-type current, activated at more negative voltages, was also detected. Lastly, A1D channels displayed Ca2+-dependent inactivation, a critical negative feedback mechanism of LTCCs, and the current through them was augmented by forskolin, an activator of the protein kinase A pathway. In sum, the Drosophila heart possesses a conserved compendium of Ca2+ channels, suggesting that the fly may serve as a robust and effective platform for studying cardiac channelopathies.
Collapse
Affiliation(s)
- Worawan B Limpitikul
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, United States
| | - Meera C Viswanathan
- Institute of CardioScience, Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, United States
| | - Brian O'Rourke
- Institute of CardioScience, Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, United States
| | - David T Yue
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, United States
| | - Anthony Cammarato
- Institute of CardioScience, Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, United States; Department of Physiology, The Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, United States.
| |
Collapse
|
12
|
Trait stacking in modern agriculture: application of genome editing tools. Emerg Top Life Sci 2017; 1:151-160. [PMID: 33525762 DOI: 10.1042/etls20170012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 11/17/2022]
Abstract
Advances in plant transgenic technology in the 20th century overcame the major hurdle for transfer of genetic material between species. This not only enabled fundamental insights into plant biology, but also revolutionized commercial agriculture. Adoption of transgenic plants in industrial agriculture has reduced pesticide application, while bringing significant increase in crop yields and farmers' profits. The progress made in transgenic technology over the last three decades paved the way mainly for simple single-gene insect and herbicide tolerance (HT) trait products. Modern agriculture demands stacking and pyramiding of complex traits that provide broad-spectrum insect and HT with other agronomic traits. In addition, more recent developments in genome editing provide unique opportunities to create precise on-demand genome modifications to enhance crop productivity. The major challenge for the plant biotech industry therefore remains to combine multiple forms of traits needed to create commercially viable stacked product. This review provides a historical perspective of conventional breeding stacks, current status of molecular stacks and future developments needed to enable genome-editing technology for trait stacking.
Collapse
|
13
|
Abstract
Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly's tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism's natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones.
Collapse
|
14
|
Lee HB, Sundberg BN, Sigafoos AN, Clark KJ. Genome Engineering with TALE and CRISPR Systems in Neuroscience. Front Genet 2016; 7:47. [PMID: 27092173 PMCID: PMC4821859 DOI: 10.3389/fgene.2016.00047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/16/2016] [Indexed: 12/26/2022] Open
Abstract
Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience.
Collapse
Affiliation(s)
- Han B Lee
- Neurobiology of Disease Graduate Program, Mayo Graduate School Rochester, MN, USA
| | - Brynn N Sundberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Ashley N Sigafoos
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Karl J Clark
- Neurobiology of Disease Graduate Program, Mayo Graduate SchoolRochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo ClinicRochester, MN, USA
| |
Collapse
|
15
|
Yavuz A, Jagge C, Slone J, Amrein H. A genetic tool kit for cellular and behavioral analyses of insect sugar receptors. Fly (Austin) 2016; 8:189-96. [PMID: 25984594 DOI: 10.1080/19336934.2015.1050569] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Arthropods employ a large family of up to 100 putative taste or gustatory receptors (Grs) for the recognition of a wide range of non-volatile chemicals. In Drosophila melanogaster, a small subfamily of 8 Gr genes is thought to mediate the detection of sugars, the fly's major nutritional source. However, the specific roles for most sugar Gr genes are not known. Here, we report the generation of a series of mutant sugar Gr knock-in alleles and several composite sugar Gr mutant strains, including a sugar blind strain, which will facilitate the characterization of this gene family. Using Ca(2+) imaging experiments, we show that most gustatory receptor neurons (GRNs) of sugar blind flies (lacking all 8 sugar Gr genes) fail to respond to any sugar tested. Moreover, expression of single sugar Gr genes in most sweet GRNs of sugar-blind flies does not restore sugar responses. However, when pair-wise combinations of sugar Gr genes are introduced to sweet GRNs, responses to select sugars are restored. We also examined the cellular phenotype of flies homozygous mutant for Gr64a, a Gr gene previously reported to be a major contributor for the detection of many sugars. In contrast to these claims, we find that sweet GRNs of Gr64a homozygous mutant flies show normal responses to most sugars, and only modestly reduced responses to maltose and maltotriose. Thus, the precisely engineered genetic mutations of single Gr genes and construction of a sugar-blind strain provide powerful analytical tools for examining the roles of Drosophila and other insect sugar Gr genes in sweet taste.
Collapse
Affiliation(s)
- Ahmet Yavuz
- a Department of Cellular and Molecular Medicine ; Texas A&M Health Science Center ; College Station , TX USA
| | | | | | | |
Collapse
|
16
|
Burnouf S, Grönke S, Augustin H, Dols J, Gorsky MK, Werner J, Kerr F, Alic N, Martinez P, Partridge L. Deletion of endogenous Tau proteins is not detrimental in Drosophila. Sci Rep 2016; 6:23102. [PMID: 26976084 PMCID: PMC4792132 DOI: 10.1038/srep23102] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/26/2016] [Indexed: 01/06/2023] Open
Abstract
Human Tau (hTau) is a highly soluble and natively unfolded protein that binds to microtubules within neurons. Its dysfunction and aggregation into insoluble paired helical filaments is involved in the pathogenesis of Alzheimer’s disease (AD), constituting, together with accumulated β-amyloid (Aβ) peptides, a hallmark of the disease. Deciphering both the loss-of-function and toxic gain-of-function of hTau proteins is crucial to further understand the mechanisms leading to neurodegeneration in AD. As the fruit fly Drosophila melanogaster expresses Tau proteins (dTau) that are homologous to hTau, we aimed to better comprehend dTau functions by generating a specific tau knock-out (KO) fly line using homologous recombination. We observed that the specific removal of endogenous dTau proteins did not lead to overt, macroscopic phenotypes in flies. Indeed, survival, climbing ability and neuronal function were unchanged in tau KO flies. In addition, we did not find any overt positive or negative effect of dTau removal on human Aβ-induced toxicity. Altogether, our results indicate that the absence of dTau proteins has no major functional impact on flies, and suggests that our tau KO strain is a relevant model to further investigate the role of dTau proteins in vivo, thereby giving additional insights into hTau functions.
Collapse
Affiliation(s)
- Sylvie Burnouf
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany.,CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, 50931 Cologne, Germany
| | - Sebastian Grönke
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany.,CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, 50931 Cologne, Germany
| | - Hrvoje Augustin
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Jacqueline Dols
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany.,CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, 50931 Cologne, Germany
| | - Marianna Karina Gorsky
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany.,CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, 50931 Cologne, Germany
| | - Jennifer Werner
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany.,CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, 50931 Cologne, Germany
| | - Fiona Kerr
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Nazif Alic
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Pedro Martinez
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany.,CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, 50931 Cologne, Germany.,Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
17
|
Kumar S, Barone P, Smith M. Gene targeting and transgene stacking using intra genomic homologous recombination in plants. PLANT METHODS 2016; 12:11. [PMID: 26839580 PMCID: PMC4736180 DOI: 10.1186/s13007-016-0111-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/14/2016] [Indexed: 05/04/2023]
Abstract
Modern agriculture has created a demand for plant biotechnology products that provide durable resistance to insect pests, tolerance of herbicide applications for weed control, and agronomic traits tailored for specific geographies. These transgenic trait products require a modular and sequential multigene stacking platform that is supported by precise genome engineering technology. Designed nucleases have emerged as potent tools for creating targeted DNA double strand breaks (DSBs). Exogenously supplied donor DNA can repair the targeted DSB by a process known as gene targeting (GT), resulting in a desired modification of the target genome. The potential of GT technology has not been fully realized for trait deployment in agriculture, mainly because of inefficient transformation and plant regeneration systems in a majority of crop plants and genotypes. This challenge of transgene stacking in plants could be overcome by Intra-Genomic Homologous Recombination (IGHR) that converts independently segregating unlinked donor and target transgenic loci into a genetically linked molecular stack. The method requires stable integration of the donor DNA into the plant genome followed by intra-genomic mobilization. IGHR complements conventional breeding with genetic transformation and designed nucleases to provide a flexible transgene stacking and trait deployment platform.
Collapse
Affiliation(s)
- Sandeep Kumar
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46286 USA
| | - Pierluigi Barone
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46286 USA
| | - Michelle Smith
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46286 USA
| |
Collapse
|
18
|
Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies. Nat Commun 2015; 6:8808. [PMID: 26554610 PMCID: PMC4773887 DOI: 10.1038/ncomms9808] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/06/2015] [Indexed: 01/08/2023] Open
Abstract
Replication errors are the main cause of mitochondrial DNA (mtDNA) mutations and a compelling approach to decrease mutation levels would therefore be to increase the fidelity of the catalytic subunit (POLγA) of the mtDNA polymerase. Here we genomically engineer the tamas locus, encoding fly POLγA, and introduce alleles expressing exonuclease- (exo−) and polymerase-deficient (pol−) POLγA versions. The exo− mutant leads to accumulation of point mutations and linear deletions of mtDNA, whereas pol− mutants cause mtDNA depletion. The mutant tamas alleles are developmentally lethal but can complement each other in trans resulting in viable flies with clonally expanded mtDNA mutations. Reconstitution of human mtDNA replication in vitro confirms that replication is a highly dynamic process where POLγA goes on and off the template to allow complementation during proofreading and elongation. The created fly models are valuable tools to study germ line transmission of mtDNA and the pathophysiology of POLγA mutation disease. A key source of mitochondrial DNA mutations is errors introduced during genome replication. Here the authors create Drosophilia strains with separated elongation and proofreading capabilities to explore the dynamism of mitochondrial DNA replication.
Collapse
|
19
|
Venken KJT, Sarrion-Perdigones A, Vandeventer PJ, Abel NS, Christiansen AE, Hoffman KL. Genome engineering: Drosophila melanogaster and beyond. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:233-67. [PMID: 26447401 DOI: 10.1002/wdev.214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
Abstract
A central challenge in investigating biological phenomena is the development of techniques to modify genomic DNA with nucleotide precision that can be transmitted through the germ line. Recent years have brought a boon in these technologies, now collectively known as genome engineering. Defined genomic manipulations at the nucleotide level enable a variety of reverse engineering paradigms, providing new opportunities to interrogate diverse biological functions. These genetic modifications include controlled removal, insertion, and substitution of genetic fragments, both small and large. Small fragments up to a few kilobases (e.g., single nucleotide mutations, small deletions, or gene tagging at single or multiple gene loci) to large fragments up to megabase resolution can be manipulated at single loci to create deletions, duplications, inversions, or translocations of substantial sections of whole chromosome arms. A specialized substitution of chromosomal portions that presumably are functionally orthologous between different organisms through syntenic replacement, can provide proof of evolutionary conservation between regulatory sequences. Large transgenes containing endogenous or synthetic DNA can be integrated at defined genomic locations, permitting an alternative proof of evolutionary conservation, and sophisticated transgenes can be used to interrogate biological phenomena. Precision engineering can additionally be used to manipulate the genomes of organelles (e.g., mitochondria). Novel genome engineering paradigms are often accelerated in existing, easily genetically tractable model organisms, primarily because these paradigms can be integrated in a rigorous, existing technology foundation. The Drosophila melanogaster fly model is ideal for these types of studies. Due to its small genome size, having just four chromosomes, the vast amount of cutting-edge genetic technologies, and its short life-cycle and inexpensive maintenance requirements, the fly is exceptionally amenable to complex genetic analysis using advanced genome engineering. Thus, highly sophisticated methods developed in the fly model can be used in nearly any sequenced organism. Here, we summarize different ways to perform precise inheritable genome engineering using integrases, recombinases, and DNA nucleases in the D. melanogaster. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Koen J T Venken
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Paul J Vandeventer
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Nicholas S Abel
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Audrey E Christiansen
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Kristi L Hoffman
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| |
Collapse
|
20
|
Dong S, Lin J, Held NL, Clem RJ, Passarelli AL, Franz AWE. Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti. PLoS One 2015; 10:e0122353. [PMID: 25815482 PMCID: PMC4376861 DOI: 10.1371/journal.pone.0122353] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/12/2015] [Indexed: 12/26/2022] Open
Abstract
In vivo targeted gene disruption is a powerful tool to study gene function. Thus far, two tools for genome editing in Aedes aegypti have been applied, zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN). As a promising alternative to ZFN and TALEN, which are difficult to produce and validate using standard molecular biological techniques, the clustered regularly interspaced short palindromic repeats/CRISPR-associated sequence 9 (CRISPR/Cas9) system has recently been discovered as a "do-it-yourself" genome editing tool. Here, we describe the use of CRISPR/Cas9 in the mosquito vector, Aedes aegypti. In a transgenic mosquito line expressing both Dsred and enhanced cyan fluorescent protein (ECFP) from the eye tissue-specific 3xP3 promoter in separated but tightly linked expression cassettes, we targeted the ECFP nucleotide sequence for disruption. When supplying the Cas9 enzyme and two sgRNAs targeting different regions of the ECFP gene as in vitro transcribed mRNAs for germline transformation, we recovered four different G1 pools (5.5% knockout efficiency) where individuals still expressed DsRed but no longer ECFP. PCR amplification, cloning, and sequencing of PCR amplicons revealed indels in the ECFP target gene ranging from 2-27 nucleotides. These results show for the first time that CRISPR/Cas9 mediated gene editing is achievable in Ae. aegypti, paving the way for further functional genomics related studies in this mosquito species.
Collapse
Affiliation(s)
- Shengzhang Dong
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Jingyi Lin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Nicole L Held
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - A Lorena Passarelli
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Alexander W E Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
21
|
Fujii S, Yavuz A, Slone J, Jagge C, Song X, Amrein H. Drosophila sugar receptors in sweet taste perception, olfaction, and internal nutrient sensing. Curr Biol 2015; 25:621-627. [PMID: 25702577 DOI: 10.1016/j.cub.2014.12.058] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/20/2014] [Accepted: 12/23/2014] [Indexed: 11/28/2022]
Abstract
Identification of nutritious compounds is dependent on expression of specific taste receptors in appropriate taste-cell types [1]. In contrast to mammals, which rely on a single, broadly tuned heterodimeric sugar receptor [2], the Drosophila genome harbors a small subfamily of eight, closely related gustatory receptor (Gr) genes, Gr5a, Gr61a, and Gr64a-Gr64f, of which three have been proposed to mediate sweet taste [3-6]. However, expression and function of several of these putative sugar Gr genes are not known. Here, we present a comprehensive expression and functional analysis using Gr(LEXA/GAL4) alleles that were generated through homologous recombination. We show that sugar Gr genes are expressed in a combinatorial manner to yield at least eight sets of sweet-sensing neurons. Behavioral investigations show that most sugar Gr mutations affect taste responses to only a small number of sugars and that effective detection of most sugars is dependent on more than one Gr gene. Surprisingly, Gr64a, one of three Gr genes previously proposed to play a major role in sweet taste [3, 4], is not expressed in labellar taste neurons, and Gr64a mutant flies exhibit normal sugar responses elicited from the labellum. Our analysis provides a molecular rationale for distinct tuning profiles of sweet taste neurons, and it favors a model whereby all sugar Grs contribute to sweet taste. Furthermore, expression in olfactory organs and the brain implies novel roles for sugar Gr genes in olfaction and internal nutrient sensing, respectively. Thus, sugar receptors may contribute to feeding behavior via multiple sensory systems.
Collapse
Affiliation(s)
- Shinsuke Fujii
- Department of Cellular and Molecular Medicine Texas A&M Health Science Center College Station TX, 77845
| | - Ahmet Yavuz
- Department of Cellular and Molecular Medicine Texas A&M Health Science Center College Station TX, 77845
| | - Jesse Slone
- Department of Cellular and Molecular Medicine Texas A&M Health Science Center College Station TX, 77845
| | - Christopher Jagge
- Department of Cellular and Molecular Medicine Texas A&M Health Science Center College Station TX, 77845
| | - Xiangyu Song
- Department of Cellular and Molecular Medicine Texas A&M Health Science Center College Station TX, 77845
| | - Hubert Amrein
- Department of Cellular and Molecular Medicine Texas A&M Health Science Center College Station TX, 77845
| |
Collapse
|
22
|
Mason RP, Breda C, Kooner GS, Mallucci GR, Kyriacou CP, Giorgini F. Modeling Huntington Disease in Yeast and Invertebrates. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
23
|
Kavlie RG, Fritz JL, Nies F, Göpfert MC, Oliver D, Albert JT, Eberl DF. Prestin is an anion transporter dispensable for mechanical feedback amplification in Drosophila hearing. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:51-60. [PMID: 25412730 PMCID: PMC4282873 DOI: 10.1007/s00359-014-0960-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 12/12/2022]
Abstract
In mammals, the membrane-based protein Prestin confers unique electromotile properties to cochlear outer hair cells, which contribute to the cochlear amplifier. Like mammals, the ears of insects, such as those of Drosophila melanogaster, mechanically amplify sound stimuli and have also been reported to express Prestin homologs. To determine whether the D. melanogaster Prestin homolog (dpres) is required for auditory amplification, we generated and analyzed dpres mutant flies. We found that dpres is robustly expressed in the fly’s antennal ear. However, dpres mutant flies show normal auditory nerve responses, and intact non-linear amplification. Thus we conclude that, in D. melanogaster, auditory amplification is independent of Prestin. This finding resonates with prior phylogenetic analyses, which suggest that the derived motor function of mammalian Prestin replaced, or amended, an ancestral transport function. Indeed, we show that dpres encodes a functional anion transporter. Interestingly, the acquired new motor function in the phylogenetic lineage leading to birds and mammals coincides with loss of the mechanotransducer channel NompC (=TRPN1), which has been shown to be required for auditory amplification in flies. The advent of Prestin (or loss of NompC, respectively) may thus mark an evolutionary transition from a transducer-based to a Prestin-based mechanism of auditory amplification.
Collapse
Affiliation(s)
- Ryan G Kavlie
- The Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Alcantara MV, Fragoso SP, Picchi GFA. Knockout confirmation for Hurries: rapid genotype identification of Trypanosoma cruzi transfectants by polymerase chain reaction directly from liquid culture. Mem Inst Oswaldo Cruz 2014; 109:511-3. [PMID: 24936912 PMCID: PMC4155859 DOI: 10.1590/0074-0276140010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/18/2014] [Indexed: 11/24/2022] Open
Abstract
Gene knockout is a widely used approach to evaluate loss-of-function phenotypes
and it can be facilitated by the incorporation of a DNA cassette having a
drug-selectable marker. Confirmation of the correct knockout cassette insertion
is an important step in gene removal validation and has generally been performed
by polymerase chain reaction (PCR) assays following a time-consuming DNA
extraction step. Here, we show a rapid procedure for the identification of
Trypanosoma cruzi transfectants by PCR directly from liquid
culture - without prior DNA extraction. This simple approach enabled us to
generate PCR amplifications from different cultures varying from
106-108 cells/mL. We also show that it is possible to
combine different primer pairs in a multiplex detection reaction and even to
achieve knockout confirmation with an extremely simple interpretation of a
real-time PCR result. Using the “culture PCR” approach, we show for the first
time that we can assess different DNA sequence combinations by PCR directly from
liquid culture, saving time in several tasks for T. cruzi
genotype interrogation.
Collapse
Affiliation(s)
- Monica Visnieski Alcantara
- Laboratório de Biologia Molecular de Tripanossomatídeos, Instituto Carlos Chagas-Fiocruz, Curitiba, PR, Brasil
| | - Stenio Perdigão Fragoso
- Laboratório de Biologia Molecular de Tripanossomatídeos, Instituto Carlos Chagas-Fiocruz, Curitiba, PR, Brasil
| | | |
Collapse
|
25
|
The PIKE homolog Centaurin gamma regulates developmental timing in Drosophila. PLoS One 2014; 9:e97332. [PMID: 24845618 PMCID: PMC4028201 DOI: 10.1371/journal.pone.0097332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/17/2014] [Indexed: 12/30/2022] Open
Abstract
Phosphoinositide-3-kinase enhancer (PIKE) proteins encoded by the PIKE/CENTG1 gene are members of the gamma subgroup of the Centaurin superfamily of small GTPases. They are characterized by their chimeric protein domain architecture consisting of a pleckstrin homology (PH) domain, a GTPase-activating (GAP) domain, Ankyrin repeats as well as an intrinsic GTPase domain. In mammals, three PIKE isoforms with variations in protein structure and subcellular localization are encoded by the PIKE locus. PIKE inactivation in mice results in a broad range of defects, including neuronal cell death during brain development and misregulation of mammary gland development. PIKE -/- mutant mice are smaller, contain less white adipose tissue, and show insulin resistance due to misregulation of AMP-activated protein kinase (AMPK) and insulin receptor/Akt signaling. here, we have studied the role of PIKE proteins in metabolic regulation in the fly. We show that the Drosophila PIKE homolog, ceng1A, encodes functional GTPases whose internal GAP domains catalyze their GTPase activity. To elucidate the biological function of ceng1A in flies, we introduced a deletion in the ceng1A gene by homologous recombination that removes all predicted functional PIKE domains. We found that homozygous ceng1A mutant animals survive to adulthood. In contrast to PIKE -/- mouse mutants, genetic ablation of Drosophila ceng1A does not result in growth defects or weight reduction. Although metabolic pathways such as insulin signaling, sensitivity towards starvation and mobilization of lipids under high fed conditions are not perturbed in ceng1A mutants, homozygous ceng1A mutants show a prolonged development in second instar larval stage, leading to a late onset of pupariation. In line with these results we found that expression of ecdysone inducible genes is reduced in ceng1A mutants. Together, we propose a novel role for Drosophila Ceng1A in regulating ecdysone signaling-dependent second to third instar larval transition.
Collapse
|
26
|
Liu J, Chen Y, Jiao R. TALEN-mediated Drosophila genome editing: protocols and applications. Methods 2014; 69:22-31. [PMID: 24751823 DOI: 10.1016/j.ymeth.2014.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022] Open
Abstract
TALEs (transcription activator-like effectors) are a family of natural transcriptional activators originally isolated from the plant pathogen of Xanthomonas spp. The DNA binding motif of TALEs can be re-designed in such way that they bind specific DNA sequences other than their original targets. Fusion of customized TALEs with an endonuclease, Fok I, generates artificial enzymes that are targeted to specific DNA sites for cutting, allowing gene specific modification of both animal and plant genomes. Previously, we reported the use of TALEN (transcription activator-like effector nuclease) for the highly specific and efficient modification of the two Drosophila loci yellow and CG9797. Here, we describe a detailed protocol for TALEN-mediated genomic modification in Drosophila, with the aim of providing a practical bench guide for the Drosophila research community.
Collapse
Affiliation(s)
- Jiyong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, China; Sino-French Hoffmann Institute, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou 510182, China
| | - Yixu Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, China
| | - Renjie Jiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, China; Sino-French Hoffmann Institute, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou 510182, China.
| |
Collapse
|
27
|
Beaudette K, Hughes TM, Marcus JM. Improved injection needles facilitate germline transformation of the buckeye butterfly Junonia coenia. Biotechniques 2014; 56:142-4. [PMID: 24641478 DOI: 10.2144/000114147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/17/2014] [Indexed: 11/23/2022] Open
Abstract
Germline transformation with transposon vectors is an important tool for insect genetics, but progress in developing transformation protocols for butterflies has been limited by high post-injection ova mortality. Here we present an improved glass injection needle design for injecting butterfly ova that increases survival in three Nymphalid butterfly species. Using the needles to genetically transform the common buckeye butterfly Junonia coenia, the hatch rate for injected Junonia ova was 21.7%, the transformation rate was 3%, and the overall experimental efficiency was 0.327%, a substantial improvement over previous results in other butterfly species. Improved needle design and a higher efficiency of transformation should permit the deployment of transposon-based genetic tools in a broad range of less fecund lepidopteran species.
Collapse
Affiliation(s)
- Kahlia Beaudette
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| | - Tia M Hughes
- Department of Biology, Western Kentucky University, Bowling Green, KY; Center for Human Genetics Research, Vanderbilt University, Nashville, TN
| | - Jeffrey M Marcus
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada; Department of Biology, Western Kentucky University, Bowling Green, KY
| |
Collapse
|
28
|
He H, Noll M. Differential and redundant functions of gooseberry and gooseberry neuro in the central nervous system and segmentation of the Drosophila embryo. Dev Biol 2013; 382:209-23. [PMID: 23886579 DOI: 10.1016/j.ydbio.2013.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 01/25/2023]
Abstract
The gooseberry locus of Drosophila consists of two homologous Pax genes, gooseberry neuro (gsbn) and gooseberry (gsb). Originally characterized by genetics as a single segment-polarity gene, its role in segmentation has been enigmatic, as only deficiencies uncovering both genes showed a strong segmentation phenotype while mutants of gsb did not. To solve this conundrum and assay for differential roles of gsbn and gsb, we have obtained by homologous recombination for the first time null mutants of either gene as well as a deficiency inactivating only gsbn and gsb. Our analysis shows that (i) gsbn null mutants are subviable while all surviving males and most females are sterile; (ii) gsb and gsbn share overlapping functions in segmentation and the CNS, in which gsbn largely, but not completely depends on the transcriptional activation by the product of gsb; (iii) as a consequence, in the absence of gsbn, gsb becomes haploinsufficient for its function in the CNS, and gsbn(-/-)gsb(-/+) mutants die as larvae. Such mutants display defects in the proper specification of the SNa branch of the segmental nerve, which appears intact in gsbn(-/-) mutants. Lineage analysis in the embryonic CNS showed that gsbn is expressed in the entire lineage derived from NB5-4, which generates 4 or 5 motoneurons whose axons are part of the SNa branch and all of which except one also express BarH1. Analysis of gsbn(-/-)gsb(-/+) clones originating from NB5-4 further suggests that gsb and gsbn specify the SNa fate and concomitantly repress the SNc fate in this lineage and that their products activate BarH1 transcription. Specification of the SNa fate by Gsb and Gsbn occurs mainly at the NB and GMC stage. However, the SNa mutant phenotype can be rescued by providing Gsbn as late as at the postmitotic stage. The hierarchical relationship between gsb and gsbn, the haploinsufficiency of gsb in gsbn mutants, and their redundant roles in the epidermis and CNS are discussed. A model is proposed how selection for both genes occurred after their duplication during evolution.
Collapse
Affiliation(s)
- Haihuai He
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
29
|
Carreira-Rosario A, Scoggin S, Shalaby NA, Williams ND, Hiesinger PR, Buszczak M. Recombineering homologous recombination constructs in Drosophila. J Vis Exp 2013:e50346. [PMID: 23893070 DOI: 10.3791/50346] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The continued development of techniques for fast, large-scale manipulation of endogenous gene loci will broaden the use of Drosophila melanogaster as a genetic model organism for human-disease related research. Recent years have seen technical advancements like homologous recombination and recombineering. However, generating unequivocal null mutations or tagging endogenous proteins remains a substantial effort for most genes. Here, we describe and demonstrate techniques for using recombineering-based cloning methods to generate vectors that can be used to target and manipulate endogenous loci in vivo. Specifically, we have established a combination of three technologies: (1) BAC transgenesis/recombineering, (2) ends-out homologous recombination and (3) Gateway technology to provide a robust, efficient and flexible method for manipulating endogenous genomic loci. In this protocol, we provide step-by-step details about how to (1) design individual vectors, (2) how to clone large fragments of genomic DNA into the homologous recombination vector using gap repair, and (3) how to replace or tag genes of interest within these vectors using a second round of recombineering. Finally, we will also provide a protocol for how to mobilize these cassettes in vivo to generate a knockout, or a tagged gene via knock-in. These methods can easily be adopted for multiple targets in parallel and provide a means for manipulating the Drosophila genome in a timely and efficient manner.
Collapse
|
30
|
Díaz-Castillo C. Females and males contribute in opposite ways to the evolution of gene order in Drosophila. PLoS One 2013; 8:e64491. [PMID: 23696898 PMCID: PMC3655977 DOI: 10.1371/journal.pone.0064491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/16/2013] [Indexed: 11/19/2022] Open
Abstract
An intriguing association between the spatial layout of chromosomes within nuclei and the evolution of chromosome gene order was recently uncovered. Chromosome regions with conserved gene order in the Drosophila genus are larger if they interact with the inner side of the nuclear envelope in D. melanogaster somatic cells. This observation opens a new door to understand the evolution of chromosomes in the light of the dynamics of the spatial layout of chromosomes and the way double-strand breaks are repaired in D. melanogaster germ lines. Chromosome regions at the nuclear periphery in somatic cell nuclei relocate to more internal locations of male germ line cell nuclei, which might prefer a gene order-preserving mechanism to repair double-strand breaks. Conversely, chromosome regions at the nuclear periphery in somatic cells keep their location in female germ line cell nuclei, which might be inaccessible for cellular machinery that causes gene order-disrupting chromosome rearrangements. Thus, the gene order stability for genome regions at the periphery of somatic cell nuclei might result from the active repair of double-strand breaks using conservative mechanisms in male germ line cells, and the passive inaccessibility for gene order-disrupting factors at the periphery of nuclei of female germ line cells. In the present article, I find evidence consistent with a DNA break repair-based differential contribution of both D. melanogaster germ lines to the stability/disruption of gene order. The importance of germ line differences for the layout of chromosomes and DNA break repair strategies with regard to other genomic patterns is briefly discussed.
Collapse
|
31
|
Hahn I, Fuss B, Peters A, Werner T, Sieberg A, Gosejacob D, Hoch M. The Drosophila Arf GEF Steppke controls MAPK activation in EGFR signaling. J Cell Sci 2013; 126:2470-9. [PMID: 23549788 DOI: 10.1242/jcs.120964] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) of the cytohesin protein family are regulators of GDP/GTP exchange for members of the ADP ribosylation factor (Arf) of small GTPases. They have been identified as modulators of various receptor tyrosine kinase signaling pathways including the insulin, the vascular epidermal growth factor (VEGF) and the epidermal growth factor (EGF) pathways. These pathways control many cellular functions, including cell proliferation and differentiation, and their misregulation is often associated with cancerogenesis. In vivo studies on cytohesins using genetic loss of function alleles are lacking, however, since knockout mouse models are not available yet. We have recently identified mutants for the single cytohesin Steppke (Step) in Drosophila and we could demonstrate an essential role of Step in the insulin signaling cascade. In the present study, we provide in vivo evidence for a role of Step in EGFR signaling during wing and eye development. By analyzing step mutants, transgenic RNA interference (RNAi) and overexpression lines for tissue specific as well as clonal analysis, we found that Step acts downstream of the EGFR and is required for the activation of mitogen-activated protein kinase (MAPK) and the induction of EGFR target genes. We further demonstrate that step transcription is induced by EGFR signaling whereas it is negatively regulated by insulin signaling. Furthermore, genetic studies and biochemical analysis show that Step interacts with the Connector Enhancer of KSR (CNK). We propose that Step may be part of a larger signaling scaffold coordinating receptor tyrosine kinase-dependent MAPK activation.
Collapse
Affiliation(s)
- Ines Hahn
- LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Str. 31, D-53115 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Cre-mediated targeted gene activation in the middle silk glands of transgenic silkworms (Bombyx mori). Transgenic Res 2012; 22:607-19. [DOI: 10.1007/s11248-012-9677-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022]
|
33
|
St Johnston D. Using mutants, knockdowns, and transgenesis to investigate gene function in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:587-613. [PMID: 24014449 DOI: 10.1002/wdev.101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The sophisticated genetic techniques available in Drosophila are largely responsible for its success as a model organism. One of the most important of these is the ability to disrupt gene function in vivo and observe the resulting phenotypes. This review considers the ever-increasing repertoire of approaches for perturbing the functions of specific genes in flies, ranging from classical and transposon-mediated mutageneses to newer techniques, such as homologous recombination and RNA interference. Since most genes are used over and over again in different contexts during development, many important advances have depended on being able to interfere with gene function at specific times or places in the developing animal, and a variety of approaches are now available to do this. Most of these techniques rely on being able to create genetically modified strains of Drosophila and the different methods for generating lines carrying single copy transgenic constructs will be described, along with the advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
34
|
Dearborn RE, Dai Y, Reed B, Karian T, Gray J, Kunes S. Reph, a regulator of Eph receptor expression in the Drosophila melanogaster optic lobe. PLoS One 2012; 7:e37303. [PMID: 22615969 PMCID: PMC3353934 DOI: 10.1371/journal.pone.0037303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/19/2012] [Indexed: 11/19/2022] Open
Abstract
Receptors of the Eph family of tyrosine kinases and their Ephrin ligands are involved in developmental processes as diverse as angiogenesis, axon guidance and cell migration. However, our understanding of the Eph signaling pathway is incomplete, and could benefit from an analysis by genetic methods. To this end, we performed a genetic modifier screen for mutations that affect Eph signaling in Drosophila melanogaster. Several dozen loci were identified on the basis of their suppression or enhancement of an eye defect induced by the ectopic expression of Ephrin during development; many of these mutant loci were found to disrupt visual system development. One modifier locus, reph (regulator of eph expression), was characterized in molecular detail and found to encode a putative nuclear protein that interacts genetically with Eph signaling pathway mutations. Reph is an autonomous regulator of Eph receptor expression, required for the graded expression of Eph protein and the establishment of an optic lobe axonal topographic map. These results reveal a novel component of the regulatory pathway controlling expression of eph and identify reph as a novel factor in the developing visual system.
Collapse
Affiliation(s)
- Richard E Dearborn
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America.
| | | | | | | | | | | |
Collapse
|
35
|
Liu J, Li C, Yu Z, Huang P, Wu H, Wei C, Zhu N, Shen Y, Chen Y, Zhang B, Deng WM, Jiao R. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics 2012; 39:209-15. [PMID: 22624882 DOI: 10.1016/j.jgg.2012.04.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/19/2023]
Abstract
Technology development has always been one of the forces driving breakthroughs in biomedical research. Since the time of Thomas Morgan, Drosophilists have, step by step, developed powerful genetic tools for manipulating and functionally dissecting the Drosophila genome, but room for improving these technologies and developing new techniques is still large, especially today as biologists start to study systematically the functional genomics of different model organisms, including humans, in a high-throughput manner. Here, we report, for the first time in Drosophila, a rapid, easy, and highly specific method for modifying the Drosophila genome at a very high efficiency by means of an improved transcription activator-like effector nuclease (TALEN) strategy. We took advantage of the very recently developed "unit assembly" strategy to assemble two pairs of specific TALENs designed to modify the yellow gene (on the sex chromosome) and a novel autosomal gene. The mRNAs of TALENs were subsequently injected into Drosophila embryos. From 31.2% of the injected F(0) fertile flies, we detected inheritable modification involving the yellow gene. The entire process from construction of specific TALENs to detection of inheritable modifications can be accomplished within one month. The potential applications of this TALEN-mediated genome modification method in Drosophila are discussed.
Collapse
Affiliation(s)
- Jiyong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Unsuccessful attempt at gene-editing by homologous recombination in the zebrafish germ line using the approach of "Rong and Golic". Transgenic Res 2012; 21:1125-36. [PMID: 22434322 PMCID: PMC3432782 DOI: 10.1007/s11248-012-9607-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/22/2012] [Indexed: 10/31/2022]
Abstract
We have investigated the practicality of implementing a strategy for site-specific editing by homologous recombination in zebrafish analogous to that developed by Rong and Golic (Rong and Golic in Genetics 157:1307-1312, 2001) in Drosophila melanogaster. We analysed approximately 7,300 offspring from 22 crosses and demonstrated successful excision of the gene editing construct but failed to detect either gene editing or the random integration of the intact editing construct subsequent to excision. The clustering of events in our data set demonstrates that the excision events are not occurring independently and emphasise that a promoter driving high level, tissue-specific transcription in meiotic cells is likely to be necessary if this general approach to site-specific editing by homologous recombination is to fulfil its potential.
Collapse
|
37
|
Abstract
Although a great deal is known about the identity, biogenesis, and targeting capacity of microRNAs (miRNAs) in animal cells, far less is known about their functional requirements at the organismal level. Much remains to be understood about the necessity of miRNAs for overt phenotypes, the identity of critical miRNA targets, and the control of miRNA transcription. In this review, we provide an overview of genetic strategies to study miRNAs in the Drosophila system, including loss- and gain-of-function techniques, genetic interaction strategies, and transgenic reporters of miRNA expression and activity. As we illustrate the usage of these techniques in intact Drosophila, we see certain recurrent themes for miRNA functions, including energy homeostasis, apoptosis suppression, growth control, and regulation of core cell signaling pathways. Overall, we hope that this exposition of Drosophila genetic techniques, well known to the legions of fly geneticists and used to study all genes, can inform the general miRNA community that focuses on other biochemical, molecular, computational, and structural avenues. Clearly, it is the combination of these myriad techniques that has accelerated miRNA research to its extraordinary pace.
Collapse
Affiliation(s)
- Qi Dai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York NY 10065
| | - Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York NY 10065
| | - Eric C. Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York NY 10065
| |
Collapse
|
38
|
Abstract
The fruit fly, Drosophila melanogaster, has been used to study genetics, development, and signaling for nearly a century, but only over the past few decades has this tremendous resource been the focus of cardiovascular research. Fly genetics offers sophisticated transgenic systems, molecularly defined genomic deficiencies, genome-wide transgenic RNAi lines, and numerous curated mutants to perform genetic screens. As a genetically tractable model, the fly facilitates gene discovery and can complement mammalian models of disease. The circulatory system in the fly comprises well-defined sets of cardiomyocytes, and methodological advances have permitted accurate characterization of cardiac morphology and function. Thus, fly genetics and genomics offer new approaches for gene discovery of adult cardiac phenotypes to identify evolutionarily conserved molecular signals that drive cardiovascular disease.
Collapse
Affiliation(s)
- Matthew J Wolf
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
39
|
Ludwig MZ, Manu, Kittler R, White KP, Kreitman M. Consequences of eukaryotic enhancer architecture for gene expression dynamics, development, and fitness. PLoS Genet 2011; 7:e1002364. [PMID: 22102826 PMCID: PMC3213169 DOI: 10.1371/journal.pgen.1002364] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/14/2011] [Indexed: 12/13/2022] Open
Abstract
The regulatory logic of time- and tissue-specific gene expression has mostly been dissected in the context of the smallest DNA fragments that, when isolated, recapitulate native expression in reporter assays. It is not known if the genomic sequences surrounding such fragments, often evolutionarily conserved, have any biological function or not. Using an enhancer of the even-skipped gene of Drosophila as a model, we investigate the functional significance of the genomic sequences surrounding empirically identified enhancers. A 480 bp long "minimal stripe element" is able to drive even-skipped expression in the second of seven stripes but is embedded in a larger region of 800 bp containing evolutionarily conserved binding sites for required transcription factors. To assess the overall fitness contribution made by these binding sites in the native genomic context, we employed a gene-replacement strategy in which whole-locus transgenes, capable of rescuing even-skipped(-) lethality to adulthood, were substituted for the native gene. The molecular phenotypes were characterized by tagging Even-skipped with a fluorescent protein and monitoring gene expression dynamics in living embryos. We used recombineering to excise the sequences surrounding the minimal enhancer and site-specific transgenesis to create co-isogenic strains differing only in their stripe 2 sequences. Remarkably, the flanking sequences were dispensable for viability, proving the sufficiency of the minimal element for biological function under normal conditions. These sequences are required for robustness to genetic and environmental perturbation instead. The mutant enhancers had measurable sex- and dose-dependent effects on viability. At the molecular level, the mutants showed a destabilization of stripe placement and improper activation of downstream genes. Finally, we demonstrate through live measurements that the peripheral sequences are required for temperature compensation. These results imply that seemingly redundant regulatory sequences beyond the minimal enhancer are necessary for robust gene expression and that "robustness" itself must be an evolved characteristic of the wild-type enhancer.
Collapse
Affiliation(s)
- Michael Z. Ludwig
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Manu
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Ralf Kittler
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Kevin P. White
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Martin Kreitman
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
40
|
Venken KJ, Simpson JH, Bellen HJ. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 2011; 72:202-30. [PMID: 22017985 PMCID: PMC3232021 DOI: 10.1016/j.neuron.2011.09.021] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2011] [Indexed: 12/26/2022]
Abstract
Research in the fruit fly Drosophila melanogaster has led to insights in neural development, axon guidance, ion channel function, synaptic transmission, learning and memory, diurnal rhythmicity, and neural disease that have had broad implications for neuroscience. Drosophila is currently the eukaryotic model organism that permits the most sophisticated in vivo manipulations to address the function of neurons and neuronally expressed genes. Here, we summarize many of the techniques that help assess the role of specific neurons by labeling, removing, or altering their activity. We also survey genetic manipulations to identify and characterize neural genes by mutation, overexpression, and protein labeling. Here, we attempt to acquaint the reader with available options and contexts to apply these methods.
Collapse
Affiliation(s)
- Koen J.T. Venken
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, Texas, 77030
| | - Julie H. Simpson
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, Texas, 77030
- Program in Developmental Biology, Department of Neuroscience, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
41
|
Novakova M, Dolezal T. Expression of Drosophila adenosine deaminase in immune cells during inflammatory response. PLoS One 2011; 6:e17741. [PMID: 21412432 PMCID: PMC3055890 DOI: 10.1371/journal.pone.0017741] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/10/2011] [Indexed: 12/20/2022] Open
Abstract
Extra-cellular adenosine is an important regulator of inflammatory responses. It is generated from released ATP by a cascade of ectoenzymes and degraded by adenosine deaminase (ADA). There are two types of enzymes with ADA activity: ADA1 and ADGF/ADA2. ADA2 activity originates from macrophages and dendritic cells and is associated with inflammatory responses in humans and rats. Drosophila possesses a family of six ADGF proteins with ADGF-A being the main regulator of extra-cellular adenosine during larval stages. Herein we present the generation of a GFP reporter for ADGF-A expression by a precise replacement of the ADGF-A coding sequence with GFP using homologous recombination. We show that the reporter is specifically expressed in aggregating hemocytes (Drosophila immune cells) forming melanotic capsules; a characteristic of inflammatory response. Our vital reporter thus confirms ADA expression in sites of inflammation in vivo and demonstrates that the requirement for ADA activity during inflammatory response is evolutionary conserved from insects to vertebrates. Our results also suggest that ADA activity is achieved specifically within sites of inflammation by an uncharacterized post-transcriptional regulation based mechanism. Utilizing various mutants that induce melanotic capsule formation and also a real immune challenge provided by parasitic wasps, we show that the acute expression of the ADGF-A protein is not driven by one specific signaling cascade but is rather associated with the behavior of immune cells during the general inflammatory response. Connecting the exclusive expression of ADGF-A within sites of inflammation, as presented here, with the release of energy stores when the ADGF-A activity is absent, suggests that extra-cellular adenosine may function as a signal for energy allocation during immune response and that ADGF-A/ADA2 expression in such sites of inflammation may regulate this role.
Collapse
Affiliation(s)
- Milena Novakova
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Tomas Dolezal
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- * E-mail:
| |
Collapse
|
42
|
Chen YW, Weng R, Cohen SM. Protocols for use of homologous recombination gene targeting to produce microRNA mutants in Drosophila. Methods Mol Biol 2011; 732:99-120. [PMID: 21431708 DOI: 10.1007/978-1-61779-083-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNA molecules that have come to attract considerable interest for their roles in animal and plant development and disease. One means to study miRNA function in animal development is to create mutations. Use of gene-targeting strategies based on ends-out homologous recombination is a useful approach to produce mutations of desired structure, and is gaining popularity for producing miRNA knockouts. Here we present a detailed protocol for miRNA gene targeting and for their subsequent molecular characterization as well as confirmation by rescue. The descriptions of a series of modified vectors designed to facilitate the analysis of miRNA function are included, and a method to manipulate the mutant genome using recombinase-mediated cassette exchange.
Collapse
Affiliation(s)
- Ya-Wen Chen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | | | | |
Collapse
|
43
|
|
44
|
Tsuda M, Kobayashi T, Matsuo T, Aigaki T. Insulin-degrading enzyme antagonizes insulin-dependent tissue growth and Aβ-induced neurotoxicity inDrosophila. FEBS Lett 2010; 584:2916-20. [DOI: 10.1016/j.febslet.2010.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 05/06/2010] [Indexed: 11/16/2022]
|
45
|
Grönke S, Clarke DF, Broughton S, Andrews TD, Partridge L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet 2010; 6:e1000857. [PMID: 20195512 PMCID: PMC2829060 DOI: 10.1371/journal.pgen.1000857] [Citation(s) in RCA: 470] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 01/25/2010] [Indexed: 12/19/2022] Open
Abstract
Multicellular animals match costly activities, such as growth and reproduction, to the environment through nutrient-sensing pathways. The insulin/IGF signaling (IIS) pathway plays key roles in growth, metabolism, stress resistance, reproduction, and longevity in diverse organisms including mammals. Invertebrate genomes often contain multiple genes encoding insulin-like ligands, including seven Drosophila insulin-like peptides (DILPs). We investigated the evolution, diversification, redundancy, and functions of the DILPs, combining evolutionary analysis, based on the completed genome sequences of 12 Drosophila species, and functional analysis, based on newly-generated knock-out mutations for all 7 dilp genes in D. melanogaster. Diversification of the 7 DILPs preceded diversification of Drosophila species, with stable gene diversification and family membership, suggesting stabilising selection for gene function. Gene knock-outs demonstrated both synergy and compensation of expression between different DILPs, notably with DILP3 required for normal expression of DILPs 2 and 5 in brain neurosecretory cells and expression of DILP6 in the fat body compensating for loss of brain DILPs. Loss of DILP2 increased lifespan and loss of DILP6 reduced growth, while loss of DILP7 did not affect fertility, contrary to its proposed role as a Drosophila relaxin. Importantly, loss of DILPs produced in the brain greatly extended lifespan but only in the presence of the endosymbiontic bacterium Wolbachia, demonstrating a specific interaction between IIS and Wolbachia in lifespan regulation. Furthermore, loss of brain DILPs blocked the responses of lifespan and fecundity to dietary restriction (DR) and the DR response of these mutants suggests that IIS extends lifespan through mechanisms that both overlap with those of DR and through additional mechanisms that are independent of those at work in DR. Evolutionary conservation has thus been accompanied by synergy, redundancy, and functional differentiation between DILPs, and these features may themselves be of evolutionary advantage.
Collapse
Affiliation(s)
- Sebastian Grönke
- Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - David-Francis Clarke
- Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Susan Broughton
- Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - T. Daniel Andrews
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| |
Collapse
|
46
|
Caldwell JC, Tracey WD. Alternatives to mammalian pain models 2: using Drosophila to identify novel genes involved in nociception. Methods Mol Biol 2010; 617:19-29. [PMID: 20336410 DOI: 10.1007/978-1-60327-323-7_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Identification of the molecules involved in nociception is fundamental to our understanding of pain. Drosophila, with its short generation time, powerful genetics and capacity for rapid, genome-wide mutagenesis, represents an ideal invertebrate model organism to dissect nociception. The fly has already been used to identify factors that are involved in other sensory systems such as vision, chemosensation, and audition. Thus, the tiny fruit fly is a viable alternative to mammalian model organisms. Here we present a brief primer on techniques used in screening for thermal and/or mechanical nociception mutants using Drosophila.
Collapse
Affiliation(s)
- Jason C Caldwell
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
47
|
Traver BE, Anderson MAE, Adelman ZN. Homing endonucleases catalyze double-stranded DNA breaks and somatic transgene excision in Aedes aegypti. INSECT MOLECULAR BIOLOGY 2009; 18:623-33. [PMID: 19754740 PMCID: PMC3606018 DOI: 10.1111/j.1365-2583.2009.00905.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Aedes aegypti is a major vector of arthropod-borne viruses such as yellow fever virus and dengue viruses. Efforts to discern the function of genes involved in important behaviours, such as vector competence and host seeking through reverse genetics, would greatly benefit from the ability to generate targeted gene disruptions. Homing endonucleases are selfish elements which catalyze double-stranded DNA (dsDNA) breaks in a sequence-specific manner. In this report we demonstrate that the homing endonucleases I-PpoI, I-SceI, I-CreI and I-AniI are all able to induce dsDNA breaks in adult female Ae. aegypti chromosomes as well as catalyze the somatic excision of a transgene. These experiments provide evidence that homing endonucleases can be used to manipulate the genome of this important disease vector.
Collapse
Affiliation(s)
| | | | - Zach N. Adelman
- corresponding author: Zach N. Adelman, 305 Fralin Life Science Institute, West Campus Dr., Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, , 540 231-6614 (phone), 540 231-9931 (fax)
| |
Collapse
|
48
|
Recombinase-mediated cassette exchange provides a versatile platform for gene targeting: knockout of miR-31b. Genetics 2009; 183:399-402. [PMID: 19564483 DOI: 10.1534/genetics.109.105213] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of vectors has been designed to enhance the versatility of targeted homologous recombination. Recombinase-mediated cassette exchange permits sequential targeting at any locus and improves flexibility in making user-defined mutations. Application of RMCE to delete an intronic microRNA gene is described.
Collapse
|
49
|
Chen H, Ma Z, Liu Z, Tian Y, Xiang Y, Wang C, Scott MP, Huang X. Case studies of ends-out gene targeting in Drosophila. Genesis 2009; 47:305-8. [PMID: 19298016 DOI: 10.1002/dvg.20501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ends-in and ends-out gene replacement approaches have been successfully used to disrupt Drosophila genes involved in a variety of biological processes. These methods combine double-strand breaks and homologous recombination to replace a targeted chromosome region with a designed DNA sequence. Unfortunately, these methods require large numbers of single animal crosses, making them both time consuming and labor intensive. Here, we designed a single complete targeting vector for use in a mass crossing ends-out gene targeting study. Importantly, our gene targeting method included a balancer chromosome to block endogenous homologous chromosome pairing and to promote pairing between the foreign targeting DNA fragment and the targeted chromosome. This technique provided successful and efficient gene replacement, greatly facilitating the gene knockout procedure.
Collapse
Affiliation(s)
- Haiyang Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sung C, Wong LE, Chang Sen LQ, Nguyen E, Lazaga N, Ganzer G, McNabb SL, Robinow S. Theunfulfilled/DHR51gene ofDrosophila melanogastermodulates wing expansion and fertility. Dev Dyn 2009; 238:171-82. [DOI: 10.1002/dvdy.21817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|