1
|
Gwee CY, Metzler D, Fuchs J, Wolf JBW. Reconciling Gene Tree Discordance and Biogeography in European Crows. Mol Ecol 2025; 34:e17764. [PMID: 40208017 PMCID: PMC12051742 DOI: 10.1111/mec.17764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Reconstructing the evolutionary history of young lineages diverging with gene flow is challenging due to factors like incomplete lineage sorting, introgression, and selection causing gene tree discordance. The European crow hybrid zone between all-black carrion crows and grey-coated hooded crows exemplifies this challenge. Most of the genome in Western and Central European carrion crow populations is near-identical to hooded crows, but differs substantially from their Iberian congeners. A notable exception is a single major-effect colour-locus under sexual selection aligning with the 'species' tree. To understand the underlying evolutionary processes, we reconstructed the biogeographic history of the species complex. During the Pleistocene carrion and hooded crows took refuge in the Iberian Peninsula and the Middle East, respectively. Allele-sharing of all-black Western European populations with likewise black Iberian crows at the colour-locus represents the last trace of carrion crow ancestry, resisting gene flow from expanding hooded crow populations that have homogenised most of the genome. A model of colour-locus introgression from an Iberian ancestor into hooded crow populations near the Pyrenées was significantly less supported. We found no positive relationship between introgression and recombination rate consistent with the absence of genome-wide, polygenic barriers in this young species complex. Overall, this study portrays a scenario where few large-effect loci, subject to divergent sexual selection, resist rampant and asymmetric gene exchange. This study underscores the importance of integrating population demography and biogeography to accurately interpret patterns of gene tree discordance following population divergence.
Collapse
Affiliation(s)
- Chyi Yin Gwee
- Division of Evolutionary BiologyLMU MunichPlanegg‐MartinsriedGermany
- Microevolution and BiodiversityMax Planck Institute for Biological IntelligenceSeewiesenGermany
| | - Dirk Metzler
- Division of Evolutionary BiologyLMU MunichPlanegg‐MartinsriedGermany
| | - Jérôme Fuchs
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, SU, EPHE, UAMuséum National d'Histoire NaturelleParisFrance
| | - Jochen B. W. Wolf
- Division of Evolutionary BiologyLMU MunichPlanegg‐MartinsriedGermany
- Microevolution and BiodiversityMax Planck Institute for Biological IntelligenceSeewiesenGermany
| |
Collapse
|
2
|
Spurley WJ, Payseur BA. The Breeding Sex Ratio Interacts With Demographic History to Shape Comparative Patterns of Variation on the X Chromosome and the Autosomes. Genome Biol Evol 2025; 17:evaf035. [PMID: 40036701 PMCID: PMC11913216 DOI: 10.1093/gbe/evaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
In many populations, unequal numbers of females and males reproduce each generation. This imbalance in the breeding sex ratio shapes patterns of genetic variation on the sex chromosomes and the autosomes in distinct ways. Despite recognition of this phenomenon, effects of the breeding sex ratio on some aspects of variation remain unclear, especially for populations with nonequilibrium demographic histories. To address this gap in the field, we used coalescent simulations to examine relative patterns of variation at X-linked loci and autosomal loci in populations spanning the range of breeding sex ratio with historical changes in population size. Shifts in breeding sex ratio away from 1:1 reduce nucleotide diversity and the number of unique haplotypes and increase linkage disequilibrium and the frequency of the most common haplotype, with contrasting effects on X-linked loci and autosomal loci. Strong population bottlenecks transform relationships among the breeding sex ratio, the site frequency spectrum, and linkage disequilibrium, while relationships among the breeding sex ratio, nucleotide diversity, and haplotype characteristics are broadly conserved. Our findings indicate that evolutionary interpretations of variation on the X chromosome should consider the combined effects of the breeding sex ratio and demographic history. The genomic signatures we report could be used to reconstruct these fundamental population parameters from genomic data in natural populations.
Collapse
Affiliation(s)
- William J Spurley
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Konopiński MK, Fijarczyk AM, Biedrzycka A. Complex patterns shape immune genes diversity during invasion of common raccoon in Europe - Selection in action despite genetic drift. Evol Appl 2023; 16:134-151. [PMID: 36699132 PMCID: PMC9850017 DOI: 10.1111/eva.13517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Rapid adaptation is common in invasive populations and is crucial to their long-term success. The primary target of selection in the invasive species' new range is standing genetic variation. Therefore, genetic drift and natural selection acting on existing variation are key evolutionary processes through which invaders will evolve over a short timescale. In this study, we used the case of the raccoon Procyon lotor invasion in Europe to identify the forces shaping the diversity of immune genes during invasion. The genes involved in the defence against infection should be under intense selection pressure in the invasive range where novel pathogens are expected to occur. To disentangle the selective and demographic processes shaping the adaptive immune diversity of its invasive and expanding populations, we have developed species-specific single-nucleotide polymorphism markers located in the coding regions of targeted immune-related genes. We characterised the genetic diversity of 110 functionally important immune genes in two invasive and one native raccoon genetic clusters, each presenting a different demographic history. Despite the strong effect of demographic processes in the invasive clusters, we detected a subset of genes exhibiting the diversity pattern suggestive of selection. The most likely process shaping the variation in those genes was balancing selection. The selected genes belong to toll-like receptors and cytokine-related genes. Our results suggest that the prevalence of selection depends on the level of diversity, that is - less genetically diverse invasive population from the Czech Republic displayed fewer signs of selection. Our results highlight the role of standing genetic variation in adapting to new environment. Understanding the evolutionary mechanisms behind invasion success would enable predicting how populations may respond to environmental change.
Collapse
Affiliation(s)
| | - Anna M. Fijarczyk
- Laval University Département de BiologieUniversité LavalQuébecQuébecCanada
| | | |
Collapse
|
4
|
Li YS, Liao PC, Chang CT, Hwang SY. Pattern of Adaptive Divergence in Zingiber kawagoii Hayata (Zingiberaceae) along a Narrow Latitudinal Range. PLANTS 2022; 11:plants11192490. [PMID: 36235357 PMCID: PMC9573048 DOI: 10.3390/plants11192490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Ecological and evolutionary processes linking adaptation to environment are related to species’ range shifts. In this study, we employed amplified-fragment-length-polymorphism-based genome scan methods to identify candidate loci among Zingiber kawagoii populations inhabiting varying environments distributed at low to middle elevations (143–1488 m) in a narrow latitudinal range (between 21.90 and 25.30° N). Here, we show evidence of selection driving the divergence of Z. kawagoii. Twenty-six FST outliers were detected, which were significantly correlated with various environmental variables. The allele frequencies of nine FST outliers were either positively or negatively correlated with the population mean FST. Using several independent approaches, we found environmental variables act in a combinatorial fashion, best explaining outlier genetic variation. Nonetheless, we found that adaptive divergence was affected mostly by annual temperature range, and it is significantly positively correlated with latitude and significantly negatively correlated with the population mean FST. This study addresses a latitudinal pattern of changes in annual temperature range (which ranged from 13.8 °C in the Lanyu population to 18.5 °C in the Wulai population) and emphasizes the pattern of latitudinal population divergence closely linked to the allele frequencies of adaptive loci, acting in a narrow latitudinal range. Our results also indicate environmentally dependent local adaptation for both leading- and trailing-edge populations.
Collapse
Affiliation(s)
- Yi-Shao Li
- School of Life Science, National Taiwan Normal University, 88 Tingchow Road, Section 4, Taipei 11677, Taiwan
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, 88 Tingchow Road, Section 4, Taipei 11677, Taiwan
| | - Chung-Te Chang
- Department of Life Science, Tunghai University, 1727 Taiwan Boulevard, Section 4, Taichung 40704, Taiwan
| | - Shih-Ying Hwang
- School of Life Science, National Taiwan Normal University, 88 Tingchow Road, Section 4, Taipei 11677, Taiwan
- Correspondence: ; Tel.: +886-2-7749-6250
| |
Collapse
|
5
|
Flanagan BA, Krueger-Hadfield SA, Murren CJ, Nice CC, Strand AE, Sotka EE. Founder effects shape linkage disequilibrium and genomic diversity of a partially clonal invader. Mol Ecol 2021; 30:1962-1978. [PMID: 33604965 DOI: 10.1111/mec.15854] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
The genomic variation of an invasive species may be affected by complex demographic histories and evolutionary changes during the invasion. Here, we describe the relative influence of bottlenecks, clonality, and population expansion in determining genomic variability of the widespread red macroalga Agarophyton vermiculophyllum. Its introduction from mainland Japan to the estuaries of North America and Europe coincided with shifts from predominantly sexual to partially clonal reproduction and rapid adaptive evolution. A survey of 62,285 SNPs for 351 individuals from 35 populations, aligned to 24 chromosome-length scaffolds indicate that linkage disequilibrium (LD), observed heterozygosity (Ho ), Tajima's D, and nucleotide diversity (Pi) were greater among non-native than native populations. Evolutionary simulations indicate LD and Tajima's D were consistent with a severe population bottleneck. Also, the increased rate of clonal reproduction in the non-native range could not have produced the observed patterns by itself but may have magnified the bottleneck effect on LD. Elevated marker diversity in the genetic source populations could have contributed to the increased Ho and Pi observed in the non-native range. We refined the previous invasion source region to a ~50 km section of northeastern Honshu Island. Outlier detection methods failed to reveal any consistently differentiated loci shared among invaded regions, probably because of the complex A. vermiculophyllum demographic history. Our results reinforce the importance of demographic history, specifically founder effects, in driving genomic variation of invasive populations, even when localized adaptive evolution and reproductive system shifts are observed.
Collapse
Affiliation(s)
- Ben A Flanagan
- Department of Biology, College of Charleston, Charleston, SC, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stacy A Krueger-Hadfield
- Department of Biology, College of Charleston, Charleston, SC, USA.,Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Chris C Nice
- Department of Biology, Population and Conservation Biology Program, Texas State University, San Marcos, TX, USA
| | - Allan E Strand
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Erik E Sotka
- Department of Biology, College of Charleston, Charleston, SC, USA
| |
Collapse
|
6
|
Schield DR, Scordato ESC, Smith CCR, Carter JK, Cherkaoui SI, Gombobaatar S, Hajib S, Hanane S, Hund AK, Koyama K, Liang W, Liu Y, Magri N, Rubtsov A, Sheta B, Turbek SP, Wilkins MR, Yu L, Safran RJ. Sex-linked genetic diversity and differentiation in a globally distributed avian species complex. Mol Ecol 2021; 30:2313-2332. [PMID: 33720472 DOI: 10.1111/mec.15885] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Sex chromosomes often bear distinct patterns of genetic variation due to unique patterns of inheritance and demography. The processes of mutation, recombination, genetic drift and selection also influence rates of evolution on sex chromosomes differently than autosomes. Measuring such differences provides information about how these processes shape genomic variation and their roles in the origin of species. To test hypotheses and predictions about patterns of autosomal and sex-linked genomic diversity and differentiation, we measured population genetic statistics within and between populations and subspecies of the barn swallow (Hirundo rustica) and performed explicit comparisons between autosomal and Z-linked genomic regions. We first tested for evidence of low Z-linked genetic diversity and high Z-linked population differentiation relative to autosomes, then for evidence that the Z chromosome bears greater ancestry information due to faster lineage sorting. Finally, we investigated geographical clines across hybrid zones for evidence that the Z chromosome is resistant to introgression due to selection against hybrids. We found evidence that the barn swallow mating system, demographic history and linked selection each contribute to low Z-linked diversity and high Z-linked differentiation. While incomplete lineage sorting is rampant across the genome, our results indicate faster sorting of ancestral polymorphism on the Z. Finally, hybrid zone analyses indicate barriers to introgression on the Z chromosome, suggesting that sex-linked traits are important in reproductive isolation, especially in migratory divide regions. Our study highlights how selection, gene flow and demography shape sex-linked genetic diversity and underlines the relevance of the Z chromosome in speciation.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Elizabeth S C Scordato
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - Chris C R Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Javan K Carter
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Sidi Imad Cherkaoui
- Ecole Supérieure de Technologie de Khénifra, Sultan Moulay Slimane University, Béni-Mellal, Morocco
| | - Sundev Gombobaatar
- National University of Mongolia and Mongolian Ornithological Society, Ulaanbaatar, Mongolia
| | - Said Hajib
- Water and Forests Department, Forest Research Center, Rabat-Agdal, Morocco
| | - Saad Hanane
- Water and Forests Department, Forest Research Center, Rabat-Agdal, Morocco
| | - Amanda K Hund
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | | | - Wei Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Najib Magri
- Water and Forests Department, Forest Research Center, Rabat-Agdal, Morocco
| | | | - Basma Sheta
- Zoology Department, Faculty of Science, Damietta University, New Damietta City, Egypt
| | - Sheela P Turbek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Matthew R Wilkins
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Collaborative for STEM Education and Outreach, Vanderbilt University, Nashville, TN, USA
| | - Liu Yu
- Key Laboratory for Biodiversity Sciences and Ecological Engineering, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Rebecca J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
7
|
Qin M, Zhang N, Zhu S, Yue C, Huang J, Dong H, Lu Y. Development of polymorphic microsatellite markers for the Tertiary relict tree species Taiwania cryptomerioides (Cupressaceae) in East Asia. Mol Biol Rep 2021; 48:3031-3036. [PMID: 33759052 DOI: 10.1007/s11033-021-06287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Taiwania cryptomerioides Hayata is an endangered relict tree species which is endemic to mainland China, Taiwan, Myanmar, and northern Vietnam. It is an economically important tree species and has been used for reforestation in mountain areas of mainland China and Taiwan. In order to investigate its genetic diversity for conservation and restoration, we developed and characterized 15 nuclear microsatellite markers based on next-generation sequencing data. A total of 100 microsatellite primer pairs were initially designed and tested based on the restriction-site associated DNA sequencing data. 60 of 100 loci (60%) were successfully amplified, of which 42 loci exhibited polymorphism. Fifteen polymorphic microsatellite loci with clear peaks were selected for further analyses in four T. cryptomerioides populations sampled from China (Hubei, Fujian, Guizhou, and Yunnan). The number of alleles per locus ranged from 2 to 24, and the levels of observed and expected heterozygosity ranged from 0.000 to 0.950 and from 0.000 to 0.860, respectively. This set of microsatellite markers will be useful for future population genetic studies of T. cryptomerioides in East Asia.
Collapse
Affiliation(s)
- Mengyun Qin
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ningning Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Shixin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, 450001, China
| | - Caipeng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hao Dong
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yang Lu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Changes in life history and population size can explain the relative neutral diversity levels on X and autosomes in extant human populations. Proc Natl Acad Sci U S A 2020; 117:20063-20069. [PMID: 32747577 DOI: 10.1073/pnas.1915664117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In human populations, the relative levels of neutral diversity on the X and autosomes differ markedly from each other and from the naïve theoretical expectation of 3/4. Here we propose an explanation for these differences based on new theory about the effects of sex-specific life history and given pedigree-based estimates of the dependence of human mutation rates on sex and age. We demonstrate that life history effects, particularly longer generation times in males than in females, are expected to have had multiple effects on human X-to-autosome (X:A) diversity ratios, as a result of male-biased mutation rates, the equilibrium X:A ratio of effective population sizes, and the differential responses to changes in population size. We also show that the standard approach of using divergence between species to correct for male mutation bias results in biased estimates of X:A effective population size ratios. We obtain alternative estimates using pedigree-based estimates of the male mutation bias, which reveal that X:A ratios of effective population sizes are considerably greater than previously appreciated. Finally, we find that the joint effects of historical changes in life history and population size can explain the observed X:A diversity ratios in extant human populations. Our results suggest that ancestral human populations were highly polygynous, that non-African populations experienced a substantial reduction in polygyny and/or increase in the male-to-female ratio of generation times around the Out-of-Africa bottleneck, and that current diversity levels were affected by fairly recent changes in sex-specific life history.
Collapse
|
9
|
Life History Effects on Neutral Diversity Levels of Autosomes and Sex Chromosomes. Genetics 2020; 215:1133-1142. [PMID: 32554702 DOI: 10.1534/genetics.120.303119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the determinants of neutral diversity patterns on autosomes and sex chromosomes provides a bedrock for the interpretation of population genetic data; in particular, differences between the two informs our understanding of sex-specific demographic and mutation processes. While sex-specific age-structure and variation in reproductive success have long been known to affect neutral diversity, theoretical descriptions of these effects were complicated and lacking in generality, stymying attempts to relate diversity patterns of species with their life history. Here, we derive general yet simple expressions for these effects. In particular, we show that life history effects on X-to-autosome ratios of pairwise diversity levels (X:A diversity ratios) depend only on the male-to-female ratios of mutation rates, generation times, and reproductive variances. Our results reveal that changing the male-to-female ratio of generation times has opposite effects on X:A ratios of diversity and divergence. They also explain how sex-specific life histories modulate the response of X:A diversity ratios to changes in population size. More generally, they clarify that sex-specific life history-generation times in particular-should have marked effects on X:A diversity ratios in many taxa and enable further investigation of these effects.
Collapse
|
10
|
Li YS, Shih KM, Chang CT, Chung JD, Hwang SY. Testing the Effect of Mountain Ranges as a Physical Barrier to Current Gene Flow and Environmentally Dependent Adaptive Divergence in Cunninghamia konishii (Cupressaceae). Front Genet 2019; 10:742. [PMID: 31447888 PMCID: PMC6697026 DOI: 10.3389/fgene.2019.00742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022] Open
Abstract
Populations can be genetically isolated by differences in their ecology or environment that hampered efficient migration, or they may be isolated solely by geographic distance. Moreover, mountain ranges across a species’ distribution area might have acted as barriers to gene flow. Genetic variation was quantified using amplified fragment length polymorphism (AFLP) and 13 selective amplification primer combinations used generated a total of 482 fragments. Here, we tested the barrier effects of mountains on gene flow and environmentally dependent local adaptation of Cunninghamia konishii occur in Taiwan. A pattern of genetic isolation by distance was not found and variation partitioning revealed that environment explained a relatively larger proportion of genetic variation than geography. The effect of mountains as barriers to genetic exchange, despite low population differentiation indicating a high rate of gene flow, was found within the distribution range of C. konishii. Twelve AFLP loci were identified as potential selective outliers using genome-scan methods (BAYESCAN and DFDIST) and strongly associated with environmental variables using regression approaches (LFMM, Samβada, and rstanarm) demonstrating adaptive divergence underlying local adaptation. Annual mean temperature, annual precipitation, and slope could be the most important environmental factors causally associated with adaptive genetic variation in C. konishii. The study revealed the existence of physical barriers to current gene flow and environmentally dependent adaptive divergence, and a significant proportion of the rate of gene flow may represent a reflection of demographic history.
Collapse
Affiliation(s)
- Yi-Shao Li
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kai-Ming Shih
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chung-Te Chang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Jeng-Der Chung
- Division of Silviculture, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Shih-Ying Hwang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
11
|
Abstract
Identifying genomic locations of natural selection from sequence data is an ongoing challenge in population genetics. Current methods utilizing information combined from several summary statistics typically assume no correlation of summary statistics regardless of the genomic location from which they are calculated. However, due to linkage disequilibrium, summary statistics calculated at nearby genomic positions are highly correlated. We introduce an approach termed Trendsetter that accounts for the similarity of statistics calculated from adjacent genomic regions through trend filtering, while reducing the effects of multicollinearity through regularization. Our penalized regression framework has high power to detect sweeps, is capable of classifying sweep regions as either hard or soft, and can be applied to other selection scenarios as well. We find that Trendsetter is robust to both extensive missing data and strong background selection, and has comparable power to similar current approaches. Moreover, the model learned by Trendsetter can be viewed as a set of curves modeling the spatial distribution of summary statistics in the genome. Application to human genomic data revealed positively selected regions previously discovered such as LCT in Europeans and EDAR in East Asians. We also identified a number of novel candidates and show that populations with greater relatedness share more sweep signals.
Collapse
Affiliation(s)
- Mehreen R Mughal
- Bioinformatics and Genomics at the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Michael DeGiorgio
- Departments of Biology and Statistics, Pennsylvania State University,University Park, PA
- Institute for CyberScience, Pennsylvania State University, University Park, PA
| |
Collapse
|
12
|
Jensen JD, Payseur BA, Stephan W, Aquadro CF, Lynch M, Charlesworth D, Charlesworth B. The importance of the Neutral Theory in 1968 and 50 years on: A response to Kern and Hahn 2018. Evolution 2019; 73:111-114. [PMID: 30460993 PMCID: PMC6496948 DOI: 10.1111/evo.13650] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 01/31/2023]
Abstract
A recent article reassessing the Neutral Theory of Molecular Evolution claims that it is no longer as important as is widely believed. The authors argue that "the neutral theory was supported by unreliable theoretical and empirical evidence from the beginning, and that in light of modern, genome-scale data, we can firmly reject its universality." Claiming that "the neutral theory has been overwhelmingly rejected," they propose instead that natural selection is the major force shaping both between-species divergence and within-species variation. Although this is probably a minority view, it is important to evaluate such claims carefully in the context of current knowledge, as inaccuracies can sometimes morph into an accepted narrative for those not familiar with the underlying science. We here critically examine and ultimately reject Kern and Hahn's arguments and assessment, and instead propose that it is now abundantly clear that the foundational ideas presented five decades ago by Kimura and Ohta are indeed correct.
Collapse
Affiliation(s)
| | - Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin-Madison,
Madison, Wisconsin
| | - Wolfgang Stephan
- Leibniz-Institute for Evolution and Biodiversity Science,
Berlin, Germany
| | - Charles F. Aquadro
- Department of Molecular Biology & Genetics, Cornell
University, Ithaca, New York
| | - Michael Lynch
- Center for Mechanisms of Evolution, Arizona State
University, Tempe, Arizona
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological
Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological
Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Signor SA, New FN, Nuzhdin S. A Large Panel of Drosophila simulans Reveals an Abundance of Common Variants. Genome Biol Evol 2018; 10:189-206. [PMID: 29228179 PMCID: PMC5767965 DOI: 10.1093/gbe/evx262] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2017] [Indexed: 01/03/2023] Open
Abstract
The rapidly expanding availability of large NGS data sets provides an opportunity to investigate population genetics at an unprecedented scale. Drosophila simulans is the sister species of the model organism Drosophila melanogaster, and is often presumed to share similar demographic history. However, previous population genetic and ecological work suggests very different signatures of selection and demography. Here, we sequence a new panel of 170 inbred genotypes of a North American population of D. simulans, a valuable complement to the DGRP and other D. melanogaster panels. We find some unexpected signatures of demography, in the form of excess intermediate frequency polymorphisms. Simulations suggest that this is possibly due to a recent population contraction and selection. We examine the outliers in the D. simulans genome determined by a haplotype test to attempt to parse the contribution of demography and selection to the patterns observed in this population. Untangling the relative contribution of demography and selection to genomic patterns of variation is challenging, however, it is clear that although D. melanogaster was thought to share demographic history with D. simulans different forces are at work in shaping genomic variation in this population of D. simulans.
Collapse
Affiliation(s)
- Sarah A Signor
- Department of Molecular and Computational Biology, University of Southern California
| | - Felicia N New
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine
| | - Sergey Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California
| |
Collapse
|
14
|
Comeron JM. Background selection as null hypothesis in population genomics: insights and challenges from Drosophila studies. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0471. [PMID: 29109230 PMCID: PMC5698629 DOI: 10.1098/rstb.2016.0471] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 12/11/2022] Open
Abstract
The consequences of selection at linked sites are multiple and widespread across the genomes of most species. Here, I first review the main concepts behind models of selection and linkage in recombining genomes, present the difficulty in parametrizing these models simply as a reduction in effective population size (Ne) and discuss the predicted impact of recombination rates on levels of diversity across genomes. Arguments are then put forward in favour of using a model of selection and linkage with neutral and deleterious mutations (i.e. the background selection model, BGS) as a sensible null hypothesis for investigating the presence of other forms of selection, such as balancing or positive. I also describe and compare two studies that have generated high-resolution landscapes of the predicted consequences of selection at linked sites in Drosophila melanogaster. Both studies show that BGS can explain a very large fraction of the observed variation in diversity across the whole genome, thus supporting its use as null model. Finally, I identify and discuss a number of caveats and challenges in studies of genetic hitchhiking that have been often overlooked, with several of them sharing a potential bias towards overestimating the evidence supporting recent selective sweeps to the detriment of a BGS explanation. One potential source of bias is the analysis of non-equilibrium populations: it is precisely because models of selection and linkage predict variation in Ne across chromosomes that demographic dynamics are not expected to be equivalent chromosome- or genome-wide. Other challenges include the use of incomplete genome annotations, the assumption of temporally stable recombination landscapes, the presence of genes under balancing selection and the consequences of ignoring non-crossover (gene conversion) recombination events. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’.
Collapse
Affiliation(s)
- Josep M Comeron
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA .,Interdisciplinary Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
15
|
Hsieh P, Hallmark B, Watkins J, Karafet TM, Osipova LP, Gutenkunst RN, Hammer MF. Exome Sequencing Provides Evidence of Polygenic Adaptation to a Fat-Rich Animal Diet in Indigenous Siberian Populations. Mol Biol Evol 2018; 34:2913-2926. [PMID: 28962010 DOI: 10.1093/molbev/msx226] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Siberia is one of the coldest environments on Earth and has great seasonal temperature variation. Long-term settlement in northern Siberia undoubtedly required biological adaptation to severe cold stress, dramatic variation in photoperiod, and limited food resources. In addition, recent archeological studies show that humans first occupied Siberia at least 45,000 years ago; yet our understanding of the demographic history of modern indigenous Siberians remains incomplete. In this study, we use whole-exome sequencing data from the Nganasans and Yakuts to infer the evolutionary history of these two indigenous Siberian populations. Recognizing the complexity of the adaptive process, we designed a model-based test to systematically search for signatures of polygenic selection. Our approach accounts for stochasticity in the demographic process and the hitchhiking effect of classic selective sweeps, as well as potential biases resulting from recombination rate and mutation rate heterogeneity. Our demographic inference shows that the Nganasans and Yakuts diverged ∼12,000-13,000 years ago from East-Asian ancestors in a process involving continuous gene flow. Our polygenic selection scan identifies seven candidate gene sets with Siberian-specific signals. Three of these gene sets are related to diet, especially to fat metabolism, consistent with the hypothesis of adaptation to a fat-rich animal diet. Additional testing rejects the effect of hitchhiking and favors a model in which selection yields small allele frequency changes at multiple unlinked genes.
Collapse
Affiliation(s)
- PingHsun Hsieh
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| | - Brian Hallmark
- Interdisciplinary Program in Statistics, University of Arizona, Tucson, AZ
| | - Joseph Watkins
- Department of Mathematics, University of Arizona, Tucson, AZ
| | | | - Ludmila P Osipova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Ryan N Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ
| | - Michael F Hammer
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ.,ARL Division of Biotechnology, University of Arizona, Tucson, AZ
| |
Collapse
|
16
|
Ghenu AH, Blanckaert A, Butlin RK, Kulmuni J, Bank C. Conflict between heterozygote advantage and hybrid incompatibility in haplodiploids (and sex chromosomes). Mol Ecol 2018; 27:3935-3949. [PMID: 29328538 DOI: 10.1111/mec.14482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023]
Abstract
In many diploid species, the sex chromosomes play a special role in mediating reproductive isolation. In haplodiploids, where females are diploid and males haploid, the whole genome behaves similarly to the X/Z chromosomes of diploids. Therefore, haplodiploid systems can serve as a model for the role of sex chromosomes in speciation and hybridization. A previously described population of Finnish Formica wood ants displays genome-wide signs of ploidally and sexually antagonistic selection resulting from hybridization. Here, hybrid females have increased survivorship but hybrid males are inviable. To understand how the unusual hybrid population may be maintained, we developed a mathematical model with hybrid incompatibility, female heterozygote advantage, recombination and assortative mating. The rugged fitness landscape resulting from the co-occurrence of heterozygote advantage and hybrid incompatibility results in a sexual conflict in haplodiploids, which is caused by the ploidy difference. Thus, whereas heterozygote advantage always promotes long-term polymorphism in diploids, we find various outcomes in haplodiploids in which the population stabilizes either in favour of males, females or via maximizing the number of introgressed individuals. We discuss these outcomes with respect to the potential long-term fate of the Finnish wood ant population and provide approximations for the extension of the model to multiple incompatibilities. Moreover, we highlight the general implications of our results for speciation and hybridization in haplodiploids versus diploids and how the described fitness relationships could contribute to the outstanding role of sex chromosomes as hotspots of sexual antagonism and genes involved in speciation.
Collapse
Affiliation(s)
| | | | - Roger K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jonna Kulmuni
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Kavli Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
17
|
Detecting Recent Positive Selection with a Single Locus Test Bipartitioning the Coalescent Tree. Genetics 2017; 208:791-805. [PMID: 29217523 DOI: 10.1534/genetics.117.300401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023] Open
Abstract
Many population genomic studies have been conducted in the past to search for traces of recent events of positive selection. These traces, however, can be obscured by temporal variation of population size or other demographic factors. To reduce the confounding impact of demography, the coalescent tree topology has been used as an additional source of information for detecting recent positive selection in a population or a species. Based on the branching pattern at the root, we partition the hypothetical coalescent tree, inferred from a sequence sample, into two subtrees. The reasoning is that positive selection could impose a strong impact on branch length in one of the two subtrees while demography has the same effect on average on both subtrees. Thus, positive selection should be detectable by comparing statistics calculated for the two subtrees. Simulations demonstrate that the proposed test based on these principles has high power to detect recent positive selection even when DNA polymorphism data from only one locus is available, and that it is robust to the confounding effect of demography. One feature is that all components in the summary statistics ([Formula: see text]) can be computed analytically. Moreover, misinference of derived and ancestral alleles is seen to have only a limited effect on the test, and it therefore avoids a notorious problem when searching for traces of recent positive selection.
Collapse
|
18
|
Villanueva‐Cañas JL, Rech GE, Cara MAR, González J. Beyond
SNP
s: how to detect selection on transposable element insertions. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12781] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Gabriel E. Rech
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| | - Maria Angeles Rodriguez Cara
- Ecoanthropology and Ethnobiology Laboratory, UMR 7206, CNRS/MNHN/Universite Paris 7 Museum National d'HistoireNaturelle F‐75116 Paris France
| | - Josefa González
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| |
Collapse
|
19
|
Kern AD, Schrider DR. Discoal: flexible coalescent simulations with selection. Bioinformatics 2016; 32:3839-3841. [PMID: 27559153 DOI: 10.1093/bioinformatics/btw556] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 11/14/2022] Open
Abstract
Here we describe discoal, a coalescent simulator able to generate population samples that include selective sweeps in a feature-rich, flexible manner. discoal can perform simulations conditioning on the fixation of an allele due to drift or either hard or soft sweeps-even those occurring a large genetic distance away from the simulated locus. discoal can simulate sweeps with recurrent mutation to the adaptive allele, recombination, and gene conversion, under non-equilibrium demographic histories and without specifying an allele frequency trajectory in advance. AVAILABILITY AND IMPLEMENTATION discoal is implemented in the C programming language. Source code is freely available on GitHub (https://github.com/kern-lab/discoal) under a GNU General Public License. CONTACT kern@dls.rutgers.edu or dan.schrider@rutgers.eduSupplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrew D Kern
- Department of Genetics.,Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08554, USA
| | - Daniel R Schrider
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08554, USA
| |
Collapse
|
20
|
Hsieh P, Veeramah KR, Lachance J, Tishkoff SA, Wall JD, Hammer MF, Gutenkunst RN. Whole-genome sequence analyses of Western Central African Pygmy hunter-gatherers reveal a complex demographic history and identify candidate genes under positive natural selection. Genome Res 2016; 26:279-90. [PMID: 26888263 PMCID: PMC4772011 DOI: 10.1101/gr.192971.115] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 01/07/2016] [Indexed: 12/20/2022]
Abstract
African Pygmies practicing a mobile hunter-gatherer lifestyle are phenotypically and genetically diverged from other anatomically modern humans, and they likely experienced strong selective pressures due to their unique lifestyle in the Central African rainforest. To identify genomic targets of adaptation, we sequenced the genomes of four Biaka Pygmies from the Central African Republic and jointly analyzed these data with the genome sequences of three Baka Pygmies from Cameroon and nine Yoruba famers. To account for the complex demographic history of these populations that includes both isolation and gene flow, we fit models using the joint allele frequency spectrum and validated them using independent approaches. Our two best-fit models both suggest ancient divergence between the ancestors of the farmers and Pygmies, 90,000 or 150,000 yr ago. We also find that bidirectional asymmetric gene flow is statistically better supported than a single pulse of unidirectional gene flow from farmers to Pygmies, as previously suggested. We then applied complementary statistics to scan the genome for evidence of selective sweeps and polygenic selection. We found that conventional statistical outlier approaches were biased toward identifying candidates in regions of high mutation or low recombination rate. To avoid this bias, we assigned P-values for candidates using whole-genome simulations incorporating demography and variation in both recombination and mutation rates. We found that genes and gene sets involved in muscle development, bone synthesis, immunity, reproduction, cell signaling and development, and energy metabolism are likely to be targets of positive natural selection in Western African Pygmies or their recent ancestors.
Collapse
Affiliation(s)
- PingHsun Hsieh
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Krishna R Veeramah
- Arizona Research Laboratories Division of Biotechnology, University of Arizona, Tucson, Arizona 85721, USA; Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA
| | - Joseph Lachance
- Department of Biology and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Department of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Sarah A Tishkoff
- Department of Biology and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jeffrey D Wall
- Institute for Human Genetics, University of California, San Francisco, California 94143, USA
| | - Michael F Hammer
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; Arizona Research Laboratories Division of Biotechnology, University of Arizona, Tucson, Arizona 85721, USA
| | - Ryan N Gutenkunst
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
21
|
A linkage disequilibrium perspective on the genetic mosaic of speciation in two hybridizing Mediterranean white oaks. Heredity (Edinb) 2014; 114:373-86. [PMID: 25515016 DOI: 10.1038/hdy.2014.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 10/11/2014] [Accepted: 11/12/2014] [Indexed: 01/09/2023] Open
Abstract
We analyzed the genetic mosaic of speciation in two hybridizing Mediterranean white oaks from the Iberian Peninsula (Quercus faginea Lamb. and Quercus pyrenaica Willd.). The two species show ecological divergence in flowering phenology, leaf morphology and composition, and in their basic or acidic soil preferences. Ninety expressed sequence tag-simple sequence repeats (EST-SSRs) and eight nuclear SSRs were genotyped in 96 trees from each species. Genotyping was designed in two steps. First, we used 69 markers evenly distributed over the 12 linkage groups (LGs) of the oak linkage map to confirm the species genetic identity of the sampled genotypes, and searched for differentiation outliers. Then, we genotyped 29 additional markers from the chromosome bins containing the outliers and repeated the multilocus scans. We found one or two additional outliers within four saturated bins, thus confirming that outliers are organized into clusters. Linkage disequilibrium (LD) was extensive; even for loosely linked and for independent markers. Consequently, score tests for association between two-marker haplotypes and the 'species trait' showed a broad genomic divergence, although substantial variation across the genome and within LGs was also observed. We discuss the influence of several confounding effects on neutrality tests and review the evolutionary processes leading to extensive LD. Finally, we examine how LD analyses within regions that contain outlier clusters and quantitative trait loci can help to identify regions of divergence and/or genomic hitchhiking in the light of predictions from ecological speciation theory.
Collapse
|
22
|
Arbiza L, Gottipati S, Siepel A, Keinan A. Contrasting X-linked and autosomal diversity across 14 human populations. Am J Hum Genet 2014; 94:827-44. [PMID: 24836452 DOI: 10.1016/j.ajhg.2014.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/15/2014] [Indexed: 12/29/2022] Open
Abstract
Contrasting the genetic diversity of the human X chromosome (X) and autosomes has facilitated understanding historical differences between males and females and the influence of natural selection. Previous studies based on smaller data sets have left questions regarding how empirical patterns extend to additional populations and which forces can explain them. Here, we address these questions by analyzing the ratio of X-to-autosomal (X/A) nucleotide diversity with the complete genomes of 569 females from 14 populations. Results show that X/A diversity is similar within each continental group but notably lower in European (EUR) and East Asian (ASN) populations than in African (AFR) populations. X/A diversity increases in all populations with increasing distance from genes, highlighting the stronger impact of diversity-reducing selection on X than on the autosomes. However, relative X/A diversity (between two populations) is invariant with distance from genes, suggesting that selection does not drive the relative reduction in X/A diversity in non-Africans (0.842 ± 0.012 for EUR-to-AFR and 0.820 ± 0.032 for ASN-to-AFR comparisons). Finally, an array of models with varying population bottlenecks, expansions, and migration from the latest studies of human demographic history account for about half of the observed reduction in relative X/A diversity from the expected value of 1. They predict values between 0.91 and 0.94 for EUR-to-AFR comparisons and between 0.91 and 0.92 for ASN-to-AFR comparisons. Further reductions can be predicted by more extreme demographic events in excess of those captured by the latest studies but, in the absence of these, also by historical sex-biased demographic events or other processes.
Collapse
|
23
|
Detecting selection in the blue crab, Callinectes sapidus, using DNA sequence data from multiple nuclear protein-coding genes. PLoS One 2014; 9:e99081. [PMID: 24896825 PMCID: PMC4045945 DOI: 10.1371/journal.pone.0099081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 05/11/2014] [Indexed: 11/23/2022] Open
Abstract
The identification of genes involved in the adaptive evolution of non-model organisms with uncharacterized genomes constitutes a major challenge. This study employed a rigorous and targeted candidate gene approach to test for positive selection on protein-coding genes of the blue crab, Callinectes sapidus. Four genes with putative roles in physiological adaptation to environmental stress were chosen as candidates. A fifth gene not expected to play a role in environmental adaptation was used as a control. Large samples (n>800) of DNA sequences from C. sapidus were used in tests of selective neutrality based on sequence polymorphisms. In combination with these, sequences from the congener C. similis were used in neutrality tests based on interspecific divergence. In multiple tests, significant departures from neutral expectations and indicative of positive selection were found for the candidate gene trehalose 6-phosphate synthase (tps). These departures could not be explained by any of the historical population expansion or bottleneck scenarios that were evaluated in coalescent simulations. Evidence was also found for balancing selection at ATP-synthase subunit 9 (atps) using a maximum likelihood version of the Hudson, Kreitmen, and Aguadé test, and positive selection favoring amino acid replacements within ATP/ADP translocase (ant) was detected using the McDonald-Kreitman test. In contrast, test statistics for the control gene, ribosomal protein L12 (rpl), which presumably has experienced the same demographic effects as the candidate loci, were not significantly different from neutral expectations and could readily be explained by demographic effects. Together, these findings demonstrate the utility of the candidate gene approach for investigating adaptation at the molecular level in a marine invertebrate for which extensive genomic resources are not available.
Collapse
|
24
|
Abstract
The causes of the large effect of the X chromosome in reproductive isolation and speciation have long been debated. The faster-X hypothesis predicts that X-linked loci are expected to have higher rates of adaptive evolution than autosomal loci if new beneficial mutations are on average recessive. Reproductive isolation should therefore evolve faster when contributing loci are located on the X chromosome. In this study, we have analyzed genome-wide nucleotide polymorphism data from the house mouse subspecies Mus musculus castaneus and nucleotide divergence from Mus famulus and Rattus norvegicus to compare rates of adaptive evolution for autosomal and X-linked protein-coding genes. We found significantly faster adaptive evolution for X-linked loci, particularly for genes with expression in male-specific tissues, but autosomal and X-linked genes with expression in female-specific tissues evolve at similar rates. We also estimated rates of adaptive evolution for genes expressed during spermatogenesis and found that X-linked genes that escape meiotic sex chromosome inactivation (MSCI) show rapid adaptive evolution. Our results suggest that faster-X adaptive evolution is either due to net recessivity of new advantageous mutations or due to a special gene content of the X chromosome, which regulates male function and spermatogenesis. We discuss how our results help to explain the large effect of the X chromosome in speciation.
Collapse
|
25
|
Lee YCG, Langley CH, Begun DJ. Differential strengths of positive selection revealed by hitchhiking effects at small physical scales in Drosophila melanogaster. Mol Biol Evol 2013; 31:804-16. [PMID: 24361994 DOI: 10.1093/molbev/mst270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The long time scale of adaptive evolution makes it difficult to directly observe the spread of most beneficial mutations through natural populations. Therefore, inferring attributes of beneficial mutations by studying the genomic signals left by directional selection is an important component of population genetics research. One kind of signal is a trough in nearby neutral genetic variation due to selective fixation of initially rare alleles, a phenomenon known as "genetic hitchhiking." Accumulated evidence suggests that a considerable fraction of substitutions in the Drosophila genome results from positive selection, most of which are expected to have small selection coefficients and influence the population genetics of sites in the immediate vicinity. Using Drosophila melanogaster population genomic data, we found that the heterogeneity in synonymous polymorphism surrounding different categories of coding fixations is readily observable even within 25 bp of focal substitutions, which we interpret as the result of small-scale hitchhiking effects. The strength of natural selection on different sites appears to be quite heterogeneous. Particularly, neighboring fixations that changed amino acid polarities in a way that maintained the overall polarities of a protein were under stronger selection than other categories of fixations. Interestingly, we found that substitutions in slow-evolving genes are associated with stronger hitchhiking effects. This is consistent with the idea that adaptive evolution may involve few substitutions with large effects or many substitutions with small effects. Because our approach only weakly depends on the numbers of recent nonsynonymous substitutions, it can provide a complimentary view to the adaptive evolution inferred by other divergence-based evolutionary genetic methods.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis
| | | | | |
Collapse
|
26
|
Robinson MC, Stone EA, Singh ND. Population genomic analysis reveals no evidence for GC-biased gene conversion in Drosophila melanogaster. Mol Biol Evol 2013; 31:425-33. [PMID: 24214536 DOI: 10.1093/molbev/mst220] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene conversion is the nonreciprocal exchange of genetic material between homologous chromosomes. Multiple lines of evidence from a variety of taxa strongly suggest that gene conversion events are biased toward GC-bearing alleles. However, in Drosophila, the data have largely been indirect and unclear, with some studies supporting the predictions of a GC-biased gene conversion model and other data showing contradictory findings. Here, we test whether gene conversion events are GC-biased in Drosophila melanogaster using whole-genome polymorphism and divergence data. Our results provide no support for GC-biased gene conversion and thus suggest that this process is unlikely to significantly contribute to patterns of polymorphism and divergence in this system.
Collapse
Affiliation(s)
- Matthew C Robinson
- Department of Biological Sciences, Program in Genetics, North Carolina State University
| | | | | |
Collapse
|
27
|
Divergent selection and local adaptation in disjunct populations of an endangered conifer, Keteleeria davidiana var. formosana (Pinaceae). PLoS One 2013; 8:e70162. [PMID: 23894608 PMCID: PMC3718774 DOI: 10.1371/journal.pone.0070162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/16/2013] [Indexed: 12/18/2022] Open
Abstract
The present study investigated the genetic diversity, population structure, FST outliers, and extent and pattern of linkage disequilibrium in five populations of Keteleeria davidiana var. formosana, which is listed as a critically endangered species by the Council of Agriculture, Taiwan. Twelve amplified fragment length polymorphism primer pairs generated a total of 465 markers, of which 83.74% on average were polymorphic across populations, with a mean Nei’s genetic diversity of 0.233 and a low level of genetic differentiation (approximately 6%) based on the total dataset. Linkage disequilibrium and HICKORY analyses suggested recent population bottlenecks and inbreeding in K. davidiana var. formosana. Both STRUCTURE and BAPS observed extensive admixture of individual genotypes among populations based on the total dataset in various clustering scenarios, which probably resulted from incomplete lineage sorting of ancestral variation rather than a high rate of recent gene flow. Our results based on outlier analysis revealed generally high levels of genetic differentiation and suggest that divergent selection arising from environmental variation has been driven by differences in temperature, precipitation, and humidity. Identification of ecologically associated outliers among environmentally disparate populations further support divergent selection and potential local adaptation.
Collapse
|
28
|
Chan AH, Jenkins PA, Song YS. Genome-wide fine-scale recombination rate variation in Drosophila melanogaster. PLoS Genet 2012; 8:e1003090. [PMID: 23284288 PMCID: PMC3527307 DOI: 10.1371/journal.pgen.1003090] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/29/2012] [Indexed: 01/18/2023] Open
Abstract
Estimating fine-scale recombination maps of Drosophila from population genomic data is a challenging problem, in particular because of the high background recombination rate. In this paper, a new computational method is developed to address this challenge. Through an extensive simulation study, it is demonstrated that the method allows more accurate inference, and exhibits greater robustness to the effects of natural selection and noise, compared to a well-used previous method developed for studying fine-scale recombination rate variation in the human genome. As an application, a genome-wide analysis of genetic variation data is performed for two Drosophila melanogaster populations, one from North America (Raleigh, USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombination rate variation is widespread throughout the D. melanogaster genome, across all chromosomes and in both populations. At the fine-scale, a conservative, systematic search for evidence of recombination hotspots suggests the existence of a handful of putative hotspots each with at least a tenfold increase in intensity over the background rate. A wavelet analysis is carried out to compare the estimated recombination maps in the two populations and to quantify the extent to which recombination rates are conserved. In general, similarity is observed at very broad scales, but substantial differences are seen at fine scales. The average recombination rate of the X chromosome appears to be higher than that of the autosomes in both populations, and this pattern is much more pronounced in the African population than the North American population. The correlation between various genomic features—including recombination rates, diversity, divergence, GC content, gene content, and sequence quality—is examined using the wavelet analysis, and it is shown that the most notable difference between D. melanogaster and humans is in the correlation between recombination and diversity. Recombination is a process by which chromosomes exchange genetic material during meiosis. It is important in evolution because it provides offspring with new combinations of genes, and so estimating the rate of recombination is of fundamental importance in various population genomic inference problems. In this paper, we develop a new statistical method to enable robust estimation of fine-scale recombination maps of Drosophila, a genus of common fruit flies, in which the background recombination rate is high and natural selection has been prevalent. We apply our method to produce fine-scale recombination maps for a North American population and an African population of D. melanogaster. For both populations, we find extensive fine-scale variation in recombination rate throughout the genome. We provide a quantitative characterization of the similarities and differences between the recombination maps of the two populations; our study reveals high correlation at broad scales and low correlation at fine scales, as has been documented among human populations. We also examine the correlation between various genomic features. Furthermore, using a conservative approach, we find a handful of putative recombination “hotspot” regions with solid statistical support for a local elevation of at least 10 times the background recombination rate.
Collapse
Affiliation(s)
- Andrew H. Chan
- Computer Science Division, University of California Berkeley, Berkeley, California, United States of America
| | - Paul A. Jenkins
- Computer Science Division, University of California Berkeley, Berkeley, California, United States of America
| | - Yun S. Song
- Computer Science Division, University of California Berkeley, Berkeley, California, United States of America
- Department of Statistics, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Olson-Manning CF, Wagner MR, Mitchell-Olds T. Adaptive evolution: evaluating empirical support for theoretical predictions. Nat Rev Genet 2012; 13:867-77. [PMID: 23154809 PMCID: PMC3748133 DOI: 10.1038/nrg3322] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adaptive evolution is shaped by the interaction of population genetics, natural selection and underlying network and biochemical constraints. Variation created by mutation, the raw material for evolutionary change, is translated into phenotypes by flux through metabolic pathways and by the topography and dynamics of molecular networks. Finally, the retention of genetic variation and the efficacy of selection depend on population genetics and demographic history. Emergent high-throughput experimental methods and sequencing technologies allow us to gather more evidence and to move beyond the theory in different systems and populations. Here we review the extent to which recent evidence supports long-established theoretical principles of adaptation.
Collapse
Affiliation(s)
- Carrie F. Olson-Manning
- Department of Biology, Box 90338, Program in Genetics and Genomics, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708
| | - Maggie R. Wagner
- Department of Biology, Box 90338, Program in Genetics and Genomics, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708
| | - Thomas Mitchell-Olds
- Department of Biology, Box 90338, Program in Genetics and Genomics, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708
| |
Collapse
|
30
|
Langley CH, Stevens K, Cardeno C, Lee YCG, Schrider DR, Pool JE, Langley SA, Suarez C, Corbett-Detig RB, Kolaczkowski B, Fang S, Nista PM, Holloway AK, Kern AD, Dewey CN, Song YS, Hahn MW, Begun DJ. Genomic variation in natural populations of Drosophila melanogaster. Genetics 2012; 192:533-98. [PMID: 22673804 PMCID: PMC3454882 DOI: 10.1534/genetics.112.142018] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/24/2012] [Indexed: 02/07/2023] Open
Abstract
This report of independent genome sequences of two natural populations of Drosophila melanogaster (37 from North America and 6 from Africa) provides unique insight into forces shaping genomic polymorphism and divergence. Evidence of interactions between natural selection and genetic linkage is abundant not only in centromere- and telomere-proximal regions, but also throughout the euchromatic arms. Linkage disequilibrium, which decays within 1 kbp, exhibits a strong bias toward coupling of the more frequent alleles and provides a high-resolution map of recombination rate. The juxtaposition of population genetics statistics in small genomic windows with gene structures and chromatin states yields a rich, high-resolution annotation, including the following: (1) 5'- and 3'-UTRs are enriched for regions of reduced polymorphism relative to lineage-specific divergence; (2) exons overlap with windows of excess relative polymorphism; (3) epigenetic marks associated with active transcription initiation sites overlap with regions of reduced relative polymorphism and relatively reduced estimates of the rate of recombination; (4) the rate of adaptive nonsynonymous fixation increases with the rate of crossing over per base pair; and (5) both duplications and deletions are enriched near origins of replication and their density correlates negatively with the rate of crossing over. Available demographic models of X and autosome descent cannot account for the increased divergence on the X and loss of diversity associated with the out-of-Africa migration. Comparison of the variation among these genomes to variation among genomes from D. simulans suggests that many targets of directional selection are shared between these species.
Collapse
Affiliation(s)
- Charles H Langley
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhou Q, Zhu HM, Huang QF, Zhao L, Zhang GJ, Roy SW, Vicoso B, Xuan ZL, Ruan J, Zhang Y, Zhao RP, Ye C, Zhang XQ, Wang J, Wang W, Bachtrog D. Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans. BMC Genomics 2012; 13:109. [PMID: 22439699 PMCID: PMC3353239 DOI: 10.1186/1471-2164-13-109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/22/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Drosophila albomicans is a unique model organism for studying both sex chromosome and B chromosome evolution. A pair of its autosomes comprising roughly 40% of the whole genome has fused to the ancient X and Y chromosomes only about 0.12 million years ago, thereby creating the youngest and most gene-rich neo-sex system reported to date. This species also possesses recently derived B chromosomes that show non-Mendelian inheritance and significantly influence fertility. METHODS We sequenced male flies with B chromosomes at 124.5-fold genome coverage using next-generation sequencing. To characterize neo-Y specific changes and B chromosome sequences, we also sequenced inbred female flies derived from the same strain but without B's at 28.5-fold. RESULTS We assembled a female genome and placed 53% of the sequence and 85% of the annotated proteins into specific chromosomes, by comparison with the 12 Drosophila genomes. Despite its very recent origin, the non-recombining neo-Y chromosome shows various signs of degeneration, including a significant enrichment of non-functional genes compared to the neo-X, and an excess of tandem duplications relative to other chromosomes. We also characterized a B-chromosome linked scaffold that contains an actively transcribed unit and shows sequence similarity to the subcentromeric regions of both the ancient X and the neo-X chromosome. CONCLUSIONS Our results provide novel insights into the very early stages of sex chromosome evolution and B chromosome origination, and suggest an unprecedented connection between the births of these two systems in D. albomicans.
Collapse
Affiliation(s)
- Qi Zhou
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Hong-mei Zhu
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Quan-fei Huang
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Li Zhao
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Guo-jie Zhang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Scott W Roy
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Beatriz Vicoso
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Zhao-lin Xuan
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Jue Ruan
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Yue Zhang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ruo-ping Zhao
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Chen Ye
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Xiu-qing Zhang
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Jun Wang
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Wen Wang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
32
|
The role of background selection in shaping patterns of molecular evolution and variation: evidence from variability on the Drosophila X chromosome. Genetics 2012; 191:233-46. [PMID: 22377629 DOI: 10.1534/genetics.111.138073] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the putatively ancestral population of Drosophila melanogaster, the ratio of silent DNA sequence diversity for X-linked loci to that for autosomal loci is approximately one, instead of the expected "null" value of 3/4. One possible explanation is that background selection (the hitchhiking effect of deleterious mutations) is more effective on the autosomes than on the X chromosome, because of the lack of crossing over in male Drosophila. The expected effects of background selection on neutral variability at sites in the middle of an X chromosome or an autosomal arm were calculated for different models of chromosome organization and methods of approximation, using current estimates of the deleterious mutation rate and distributions of the fitness effects of deleterious mutations. The robustness of the results to different distributions of fitness effects, dominance coefficients, mutation rates, mapping functions, and chromosome size was investigated. The predicted ratio of X-linked to autosomal variability is relatively insensitive to these variables, except for the mutation rate and map length. Provided that the deleterious mutation rate per genome is sufficiently large, it seems likely that background selection can account for the observed X to autosome ratio of variability in the ancestral population of D. melanogaster. The fact that this ratio is much less than one in D. pseudoobscura is also consistent with the model's predictions, since this species has a high rate of crossing over. The results suggest that background selection may play a major role in shaping patterns of molecular evolution and variation.
Collapse
|
33
|
Cardoso-Moreira M, Emerson JJ, Clark AG, Long M. Drosophila duplication hotspots are associated with late-replicating regions of the genome. PLoS Genet 2011; 7:e1002340. [PMID: 22072977 PMCID: PMC3207856 DOI: 10.1371/journal.pgen.1002340] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/26/2011] [Indexed: 12/22/2022] Open
Abstract
Duplications play a significant role in both extremes of the phenotypic spectrum of newly arising mutations: they can have severe deleterious effects (e.g. duplications underlie a variety of diseases) but can also be highly advantageous. The phenotypic potential of newly arisen duplications has stimulated wide interest in both the mutational and selective processes shaping these variants in the genome. Here we take advantage of the Drosophila simulans–Drosophila melanogaster genetic system to further our understanding of both processes. Regarding mutational processes, the study of two closely related species allows investigation of the potential existence of shared duplication hotspots, and the similarities and differences between the two genomes can be used to dissect its underlying causes. Regarding selection, the difference in the effective population size between the two species can be leveraged to ask questions about the strength of selection acting on different classes of duplications. In this study, we conducted a survey of duplication polymorphisms in 14 different lines of D. simulans using tiling microarrays and combined it with an analogous survey for the D. melanogaster genome. By integrating the two datasets, we identified duplication hotspots conserved between the two species. However, unlike the duplication hotspots identified in mammalian genomes, Drosophila duplication hotspots are not associated with sequences of high sequence identity capable of mediating non-allelic homologous recombination. Instead, Drosophila duplication hotspots are associated with late-replicating regions of the genome, suggesting a link between DNA replication and duplication rates. We also found evidence supporting a higher effectiveness of selection on duplications in D. simulans than in D. melanogaster. This is also true for duplications segregating at high frequency, where we find evidence in D. simulans that a sizeable fraction of these mutations is being driven to fixation by positive selection. DNA duplications are important contributors to the phenotypic differences observed between individuals. These mutations can disrupt the normal functioning of genes and so are often associated with disease. But because they can add genetic information they can also lead to evolutionary change. Understanding how selection and non-random mutation processes shape the distribution of duplications throughout the genome is important to elucidate both the medical and evolutionary impacts of these mutations. Here, we examined the roles of selection and mutation in shaping patterns of duplication polymorphisms across the genomes of the fruit fly Drosophila melanogaster and its sister species, D. simulans. We found that selection is pervasive in both genomes but is more efficient in D. simulans than in D. melanogaster. We also found that these two species have shared duplication hotspots, i.e. orthologous regions experiencing high rates of duplication in the two genomes. After excluding the hypothesis that Drosophila duplication hotspots are associated with regions of the genome rich in segmental duplications (as observed for mammalian genomes), we show that they are associated with late-replicating regions of the genome. Our work therefore proposes a link between DNA replication and rates of duplication across the genome.
Collapse
|
34
|
Jaquiéry J, Stoeckel S, Rispe C, Mieuzet L, Legeai F, Simon JC. Accelerated evolution of sex chromosomes in aphids, an x0 system. Mol Biol Evol 2011; 29:837-47. [PMID: 21998277 DOI: 10.1093/molbev/msr252] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sex chromosomes play a role in many important biological processes, including sex determination, genomic conflicts, imprinting, and speciation. In particular, they exhibit several unusual properties such as inheritance pattern, hemizygosity, and reduced recombination, which influence their response to evolutionary factors (e.g., drift, selection, and demography). Here, we examine the evolutionary forces driving X chromosome evolution in aphids, an XO system where females are homozygous (XX) and males are hemizygous (X0) at sex chromosomes. We show by simulations that the unusual mode of transmission of the X chromosome in aphids, coupled with cyclical parthenogenesis, results in similar effective population sizes and predicted levels of genetic diversity for X chromosomes and autosomes under neutral evolution. These results contrast with expectations from standard XX/XY or XX/X0 systems (where the effective population size of the X is three-fourths that of autosomes) and have deep consequences for aphid X chromosome evolution. We then localized 52 microsatellite markers on the X and 351 on autosomes. We genotyped 167 individuals with 356 of these loci and found similar levels of allelic richness on the X and on the autosomes, as predicted by our simulations. In contrast, we detected higher dN and dN/dS ratio for X-linked genes compared with autosomal genes, a pattern compatible with either positive or relaxed selection. Given that both types of chromosomes have similar effective population sizes and that the single copy of the X chromosome of male aphids exposes its recessive genes to selection, some degree of positive selection seems to best explain the higher rates of evolution of X-linked genes. Overall, this study highlights the particular relevance of aphids to study the evolutionary factors driving sex chromosomes and genome evolution.
Collapse
Affiliation(s)
- Julie Jaquiéry
- Institut National de Recherche Agronomique (INRA), Unité Mixte de Recherche 1099, Biology of Organisms and Populations Applied to Plant Protection, Le Rheu, France.
| | | | | | | | | | | |
Collapse
|
35
|
Verspoor RL, Haddrill PR. Genetic diversity, population structure and Wolbachia infection status in a worldwide sample of Drosophila melanogaster and D. simulans populations. PLoS One 2011; 6:e26318. [PMID: 22022599 PMCID: PMC3192181 DOI: 10.1371/journal.pone.0026318] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/23/2011] [Indexed: 12/03/2022] Open
Abstract
Drosophila melanogaster and its close relatives have been extremely important model species in the development of population genetic models that serve to explain patterns of diversity in natural populations, a major goal of evolutionary biology. A detailed picture of the evolutionary history of these species is beginning to emerge, as the relative importance of forces including demographic changes and natural selection is established. A continuing aim is to characterise levels of genetic diversity in a large number of populations of these species, covering a wide geographic area. We have used collections from five previously un-sampled wild populations of D. melanogaster and two of D. simulans, across three continents. We estimated levels of genetic diversity within, and divergence between, these populations, and looked for evidence of genetic structure both between ancestral and derived populations, and amongst derived populations. We also investigated the prevalence of infection with the bacterial endosymbiont Wolbachia. We found that D. melanogaster populations from Sub-Saharan Africa are the most diverse, and that divergence is highest between these and non-Sub-Saharan populations. There is strong evidence for structuring of populations between Sub-Saharan Africa and the rest of the world, and some evidence for weak structure amongst derived populations. Populations from Sub-Saharan Africa also differ in the prevalence of Wolbachia infection, with very low levels of infection compared to populations from the rest of the world.
Collapse
Affiliation(s)
- Rudi L. Verspoor
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Penelope R. Haddrill
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Qanbari S, Gianola D, Hayes B, Schenkel F, Miller S, Moore S, Thaller G, Simianer H. Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle. BMC Genomics 2011; 12:318. [PMID: 21679429 PMCID: PMC3146955 DOI: 10.1186/1471-2164-12-318] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 06/16/2011] [Indexed: 11/12/2022] Open
Abstract
Background 'Selection signatures' delimit regions of the genome that are, or have been, functionally important and have therefore been under either natural or artificial selection. In this study, two different and complementary methods--integrated Haplotype Homozygosity Score (|iHS|) and population differentiation index (FST)--were applied to identify traces of decades of intensive artificial selection for traits of economic importance in modern cattle. Results We scanned the genome of a diverse set of dairy and beef breeds from Germany, Canada and Australia genotyped with a 50 K SNP panel. Across breeds, a total of 109 extreme |iHS| values exceeded the empirical threshold level of 5% with 19, 27, 9, 10 and 17 outliers in Holstein, Brown Swiss, Australian Angus, Hereford and Simmental, respectively. Annotating the regions harboring clustered |iHS| signals revealed a panel of interesting candidate genes like SPATA17, MGAT1, PGRMC2 and ACTC1, COL23A1, MATN2, respectively, in the context of reproduction and muscle formation. In a further step, a new Bayesian FST-based approach was applied with a set of geographically separated populations including Holstein, Brown Swiss, Simmental, North American Angus and Piedmontese for detecting differentiated loci. In total, 127 regions exceeding the 2.5 per cent threshold of the empirical posterior distribution were identified as extremely differentiated. In a substantial number (56 out of 127 cases) the extreme FST values were found to be positioned in poor gene content regions which deviated significantly (p < 0.05) from the expectation assuming a random distribution. However, significant FST values were found in regions of some relevant genes such as SMCP and FGF1. Conclusions Overall, 236 regions putatively subject to recent positive selection in the cattle genome were detected. Both |iHS| and FST suggested selection in the vicinity of the Sialic acid binding Ig-like lectin 5 gene on BTA18. This region was recently reported to be a major QTL with strong effects on productive life and fertility traits in Holstein cattle. We conclude that high-resolution genome scans of selection signatures can be used to identify genomic regions contributing to within- and inter-breed phenotypic variation.
Collapse
Affiliation(s)
- Saber Qanbari
- Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August University, 37075 Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Legrand D, Chenel T, Campagne C, Lachaise D, Cariou ML. Inter-island divergence within Drosophila mauritiana, a species of the D. simulans complex: Past history and/or speciation in progress? Mol Ecol 2011; 20:2787-804. [PMID: 21599771 DOI: 10.1111/j.1365-294x.2011.05127.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Speciation with gene flow may be more common than generally thought, which makes detailed understanding of the extent and pattern of genetic divergence between geographically isolated populations useful. Species of the Drosophila simulans complex provide a good model for speciation and evolutionary studies, and hence understanding their population genetic structure will increase our understanding of the context in which speciation has occurred. Here, we describe genetic diversity and genetic differentiation of two distant populations of D. mauritiana (Mauritius and Rodrigues Islands) at mitochondrial and nuclear loci. We surveyed the two populations for their mitochondrial haplotypes, eight nuclear genes and 18 microsatellite loci. A new mitochondrial type is fixed in the Rodrigues population of D. mauritiana. The two populations are highly differentiated, their divergence appears relatively ancient (100,000 years) compared to the origin of the species, around 0.25MYA, and they exhibit very limited gene flow. However, they have similar levels of divergence from their sibling, D. simulans. Both nuclear genes and microsatellites revealed contrasting demographic histories between the two populations, expansion for the Mauritius population and stable population size for the Rodrigues Island population. The discovery of pronounced geographic structure within D. mauritiana combined to genetic structuring and low gene flow between the two island populations illuminates the evolutionary history of the species and clearly merits further attention in the broad context of speciation.
Collapse
Affiliation(s)
- D Legrand
- Laboratoire Evolution, Génomes et Spéciation, UPR 9034, CNRS, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
38
|
Obbard DJ, Jiggins FM, Bradshaw NJ, Little TJ. Recent and recurrent selective sweeps of the antiviral RNAi gene Argonaute-2 in three species of Drosophila. Mol Biol Evol 2011; 28:1043-56. [PMID: 20978039 PMCID: PMC3021790 DOI: 10.1093/molbev/msq280] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antagonistic host-parasite interactions can drive rapid adaptive evolution in genes of the immune system, and such arms races may be an important force shaping polymorphism in the genome. The RNA interference pathway gene Argonaute-2 (AGO2) is a key component of antiviral defense in Drosophila, and we have previously shown that genes in this pathway experience unusually high rates of adaptive substitution. Here we study patterns of genetic variation in a 100-kbp region around AGO2 in three different species of Drosophila. Our data suggest that recent independent selective sweeps in AGO2 have reduced genetic variation across a region of more than 50 kbp in Drosophila melanogaster, D. simulans, and D. yakuba, and we estimate that selection has fixed adaptive substitutions in this gene every 30-100 thousand years. The strongest signal of recent selection is evident in D. simulans, where we estimate that the most recent selective sweep involved an allele with a selective advantage of the order of 0.5-1% and occurred roughly 13-60 Kya. To evaluate the potential consequences of the recent substitutions on the structure and function of AGO2, we used fold-recognition and homology-based modeling to derive a structural model for the Drosophila protein, and this suggests that recent substitutions in D. simulans are overrepresented at the protein surface. In summary, our results show that selection by parasites can consistently target the same genes in multiple species, resulting in areas of the genome that have markedly reduced genetic diversity.
Collapse
Affiliation(s)
- Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|
39
|
Abstract
There has been an enormous increase in the amount of data on DNA sequence polymorphism available for many organisms in the last decade. New sequencing technologies provide great potential for investigating natural selection in plants using population genomic approaches. However, plant populations frequently show significant departures from the assumptions of standard models used to detect selection and many forms of directional selection do not fit with classical population genetics theory. Here, we explore the extent to which plant populations show departures from standard model assumptions, and the implications this has for detecting selection on molecular variation. A growing number of multilocus studies of nucleotide variation suggest that changes in population size, particularly bottlenecks, and strong subdivision may be common in plants. This demographic variation presents important challenges for models used to infer selection. In addition, selection from standing genetic variation and multiple independent adaptive substitutions can further complicate efforts to understand the nature of selection. We discuss emerging patterns from plant studies and propose that, rather than treating population history as a nuisance variable when testing for selection, the interaction between demography and selection is of fundamental importance for evolutionary studies of plant populations using molecular data.
Collapse
Affiliation(s)
- Mathieu Siol
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
| | | | | |
Collapse
|
40
|
Abstract
Inferences about adaptation at specific loci are often exclusively based on the static analysis of DNA sequence variation. Ideally,population-genetic evidence for positive selection serves as a stepping-off point for experimental studies to elucidate the functional significance of the putatively adaptive variation. We argue that inferences about adaptation at specific loci are best achieved by integrating the indirect, retrospective insights provided by population-genetic analyses with the more direct, mechanistic insights provided by functional experiments. Integrative studies of adaptive genetic variation may sometimes be motivated by experimental insights into molecular function, which then provide the impetus to perform population genetic tests to evaluate whether the functional variation is of adaptive significance. In other cases, studies may be initiated by genome scans of DNA variation to identify candidate loci for recent adaptation. Results of such analyses can then motivate experimental efforts to test whether the identified candidate loci do in fact contribute to functional variation in some fitness-related phenotype. Functional studies can provide corroborative evidence for positive selection at particular loci, and can potentially reveal specific molecular mechanisms of adaptation.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | | |
Collapse
|
41
|
Yukilevich R, Turner TL, Aoki F, Nuzhdin SV, True JR. Patterns and processes of genome-wide divergence between North American and African Drosophila melanogaster. Genetics 2010; 186:219-39. [PMID: 20551441 PMCID: PMC2940289 DOI: 10.1534/genetics.110.117366] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/18/2010] [Indexed: 01/21/2023] Open
Abstract
Genomic tools and analyses are now being widely used to understand genome-wide patterns and processes associated with speciation and adaptation. In this article, we apply a genomics approach to the model organism Drosophila melanogaster. This species originated in Africa and subsequently spread and adapted to temperate environments of Eurasia and the New World, leading some populations to evolve reproductive isolation, especially between cosmopolitan and Zimbabwean populations. We used tiling arrays to identify highly differentiated regions within and between North America (the United States and Caribbean) and Africa (Cameroon and Zimbabwe) across 63% of the D. melanogaster genome and then sequenced representative fragments to study their genetic divergence. Consistent with previous findings, our results showed that most differentiation was between populations living in Africa vs. outside of Africa (i.e., "out-of-Africa" divergence), with all other geographic differences being less substantial (e.g., between cosmopolitan and Zimbabwean races). The X chromosome was much more strongly differentiated than the autosomes between North American and African populations (i.e., greater X divergence). Overall differentiation was positively associated with recombination rates across chromosomes, with a sharp reduction in regions near centromeres. Fragments surrounding these high F(ST) sites showed reduced haplotype diversity and increased frequency of rare and derived alleles in North American populations compared to African populations. Nevertheless, despite sharp deviation from neutrality in North American strains, a small set of bottleneck/expansion demographic models was consistent with patterns of variation at the majority of our high F(ST) fragments. Although North American populations were more genetically variable compared to Europe, our simulation results were generally consistent with those previously based on European samples. These findings support the hypothesis that most differentiation between North America and Africa was likely driven by the sorting of African standing genetic variation into the New World via Europe. Finally, a few exceptional loci were identified, highlighting the need to use an appropriate demographic null model to identify possible cases of selective sweeps in species with complex demographic histories.
Collapse
Affiliation(s)
- Roman Yukilevich
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
The ascertainment of the demographic and selective history of populations has been a major research goal in genetics for decades. To that end, numerous statistical tests have been developed to detect deviations between expected and observed frequency spectra, e.g., Tajima's D, Fu and Li's F and D tests, and Fay and Wu's H. Recently, Achaz developed a general framework to generate tests that detect deviations in the frequency spectrum. In a further development, we argue that the results of these tests should be as independent on the sample size as possible and propose a scale-free form for them. Furthermore, using the same framework as that of Achaz, we develop a new family of neutrality tests based on the frequency spectrum that are optimal against a chosen alternative evolutionary scenario. These tests maximize the power to reject the standard neutral model and are scalable with the sample size. Optimal tests are derived for several alternative evolutionary scenarios, including demographic processes (population bottleneck, expansion, contraction) and selective sweeps. Within the same framework, we also derive an optimal general test given a generic evolutionary scenario as a null model. All formulas are relatively simple and can be computed very fast, making it feasible to apply them to genome-wide sequence data. A simulation study showed that, generally, the tests proposed are more consistently powerful than standard tests like Tajima's D. We further illustrate the method with real data from a QTL candidate region in pigs.
Collapse
|
43
|
Keinan A, Reich D. Human population differentiation is strongly correlated with local recombination rate. PLoS Genet 2010; 6:e1000886. [PMID: 20361044 PMCID: PMC2845648 DOI: 10.1371/journal.pgen.1000886] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 02/24/2010] [Indexed: 11/19/2022] Open
Abstract
Allele frequency differences across populations can provide valuable information both for studying population structure and for identifying loci that have been targets of natural selection. Here, we examine the relationship between recombination rate and population differentiation in humans by analyzing two uniformly-ascertained, whole-genome data sets. We find that population differentiation as assessed by inter-continental F(ST) shows negative correlation with recombination rate, with F(ST) reduced by 10% in the tenth of the genome with the highest recombination rate compared with the tenth of the genome with the lowest recombination rate (P<<10(-12)). This pattern cannot be explained by the mutagenic properties of recombination and instead must reflect the impact of selection in the last 100,000 years since human continental populations split. The correlation between recombination rate and F(ST) has a qualitatively different relationship for F(ST) between African and non-African populations and for F(ST) between European and East Asian populations, suggesting varying levels or types of selection in different epochs of human history.
Collapse
Affiliation(s)
- Alon Keinan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | |
Collapse
|
44
|
Pool JE, Hellmann I, Jensen JD, Nielsen R. Population genetic inference from genomic sequence variation. Genome Res 2010; 20:291-300. [PMID: 20067940 DOI: 10.1101/gr.079509.108] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Population genetics has evolved from a theory-driven field with little empirical data into a data-driven discipline in which genome-scale data sets test the limits of available models and computational analysis methods. In humans and a few model organisms, analyses of whole-genome sequence polymorphism data are currently under way. And in light of the falling costs of next-generation sequencing technologies, such studies will soon become common in many other organisms as well. Here, we assess the challenges to analyzing whole-genome sequence polymorphism data, and we discuss the potential of these data to yield new insights concerning population history and the genomic prevalence of natural selection.
Collapse
Affiliation(s)
- John E Pool
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
45
|
Yu F, Keinan A, Chen H, Ferland RJ, Hill RS, Mignault AA, Walsh CA, Reich D. Detecting natural selection by empirical comparison to random regions of the genome. Hum Mol Genet 2009; 18:4853-67. [PMID: 19783549 PMCID: PMC2778377 DOI: 10.1093/hmg/ddp457] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Accepted: 09/23/2009] [Indexed: 11/30/2022] Open
Abstract
Historical episodes of natural selection can skew the frequencies of genetic variants, leaving a signature that can persist for many tens or even hundreds of thousands of years. However, formal tests for selection based on allele frequency skew require strong assumptions about demographic history and mutation, which are rarely well understood. Here, we develop an empirical approach to test for signals of selection that compares patterns of genetic variation at a candidate locus with matched random regions of the genome collected in the same way. We apply this approach to four genes that have been implicated in syndromes of impaired neurological development, comparing the pattern of variation in our re-sequencing data with a large-scale, genomic data set that provides an empirical null distribution. We confirm a previously reported signal at FOXP2, and find a novel signal of selection centered at AHI1, a gene that is involved in motor and behavior abnormalities. The locus is marked by many high frequency derived alleles in non-Africans that are of low frequency in Africans, suggesting that selection at this or a closely neighboring gene occurred in the ancestral population of non-Africans. Our study also provides a prototype for how empirical scans for ancient selection can be carried out once many genomes are sequenced.
Collapse
Affiliation(s)
- Fuli Yu
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sackton TB, Kulathinal RJ, Bergman CM, Quinlan AR, Dopman EB, Carneiro M, Marth GT, Hartl DL, Clark AG. Population genomic inferences from sparse high-throughput sequencing of two populations of Drosophila melanogaster. Genome Biol Evol 2009; 1:449-65. [PMID: 20333214 PMCID: PMC2839279 DOI: 10.1093/gbe/evp048] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2009] [Indexed: 12/20/2022] Open
Abstract
Short-read sequencing techniques provide the opportunity to capture genome-wide sequence data in a single experiment. A current challenge is to identify questions that shallow-depth genomic data can address successfully and to develop corresponding analytical methods that are statistically sound. Here, we apply the Roche/454 platform to survey natural variation in strains of Drosophila melanogaster from an African (n = 3) and a North American (n = 6) population. Reads were aligned to the reference D. melanogaster genomic assembly, single nucleotide polymorphisms were identified, and nucleotide variation was quantified genome wide. Simulations and empirical results suggest that nucleotide diversity can be accurately estimated from sparse data with as little as 0.2x coverage per line. The unbiased genomic sampling provided by random short-read sequencing also allows insight into distributions of transposable elements and copy number polymorphisms found within populations and demonstrates that short-read sequencing methods provide an efficient means to quantify variation in genome organization and content. Continued development of methods for statistical inference of shallow-depth genome-wide sequencing data will allow such sparse, partial data sets to become the norm in the emerging field of population genomics.
Collapse
Affiliation(s)
- Timothy B Sackton
- Department of Organismic and Evolutionary Biology, Harvard University, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Selfish genes, such as meiotic drive elements, propagate themselves through a population without increasing the fitness of host organisms. X-linked (or Y-linked) meiotic drive elements reduce the transmission of the Y (X) chromosome and skew progeny and population sex ratios, leading to intense conflict among genomic compartments. Drosophila simulans is unusual in having a least three distinct systems of X chromosome meiotic drive. Here, we characterize naturally occurring genetic variation at the Winters sex-ratio driver (Distorter on the X or Dox), its progenitor gene (Mother of Dox or MDox), and its suppressor gene (Not Much Yang or Nmy), which have been previously mapped and characterized. We survey three North American populations as well as 13 globally distributed strains and present molecular polymorphism data at the three loci. We find that all three genes show signatures of selection in North America, judging from levels of polymorphism and skews in the site-frequency spectrum. These signatures likely result from the biased transmission of the driver and selection on the suppressor for the maintenance of equal sex ratios. Coalescent modeling indicates that the timing of selection is more recent than the age of the alleles, suggesting that the driver and suppressor are coevolving under an evolutionary "arms race." None of the Winters sex-ratio genes are fixed in D. simulans, and at all loci we find ancestral alleles, which lack the gene insertions and exhibit high levels of nucleotide polymorphism compared to the derived alleles. In addition, we find several "null" alleles that have mutations on the derived Dox background, which result in loss of drive function. We discuss the possible causes of the maintenance of presence-absence polymorphism in the Winters sex-ratio genes.
Collapse
|
48
|
Chapman JR, Nakagawa S, Coltman DW, Slate J, Sheldon BC. A quantitative review of heterozygosity-fitness correlations in animal populations. Mol Ecol 2009; 18:2746-65. [PMID: 19500255 DOI: 10.1111/j.1365-294x.2009.04247.x] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J R Chapman
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | | | | | | | | |
Collapse
|
49
|
Quang ND, Ikeda S, Harada K. Patterns of Nucleotide Diversity at the Methionine Synthase Locus in Fragmented and Continuous Populations of a Wind-Pollinated Tree, Quercus mongolica var. crispula. J Hered 2009; 100:762-70. [PMID: 19531732 DOI: 10.1093/jhered/esp036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nguyen D Quang
- Faculty of Agriculture, Ehime University, Tarumi, Matsuyama, Japan.
| | | | | |
Collapse
|
50
|
Species-wide genetic variation and demographic history of Drosophila sechellia, a species lacking population structure. Genetics 2009; 182:1197-206. [PMID: 19506309 DOI: 10.1534/genetics.108.092080] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term persistence of species characterized by a reduced effective population size is still a matter of debate that would benefit from the description of new relevant biological models. The island endemic specialist Drosophila sechellia has received considerable attention in evolutionary genetic studies. On the basis of the analysis of a limited number of strains, a handful of studies have reported a strikingly depleted level of genetic variation but little is known about its demographic history. We extended analyses of nucleotide polymorphism in D. sechellia to a species-wide level using 10 nuclear genes sequenced in 10 populations. We confirmed that D. sechellia exhibits little nucleotide-sequence variation. It is characterized by a low effective population size, >10-fold lower than that of D. simulans, which ranks D. sechellia as the least genetically diverse Drosophila species. No obvious population subdivision was detected despite its fragmented geographic distribution on different islands. We used approximate Bayesian computation (ABC) to test for demographic scenarios compatible with the geological history of the Seychelles and the ecology of D. sechellia. We found that while bottlenecks cannot account for the pattern of molecular evolution observed in this species, scenarios close to the null hypothesis of a constant population size are well supported. We discuss these findings with regard to adaptive features specific to D. sechellia and its life-history strategy.
Collapse
|