1
|
Hirata M, Nomura T, Inoue YH. Anti-Tumor Effects of Cecropin A and Drosocin Incorporated into Macrophage-like Cells Against Hematopoietic Tumors in Drosophila mxc Mutants. Cells 2025; 14:389. [PMID: 40136638 PMCID: PMC11940895 DOI: 10.3390/cells14060389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Five major antimicrobial peptides (AMPs) in Drosophila are induced in multiple sex combs (mxc) mutant larvae harboring lymph gland (LG) tumors, and they exhibit anti-tumor effects. The effects of other well-known AMPs, Cecropin A and Drosocin, remain unexplored. We investigated the tumor-elimination mechanism of these AMPs. A half-dose reduction in either the Toll or Imd gene reduced the induction of these AMPs and enhanced tumor growth in mxcmbn1 mutant larvae, indicating that their anti-tumor effects depend on the innate immune pathway. Overexpression of these AMPs in the fat body suppressed tumor growth without affecting cell proliferation. Apoptosis was promoted in the mutant but not in normal LGs. Conversely, knockdown of them inhibited apoptosis and enhanced tumor growth; therefore, they inhibit LG tumor growth by inducing apoptosis. The AMPs from the fat body were incorporated into the hemocytes of mutant but not normal larvae. Another AMP, Drosomycin, was taken up via phagocytosis factors. Enhanced phosphatidylserine signals were observed on the tumor surface. Inhibition of the signals exposed on the cell surface enhanced tumor growth. AMPs may target phosphatidylserine in tumors to induce apoptosis and execute their tumor-specific effects. AMPs could be beneficial anti-cancer drugs with minimal side effects for clinical development.
Collapse
Affiliation(s)
- Marina Hirata
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto 606-0962, Japan (T.N.)
- Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Tadashi Nomura
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto 606-0962, Japan (T.N.)
- Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yoshihiro H. Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto 606-0962, Japan (T.N.)
| |
Collapse
|
2
|
Kinoshita J, Kinoshita Y, Nomura T, Inoue YH. Macrophage-like Blood Cells Are Involved in Inter-Tissue Communication to Activate JAK/STAT Signaling, Inducing Antitumor Turandot Proteins in Drosophila Fat Body via the TNF-JNK Pathway. Int J Mol Sci 2024; 25:13110. [PMID: 39684820 DOI: 10.3390/ijms252313110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Turandot (Tot) family proteins, which are induced via the JAK/STAT pathway after infection, also suppress lymph gland tumors in Drosophila mxcmbn1 mutant larvae. We investigated the potential role of hemocytes in Tot induction in tumor-bearing mutants via immunostaining and RNAi experiments. Normal hemocytes transplanted into mutant larvae were recruited to the tumor and fat body (FB), suggesting that these cells transmit tumor-related information. The transplanted hemocytes ectopically expressed Unpaired3 (Upd3), which is necessary for the activation of JAK/STAT. Eiger, a Drosophila tumor necrosis factor (TNF) ortholog, was highly expressed in tumors. Depletion of the Eiger receptor in hemocytes reduced Tot levels and eventually enhanced tumor growth. The c-Jun N-terminal kinase (JNK) pathway, acting downstream of the receptor, was also activated in the hemocytes of mutants. Downregulation of the JNK pathway in hemocytes inhibited Tot induction, leading to enhanced tumor growth. These results suggest that upd3 expression in hemocytes depends on the Eiger-JNK pathway. We propose that after Eiger activates the JNK pathway in hemocytes present on the tumor, cells expressing Upd3 are recruited to the FB. Upd3 then activates JAK/STAT to induce the expression of antitumor proteins. This study highlights the intricate communication between tissues via blood cells during tumor suppression.
Collapse
Affiliation(s)
- Juri Kinoshita
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-0962, Japan
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan
| | - Yuriko Kinoshita
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-0962, Japan
| | - Tadashi Nomura
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-0962, Japan
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan
| | - Yoshihiro H Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-0962, Japan
| |
Collapse
|
3
|
Bazzi W, Monticelli S, Delaporte C, Riet C, Giangrande A, Cattenoz PB. Gcm counteracts Toll-induced inflammation and impacts hemocyte number through cholinergic signaling. Front Immunol 2023; 14:1293766. [PMID: 38035083 PMCID: PMC10684909 DOI: 10.3389/fimmu.2023.1293766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Hemocytes, the myeloid-like immune cells of Drosophila, fulfill a variety of functions that are not completely understood, ranging from phagocytosis to transduction of inflammatory signals. We here show that downregulating the hemocyte-specific Glial cell deficient/Glial cell missing (Glide/Gcm) transcription factor enhances the inflammatory response to the constitutive activation of the Toll pathway. This correlates with lower levels of glutathione S-transferase, suggesting an implication of Glide/Gcm in reactive oxygen species (ROS) signaling and calling for a widespread anti-inflammatory potential of Glide/Gcm. In addition, our data reveal the expression of acetylcholine receptors in hemocytes and that Toll activation affects their expressions, disclosing a novel aspect of the inflammatory response mediated by neurotransmitters. Finally, we provide evidence for acetylcholine receptor nicotinic acetylcholine receptor alpha 6 (nAchRalpha6) regulating hemocyte proliferation in a cell autonomous fashion and for non-cell autonomous cholinergic signaling regulating the number of hemocytes. Altogether, this study provides new insights on the molecular pathways involved in the inflammatory response.
Collapse
Affiliation(s)
- Wael Bazzi
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Sara Monticelli
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Claude Delaporte
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Céline Riet
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Angela Giangrande
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Pierre B. Cattenoz
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| |
Collapse
|
4
|
Takarada K, Kinoshita J, Inoue YH. Ectopic expression of matrix metalloproteinases and filopodia extension via JNK activation are involved in the invasion of blood tumor cells in Drosophila mxc mutant. Genes Cells 2023; 28:709-726. [PMID: 37615261 PMCID: PMC11448368 DOI: 10.1111/gtc.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Drosophila mxcmbn1 mutant exhibits severe hyperplasia in larval hematopoietic tissue called the lymph glands (LGs). However, the malignant nature of these cells remains unknown. We aimed to identify if mxcmbn1 LG cells behave as malignant tumor cells and uncover the mechanism(s) underlying the malignancy of the mutant hemocytes. When mutant LG cells were allografted into normal adult abdomens, they continued to proliferate; however, normal LG cells did not proliferate. Mutant circulating hemocytes also attached to the larval central nervous system (CNS), where the basement membrane was disrupted. The mutant hemocytes displayed higher expression of matrix metalloproteinase (MMP) 1 and MMP2 and higher activation of the c-Jun N-terminal kinase (JNK) pathway than normal hemocytes. Depletion of MMPs or JNK mRNAs in LGs resulted in reduced numbers of hemocytes attached to the CNS, suggesting that the invasive phenotype involved elevated expression of MMPs via hyperactivation of the JNK pathway. Moreover, hemocytes with elongated filopodia and extra lamellipodia were frequently observed in the mutant hemolymph, which also depended on JNK signaling. Thus, the MMP upregulation and overextension of actin-based cell protrusions were also involved in hemocyte invasion in mxcmbn1 larvae. These findings contribute to the understanding of molecular mechanisms underlying mammalian leukemic invasion.
Collapse
Affiliation(s)
- Kazuki Takarada
- Research Center of Biomedical Research, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
| | - Juri Kinoshita
- Research Center of Biomedical Research, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
| | - Yoshihiro H. Inoue
- Research Center of Biomedical Research, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
| |
Collapse
|
5
|
Kinoshita Y, Shiratsuchi N, Araki M, Inoue YH. Anti-Tumor Effect of Turandot Proteins Induced via the JAK/STAT Pathway in the mxc Hematopoietic Tumor Mutant in Drosophila. Cells 2023; 12:2047. [PMID: 37626857 PMCID: PMC10453024 DOI: 10.3390/cells12162047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Several antimicrobial peptides suppress the growth of lymph gland (LG) tumors in Drosophila multi sex comb (mxc) mutant larvae. The activity of another family of polypeptides, called Turandots, is also induced via the JAK/STAT pathway after bacterial infection; however, their influence on Drosophila tumors remains unclear. The JAK/STAT pathway was activated in LG tumors, fat body, and circulating hemocytes of mutant larvae. The mRNA levels of Turandot (Tot) genes increased markedly in the mutant fat body and declined upon silencing Stat92E in the fat body, indicating the involvement of the JAK/STAT pathway. Furthermore, significantly enhanced tumor growth upon a fat-body-specific silencing of the mRNAs demonstrated the antitumor effects of these proteins. The proteins were found to be incorporated into small vesicles in mutant circulating hemocytes (as previously reported for several antimicrobial peptides) but not normal cells. In addition, more hemocytes containing these proteins were found to be associated with tumors. The mutant LGs contained activated effector caspases, and a fat-body-specific silencing of Tots inhibited apoptosis and increased the number of mitotic cells in the LG, thereby suggesting that the proteins inhibited tumor cell proliferation. Thus, Tot proteins possibly exhibit antitumor effects via the induction of apoptosis and inhibition of cell proliferation.
Collapse
Affiliation(s)
| | | | | | - Yoshihiro H. Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Mastugasaki, Kyoto 606-0962, Japan; (Y.K.); (N.S.); (M.A.)
| |
Collapse
|
6
|
Kinoshita S, Takarada K, Kinoshita Y, Inoue YH. Drosophila hemocytes recognize lymph gland tumors of mxc mutants and activate the innate immune pathway in a reactive oxygen species-dependent manner. Biol Open 2022; 11:bio059523. [PMID: 36226812 PMCID: PMC9641529 DOI: 10.1242/bio.059523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 12/29/2022] Open
Abstract
Mechanisms of cancer cell recognition and elimination by the innate immune system remains unclear. The immune signaling pathways are activated in the fat body to suppress the tumor growth in mxcmbn1 hematopoietic tumor mutants in Drosophila by inducing antimicrobial peptides (AMP). Here, we investigated the regulatory mechanism underlying the activation in the mutant. Firstly, we found that reactive oxygen species (ROS) accumulated in the hemocytes due to induction of dual oxidase and one of its activators. This was required for the AMP induction and the tumor growth suppression. Next, more hemocytes transplanted from normal larvae were associated with the mutant tumor than normal lymph glands (LGs). Matrix metalloproteinase 1 and 2 (MMP2) were highly expressed in the tumors. The basement membrane components in the tumors were reduced and ultimately lost inside. Depletion of the MMP2 rather than MMP1 resulted in a significantly reduced AMP expression in the mutant larvae. The hemocytes may recognize the disassembly of basement membrane in the tumors and activate the ROS production. Our findings highlight the mechanism via which macrophage-like hemocytes recognize tumor cells and subsequently convey the information to induce AMPs in the fat body. They contribute to uncover the role of innate immune system against cancer.
Collapse
Affiliation(s)
- Suzuko Kinoshita
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kazuki Takarada
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuriko Kinoshita
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yoshihiro H. Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
7
|
Identification and molecular evolution of the La and LARP genes in 16 plant species: A focus on the Gossypium hirsutum. Int J Biol Macromol 2022; 224:1101-1117. [DOI: 10.1016/j.ijbiomac.2022.10.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
8
|
Sang R, Wu C, Xie S, Xu X, Lou Y, Ge W, Xi Y, Yang X. Mxc, a Drosophila homolog of mental retardation-associated gene NPAT, maintains neural stem cell fate. Cell Biosci 2022; 12:78. [PMID: 35642004 PMCID: PMC9153134 DOI: 10.1186/s13578-022-00820-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/22/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Mental retardation is a complex neurodevelopmental disorder. NPAT, a component of the histone locus body (HLB), has been implicated as a candidate gene for mental retardation, with a mechanism yet to be elucidated. RESULTS We identified that mxc, the Drosophila ortholog of NPAT, is required for the development of nervous system. Knockdown of mxc resulted in a massive loss of neurons and locomotion dysfunction in adult flies. In the mxc mutant or RNAi knockdown larval brains, the neuroblast (NB, also known as neural stem cell) cell fate is prematurely terminated and its proliferation potential is impeded concurrent with the blocking of the differentiation process of ganglion mother cells (GMCs). A reduction of transcription levels of histone genes was shown in mxc knockdown larval brains, accompanied by DNA double-strand breaks (DSBs). The subsidence of histone transcription levels leads to prematurely termination of NB cell fate and blockage of the GMC differentiation process. Our data also show that the increase in autophagy induced by mxc knockdown in NBs could be a defense mechanism in response to abnormal HLB assembly and premature termination of NB cell fate. CONCLUSIONS Our study demonstrate that Mxc plays a critical role in maintaining neural stem cell fate and GMC differentiation in the Drosophila larval brain. This discovery may shed light on the understanding of the pathogenesis of NPAT-related mental retardation in humans.
Collapse
Affiliation(s)
- Rong Sang
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cheng Wu
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shanshan Xie
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Xu
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuhan Lou
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wanzhong Ge
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yongmei Xi
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaohang Yang
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Joint Institute of Genetics and Genomic Medicine, Between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Gong S, Zhang Y, Tian A, Deng W. Tumor models in various Drosophila tissues. WIREs Mech Dis 2021; 13:e1525. [PMID: 34730289 PMCID: PMC8566734 DOI: 10.1002/wsbm.1525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/07/2023]
Abstract
The development of cancer is a complex multistage process. Over the past few decades, the model organism Drosophila melanogaster has been crucial in identifying cancer-related genes and pathways and elucidating mechanisms underlying growth regulation in development. Investigations using Drosophila has yielded new insights into the molecular mechanisms involved in tumor initiation and progression. In this review, we describe various tumor models that have been developed in recent years using different Drosophila tissues, such as the imaginal tissue, the neural tissue, the gut, the ovary, and hematopoietic cells. We discuss underlying genetic alterations, cancer-like characteristics, as well as similarities and key differences among these models. We also discuss how disruptions in stem cell division and differentiation result in tumor formation in diverse tissues, and highlight new concepts developed using the fly model to understand context-dependent tumorigenesis. We further discuss the progress made in Drosophila to explore tumor-host interactions that involve the innate immune response to tumor growth and the cachexia wasting phenotype. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics Cancer > Stem Cells and Development Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Shangyu Gong
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yichi Zhang
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Aiguo Tian
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Wu‐Min Deng
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
10
|
Eleftherianos I, Heryanto C, Bassal T, Zhang W, Tettamanti G, Mohamed A. Haemocyte-mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology 2021; 164:401-432. [PMID: 34233014 PMCID: PMC8517599 DOI: 10.1111/imm.13390] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
The host defence of insects includes a combination of cellular and humoral responses. The cellular arm of the insect innate immune system includes mechanisms that are directly mediated by haemocytes (e.g., phagocytosis, nodulation and encapsulation). In addition, melanization accompanying coagulation, clot formation and wound healing, nodulation and encapsulation processes leads to the formation of cytotoxic redox-cycling melanin precursors and reactive oxygen and nitrogen species. However, demarcation between cellular and humoral immune reactions as two distinct categories is not straightforward. This is because many humoral factors affect haemocyte functions and haemocytes themselves are an important source of many humoral molecules. There is also a considerable overlap between cellular and humoral immune functions that span from recognition of foreign intruders to clot formation. Here, we review these immune reactions starting with the cellular mechanisms that limit haemolymph loss and participate in wound healing and clot formation and advancing to cellular functions that are critical in restricting pathogen movement and replication. This information is important because it highlights that insect cellular immunity is controlled by a multilayered system, different components of which are activated by different pathogens or during the different stages of the infection.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Christa Heryanto
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Taha Bassal
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationGuizhou UniversityGuiyangChina
| | - Gianluca Tettamanti
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
- BAT Center‐Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Napoli Federico IINapoliItaly
| | - Amr Mohamed
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| |
Collapse
|
11
|
Drosophila Hox genes induce melanized pseudo-tumors when misexpressed in hemocytes. Sci Rep 2021; 11:1838. [PMID: 33469139 PMCID: PMC7815749 DOI: 10.1038/s41598-021-81472-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Hox genes are early determinants of cell identity along the anterior–posterior body axis across bilaterians. Several late non-homeotic functions of Hox genes have emerged in a variety of processes involved in organogenesis in several organisms, including mammals. Several studies have reported the misexpression of Hox genes in a variety of malignancies including acute myeloid leukemia. The Hox genes Dfd, Ubx, abd-A and Abd-B were overexpressed via the UAS-Gal4 system using Cg-Gal4, Lsp2-Gal4, He-Gal4 and HmlD3-Gal4 as specific drivers. Genetic interaction was tested by bringing overexpression lines in heterozygous mutant backgrounds of Polycomb and trithorax group factors. Larvae were visually scored for melanized bodies. Circulating hemocytes were quantified and tested for differentiation. Pupal lethality was assessed. Expression of Dfd, Ubx and abd-A, but not Abd-B in the hematopoietic compartment of Drosophila led to the appearance of circulating melanized bodies, an increase in cell number, cell-autonomous proliferation, and differentiation of hemocytes. Pupal lethality and melanized pseudo-tumors were suppressed in Psc1 and esc2 backgrounds while polycomb group member mutations Pc1 and Su(z)123 and trithorax group member mutation TrlR85 enhanced the phenotype. Dfd, Ubx and abd-A are leukemogenic. Mutations in Polycomb and trithorax group members modulate the leukemogenic phenotype. Our RNAseq of Cg-Gal4 > UAS-abd-A hemocytes may contain genes important to Hox gene induced leukemias.
Collapse
|
12
|
Csordás G, Gábor E, Honti V. There and back again: The mechanisms of differentiation and transdifferentiation in Drosophila blood cells. Dev Biol 2020; 469:135-143. [PMID: 33131706 DOI: 10.1016/j.ydbio.2020.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022]
Abstract
Transdifferentiation is a conversion of an already differentiated cell type into another cell type without the involvement of stem cells. This transition is well described in the case of vertebrate immune cells, as well as in Drosophila melanogaster, which therefore serves as a suitable model to study the process in detail. In the Drosophila larva, the latest single-cell sequencing methods enabled the clusterization of the phagocytic blood cells, the plasmatocytes, which are capable of transdifferentiation into encapsulating cells, the lamellocytes. Here we summarize the available data of the past years on the plasmatocyte-lamellocyte transition, and make an attempt to harmonize them with transcriptome-based blood cell clustering to better understand the underlying mechanisms of transdifferentiation in Drosophila, and in general.
Collapse
Affiliation(s)
- Gábor Csordás
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| | - Erika Gábor
- Institute of Genetics, Biological Research Centre, Szeged, H-6701, P.O.Box 521, Hungary.
| | - Viktor Honti
- Institute of Genetics, Biological Research Centre, Szeged, H-6701, P.O.Box 521, Hungary.
| |
Collapse
|
13
|
Kurihara M, Komatsu K, Awane R, Inoue YH. Loss of Histone Locus Bodies in the Mature Hemocytes of Larval Lymph Gland Result in Hyperplasia of the Tissue in mxc Mutants of Drosophila. Int J Mol Sci 2020; 21:E1586. [PMID: 32111032 PMCID: PMC7084650 DOI: 10.3390/ijms21051586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
Mutations in the multi sex combs (mxc) gene in Drosophila results in malignant hyperplasia in larval hematopoietic tissues, called lymph glands (LG). mxc encodes a component of the histone locus body (HLB) that is essential for cell cycle-dependent transcription and processing of histone mRNAs. The mammalian nuclear protein ataxia-telangiectasia (NPAT) gene, encoded by the responsible gene for ataxia telangiectasia, is a functional Mxc orthologue. However, their roles in tumorigenesis are unclear. Genetic analyses of the mxc mutants and larvae having LG-specific depletion revealed that a reduced activity of the gene resulted in the hyperplasia, which is caused by hyper-proliferation of immature LG cells. The depletion of mxc in mature hemocytes of the LG resulted in the hyperplasia. Furthermore, the inhibition of HLB formation was required for LG hyperplasia. In the mutant larvae, the total mRNA levels of the five canonical histones decreased, and abnormal forms of polyadenylated histone mRNAs, detected rarely in normal larvae, were generated. The ectopic expression of the polyadenylated mRNAs was sufficient for the reproduction of the hyperplasia. The loss of HLB function, especially 3-end processing of histone mRNAs, is critical for malignant LG hyperplasia in this leukemia model in Drosophila. We propose that mxc is involved in the activation to induce adenosine deaminase-related growth factor A (Adgf-A), which suppresses immature cell proliferation in LG.
Collapse
Affiliation(s)
| | | | | | - Yoshihiro H. Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan; (M.K.); (K.K.); (R.A.)
| |
Collapse
|
14
|
Araki M, Kurihara M, Kinoshita S, Awane R, Sato T, Ohkawa Y, Inoue YH. Anti-tumour effects of antimicrobial peptides, components of the innate immune system, against haematopoietic tumours in Drosophila mxc mutants. Dis Model Mech 2019; 12:dmm037721. [PMID: 31160313 PMCID: PMC6602314 DOI: 10.1242/dmm.037721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
The innate immune response is the first line of defence against microbial infections. In Drosophila, two major pathways of the innate immune system (the Toll- and Imd-mediated pathways) induce the synthesis of antimicrobial peptides (AMPs) within the fat body. Recently, it has been reported that certain cationic AMPs exhibit selective cytotoxicity against human cancer cells; however, little is known about their anti-tumour effects. Drosophila mxcmbn1 mutants exhibit malignant hyperplasia in a larval haematopoietic organ called the lymph gland (LG). Here, using RNA-seq analysis, we found many immunoresponsive genes, including those encoding AMPs, to be upregulated in these mutants. Downregulation of these pathways by either a Toll or imd mutation enhanced the tumour phenotype of the mxc mutants. Conversely, ectopic expression of each of five different AMPs in the fat body significantly suppressed the LG hyperplasia phenotype in the mutants. Thus, we propose that the Drosophila innate immune system can suppress the progression of haematopoietic tumours by inducing AMP gene expression. Overexpression of any one of the five AMPs studied resulted in enhanced apoptosis in mutant LGs, whereas no apoptotic signals were detected in controls. We observed that two AMPs, Drosomycin and Defensin, were taken up by circulating haemocyte-like cells, which were associated with the LG regions and showed reduced cell-to-cell adhesion in the mutants. By contrast, the AMP Diptericin was directly localised at the tumour site without intermediating haemocytes. These results suggest that AMPs have a specific cytotoxic effect that enhances apoptosis exclusively in the tumour cells.
Collapse
Affiliation(s)
- Mayo Araki
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-0962, Japan
| | - Massanori Kurihara
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-0962, Japan
| | - Suzuko Kinoshita
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-0962, Japan
| | - Rie Awane
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-0962, Japan
| | - Tetsuya Sato
- Medical Institute of Bioregulation, Kyushu University, Kyushu 812-0054, Japan
| | - Yasuyuki Ohkawa
- Medical Institute of Bioregulation, Kyushu University, Kyushu 812-0054, Japan
| | - Yoshihiro H Inoue
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-0962, Japan
| |
Collapse
|
15
|
Tanabe K, Awane R, Shoda T, Yamazoe K, Inoue YH. Mutations in mxc Tumor-Suppressor Gene Induce Chromosome Instability in Drosophila Male Meiosis. Cell Struct Funct 2019; 44:121-135. [DOI: 10.1247/csf.19022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Karin Tanabe
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology
| | - Rie Awane
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology
| | - Tsuyoshi Shoda
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology
| | - Kanta Yamazoe
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology
| | - Yoshihiro H. Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology
| |
Collapse
|
16
|
Simoes da Silva CJ, Fereres S, Simón R, Busturia A. Drosophila SCE/dRING E3-ligase inhibits apoptosis in a Dp53 dependent manner. Dev Biol 2017; 429:81-91. [DOI: 10.1016/j.ydbio.2017.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/22/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
17
|
Terriente-Félix A, Pérez L, Bray SJ, Nebreda AR, Milán M. A Drosophila model of myeloproliferative neoplasm reveals a feed-forward loop in the JAK pathway mediated by p38 MAPK signalling. Dis Model Mech 2017; 10:399-407. [PMID: 28237966 PMCID: PMC5399568 DOI: 10.1242/dmm.028118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/01/2017] [Indexed: 12/25/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) of the Philadelphia-negative class comprise polycythaemia vera, essential thrombocythaemia and primary myelofibrosis (PMF). They are associated with aberrant numbers of myeloid lineage cells in the blood, and in the case of overt PMF, with development of myelofibrosis in the bone marrow and failure to produce normal blood cells. These diseases are usually caused by gain-of-function mutations in the kinase JAK2. Here, we use Drosophila to investigate the consequences of activation of the JAK2 orthologue in haematopoiesis. We have identified maturing haemocytes in the lymph gland, the major haematopoietic organ in the fly, as the cell population susceptible to induce hypertrophy upon targeted overexpression of JAK. We show that JAK activates a feed-forward loop, including the cytokine-like ligand Upd3 and its receptor, Domeless, which are required to induce lymph gland hypertrophy. Moreover, we present evidence that p38 MAPK signalling plays a key role in this process by inducing expression of the ligand Upd3. Interestingly, we also show that forced activation of the p38 MAPK pathway in maturing haemocytes suffices to generate hypertrophic organs and the appearance of melanotic tumours. Our results illustrate a novel pro-tumourigenic crosstalk between the p38 MAPK pathway and JAK signalling in a Drosophila model of MPNs. Based on the shared molecular mechanisms underlying MPNs in flies and humans, the interplay between Drosophila JAK and p38 signalling pathways unravelled in this work might have translational relevance for human MPNs. Summary: Pro-tumourigenic crosstalk occurs between the p38 MAPK pathway and JAK signalling in a Drosophila model of myeloproliferative neoplasm.
Collapse
Affiliation(s)
- Ana Terriente-Félix
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Lidia Pérez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain .,ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain .,ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
18
|
El Chamy L, Matt N, Reichhart JM. Advances in Myeloid-Like Cell Origins and Functions in the Model Organism Drosophila melanogaster. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mchd-0038-2016. [PMID: 28102122 PMCID: PMC11687447 DOI: 10.1128/microbiolspec.mchd-0038-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 12/22/2022] Open
Abstract
Drosophila has long served as a valuable model for deciphering many biological processes, including immune responses. Indeed, the genetic tractability of this organism is particularly suited for large-scale analyses. Studies performed during the last 3 decades have proven that the signaling pathways that regulate the innate immune response are conserved between Drosophila and mammals. This review summarizes the recent advances on Drosophila hematopoiesis and immune cellular responses, with a particular emphasis on phagocytosis.
Collapse
Affiliation(s)
- Laure El Chamy
- Laboratoire de Génétique de la drosophile et virulence microbienne, UR. EGFEM, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 17-5208 Mar Mikhaël Beyrouth 1104 2020, Liban
| | - Nicolas Matt
- Université de Strasbourg, UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex 67084, France
| | - Jean-Marc Reichhart
- Université de Strasbourg, UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex 67084, France
| |
Collapse
|
19
|
Identification of Novel Regulators of the JAK/STAT Signaling Pathway that Control Border Cell Migration in the Drosophila Ovary. G3-GENES GENOMES GENETICS 2016; 6:1991-2002. [PMID: 27175018 PMCID: PMC4938652 DOI: 10.1534/g3.116.028100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathway is an essential regulator of cell migration both in mammals and fruit flies. Cell migration is required for normal embryonic development and immune response but can also lead to detrimental outcomes, such as tumor metastasis. A cluster of cells termed “border cells” in the Drosophila ovary provides an excellent example of a collective cell migration, in which two different cell types coordinate their movements. Border cells arise within the follicular epithelium and are required to invade the neighboring cells and migrate to the oocyte to contribute to a fertilizable egg. Multiple components of the STAT signaling pathway are required during border cell specification and migration; however, the functions and identities of other potential regulators of the pathway during these processes are not yet known. To find new components of the pathway that govern cell invasiveness, we knocked down 48 predicted STAT modulators using RNAi expression in follicle cells, and assayed defective cell movement. We have shown that seven of these regulators are involved in either border cell specification or migration. Examination of the epistatic relationship between candidate genes and Stat92E reveals that the products of two genes, Protein tyrosine phosphatase 61F (Ptp61F) and brahma (brm), interact with Stat92E during both border cell specification and migration.
Collapse
|
20
|
Gold KS, Brückner K. Macrophages and cellular immunity in Drosophila melanogaster. Semin Immunol 2016; 27:357-68. [PMID: 27117654 DOI: 10.1016/j.smim.2016.03.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/08/2016] [Indexed: 12/16/2022]
Abstract
The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life.
Collapse
Affiliation(s)
| | - Katja Brückner
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Department of Cell and Tissue Biology; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
21
|
Vlisidou I, Wood W. Drosophila blood cells and their role in immune responses. FEBS J 2015; 282:1368-82. [PMID: 25688716 DOI: 10.1111/febs.13235] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/02/2015] [Accepted: 02/12/2015] [Indexed: 12/17/2022]
Abstract
Drosophila melanogaster has been extensively used to study the humoral arm of innate immunity because of the developmental and functional parallels with mammalian innate immunity. However, the fly cellular response to infection is far less understood. Investigative work on Drosophila haemocytes, the immunosurveillance cells of the insect, has revealed that they fulfil roles similar to mammalian monocytes and macrophages. They respond to wound signals and orchestrate the coagulation response. In addition, they phagocytose and encapsulate invading pathogens, and clear up apoptotic bodies controlling inflammation. This review briefly describes the Drosophila haematopoietic system and discusses what is currently known about the contribution of haemocytes to the immune response upon infection and wounding, during all stages of development.
Collapse
Affiliation(s)
- Isabella Vlisidou
- School of Cellular and Molecular Medicine, University of Bristol, UK
| | | |
Collapse
|
22
|
Sopko R, Lin YB, Makhijani K, Alexander B, Perrimon N, Brückner K. A systems-level interrogation identifies regulators of Drosophila blood cell number and survival. PLoS Genet 2015; 11:e1005056. [PMID: 25749252 PMCID: PMC4352040 DOI: 10.1371/journal.pgen.1005056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 02/05/2015] [Indexed: 12/12/2022] Open
Abstract
In multicellular organisms, cell number is typically determined by a balance of intracellular signals that positively and negatively regulate cell survival and proliferation. Dissecting these signaling networks facilitates the understanding of normal development and tumorigenesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embryonic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the investigation of downstream and parallel signaling networks, based on the ability of Pvr to activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundantly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a genome wide RNAi screen for regulators of cell number in a sensitized, Pvr deficient background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Suppressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes of cell number regulation by EcR and RTK signaling. We define common phosphorylation targets of Pvr and InR that include regulators of cell survival, and unique targets responsible for specialized receptor functions. Interestingly, our analysis reveals that the selection of phosphorylation targets by signaling receptors shows qualitative changes depending on the signaling status of the cell, which may have wide-reaching implications for other cell regulatory systems.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - You Bin Lin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Kalpana Makhijani
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Brandy Alexander
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
23
|
Terzo EA, Lyons SM, Poulton JS, Temple BRS, Marzluff WF, Duronio RJ. Distinct self-interaction domains promote Multi Sex Combs accumulation in and formation of the Drosophila histone locus body. Mol Biol Cell 2015; 26:1559-74. [PMID: 25694448 PMCID: PMC4395134 DOI: 10.1091/mbc.e14-10-1445] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/12/2015] [Indexed: 11/11/2022] Open
Abstract
The Drosophila Multi Sex Combs (Mxc) protein is necessary for the recruitment of histone mRNA biosynthetic factors to the histone locus body (HLB). Mxc contains multiple domains required for HLB assembly and histone mRNA biosynthesis. Two N-terminal domains of Mxc are essential for promoting HLB assembly via a self-interaction. Nuclear bodies (NBs) are structures that concentrate proteins, RNAs, and ribonucleoproteins that perform functions essential to gene expression. How NBs assemble is not well understood. We studied the Drosophila histone locus body (HLB), a NB that concentrates factors required for histone mRNA biosynthesis at the replication-dependent histone gene locus. We coupled biochemical analysis with confocal imaging of both fixed and live tissues to demonstrate that the Drosophila Multi Sex Combs (Mxc) protein contains multiple domains necessary for HLB assembly. An important feature of this assembly process is the self-interaction of Mxc via two conserved N-terminal domains: a LisH domain and a novel self-interaction facilitator (SIF) domain immediately downstream of the LisH domain. Molecular modeling suggests that the LisH and SIF domains directly interact, and mutation of either the LisH or the SIF domain severely impairs Mxc function in vivo, resulting in reduced histone mRNA accumulation. A region of Mxc between amino acids 721 and 1481 is also necessary for HLB assembly independent of the LisH and SIF domains. Finally, the C-terminal 195 amino acids of Mxc are required for recruiting FLASH, an essential histone mRNA-processing factor, to the HLB. We conclude that multiple domains of the Mxc protein promote HLB assembly in order to concentrate factors required for histone mRNA biosynthesis.
Collapse
Affiliation(s)
- Esteban A Terzo
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Shawn M Lyons
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - John S Poulton
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Brenda R S Temple
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
24
|
Gold KS, Brückner K. Drosophila as a model for the two myeloid blood cell systems in vertebrates. Exp Hematol 2014; 42:717-27. [PMID: 24946019 PMCID: PMC5013032 DOI: 10.1016/j.exphem.2014.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022]
Abstract
Fish, mice, and humans rely on two coexisting myeloid blood cell systems. One is sustained by hematopoietic progenitor cells, which reside in specialized microenvironments (niches) in hematopoietic organs and give rise to cells of the monocyte lineage. The other system corresponds to the independent lineage of self-renewing tissue macrophages, which colonize organs during embryonic development and are maintained during later life by proliferation in local tissue microenvironments. However, little is known about the nature of these microenvironments and their regulation. Moreover, many vertebrate tissues contain a mix of both tissue-resident and monocyte-derived macrophages, posing a challenge to the study of lineage-specific regulatory mechanisms and function. This review highlights how research in the simple model organism Drosophila melanogaster can address many of these outstanding questions in the field. Drawing parallels between hematopoiesis in Drosophila and vertebrates, we illustrate the evolutionary conservation of the two myeloid systems across animal phyla. Much like vertebrates, Drosophila possesses a lineage of self-renewing tissue-resident macrophages, which we refer to as tissue hemocytes, as well as a "definitive" lineage of macrophages that derive from hematopoiesis in the progenitor-based lymph gland. We summarize key findings from Drosophila hematopoiesis that illustrate how local microenvironments, systemic signals, immune challenges, and nervous inputs regulate adaptive responses of tissue-resident macrophages and progenitor-based hematopoiesis to maximize fitness of the animal.
Collapse
Affiliation(s)
| | - Katja Brückner
- Department of Cell and Tissue Biology; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Ji X, Lu H, Zhou Q, Luo K. LARP7 suppresses P-TEFb activity to inhibit breast cancer progression and metastasis. eLife 2014; 3:e02907. [PMID: 25053741 PMCID: PMC4126343 DOI: 10.7554/elife.02907] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transcriptional elongation by RNA polymerase (Pol) II is essential for gene expression during cell growth and differentiation. The positive transcription elongation factor b (P-TEFb) stimulates transcriptional elongation by phosphorylating Pol II and antagonizing negative elongation factors. A reservoir of P-TEFb is sequestered in the inactive 7SK snRNP where 7SK snRNA and the La-related protein LARP7 are required for the integrity of this complex. Here, we show that P-TEFb activity is important for the epithelial–mesenchymal transition (EMT) and breast cancer progression. Decreased levels of LARP7 and 7SK snRNA redistribute P-TEFb to the transcriptionally active super elongation complex, resulting in P-TEFb activation and increased transcription of EMT transcription factors, including Slug, FOXC2, ZEB2, and Twist1, to promote breast cancer EMT, invasion, and metastasis. Our data provide the first demonstration that the transcription elongation machinery plays a key role in promoting breast cancer progression by directly controlling the expression of upstream EMT regulators. DOI:http://dx.doi.org/10.7554/eLife.02907.001 To express a gene to make a protein, the gene's DNA must first be transcribed to produce molecules of messenger RNA. The start of the transcription process features two milestones. First, an enzyme called RNA Polymerase II starts the process. Shortly afterwards, however, the process pauses and only starts again when other proteins are recruited. This second step, called transcriptional elongation, is essential for gene expression in cells that are growing and specializing into specific cell types. However, it is unclear how important this second step is for the progression of human cancers, such as breast cancer. In humans, two proteins join together to form a complex called ‘positive transcription elongation factor b’ (or P-TEFb for short). This elongation factor encourages the transcriptional elongation step by adding phosphate groups onto RNA Polymerase II and by outcompeting other proteins that act to stop the process. However, some of the P-TEFb proteins in the cell's nucleus are unable to do this because they are held within a complex, which also contains an RNA molecule and some other proteins including one called LARP7. This protein–RNA complex is thought to help to prevent a number of cancers, for example breast cancer or stomach cancer; however the effect of P-TEFb proteins on cancers in humans is not known. Less LARP7 protein is made in breast cancer cells compared to healthy cells. And when Ji et al. reduced the levels of the LARP7 protein (or the RNA molecule involved in the complex), the P-TEFb proteins were released from the complex and were free to encourage transcriptional elongation. This led to the increased expression of other proteins that switch other genes on or off, including genes that allow breast cancer cells to spread around the body. On the other hand, Ji et al. revealed that freeing the P-TEFb proteins from the complex in the nucleus did not appear to cause new tumors to develop or existing tumors to grow. Ji et al. suggest that the LARP7 protein normally helps to prevent the spread of breast cancers by keeping the P-TEFb proteins inactive as a part of the protein–RNA complex. One of the next challenges will be to see if drugs that can inhibit the P-TEFb proteins might be useful as new treatments for late stage breast cancer. DOI:http://dx.doi.org/10.7554/eLife.02907.002
Collapse
Affiliation(s)
- Xiaodan Ji
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Huasong Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
26
|
Honti V, Csordás G, Kurucz É, Márkus R, Andó I. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:47-56. [PMID: 23800719 DOI: 10.1016/j.dci.2013.06.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom.
Collapse
Affiliation(s)
- Viktor Honti
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary
| | | | | | | | | |
Collapse
|
27
|
Hussain RH, Zawawi M, Bayfield MA. Conservation of RNA chaperone activity of the human La-related proteins 4, 6 and 7. Nucleic Acids Res 2013; 41:8715-25. [PMID: 23887937 PMCID: PMC3794603 DOI: 10.1093/nar/gkt649] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 12/22/2022] Open
Abstract
The La module is a conserved tandem arrangement of a La motif and RNA recognition motif whose function has been best characterized in genuine La proteins. The best-characterized substrates of La proteins are pre-tRNAs, and previous work using tRNA mediated suppression in Schizosaccharomyces pombe has demonstrated that yeast and human La enhance the maturation of these using two distinguishable activities: UUU-3'OH-dependent trailer binding/protection and a UUU-3'OH independent activity related to RNA chaperone function. The La module has also been identified in several conserved families of La-related proteins (LARPs) that engage other RNAs, but their mode of RNA binding and function(s) are not well understood. We demonstrate that the La modules of the human LARPs 4, 6 and 7 are also active in tRNA-mediated suppression, even in the absence of stable UUU-3'OH trailer protection. Rather, the capacity of these to enhance pre-tRNA maturation is associated with RNA chaperone function, which we demonstrate to be a conserved activity for each hLARP in vitro. Our work reveals insight into the mechanisms by which La module containing proteins discriminate RNA targets and demonstrates that RNA chaperone activity is a conserved function across representative members of the La motif-containing superfamily.
Collapse
Affiliation(s)
| | | | - Mark A. Bayfield
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
28
|
Ramirez JL, Garver LS, Brayner FA, Alves LC, Rodrigues J, Molina-Cruz A, Barillas-Mury C. The role of hemocytes in Anopheles gambiae antiplasmodial immunity. J Innate Immun 2013; 6:119-28. [PMID: 23886925 DOI: 10.1159/000353765] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022] Open
Abstract
Hemocytes synthesize key components of the mosquito complement-like system, but their role in the activation of antiplasmodial responses has not been established. The effect of activating Toll signaling in hemocytes on Plasmodium survival was investigated by transferring hemocytes or cell-free hemolymph from donor mosquitoes in which the suppressor cactus was silenced. These transfers greatly enhanced antiplasmodial immunity, indicating that hemocytes are active players in the activation of the complement-like system, through an effector/effectors regulated by the Toll pathway. A comparative analysis of hemocyte populations between susceptible G3 and the refractory L3-5 Anopheles gambiae mosquito strains did not reveal significant differences under basal conditions or in response to Plasmodium berghei infection. The response of susceptible mosquitoes to different Plasmodium species revealed similar kinetics following infection with P. berghei,P. yoelii or P. falciparum, but the strength of the priming response was stronger in less compatible mosquito-parasite pairs. The Toll, Imd,STAT or JNK signaling cascades were not essential for the production of the hemocyte differentiation factor (HDF) in response to P. berghei infection, but disruption of Toll, STAT or JNK abolished hemocyte differentiation in response to HDF. We conclude that hemocytes are key mediators of A. gambiae antiplasmodial responses.
Collapse
Affiliation(s)
- Jose Luis Ramirez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md., USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Gunaratna RT, Jiang H. A comprehensive analysis of the Manduca sexta immunotranscriptome. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39. [PMID: 23178408 PMCID: PMC3595354 DOI: 10.1016/j.dci.2012.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
As a biochemical model, Manduca sexta has substantially contributed to our knowledge on insect innate immunity. The RNA-Seq approach was implemented in three studies to examine tissue immunotranscriptomes of this species. With the latest and largest focusing on highly regulated process- and tissue-specific genes, we further analyzed the same set of data using BLAST2GO to explore functional aspects of the larval fat body (F) and hemocyte (H) transcriptomes with (I) or without (C) immune challenge. Using immunity-related sequences from other insects, we found 383 homologous contigs and compared them with those discovered based on relative abundance changes. The major overlap of the two lists validated our previous research designed for gene discovery and transcript profiling in organisms lacking sequenced genomes. By concatenating the contigs, we established a repertoire of 232 immunity-related genes encoding proteins for pathogen recognition (16%), signal transduction (53%), microbe killing (13%) and others (18%). We examined their transcript levels along with attribute classifications and detected prominent differences in nine of the 30 level 2 gene ontology (GO) categories. The increase in extracellular proteins (155%) was consistent with the highly induced synthesis of defense molecules (e.g., antimicrobial peptides) in fat body after the immune challenge. We identified most members of the putative Toll, IMD, MAPK-JNK-p38 and JAK-STAT pathways and small changes in their mRNA levels. Together, these findings set the stage for on-going analysis of the M. sexta immunogenome.
Collapse
Affiliation(s)
- Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | |
Collapse
|
30
|
Gamwell LF, Gambaro K, Merziotis M, Crane C, Arcand SL, Bourada V, Davis C, Squire JA, Huntsman DG, Tonin PN, Vanderhyden BC. Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics. Orphanet J Rare Dis 2013; 8:33. [PMID: 23433318 PMCID: PMC3635907 DOI: 10.1186/1750-1172-8-33] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/14/2013] [Indexed: 12/21/2022] Open
Abstract
Background The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. Method The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. Results BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing. Spectral karyotyping revealed a largely normal diploid karyotype (in greater than 95% of cells) with a visibly shorter chromosome 20 contig. High density SNP array analysis also revealed few genomic anomalies in BIN-67 cells, which included loss of heterozygosity of an estimated 16.7 Mb interval on chromosome 20. SNP array analyses of four SCCOHT samples also indicated a low frequency of genomic anomalies in the majority of cases. Although resistant to platinum chemotherapeutic drugs, BIN-67 cell viability in vitro was reduced by >75% after infection with oncolytic viruses. Conclusions These results show that SCCOHT differs from high-grade serous carcinomas by exhibiting few chromosomal anomalies and lacking TP53 mutations. Although BIN-67 cells are resistant to standard chemotherapeutic agents, their sensitivity to oncolytic viruses suggests that their therapeutic use in SCCOHT should be considered.
Collapse
Affiliation(s)
- Lisa F Gamwell
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Okamura D, Maeda I, Taniguchi H, Tokitake Y, Ikeda M, Ozato K, Mise N, Abe K, Noce T, Izpisua Belmonte JC, Matsui Y. Cell cycle gene-specific control of transcription has a critical role in proliferation of primordial germ cells. Genes Dev 2013; 26:2477-82. [PMID: 23154982 DOI: 10.1101/gad.202242.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Transcription elongation is stimulated by positive transcription elongation factor b (P-TEFb), for which activity is repressed in the 7SK small nuclear ribonucleoprotein (7SK snRNP) complex. We show here a critical role of 7SK snRNP in growth control of primordial germ cells (PGCs). The expression of p15(INK4b), a cyclin-dependent kinase inhibitor (CDKI) gene, in PGCs is selectively activated by P-TEFb and its recruiting molecule, Brd4, when the amount of active P-TEFb is increased due to reduction of the 7SK snRNP, and PGCs consequently undergo growth arrest. These results indicate that CDKI gene-specific control of transcription by 7SK snRNP plays a pivotal role in the maintenance of PGC proliferation.
Collapse
Affiliation(s)
- Daiji Okamura
- Cell Resource Center for Biomedical Research, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Hematopoiesis is well-conserved between Drosophila and vertebrates. Similar as in vertebrates, the sites of hematopoiesis shift during Drosophila development. Blood cells (hemocytes) originate de novo during hematopoietic waves in the embryo and in the Drosophila lymph gland. In contrast, the hematopoietic wave in the larva is based on the colonization of resident hematopoietic sites by differentiated hemocytes that arise in the embryo, much like in vertebrates the colonization of peripheral tissues by primitive macrophages of the yolk sac, or the seeding of fetal liver, spleen and bone marrow by hematopoietic stem and progenitor cells. At the transition to the larval stage, Drosophila embryonic hemocytes retreat to hematopoietic "niches," i.e., segmentally repeated hematopoietic pockets of the larval body wall that are jointly shared with sensory neurons and other cells of the peripheral nervous system (PNS). Hemocytes rely on the PNS for their localization and survival, and are induced to proliferate in these microenvironments, expanding to form the larval hematopoietic system. In this process, differentiated hemocytes from the embryo resume proliferation and self-renew, omitting the need for an undifferentiated prohemocyte progenitor. Larval hematopoiesis is the first Drosophila model for blood cell colonization and niche support by the PNS. It suggests an interface where innocuous or noxious sensory inputs regulate blood cell homeostasis or immune responses. The system adds to the growing concept of nervous system dependence of hematopoietic microenvironments and organ stem cell niches, which is being uncovered across phyla.
Collapse
Affiliation(s)
- Kalpana Makhijani
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; University of California, San Francisco; San Francisco, CA USA
- Department of Cell and Tissue Biology; University of California, San Francisco; San Francisco, CA USA
| | - Katja Brückner
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; University of California, San Francisco; San Francisco, CA USA
- Department of Cell and Tissue Biology; University of California, San Francisco; San Francisco, CA USA
- Department of Anatomy; University of California, San Francisco; San Francisco, CA USA
| |
Collapse
|
33
|
White AE, Burch BD, Yang XC, Gasdaska PY, Dominski Z, Marzluff WF, Duronio RJ. Drosophila histone locus bodies form by hierarchical recruitment of components. ACTA ACUST UNITED AC 2011; 193:677-94. [PMID: 21576393 PMCID: PMC3166876 DOI: 10.1083/jcb.201012077] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An assembly process involving sequential recruitment of components and hierarchical dependency drives formation of the nuclear structures known as histone locus bodies. Nuclear bodies are protein- and RNA-containing structures that participate in a wide range of processes critical to genome function. Molecular self-organization is thought to drive nuclear body formation, but whether this occurs stochastically or via an ordered, hierarchical process is not fully understood. We addressed this question using RNAi and proteomic approaches in Drosophila melanogaster to identify and characterize novel components of the histone locus body (HLB), a nuclear body involved in the expression of replication-dependent histone genes. We identified the transcription elongation factor suppressor of Ty 6 (Spt6) and a homologue of mammalian nuclear protein of the ataxia telangiectasia–mutated locus that is encoded by the homeotic gene multisex combs (mxc) as novel HLB components. By combining genetic manipulation in both cell culture and embryos with cytological observations of Mxc, Spt6, and the known HLB components, FLICE-associated huge protein, Mute, U7 small nuclear ribonucleoprotein, and MPM-2 phosphoepitope, we demonstrated sequential recruitment and hierarchical dependency for localization of factors to HLBs during development, suggesting that ordered assembly can play a role in nuclear body formation.
Collapse
Affiliation(s)
- Anne E White
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Crozatier M, Vincent A. Drosophila: a model for studying genetic and molecular aspects of haematopoiesis and associated leukaemias. Dis Model Mech 2011; 4:439-45. [PMID: 21669932 PMCID: PMC3124048 DOI: 10.1242/dmm.007351] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vertebrate haematopoietic stem cells (HSCs) give rise to a hierarchically organised set of progenitors for erythroid, myeloid, lymphoid and megakaryocyte lineages, and are responsible for lifelong maintenance of the blood system. Dysregulation of the haematopoietic differentiation programme is at the origin of numerous pathologies, including leukaemias. With the discoveries that many transcriptional regulators and signalling pathways controlling blood cell development are conserved between humans and Drosophila melanogaster, the fruit fly has become a good model for investigating the mechanisms underlying the generation of blood cell lineages and blood cell homeostasis. In this review article, we discuss how genetic and molecular studies of Drosophila haematopoiesis can contribute to our understanding of the haematopoietic niche, as well as of the origin and/or progression of haematopoietic malignancies in humans.
Collapse
Affiliation(s)
- Michèle Crozatier
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III, 118 route de Narbonne 31062 Toulouse cedex 9, France.
| | | |
Collapse
|
35
|
Whitfield AE, Rotenberg D, Aritua V, Hogenhout SA. Analysis of expressed sequence tags from Maize mosaic rhabdovirus-infected gut tissues of Peregrinus maidis reveals the presence of key components of insect innate immunity. INSECT MOLECULAR BIOLOGY 2011; 20:225-242. [PMID: 21199018 DOI: 10.1111/j.1365-2583.2010.01060.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The corn planthopper, Peregrinus maidis, causes direct feeding damage to plants and transmits Maize mosaic rhabdovirus (MMV) in a persistent-propagative manner. MMV must cross several insect tissue layers for successful transmission to occur, and the gut serves as an important barrier for rhabdovirus transmission. In order to facilitate the identification of proteins that may interact with MMV either by facilitating acquisition or responding to virus infection, we generated and analysed the gut transcriptome of P. maidis. From two normalized cDNA libraries, we generated a P. maidis gut transcriptome composed of 20,771 expressed sequence tags (ESTs). Assembly of the sequences yielded 1860 contigs and 14,032 singletons, and biological roles were assigned to 5793 (36%). Comparison of P. maidis ESTs with other insect amino acid sequences revealed that P. maidis shares greatest sequence similarity with another hemipteran, the brown planthopper Nilaparvata lugens. We identified 202 P. maidis transcripts with putative homology to proteins associated with insect innate immunity, including those implicated in the Toll, Imd, JAK/STAT, Jnk and the small-interfering RNA-mediated pathways. Sequence comparisons between our P. maidis gut EST collection and the currently available National Center for Biotechnology Information EST database collection for Ni. lugens revealed that a pathogen recognition receptor in the Imd pathway, peptidoglycan recognition protein-long class (PGRP-LC), is present in these two members of the family Delphacidae; however, these recognition receptors are lacking in the model hemipteran Acyrthosiphon pisum. In addition, we identified sequences in the P. maidis gut transcriptome that share significant amino acid sequence similarities with the rhabdovirus receptor molecule, acetylcholine receptor (AChR), found in other hosts. This EST analysis sheds new light on immune response pathways in hemipteran guts that will be useful for further dissecting innate defence response pathways to rhabdovirus infection.
Collapse
Affiliation(s)
- A E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | |
Collapse
|
36
|
Regulation of hemocytes in Drosophila requires dappled cytochrome b5. Biochem Genet 2011; 49:329-51. [PMID: 21279680 PMCID: PMC3092937 DOI: 10.1007/s10528-010-9411-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/20/2010] [Indexed: 12/12/2022]
Abstract
A major category of mutant hematopoietic phenotypes in Drosophila is melanotic tumors or nodules, which consist of abnormal and overproliferated blood cells, similar to granulomas. Our analyses of the melanotic mutant dappled have revealed a novel type of gene involved in blood cell regulation. The dappled gene is an essential gene that encodes cytochrome b5, a conserved hemoprotein that participates in electron transfer in multiple biochemical reactions and pathways. Viable mutations of dappled cause melanotic nodules and hemocyte misregulation during both hematopoietic waves of development. The sexes are similarly affected, but hemocyte number is different in females and males of both mutants and wild type. Additionally, initial tests show that curcumin enhances the dappled melanotic phenotype and establish screening of endogenous and xenobiotic compounds as a route for analysis of cytochrome b5 function. Overall, dappled provides a tractable genetic model for cytochrome b5, which has been difficult to study in higher organisms.
Collapse
|
37
|
Sorrentino RP. Large standard deviations and logarithmic-normality: the truth about hemocyte counts in Drosophila. Fly (Austin) 2010; 4:327-32. [PMID: 20855971 DOI: 10.4161/fly.4.4.13260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
While many quantifiable biological phenomena can be described by making use of an assumption of normality in the distribution of individual values, many biological phenomena are not accurately described by the normal distribution. An unquestioned assumption of normality of distribution of possible outcomes can lead to misinterpretation of data, which could have serious consequences. Thus it is extremely important to test the validity of an assumption of normality of possible outcomes. As it turns out, the logarithmic-normal (log-normal) distribution pattern is often far more accurate in describing statistical biological phenomena. Herein I examine large samples of values for circulating blood cell (hemocyte) concentration (CHC) among both wild-type and mutant Drosophila larvae, and demonstrate in both cases that the distribution of individual values does not conform to normality, but does conform to log-normality.
Collapse
Affiliation(s)
- Richard Paul Sorrentino
- Notre Dame Integrated Imaging Facility (NDII F) and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
38
|
Bayfield MA, Yang R, Maraia RJ. Conserved and divergent features of the structure and function of La and La-related proteins (LARPs). BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:365-78. [PMID: 20138158 PMCID: PMC2860065 DOI: 10.1016/j.bbagrm.2010.01.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/08/2010] [Accepted: 01/27/2010] [Indexed: 12/19/2022]
Abstract
Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3'OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3'OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3'OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNP assembly by hLARP7/PIP7S). Analyses of other LARP family members suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA-related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs.
Collapse
Affiliation(s)
- Mark A Bayfield
- Department of Biology, York University, Toronto, ON, Canada.
| | | | | |
Collapse
|
39
|
Vincent A, Crozatier M. Neither too much nor too little: reactive oxygen species levels regulate Drosophila hematopoiesis. J Mol Cell Biol 2009; 2:74-5. [PMID: 20008331 DOI: 10.1093/jmcb/mjp042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Owing to their fast diffusion, reactive oxygen species (ROS) are important tissue signalling components. High levels of ROS are generally considered as deleterious to cells. In vivo experiments in the Drosophila hematopoietic organ now challenge this view by showing that high ROS levels are intrinsically required to prime myeloid-like progenitors to differentiate.
Collapse
Affiliation(s)
- Alain Vincent
- Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Centre de Biologie du Développement, Université de Toulouse, Toulouse, France
| | | |
Collapse
|
40
|
Abstract
Regulation of gene expression is essential to all aspects of physiological processes in single-cell as well as multicellular organisms. It gives ultimately cells the ability to efficiently respond to extra- and intracellular stimuli participating in cell cycle, growth, differentiation and survival. Regulation of gene expression is executed primarily at the level of transcription of specific mRNAs by RNA polymerase II (RNAPII), typically in several distinct phases. Among them, transcription elongation is positively regulated by the positive transcription elongation factor b (P-TEFb), consisting of CDK9 and cyclin T1, T2 or K. P-TEFb enables transition from abortive to productive transcription elongation by phosphorylating carboxyl-terminal domain (CTD) in RNAPII and negative transcription elongation factors. Over the years, we have learned a great deal about molecular composition of P-TEFb complexes, their assembly and their role in transcription of specific genes, but function of P-TEFb in other physiological processes was not apparent until just recently. In light of emerging discoveries connecting P-TEFb to regulation of cell cycle, development and several diseases, I would like to discuss these observations as well as future perspectives.
Collapse
Affiliation(s)
- Jiri Kohoutek
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic.
| |
Collapse
|
41
|
Markovic MP, Kylsten P, Dushay MS. Drosophila lamin mutations cause melanotic mass formation and lamellocyte differentiation. Mol Immunol 2009; 46:3245-50. [PMID: 19716177 DOI: 10.1016/j.molimm.2009.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/02/2009] [Accepted: 08/04/2009] [Indexed: 11/25/2022]
Abstract
The fruit fly immune system is a valuable model for invertebrate and innate immunity. Cellular immune reactions in Drosophila are of great interest, especially the molecular genetic mechanisms of hemocyte differentiation and the encapsulation of foreign bodies. Here we report that changes in the lamin gene cause melanotic masses. These darkened clusters of cells result from autoimmune-like encapsulation of self-tissue, as shown by the presence in lam larvae of lamellocytes, effector hemocytes that appear in larvae following wounding or parasitization. Lamins thus affect immunity in Drosophila, and lam mutations can serve as genetic tools to dissect cellular immune signaling and effector pathways.
Collapse
|
42
|
Bousquet-Antonelli C, Deragon JM. A comprehensive analysis of the La-motif protein superfamily. RNA (NEW YORK, N.Y.) 2009; 15:750-64. [PMID: 19299548 PMCID: PMC2673062 DOI: 10.1261/rna.1478709] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 01/22/2009] [Indexed: 05/24/2023]
Abstract
The extremely well-conserved La motif (LAM), in synergy with the immediately following RNA recognition motif (RRM), allows direct binding of the (genuine) La autoantigen to RNA polymerase III primary transcripts. This motif is not only found on La homologs, but also on La-related proteins (LARPs) of unrelated function. LARPs are widely found amongst eukaryotes and, although poorly characterized, appear to be RNA-binding proteins fulfilling crucial cellular functions. We searched the fully sequenced genomes of 83 eukaryotic species scattered along the tree of life for the presence of LAM-containing proteins. We observed that these proteins are absent from archaea and present in all eukaryotes (except protists from the Plasmodium genus), strongly suggesting that the LAM is an ancestral motif that emerged early after the archaea-eukarya radiation. A complete evolutionary and structural analysis of these proteins resulted in their classification into five families: the genuine La homologs and four LARP families. Unexpectedly, in each family a conserved domain representing either a classical RRM or an RRM-like motif immediately follows the LAM of most proteins. An evolutionary analysis of the LAM-RRM/RRM-L regions shows that these motifs co-evolved and should be used as a single entity to define the functional region of interaction of LARPs with their substrates. We also found two extremely well conserved motifs, named LSA and DM15, shared by LARP6 and LARP1 family members, respectively. We suggest that members of the same family are functional homologs and/or share a common molecular mode of action on different RNA baits.
Collapse
|
43
|
Brown S, Zeidler MP. Unphosphorylated STATs go nuclear. Curr Opin Genet Dev 2008; 18:455-60. [PMID: 18840523 DOI: 10.1016/j.gde.2008.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/22/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
The JAK/STAT signal transduction pathway has traditionally been viewed as a cytokine-stimulated activator of gene expression consisting of a straightforward receptor/JAK kinase/STAT transcription factor cascade. Recent studies in Drosophila, have, however consistently identified a range of chromatin-remodelling factors as regulators of in vivo JAK/STAT signalling. Now, the detailed analysis of one of these, heterochromatin protein 1 (HP1), has provided an insight into an unexpected non-canonical in vivo role for STAT. In this model, unphosphorylated STATs associate with and maintain the stability of transcriptionally repressed heterochromatin--an effect countered by the recruitment of STAT to the canonical pathway. We examine the background of this new model and its implications for JAK/STAT pathway requirements in stem cell maintenance and cancer.
Collapse
Affiliation(s)
- Stephen Brown
- Faculty of Life Science, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
44
|
He N, Jahchan NS, Hong E, Li Q, Bayfield MA, Maraia RJ, Luo K, Zhou Q. A La-related protein modulates 7SK snRNP integrity to suppress P-TEFb-dependent transcriptional elongation and tumorigenesis. Mol Cell 2008; 29:588-99. [PMID: 18249148 PMCID: PMC6239424 DOI: 10.1016/j.molcel.2008.01.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 10/03/2007] [Accepted: 01/02/2008] [Indexed: 11/18/2022]
Abstract
The general transcription factor P-TEFb stimulates RNA polymerase II elongation and cotranscriptional processing of pre-mRNA. Contributing to a functional equilibrium important for growth control, a reservoir of P-TEFb is maintained in an inactive snRNP where 7SK snRNA is a central scaffold. Here, we identify PIP7S as a La-related protein stably associated with and required for 7SK snRNP integrity. PIP7S binds and stabilizes nearly all the nuclear 7SK via 3' -UUU-OH, leading to the sequestration and inactivation of P-TEFb. This function requires its La domain and intact C terminus. The latter is frequently deleted in human tumors due to microsatellite instability-associated mutations. Consistent with the tumor suppressor role of a Drosophila homolog of PIP7S, loss of PIP7S function shifts the P-TEFb equilibrium toward the active state, disrupts epithelial differentiation, and causes P-TEFb-dependent malignant transformation. Through PIP7S modulation of P-TEFb, our data thus link a general elongation factor to growth control and tumorigenesis.
Collapse
Affiliation(s)
- Nanhai He
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nadine S. Jahchan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Eunmee Hong
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Qiang Li
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Mark A. Bayfield
- Intramural Research Program, Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J. Maraia
- Intramural Research Program, Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
45
|
The enhancer of trithorax and polycomb corto interacts with cyclin G in Drosophila. PLoS One 2008; 3:e1658. [PMID: 18286205 PMCID: PMC2243016 DOI: 10.1371/journal.pone.0001658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 01/21/2008] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Polycomb (PcG) and trithorax (trxG) genes encode proteins involved in the maintenance of gene expression patterns, notably Hox genes, throughout development. PcG proteins are required for long-term gene repression whereas TrxG proteins are positive regulators that counteract PcG action. PcG and TrxG proteins form large complexes that bind chromatin at overlapping sites called Polycomb and Trithorax Response Elements (PRE/TRE). A third class of proteins, so-called "Enhancers of Trithorax and Polycomb" (ETP), interacts with either complexes, behaving sometimes as repressors and sometimes as activators. The role of ETP proteins is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS In a two-hybrid screen, we identified Cyclin G (CycG) as a partner of the Drosophila ETP Corto. Inactivation of CycG by RNA interference highlights its essential role during development. We show here that Corto and CycG directly interact and bind to each other in embryos and S2 cells. Moreover, CycG is targeted to polytene chromosomes where it co-localizes at multiple sites with Corto and with the PcG factor Polyhomeotic (PH). We observed that corto is involved in maintaining Abd-B repression outside its normal expression domain in embryos. This could be achieved by association between Corto and CycG since both proteins bind the regulatory element iab-7 PRE and the promoter of the Abd-B gene. CONCLUSIONS/SIGNIFICANCE Our results suggest that CycG could regulate the activity of Corto at chromatin and thus be involved in changing Corto from an Enhancer of TrxG into an Enhancer of PcG.
Collapse
|
46
|
Wood W, Jacinto A. Drosophila melanogaster embryonic haemocytes: masters of multitasking. Nat Rev Mol Cell Biol 2007; 8:542-51. [PMID: 17565363 DOI: 10.1038/nrm2202] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Drosophila melanogaster haemocytes constitute the cellular arm of a robust innate immune system in flies. In the adult and larva, these cells operate as the first line of defence against invading microorganisms: they phagocytose pathogens and produce antimicrobial peptides. However, in the sterile environment of the embryo, these important immune functions are largely redundant. Instead, throughout development, embryonic haemocytes are occupied with other tasks: they undergo complex migrations and carry out several non-immune functions that are crucial for successful embryogenesis.
Collapse
Affiliation(s)
- Will Wood
- Department of Biology and Biochemistry, University of Bath, BA2 7AY, UK.
| | | |
Collapse
|
47
|
Abstract
In Drosophila melanogaster larvae, three classes of circulating cellular immune surveillance cells (hemocytes) can be identified: plasmatocytes, crystal cells, and lamellocytes. Plasmatocytes are professional phagocytes most similar to the mammalian monocyte/macrophage lineage and make up approximately 95% of circulating hemocytes. The other approximately 5% of circulating hemocytes consists of crystal cells, which secrete components necessary for the melanization of invading organisms, as well as for wound repair. A third cell type known as lamellocytes are rarely seen in healthy larvae and are involved in the encapsulation of invading pathogens. There are no obvious mammalian counterparts for crystal cells or lamellocytes, and there is no equivalent to the lymphoid lineage in insects. In this review, I will discuss what is currently known about Drosophila hemopoiesis and the cellular immune response and where possible compare it to vertebrate mechanisms.
Collapse
|
48
|
Abstract
Like in vertebrates, Drosophila haematopoiesis occurs in two waves. It gives rise to three types of haemocytes: plasmatocytes (phagocytosis), crystal cells (melanization) and lamellocytes (encapsulation of parasites). A first population of haemocytes, specified during embryogenesis, gives rise to an invariant number of plasmatocytes and crystal cells. A second population of haemocytes is specified during larval development in a specialized haematopoietic organ, the lymph gland. All three types of haemocytes can be specified in this organ, but lamellocytes only differentiate in response to parasitism. Thus, larval in contrast to embryonic haematopoiesis can be modulated by physiological constraints. Molecular cascades controlling embryonic haematopoiesis are relatively well established and require transactivators such as GATA, FOG and Runx factors, which are also co-opted in mammalian haematopoiesis. Mechanisms involved during larval haematopoiesis are less well understood although a number of chromatin remodelling factors and signalling pathways (JAK/STAT, Toll, Hedgehog, Notch) are required. In healthy larvae a pool of progenitors is maintained within the lymph gland, under the control of a signalling centre which expresses Collier, Serrate, Antennapedia and Hedgehog, and controls haemocyte homeostasis. Its key role in haemocyte homeostasis is reminiscent of interactions described in vertebrates between haematopoietic stem cells and their microenvironment (niche).
Collapse
Affiliation(s)
- Michèle Crozatier
- Centre de Biologie du Développement, UMR 5547 and IFR 109, CNRS/Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | |
Collapse
|
49
|
Abstract
Mutations in >30 genes that regulate different pathways and developmental processes are reported to cause a melanotic phenotype in larvae. The observed melanotic masses were generally linked to the hemocyte-mediated immune response. To investigate whether all black masses are associated with the cellular immune response, we characterized melanotic masses from mutants in 14 genes. We found that the melanotic masses can be subdivided into melanotic nodules engaging the hemocyte-mediated encapsulation and into melanizations that are not encapsulated by hemocytes. With rare exception, the encapsulation is carried out by lamellocytes. Encapsulated nodules are found in the hemocoel or in association with the lymph gland, while melanizations are located in the gut, salivary gland, and tracheae. In cactus mutants we found an additional kind of melanized mass containing various tissues. The development of these tissue agglomerates is dependent on the function of the dorsal gene. Our results show that the phenotype of each mutant not only reflects its connection to a particular genetic pathway but also points to the tissue-specific role of the individual gene.
Collapse
Affiliation(s)
- Svetlana Minakhina
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08854-8020, USA
| | | |
Collapse
|
50
|
Jung SH, Evans CJ, Uemura C, Banerjee U. The Drosophila lymph gland as a developmental model of hematopoiesis. Development 2005; 132:2521-33. [PMID: 15857916 DOI: 10.1242/dev.01837] [Citation(s) in RCA: 291] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Drosophila hematopoiesis occurs in a specialized organ called the lymph gland. In this systematic analysis of lymph gland structure and gene expression, we define the developmental steps in the maturation of blood cells (hemocytes) from their precursors. In particular, distinct zones of hemocyte maturation, signaling and proliferation in the lymph gland during hematopoietic progression are described. Different stages of hemocyte development have been classified according to marker expression and placed within developmental niches: a medullary zone for quiescent prohemocytes, a cortical zone for maturing hemocytes and a zone called the posterior signaling center for specialized signaling hemocytes. This establishes a framework for the identification of Drosophila blood cells, at various stages of maturation, and provides a genetic basis for spatial and temporal events that govern hemocyte development. The cellular events identified in this analysis further establish Drosophila as a model system for hematopoiesis.
Collapse
Affiliation(s)
- Seung-Hye Jung
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|