1
|
Feiss M, Sippy JA. DNA Packaging Specificity in the λ-Like Phages: Gifsy-1. Mol Microbiol 2024; 122:491-503. [PMID: 39233649 DOI: 10.1111/mmi.15306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
DNA viruses recognize viral DNA and package it into virions. Specific recognition is needed to distinguish viral DNA from host cell DNA. The λ-like Escherichia coli phages are interesting and good models to examine genome packaging by large DNA viruses. Gifsy-1 is a λ-like Salmonella phage. Gifsy-1's DNA packaging specificity was compared with those of closely related phages λ, 21, and N15. In vivo packaging studies showed that a Gifsy-1-specific phage packaged λ DNA at ca. 50% efficiency and λ packages Gifsy-1-specific DNA at ~30% efficiency. The results indicate that Gifsy-1 and λ share the same DNA packaging specificity. N15 is also shown to package Gifsy-1 DNA. Phage 21 fails to package λ, N15, and Gifsy-1-specific DNAs; the efficiencies are 0.01%, 0.01%, and 1%, respectively. A known incompatibility between the 21 helix-turn-helix motif and cosBλ is proposed to account for the inability of 21 to package Gifsy-1 DNA. A model is proposed to explain the 100-fold difference in packaging efficiency between λ and Gifsy-1-specific DNAs by phage 21. Database sequences of enteric prophages indicate that phages with Gifsy-1's DNA packaging determinants are confined to Salmonella species. Similarly, prophages with λ DNA packaging specificity are rarely found in Salmonella. It is proposed that λ and Gifsy-1 have diverged from a common ancestor phage, and that the differences may reflect adaptation of their packaging systems to host cell differences.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jean Arens Sippy
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Abstract
Although the process of genome encapsidation is highly conserved in tailed bacteriophages and eukaryotic double-stranded DNA viruses, there are two distinct packaging pathways that these viruses use to catalyze ATP-driven translocation of the viral genome into a preassembled procapsid shell. One pathway is used by ϕ29-like phages and adenoviruses, which replicate and subsequently package a monomeric, unit-length genome covalently attached to a virus/phage-encoded protein at each 5'-end of the dsDNA genome. In a second, more ubiquitous packaging pathway characterized by phage lambda and the herpesviruses, the viral DNA is replicated as multigenome concatemers linked in a head-to-tail fashion. Genome packaging in these viruses thus requires excision of individual genomes from the concatemer that are then translocated into a preassembled procapsid. Hence, the ATPases that power packaging in these viruses also possess nuclease activities that cut the genome from the concatemer at the beginning and end of packaging. This review focuses on proposed mechanisms of genome packaging in the dsDNA viruses using unit-length ϕ29 and concatemeric λ genome packaging motors as representative model systems.
Collapse
Affiliation(s)
- Carlos E Catalano
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States.
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
3
|
Feiss M, Young Min J, Sultana S, Patel P, Sippy J. DNA Packaging Specificity of Bacteriophage N15 with an Excursion into the Genetics of a Cohesive End Mismatch. PLoS One 2015; 10:e0141934. [PMID: 26633301 PMCID: PMC4669245 DOI: 10.1371/journal.pone.0141934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/14/2015] [Indexed: 11/17/2022] Open
Abstract
During DNA replication by the λ-like bacteriophages, immature concatemeric DNA is produced by rolling circle replication. The concatemers are processed into mature chromosomes with cohesive ends, and packaged into prohead shells, during virion assembly. Cohesive ends are generated by the viral enzyme terminase, which introduces staggered nicks at cos, an approx. 200 bp-long sequence containing subsites cosQ, cosN and cosB. Interactions of cos subsites of immature concatemeric DNA with terminase orchestrate DNA processing and packaging. To initiate DNA packaging, terminase interacts with cosB and nicks cosN. The cohesive ends of N15 DNA differ from those of λ at 2/12 positions. Genetic experiments show that phages with chromosomes containing mismatched cohesive ends are functional. In at least some infections, the cohesive end mismatch persists through cyclization and replication, so that progeny phages of both allelic types are produced in the infected cell. N15 possesses an asymmetric packaging specificity: N15 DNA is not packaged by phages λ or 21, but surprisingly, N15-specific terminase packages λ DNA. Implications for genetic interactions among λ-like bacteriophages are discussed.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Jea Young Min
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Sawsan Sultana
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Priyal Patel
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Jean Sippy
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| |
Collapse
|
4
|
Feiss M, Geyer H, Klingberg F, Moreno N, Forystek A, Maluf NK, Sippy J. Novel DNA packaging recognition in the unusual bacteriophage N15. Virology 2015; 482:260-8. [PMID: 25956737 PMCID: PMC4461450 DOI: 10.1016/j.virol.2015.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/16/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Phage lambda's cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos(N15)) is closely related to cos(λ), but whereas the cosB(N15) subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB(λ). A bioinformatic study of N15-like phages indicates that cosB(N15) also has an accessory, remote rR2 site, which is proposed to increase packaging efficiency, like R2 and R1 of lambda. N15 plus five prophages all have the rR2 sequence, which is located in the TerS-encoding 1 gene, approximately 200 bp distal to R3. An additional set of four highly related prophages, exemplified by Monarch, has R3 sequence, but also has R2 and R1 sequences characteristic of cosB-λ. The DNA binding domain of TerS-N15 is a dimer.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Henriette Geyer
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany; Division of Viral Infections, Robert Koch Institute, Berlin, Germany.
| | - Franco Klingberg
- Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany; Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany.
| | - Norma Moreno
- Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, United States.; Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, United States..
| | - Amanda Forystek
- Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany; Room # 2911 JPP, Dept. of Psychiatry, The University of Iowa, 200 Hawkins Drive, Iowa City, Iowa, 52242.
| | - Nasib Karl Maluf
- Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany; Alliance Protein Laboratories, Inc. 6042 Cornerstone Court West, Suite ASan Diego, CA 92121, USA..
| | - Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Abstract
Tailed bacteriophages use nanomotors, or molecular machines that convert chemical energy into physical movement of molecules, to insert their double-stranded DNA genomes into virus particles. These viral nanomotors are powered by ATP hydrolysis and pump the DNA into a preformed protein container called a procapsid. As a result, the virions contain very highly compacted chromosomes. Here, I review recent progress in obtaining structural information for virions, procapsids and the individual motor protein components, and discuss single-molecule in vitro packaging reactions, which have yielded important new information about the mechanism by which these powerful molecular machines translocate DNA.
Collapse
|
6
|
Abstract
An ATP-powered DNA translocation machine encapsidates the viral genome in the large dsDNA bacteriophages. The essential components include the empty shell, prohead, and the packaging enzyme, terminase. During translocation, terminase is docked on the prohead's portal protein. The translocation ATPase and the concatemer-cutting endonuclease reside in terminase. Remarkably, terminases, portal proteins, and shells of tailed bacteriophages and herpes viruses show conserved features. These DNA viruses may have descended from a common ancestor. Terminase's ATPase consists of a classic nucleotide binding fold, most closely resembling that of monomeric helicases. Intriguing models have been proposed for the mechanism of dsDNA translocation, invoking ATP hydrolysis-driven conformational changes of portal or terminase powering DNA motion. Single-molecule studies show that the packaging motor is fast and powerful. Recent advances permit experiments that can critically test the packaging models. The viral genome translocation mechanism is of general interest, given the parallels between terminases, helicases, and other motor proteins.
Collapse
Affiliation(s)
- Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, USA.
| | | |
Collapse
|
7
|
Donahue WF, Ebling HM. Fosmid libraries for genomic structural variation detection. ACTA ACUST UNITED AC 2008; Chapter 5:Unit 5.20. [PMID: 18428414 DOI: 10.1002/0471142905.hg0520s54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fosmid libraries have demonstrated their utility for a number of applications. These include filling gaps between BACs and small insert libraries in sequence assemblies, performing hybridization/screening studies to isolate functional elements within the genome (Vergin et al., 1998), and detecting insertions, deletions, and rearrangements in structural variation studies (Tuzun et al., 2005). This unit covers the basic methodologies for the construction of fosmid libraries with tight insert sizes suitable for these applications. Basic Protocol 1 covers the shearing, size selection, and recovery of DNA from a pulsed-field gel. Basic Protocol 2 covers the cloning of insert DNA into the fosmid vector, packaging of DNA into infective phage particles, and the infection/transformation of bacteria. A commentary section is provided, which outlines many of the critical parameters involved in fosmid library construction, along with some additional background information and a section discussing anticipated results.
Collapse
|
8
|
Nemecek D, Gilcrease EB, Kang S, Prevelige PE, Casjens S, Thomas GJ. Subunit conformations and assembly states of a DNA-translocating motor: the terminase of bacteriophage P22. J Mol Biol 2007; 374:817-36. [PMID: 17945256 PMCID: PMC2204089 DOI: 10.1016/j.jmb.2007.08.070] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/27/2007] [Accepted: 08/28/2007] [Indexed: 12/01/2022]
Abstract
Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42-kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an alpha/beta fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly alpha-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wild-type gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy, and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112-->Thr) that forms a 10-subunit ring, despite a subunit fold indistinguishable from wild type. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA-binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages.
Collapse
Affiliation(s)
- Daniel Nemecek
- School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
9
|
Cronan JE. Cosmid-based system for transient expression and absolute off-to-on transcriptional control of Escherichia coli genes. J Bacteriol 2003; 185:6522-9. [PMID: 14594824 PMCID: PMC262116 DOI: 10.1128/jb.185.22.6522-6529.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cosmids are plasmids that contain the phage lambda sequences (cos) required for packaging of the phage DNA into the virion. Induction of a lambda prophage in an Escherichia coli strain carrying a cosmid results in lysates containing phage particles that are filled with cosmid DNA. However, the lysates also contain a large excess of infectious phage particles which complicate use of the packaged cosmids. I report that cosmids packaged by induction of a strain carrying a prophage with an altered cos region results in lysates containing very high levels (>10(10)/ml) of particles that contain cosmid DNA together with very few infectious phage particles. These lysates can be used to transduce cosmid DNA into all of the cells of a growing culture with minimal physiological disturbance. When the cosmid carries a conditionally active origin of replication, transductional introduction of the cosmid under nonreplicative conditions provides a system of transient expression. Transient expression has been used to make a recA strain temporarily recombination proficient and to temporarily introduce a site-specific recombinase. Transductional introduction of a cosmid also allows absolute off-to-on transcriptional control of nonessential genes. Two examples are given showing that when a strain carrying a null mutation in the gene of interest is transduced with a packaged cosmid carrying a functional copy of that gene, the expression of the gene rapidly goes from absolutely off to high-level expression. Additional possible uses of in vivo-packaged cosmids are proposed.
Collapse
Affiliation(s)
- John E Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana, Illinois 61801, USA.
| |
Collapse
|
10
|
Wieczorek DJ, Feiss M. Genetics of cosQ, the DNA-Packaging Termination Site of Phage λ: Local Suppressors and Methylation Effects. Genetics 2003; 165:11-21. [PMID: 14504214 PMCID: PMC1462750 DOI: 10.1093/genetics/165.1.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The cos site of the bacteriophage λ chromosome contains the sites required for DNA processing and packaging during virion assembly. cos is composed of three subsites, cosQ, cosN, and cosB. cosQ is required for the termination of chromosome packaging. Previous studies have shown cosQ mutations to be suppressed in three ways: by a local suppressor within cosQ; by an increase in the length of the λ chromosome; and by missense mutations affecting the prohead's portal protein, gpB. In the first study reported here, revertants of a set of cosQ mutants were screened for suppressors, and cis-acting suppressors of cosQ mutations were studied; these included second-site cosQ point mutations, base-pair insertions within cosQ, and an additional genome-lengthening suppressor. The 7-bp-long cosQ, with the sequence 5′-GGGTCCT-3′, coincides exactly with the recognition site for the EcoO109I restriction/methylation system, which has the consensus sequence 5′-PuGGNCCPy-3′. In a second study, EcoO109I methylation was found to strongly interfere with the residual cosQ function of leaky cosQ mutants. cis-acting suppressors that overcome methylation-associated defects, including a methylation-dependent suppressor, were also isolated. Models of cosQ suppression are presented.
Collapse
Affiliation(s)
- Douglas J Wieczorek
- Genetics Ph.D. Program and Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
11
|
Wieczorek DJ, Didion L, Feiss M. Alterations of the portal protein, gpB, of bacteriophage lambda suppress mutations in cosQ, the site required for termination of DNA packaging. Genetics 2002; 161:21-31. [PMID: 12019220 PMCID: PMC1462103 DOI: 10.1093/genetics/161.1.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cosQ site of bacteriophage lambda is required for DNA packaging termination. Previous studies have shown that cosQ mutations can be suppressed in three ways: by a local suppressor within cosQ, an increase in the length of the lambda chromosome, and missense mutations affecting the prohead's portal protein, gpB. In the present work, revertants of a set of lethal cosQ mutants were screened for suppressors. Seven new cosQ suppressors affected gene B, which encodes the portal protein of the prohead. All seven were allele-nonspecific suppressors of cosQ mutations. Experiments with several phages having two cosQ suppressors showed that the suppression effects were additive. Furthermore, these double suppressors had minimal effects on the growth of cosQ(+) phages. These trans-acting suppressors affecting the portal protein are proposed to allow the mutant cosQ site to be more efficiently recognized, due to the slowing of the rate of translocation.
Collapse
Affiliation(s)
- Douglas J Wieczorek
- Genetics Ph.D. Program and Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
12
|
Cue D, Feiss M. Bacteriophage lambda DNA packaging: DNA site requirements for termination and processivity. J Mol Biol 2001; 311:233-40. [PMID: 11478856 DOI: 10.1006/jmbi.2001.4840] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage lambda chromosomes are processively packaged into preformed shells, using end-to-end multimers of intracellular viral DNA as the packaging substate. A 200 bp long DNA segment, cos, contains all the sequences needed for DNA packaging. The work reported here shows that efficient DNA packaging termination requires cos's I2 segment, in addition to the required termination subsite, cosQ, and the nicking site, cosN. Efficient processivity requires cosB, in addition to cosQ and cosN. An initiation-defective mutant form of cosB sponsored efficient processivity, indicating that the terminase-cosB interactions required for termination are less stringent than those required at initiation. The finding that an initiation-defective form of cosB is functional for processivity allows a re-interpretation of a similar finding, obtained previously, that the initiation-defective cosB of phage 21 is functional for processivity by the lambda packaging machinery. The cosBphi21 result can now be interpreted as indicating that interactions between cosBphi21 and lambda terminase, while insufficient for initiation, function for processivity.
Collapse
Affiliation(s)
- D Cue
- Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|