1
|
Ni H, Yong-Villalobos L, Gu M, López-Arredondo DL, Chen M, Geng L, Xu G, Herrera-Estrella LR. Adaptive dynamics of extrachromosomal circular DNA in rice under nutrient stress. Nat Commun 2025; 16:4150. [PMID: 40320403 PMCID: PMC12050283 DOI: 10.1038/s41467-025-59572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) have been identified in various eukaryotic organisms and are known to play crucial roles in genomic plasticity. However, in crop plants, the role of eccDNAs in responses to environmental cues, particularly nutritional stresses, remains unexplored. Rice (Oryza sativa ssp. japonica), a vital crop for over half the world's population and an excellent model plant for genomic studies, faces numerous environmental challenges during growth. Therefore, we conduct comprehensive studies investigating the distribution, sequence, and potential responses of rice eccDNAs to nutritional stresses. We describe the changes in the eccDNA landscape at various developmental stages of rice in optimal growth. We also identify eccDNAs overlapping with genes (ecGenes), transposable elements (ecTEs), and full-length repeat units (full-length ecRepeatUnits), whose prevalence responds to nitrogen (N) and phosphorus (P) deficiency. We analyze multiple-fragment eccDNAs and propose a potential TE-mediated homologous recombination mechanism as the origin of rice's multiple-fragment eccDNAs. We provide evidence for the role of eccDNAs in the rice genome plasticity under nutritional stresses and underscore the significance of their abundance and specificity.
Collapse
Affiliation(s)
- Hanfang Ni
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Lenin Yong-Villalobos
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, USA
| | - Mian Gu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Damar Lizbeth López-Arredondo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, USA
| | - Min Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Liyan Geng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China.
| | - Luis Rafael Herrera-Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, USA.
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto, Mexico.
| |
Collapse
|
2
|
Tao XY, Feng SL, Yuan L, Li YJ, Li XJ, Guan XY, Chen ZH, Xu SC. Harnessing transposable elements for plant functional genomics and genome engineering. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00067-6. [PMID: 40240259 DOI: 10.1016/j.tplants.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Transposable elements (TEs) constitute a large portion of many plant genomes and play important roles in regulating gene expression and in driving genome evolution and crop domestication. Despite advances in understanding the functions and mechanisms of TEs, a comprehensive review of their integrated knowledge and cutting-edge biotechnological applications of TEs is still needed. We provide a thorough overview that connects discoveries, mechanisms, and technologies associated with plant TEs. We discuss the identification and function of TEs driven by functional genomics, epigenetic regulation of TEs, and utilization of active TEs in plant functional genomics and genome engineering. In summary, expanding the knowledge and application of TEs will be beneficial to crop breeding and plant synthetic biology in the future.
Collapse
Affiliation(s)
| | | | - Lu Yuan
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yan-Jun Li
- Xianghu Laboratory, Hangzhou 311231, China
| | - Xin-Jia Li
- Xianghu Laboratory, Hangzhou 311231, China
| | - Xue-Ying Guan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, 5064 SA, Australia.
| | - Sheng-Chun Xu
- Xianghu Laboratory, Hangzhou 311231, China; Institute of Digital Agriculture, Zhejiang Academy of Agricultural Science, Hangzhou, China.
| |
Collapse
|
3
|
Omole AD, Czuppon P. Maintenance of long-term transposable element activity through regulation by nonautonomous elements. Genetics 2025; 229:iyae209. [PMID: 39810601 DOI: 10.1093/genetics/iyae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Transposable elements are DNA sequences that can move and replicate within genomes. Broadly, there are 2 types: autonomous elements, which encode the necessary enzymes for transposition, and nonautonomous elements, which rely on the enzymes produced by autonomous elements for their transposition. Nonautonomous elements have been proposed to regulate the numbers of transposable elements, which is a possible explanation for the persistence of transposition activity over long evolutionary times. However, previous modeling studies indicate that interactions between autonomous and nonautonomous elements usually result in the extinction of one type. Here, we study a stochastic model that allows for the stable coexistence of autonomous and nonautonomous retrotransposons. We determine the conditions for this coexistence and derive an analytical expression for the stationary distribution of their copy numbers, showing that nonautonomous elements regulate stochastic fluctuations and the number of autonomous elements in stationarity. We find that the stationary variances of each element can be expressed as a function of the average copy numbers and their covariance, enabling data comparison and model validation. These results suggest that continued transposition activity of transposable elements, regulated by nonautonomous elements, is a possible evolutionary outcome that could for example explain the long coevolutionary history of autonomous LINE1 and nonautonomous Alu element transposition in the human ancestry.
Collapse
Affiliation(s)
- Adekanmi Daniel Omole
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| |
Collapse
|
4
|
Tang W, Liang P. The identification of retro-DNAs in primate genomes as DNA transposons mobilizing via retrotransposition. F1000Res 2024; 12:255. [PMID: 38915770 PMCID: PMC11195612 DOI: 10.12688/f1000research.130043.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Background Mobile elements (MEs) constitute a major portion of the genome in primates and other higher eukaryotes, and they play important role in genome evolution and gene function. MEs can be divided into two fundamentally different classes: DNA transposons which transpose in the genome in a "cut-and-paste" style, and retrotransposons which propagate in a "copy-and-paste" fashion via a process involving transcription and reverse-transcription. In primate genomes, DNA transposons are mostly dead, while many retrotransposons are still highly active. We report here the identification of a unique group of MEs, which we call "retro-DNAs", for their combined characteristics of these two fundamentally different ME classes. Methods A comparative computational genomic approach was used to analyze the reference genome sequences of 10 primate species consisting of five apes, four monkeys, and marmoset. Results From our analysis, we identified a total of 1,750 retro-DNAs, representing 748 unique insertion events in the genomes of ten primate species including human. These retro-DNAs contain sequences of DNA transposons but lack the terminal inverted repeats (TIRs), the hallmark of DNA transposons. Instead, they show characteristics of retrotransposons, such as polyA tails, longer target-site duplications (TSDs), and the "TT/AAAA" insertion site motif, suggesting the use of the L1-based target- primed reverse transcription (TPRT) mechanism. At least 40% of these retro-DNAs locate into genic regions, presenting potentials for impacting gene function. More interestingly, some retro-DNAs, as well as their parent sites, show certain levels of expression, suggesting that they have the potential to create more retro-DNA copies in the present primate genomes. Conclusions Although small in number, the identification of these retro-DNAs reveals a new mean for propagating DNA transposons in primate genomes without active canonical DNA transposon activity. Our data also suggest that the TPRT machinery may transpose a wider variety of DNA sequences in the genomes.
Collapse
Affiliation(s)
- Wangxiangfu Tang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
- Centre of Biotechnology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
5
|
Pulido M, Casacuberta JM. Transposable element evolution in plant genome ecosystems. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102418. [PMID: 37459733 DOI: 10.1016/j.pbi.2023.102418] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 06/20/2023] [Indexed: 09/18/2023]
Abstract
The relationship of transposable elements (TEs) with their host genomes has usually been seen as an arms race between TEs and their host genomes. Consequently, TEs are supposed to amplify by bursts of transposition, when the TE escapes host surveillance, followed by long periods of TE quiescence and efficient host control. Recent data obtained from an increasing number of assembled plant genomes and resequencing population datasets show that TE dynamics is more complex and varies among TE families and their host genomes. This variation ranges from large genomes that accommodate large TE populations to genomes that are very active in TE elimination, and from inconspicuous elements with very low activity to elements with high transposition and elimination rates. The dynamics of each TE family results from a long history of interaction with the host in a genome populated by many other TE families, very much like an evolving ecosystem.
Collapse
Affiliation(s)
- Marc Pulido
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Josep M Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|
6
|
Carotti E, Carducci F, Barucca M, Canapa A, Biscotti MA. Transposable Elements: Epigenetic Silencing Mechanisms or Modulating Tools for Vertebrate Adaptations? Two Sides of the Same Coin. Int J Mol Sci 2023; 24:11591. [PMID: 37511347 PMCID: PMC10380595 DOI: 10.3390/ijms241411591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Transposable elements constitute one of the main components of eukaryotic genomes. In vertebrates, they differ in content, typology, and family diversity and played a crucial role in the evolution of this taxon. However, due to their transposition ability, TEs can be responsible for genome instability, and thus silencing mechanisms were evolved to allow the coexistence between TEs and eukaryotic host-coding genes. Several papers are highlighting in TEs the presence of regulatory elements involved in regulating nearby genes in a tissue-specific fashion. This suggests that TEs are not sequences merely to silence; rather, they can be domesticated for the regulation of host-coding gene expression, permitting species adaptation and resilience as well as ensuring human health. This review presents the main silencing mechanisms acting in vertebrates and the importance of exploiting these mechanisms for TE control to rewire gene expression networks, challenging the general view of TEs as threatening elements.
Collapse
Affiliation(s)
| | - Federica Carducci
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.C.); (M.B.); (A.C.); (M.A.B.)
| | | | | | | |
Collapse
|
7
|
Chang J, Duan G, Li W, Yau TO, Liu C, Cui J, Xue H, Bu W, Hu Y, Gao S. The first discovery of Tc1 transposons in yeast. Front Microbiol 2023; 14:1141495. [PMID: 36876116 PMCID: PMC9977792 DOI: 10.3389/fmicb.2023.1141495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Identification of transposons without close homologs is still a difficult task. IS630/Tc1/mariner transposons, classified into a superfamily, are probably the most widespread DNA transposons in nature. Tc1/mariner transposons have been discovered in animals, plants, and filamentous fungi, however, not in yeast. RESULTS In the present study, we report the discovery of two intact Tc1 transposons in yeast and filamentous fungi, respectively. The first one, named Tc1-OP1 (DD40E), represents Tc1 transposons in Ogataea parapolymorpha. The second one, named Tc1-MP1 (DD34E), represents Tc1 transposons in the Rhizopodaceae and Mucoraceae families. As a homolog of Tc1-OP1 and Tc1-MP1, IS630-AB1 (DD34E) was discovered as an IS630 transposon in Acinetobacter spp. CONCLUSION Tc1-OP1 is not only the first reported Tc1 transposon in yeast, but also the first reported nonclassical Tc1 transposon. Tc1-OP1 is the largest of IS630/Tc1/mariner transposons reported to date and significantly different from others. Notably, Tc1-OP1 encodes a serine-rich domain and a transposase, extending the current knowledge of Tc1 transposons. The phylogenetic relationships of Tc1-OP1, Tc1-MP1 and IS630-AB1 indicated that these transposons had evolved from a common ancestor. Tc1-OP1, Tc1-MP1 and IS630-AB1 can be used as reference sequences to facilitate the identification of IS630/Tc1/mariner transposons. More Tc1/mariner transposons will be identified in yeast, following our discovery.
Collapse
Affiliation(s)
- Jia Chang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Guangyou Duan
- School of Life Sciences, Qilu Normal University, Jinan, Shandong, China
| | - Wenjing Li
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Tung On Yau
- Department of Rural Land Use, Scotland’s Rural College, Aberdeen, United Kingdom
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Jianlin Cui
- School of Medicine, Nankai University, Tianjin, China
| | - Huaijun Xue
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yanping Hu
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Shan Gao
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Orozco-Arias S, Humberto Lopez-Murillo L, Candamil-Cortés MS, Arias M, Jaimes PA, Rossi Paschoal A, Tabares-Soto R, Isaza G, Guyot R. Inpactor2: a software based on deep learning to identify and classify LTR-retrotransposons in plant genomes. Brief Bioinform 2022; 24:6887110. [PMID: 36502372 PMCID: PMC9851300 DOI: 10.1093/bib/bbac511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022] Open
Abstract
LTR-retrotransposons are the most abundant repeat sequences in plant genomes and play an important role in evolution and biodiversity. Their characterization is of great importance to understand their dynamics. However, the identification and classification of these elements remains a challenge today. Moreover, current software can be relatively slow (from hours to days), sometimes involve a lot of manual work and do not reach satisfactory levels in terms of precision and sensitivity. Here we present Inpactor2, an accurate and fast application that creates LTR-retrotransposon reference libraries in a very short time. Inpactor2 takes an assembled genome as input and follows a hybrid approach (deep learning and structure-based) to detect elements, filter partial sequences and finally classify intact sequences into superfamilies and, as very few tools do, into lineages. This tool takes advantage of multi-core and GPU architectures to decrease execution times. Using the rice genome, Inpactor2 showed a run time of 5 minutes (faster than other tools) and has the best accuracy and F1-Score of the tools tested here, also having the second best accuracy and specificity only surpassed by EDTA, but achieving 28% higher sensitivity. For large genomes, Inpactor2 is up to seven times faster than other available bioinformatics tools.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Corresponding authors. Simon Orozco-Arias, Computer Science Department, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarrill, Manizalez, Colombia. Tel.: +57(606)8727272 - 8727709 Ext 102; E-mail: ; Alexandre Rossi Paschoal, Department of Computer Science, Bioinformatics and Pattern Recognition Group, Graduation Program in Bioinformatics, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Paraná, 86300-000, Brazil. Tel.: +433133-3790; E-mail: ; Gustavo Isaza, Systems and Informatics Department, Center for Technology Development - Bioprocess and Agro-industry Plant, Universidad de Caldas, St 65 #26-10, Manizales, Colombia. Tel.: +57(606)8781500 ext 13146; E-mail: , Romain Guyot, IRD, 911 Av. Agropolis, 34394 Montpellier, France. Tel.: +334674160000; E-mail:
| | | | | | - Maradey Arias
- Department of Computer Science, Universidad Autónoma de Manizales, 170001, Caldas, Colombia
| | - Paula A Jaimes
- Department of Computer Science, Universidad Autónoma de Manizales, 170001, Caldas, Colombia
| | - Alexandre Rossi Paschoal
- Corresponding authors. Simon Orozco-Arias, Computer Science Department, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarrill, Manizalez, Colombia. Tel.: +57(606)8727272 - 8727709 Ext 102; E-mail: ; Alexandre Rossi Paschoal, Department of Computer Science, Bioinformatics and Pattern Recognition Group, Graduation Program in Bioinformatics, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Paraná, 86300-000, Brazil. Tel.: +433133-3790; E-mail: ; Gustavo Isaza, Systems and Informatics Department, Center for Technology Development - Bioprocess and Agro-industry Plant, Universidad de Caldas, St 65 #26-10, Manizales, Colombia. Tel.: +57(606)8781500 ext 13146; E-mail: , Romain Guyot, IRD, 911 Av. Agropolis, 34394 Montpellier, France. Tel.: +334674160000; E-mail:
| | - Reinel Tabares-Soto
- Department of Electronics and Automation, Universidad Autónoma de Manizales, 170001, Caldas, Colombia
| | - Gustavo Isaza
- Corresponding authors. Simon Orozco-Arias, Computer Science Department, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarrill, Manizalez, Colombia. Tel.: +57(606)8727272 - 8727709 Ext 102; E-mail: ; Alexandre Rossi Paschoal, Department of Computer Science, Bioinformatics and Pattern Recognition Group, Graduation Program in Bioinformatics, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Paraná, 86300-000, Brazil. Tel.: +433133-3790; E-mail: ; Gustavo Isaza, Systems and Informatics Department, Center for Technology Development - Bioprocess and Agro-industry Plant, Universidad de Caldas, St 65 #26-10, Manizales, Colombia. Tel.: +57(606)8781500 ext 13146; E-mail: , Romain Guyot, IRD, 911 Av. Agropolis, 34394 Montpellier, France. Tel.: +334674160000; E-mail:
| | - Romain Guyot
- Corresponding authors. Simon Orozco-Arias, Computer Science Department, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarrill, Manizalez, Colombia. Tel.: +57(606)8727272 - 8727709 Ext 102; E-mail: ; Alexandre Rossi Paschoal, Department of Computer Science, Bioinformatics and Pattern Recognition Group, Graduation Program in Bioinformatics, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Paraná, 86300-000, Brazil. Tel.: +433133-3790; E-mail: ; Gustavo Isaza, Systems and Informatics Department, Center for Technology Development - Bioprocess and Agro-industry Plant, Universidad de Caldas, St 65 #26-10, Manizales, Colombia. Tel.: +57(606)8781500 ext 13146; E-mail: , Romain Guyot, IRD, 911 Av. Agropolis, 34394 Montpellier, France. Tel.: +334674160000; E-mail:
| |
Collapse
|
9
|
Zattera ML, Bruschi DP. Transposable Elements as a Source of Novel Repetitive DNA in the Eukaryote Genome. Cells 2022; 11:3373. [PMID: 36359770 PMCID: PMC9659126 DOI: 10.3390/cells11213373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
The impact of transposable elements (TEs) on the evolution of the eukaryote genome has been observed in a number of biological processes, such as the recruitment of the host's gene expression network or the rearrangement of genome structure. However, TEs may also provide a substrate for the emergence of novel repetitive elements, which contribute to the generation of new genomic components during the course of the evolutionary process. In this review, we examine published descriptions of TEs that give rise to tandem sequences in an attempt to comprehend the relationship between TEs and the emergence of de novo satellite DNA families in eukaryotic organisms. We evaluated the intragenomic behavior of the TEs, the role of their molecular structure, and the chromosomal distribution of the paralogous copies that generate arrays of repeats as a substrate for the emergence of new repetitive elements in the genome. We highlight the involvement and importance of TEs in the eukaryote genome and its remodeling processes.
Collapse
Affiliation(s)
- Michelle Louise Zattera
- Departamento de Genética, Programa de Pós-Graduação em Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil
| | - Daniel Pacheco Bruschi
- Departamento de Genética, Laboratorio de Citogenética Evolutiva e Conservação Animal, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil
| |
Collapse
|
10
|
Gu X, Su Y, Wang T. 转座元件对植物基因组进化、表观遗传和适应性的作用. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Dazenière J, Bousios A, Eyre-Walker A. Patterns of selection in the evolution of a transposable element. G3 GENES|GENOMES|GENETICS 2022; 12:6545286. [PMID: 35262706 PMCID: PMC9073684 DOI: 10.1093/g3journal/jkac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022]
Abstract
Transposable elements are a major component of most eukaryotic genomes. Here, we present a new approach which allows us to study patterns of natural selection in the evolution of transposable elements over short time scales. The method uses the alignment of all elements with intact gag/pol genes of a transposable element family from a single genome. We predict that the ratio of nonsynonymous to synonymous variants in the alignment should decrease as a function of the frequency of the variants, because elements with nonsynonymous variants that reduce transposition will have fewer progeny. We apply our method to Sirevirus long-terminal repeat retrotransposons that are abundant in maize and other plant species and show that nonsynonymous to synonymous variants declines as variant frequency increases, indicating that negative selection is acting strongly on the Sirevirus genome. The asymptotic value of nonsynonymous to synonymous variants suggests that at least 85% of all nonsynonymous mutations in the transposable element reduce transposition. Crucially, these patterns in nonsynonymous to synonymous variants are only predicted to occur if the gene products from a particular transposable element insertion preferentially promote the transposition of the same insertion. Overall, by using large numbers of intact elements, this study sheds new light on the selective processes that act on transposable elements.
Collapse
Affiliation(s)
- Julie Dazenière
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - Alexandros Bousios
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| |
Collapse
|
12
|
Gisby JS, Catoni M. The widespread nature of Pack-TYPE transposons reveals their importance for plant genome evolution. PLoS Genet 2022; 18:e1010078. [PMID: 35202390 PMCID: PMC8903248 DOI: 10.1371/journal.pgen.1010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/08/2022] [Accepted: 02/06/2022] [Indexed: 11/29/2022] Open
Abstract
Pack-TYPE transposable elements (TEs) are a group of non-autonomous DNA transposons found in plants. These elements can efficiently capture and shuffle coding DNA across the host genome, accelerating the evolution of genes. Despite their relevance for plant genome plasticity, the detection and study of Pack-TYPE TEs are challenging due to the high similarity these elements have with genes. Here, we produced an automated annotation pipeline designed to study Pack-TYPE elements and used it to successfully annotate and analyse more than 10,000 new Pack-TYPE TEs in the rice and maize genomes. Our analysis indicates that Pack-TYPE TEs are an abundant and heterogeneous group of elements. We found that these elements are associated with all main superfamilies of Class II DNA transposons in plants and likely share a similar mechanism to capture new chromosomal DNA sequences. Furthermore, we report examples of the direct contribution of these TEs to coding genes, suggesting a generalised and extensive role of Pack-TYPE TEs in plant genome evolution. Transposable Elements (TEs) are genetic DNA sequences able to move across the genome, and their transposition activity is associated with genome plasticity and gene evolution. However, most of these elements exhibit “selfish” behaviour, meaning that they mainly transpose their own DNA sequence and only exceptionally might rearrange the DNA of coding genes. Pack-TYPE TEs, found in plants, represent an important exception, and they can efficiently capture and shuffle DNA sequences captured from the genome, accelerating the evolution of genes. We provide here the first automatic pipeline designed explicitly for the annotation of Pack-TYPE TEs. We used our approach to systematically investigate Pack-TYPE TEs in the rice and maize reference genomes, and annotated thousands of new elements in these species. We demonstrate that Pack-TYPE elements are abundant in plants and we report several examples of coding genes originated as a consequence of the mobilization of these elements.
Collapse
Affiliation(s)
- Jack S. Gisby
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail: (JSG); (MC)
| | - Marco Catoni
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, Italy
- * E-mail: (JSG); (MC)
| |
Collapse
|
13
|
Zidi M, Denis F, Klai K, Chénais B, Caruso A, Djebbi S, Mezghani M, Casse N. Genome-wide characterization of Mariner-like transposons and their derived MITEs in the Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). G3 (BETHESDA, MD.) 2021; 11:jkab287. [PMID: 34849769 PMCID: PMC8664452 DOI: 10.1093/g3journal/jkab287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022]
Abstract
The whitefly, Bemisia tabaci is a hemipteran pest of vegetable crops vectoring a broad category of viruses. Currently, this insect pest showed a high adaptability and resistance to almost all the chemical compounds commonly used for its control. In many cases, transposable elements (TEs) contributed to the evolution of host genomic plasticity. This study focuses on the annotation of Mariner-like elements (MLEs) and their derived Miniature Inverted repeat Transposable Elements (MITEs) in the genome of B. tabaci. Two full-length MLEs belonging to mauritiana and irritans subfamilies were detected and named Btmar1.1 and Btmar2.1, respectively. Additionally, 548 defective MLE sequences clustering mainly into 19 different Mariner lineages of mauritiana and irritans subfamilies were identified. Each subfamily showed a significant variation in MLE copy number and size. Furthermore, 71 MITEs were identified as MLEs derivatives that could be mobilized via the potentially active transposases encoded by Btmar 1.1 and Btmar2.1. The vast majority of sequences detected in the whitefly genome present unusual terminal inverted repeats (TIRs) of up to 400 bp in length. However, some exceptions are sequences without TIRs. This feature of the MLEs and their derived MITEs in B. tabaci genome that distinguishes them from all the other MLEs so far described in insects, which have TIRs size ranging from 20 to 40 bp. Overall, our study provides an overview of MLEs, especially those with large TIRs, and their related MITEs, as well as diversity of their families, which will provide a better understanding of the evolution and adaptation of the whitefly genome.
Collapse
Affiliation(s)
- Marwa Zidi
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Françoise Denis
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
- Laboratoire BOREA MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, 75231 Paris, France
| | - Khouloud Klai
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Benoît Chénais
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Aurore Caruso
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Salma Djebbi
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Maha Mezghani
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Nathalie Casse
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| |
Collapse
|
14
|
Parisot N, Vargas-Chávez C, Goubert C, Baa-Puyoulet P, Balmand S, Beranger L, Blanc C, Bonnamour A, Boulesteix M, Burlet N, Calevro F, Callaerts P, Chancy T, Charles H, Colella S, Da Silva Barbosa A, Dell'Aglio E, Di Genova A, Febvay G, Gabaldón T, Galvão Ferrarini M, Gerber A, Gillet B, Hubley R, Hughes S, Jacquin-Joly E, Maire J, Marcet-Houben M, Masson F, Meslin C, Montagné N, Moya A, Ribeiro de Vasconcelos AT, Richard G, Rosen J, Sagot MF, Smit AFA, Storer JM, Vincent-Monegat C, Vallier A, Vigneron A, Zaidman-Rémy A, Zamoum W, Vieira C, Rebollo R, Latorre A, Heddi A. The transposable element-rich genome of the cereal pest Sitophilus oryzae. BMC Biol 2021; 19:241. [PMID: 34749730 PMCID: PMC8576890 DOI: 10.1186/s12915-021-01158-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.
Collapse
Affiliation(s)
- Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Carlos Vargas-Chávez
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Present Address: Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Clément Goubert
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, New York, 14853, USA
- Present Address: Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Séverine Balmand
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Louis Beranger
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Caroline Blanc
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aymeric Bonnamour
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Matthieu Boulesteix
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Patrick Callaerts
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, University of Leuven, B-3000, Leuven, Belgium
| | - Théo Chancy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Hubert Charles
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | - Stefano Colella
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, INRAE, SupAgro, Univ Montpellier, Montpellier, France
| | - André Da Silva Barbosa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Alex Di Genova
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Gérard Febvay
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Toni Gabaldón
- Life Sciences, Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Mechanisms of Disease, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Institut Catalan de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Alexandra Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | | | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Justin Maire
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Florent Masson
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain
| | | | - Gautier Richard
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653, Le Rheu, France
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | - Marie-France Sagot
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | | | | | | | - Agnès Vallier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aurélien Vigneron
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Waël Zamoum
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France.
- ERABLE European Team, INRIA, Rhône-Alpes, France.
| | - Rita Rebollo
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain.
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| |
Collapse
|
15
|
Lin L, Sharma A, Yu Q. Recent amplification of microsatellite-associated miniature inverted-repeat transposable elements in the pineapple genome. BMC PLANT BIOLOGY 2021; 21:424. [PMID: 34537020 PMCID: PMC8449440 DOI: 10.1186/s12870-021-03194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Miniature inverted-repeat transposable elements (MITEs) are non-autonomous DNA transposable elements that play important roles in genome organization and evolution. Genome-wide identification and characterization of MITEs provide essential information for understanding genome structure and evolution. RESULTS We performed genome-wide identification and characterization of MITEs in the pineapple genome. The top two MITE families, accounting for 29.39% of the total MITEs and 3.86% of the pineapple genome, have insertion preference in (TA) n dinucleotide microsatellite regions. We therefore named these MITEs A. comosus microsatellite-associated MITEs (Ac-mMITEs). The two Ac-mMITE families, Ac-mMITE-1 and Ac-mMITE-2, shared sequence similarity in the terminal inverted repeat (TIR) regions, suggesting that these two Ac-mMITE families might be derived from a common or closely related autonomous elements. The Ac-mMITEs are frequently clustered via adjacent insertions. Among the 21,994 full-length Ac-mMITEs, 46.1% of them were present in clusters. By analyzing the Ac-mMITEs without (TA) n microsatellite flanking sequences, we found that Ac-mMITEs were likely derived from Mutator-like DNA transposon. Ac-MITEs showed highly polymorphic insertion sites between cultivated pineapples and their wild relatives. To better understand the evolutionary history of Ac-mMITEs, we filtered and performed comparative analysis on the two distinct groups of Ac-mMITEs, microsatellite-targeting MITEs (mt-MITEs) that are flanked by dinucleotide microsatellites on both sides and mutator-like MITEs (ml-MITEs) that contain 9/10 bp TSDs. Epigenetic analysis revealed a lower level of host-induced silencing on the mt-MITEs in comparison to the ml-MITEs, which partially explained the significantly higher abundance of mt-MITEs in pineapple genome. The mt-MITEs and ml-MITEs exhibited differential insertion preference to gene-related regions and RNA-seq analysis revealed their differential influences on expression regulation of nearby genes. CONCLUSIONS Ac-mMITEs are the most abundant MITEs in the pineapple genome and they were likely derived from Mutator-like DNA transposon. Preferential insertion in (TA) n microsatellite regions of Ac-mMITEs occurred recently and is likely the result of damage-limiting strategy adapted by Ac-mMITEs during co-evolution with their host. Insertion in (TA) n microsatellite regions might also have promoted the amplification of mt-MITEs. In addition, mt-MITEs showed no or negligible impact on nearby gene expression, which may help them escape genome control and lead to their amplification.
Collapse
Affiliation(s)
- Lianyu Lin
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Anupma Sharma
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
| | - Qingyi Yu
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA.
| |
Collapse
|
16
|
Campo S, Sánchez‐Sanuy F, Camargo‐Ramírez R, Gómez‐Ariza J, Baldrich P, Campos‐Soriano L, Soto‐Suárez M, San Segundo B. A novel Transposable element-derived microRNA participates in plant immunity to rice blast disease. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1798-1811. [PMID: 33780108 PMCID: PMC8428829 DOI: 10.1111/pbi.13592] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that direct post-transcriptional gene silencing in plant development and stress responses through cleavage or translational repression of target mRNAs. Here, we report the identification and functional characterization of a new member of the miR812 family in rice (named as miR812w) involved in disease resistance. miR812w is present in cultivated Oryza species, both japonica and indica subspecies, and wild rice species within the Oryza genus, but not in dicotyledonous species. miR812w is a 24nt-long that requires DCL3 for its biogenesis and is loaded into AGO4 proteins. Whereas overexpression of miR812w increased resistance to infection by the rice blast fungus Magnaporthe oryzae, CRISPR/Cas9-mediated MIR812w editing enhances disease susceptibility, supporting that miR812w plays a role in blast resistance. We show that miR812w derives from the Stowaway type of rice MITEs (Miniature Inverted-Repeat Transposable Elements). Moreover, miR812w directs DNA methylation in trans at target genes that have integrated a Stowaway MITE copy into their 3' or 5' untranslated region (ACO3, CIPK10, LRR genes), as well as in cis at the MIR812w locus. The target genes of miR812 were found to be hypo-methylated around the miR812 recognition site, their expression being up-regulated in transgene-free CRISPR/Cas9-edited miR812 plants. These findings further support that, in addition to post-transcriptional regulation of gene expression, miRNAs can exert their regulatory function at the transcriptional level. This relationship between miR812w and Stowaway MITEs integrated into multiple coding genes might eventually create a network for miR812w-mediated regulation of gene expression with implications in rice immunity.
Collapse
Affiliation(s)
- Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Ferran Sánchez‐Sanuy
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Rosany Camargo‐Ramírez
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Jorge Gómez‐Ariza
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Patricia Baldrich
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
- Present address:
Donald Danforth Plant Science Center975 N Warson RoadSt. LouisMO63132USA
| | - Lidia Campos‐Soriano
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Mauricio Soto‐Suárez
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
- Present address:
Corporación Colombiana de Investigación Agropecuaria. AGROSAVIAKm 14 vía Mosquera‐BogotáMosquera250047Colombia
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| |
Collapse
|
17
|
Pereira D, Oggenfuss U, McDonald BA, Croll D. Population genomics of transposable element activation in the highly repressive genome of an agricultural pathogen. Microb Genom 2021; 7:000540. [PMID: 34424154 PMCID: PMC8549362 DOI: 10.1099/mgen.0.000540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The activity of transposable elements (TEs) can be an important driver of genetic diversity with TE-mediated mutations having a wide range of fitness consequences. To avoid deleterious effects of TE activity, some fungi have evolved highly sophisticated genomic defences to reduce TE proliferation across the genome. Repeat-induced point mutation (RIP) is a fungal-specific TE defence mechanism efficiently targeting duplicated sequences. The rapid accumulation of RIPs is expected to deactivate TEs over the course of a few generations. The evolutionary dynamics of TEs at the population level in a species with highly repressive genome defences is poorly understood. Here, we analyse 366 whole-genome sequences of Parastagonospora nodorum, a fungal pathogen of wheat with efficient RIP. A global population genomics analysis revealed high levels of genetic diversity and signs of frequent sexual recombination. Contrary to expectations for a species with RIP, we identified recent TE activity in multiple populations. The TE composition and copy numbers showed little divergence among global populations regardless of the demographic history. Miniature inverted-repeat transposable elements (MITEs) and terminal repeat retrotransposons in miniature (TRIMs) were largely underlying recent intra-species TE expansions. We inferred RIP footprints in individual TE families and found that recently active, high-copy TEs have possibly evaded genomic defences. We find no evidence that recent positive selection acted on TE-mediated mutations rather that purifying selection maintained new TE insertions at low insertion frequencies in populations. Our findings highlight the complex evolutionary equilibria established by the joint action of TE activity, selection and genomic repression.
Collapse
Affiliation(s)
- Danilo Pereira
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Present address: Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, D-24306 Plön, Germany
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Bruce A. McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
18
|
Castanera R, Vendrell-Mir P, Bardil A, Carpentier MC, Panaud O, Casacuberta JM. Amplification dynamics of miniature inverted-repeat transposable elements and their impact on rice trait variability. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:118-135. [PMID: 33866641 DOI: 10.1111/tpj.15277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Transposable elements (TEs) are a rich source of genetic variability. Among TEs, miniature inverted-repeat TEs (MITEs) are of particular interest as they are present in high copy numbers in plant genomes and are closely associated with genes. MITEs are deletion derivatives of class II transposons, and can be mobilized by the transposases encoded by the latter through a typical cut-and-paste mechanism. However, MITEs are typically present at much higher copy numbers than class II transposons. We present here an analysis of 103 109 transposon insertion polymorphisms (TIPs) in 738 Oryza sativa genomes representing the main rice population groups. We show that an important fraction of MITE insertions has been fixed in rice concomitantly with its domestication. However, another fraction of MITE insertions is present at low frequencies. We performed MITE TIP-genome-wide association studies (TIP-GWAS) to study the impact of these elements on agronomically important traits and found that these elements uncover more trait associations than single nucleotide polymorphisms (SNPs) on important phenotypes such as grain width. Finally, using SNP-GWAS and TIP-GWAS we provide evidence of the replicative amplification of MITEs.
Collapse
Affiliation(s)
- Raúl Castanera
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| | - Pol Vendrell-Mir
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| | - Amélie Bardil
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, UMR CNRS/UPVD 5096, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex, 66860, France
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, UMR CNRS/UPVD 5096, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex, 66860, France
| | - Josep M Casacuberta
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
19
|
Homology-Free Detection of Transposable Elements Unveils Their Dynamics in Three Ecologically Distinct Rhodnius Species. Genes (Basel) 2020; 11:genes11020170. [PMID: 32041215 PMCID: PMC7073582 DOI: 10.3390/genes11020170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are widely distributed repetitive sequences in the genomes across the tree of life, and represent an important source of genetic variability. Their distribution among genomes is specific to each lineage. A phenomenon associated with this feature is the sudden expansion of one or several TE families, called bursts of transposition. We previously proposed that bursts of the Mariner family (DNA transposons) contributed to the speciation of Rhodnius prolixus Stål, 1859. This hypothesis motivated us to study two additional species of the R. prolixus complex: Rhodnius montenegrensis da Rosa et al., 2012 and Rhodnius marabaensis Souza et al., 2016, together with a new, de novo annotation of the R. prolixus repeatome using unassembled short reads. Our analysis reveals that the total amount of TEs present in Rhodnius genomes (19% to 23.5%) is three to four times higher than that expected based on the original quantifications performed for the original genome description of R. prolixus. We confirm here that the repeatome of the three species is dominated by Class II elements of the superfamily Tc1-Mariner, as well as members of the LINE order (Class I). In addition to R. prolixus, we also identified a recent burst of transposition of the Mariner family in R. montenegrensis and R. marabaensis, suggesting that this phenomenon may not be exclusive to R. prolixus. Rather, we hypothesize that whilst the expansion of Mariner elements may have contributed to the diversification of the R. prolixus-R. robustus species complex, the distinct ecological characteristics of these new species did not drive the general evolutionary trajectories of these TEs.
Collapse
|
20
|
Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, Lugo CSB, Elliott TA, Ware D, Peterson T, Jiang N, Hirsch CN, Hufford MB. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol 2019. [PMID: 31843001 DOI: 10.1101/657890v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Sequencing technology and assembly algorithms have matured to the point that high-quality de novo assembly is possible for large, repetitive genomes. Current assemblies traverse transposable elements (TEs) and provide an opportunity for comprehensive annotation of TEs. Numerous methods exist for annotation of each class of TEs, but their relative performances have not been systematically compared. Moreover, a comprehensive pipeline is needed to produce a non-redundant library of TEs for species lacking this resource to generate whole-genome TE annotations. RESULTS We benchmark existing programs based on a carefully curated library of rice TEs. We evaluate the performance of methods annotating long terminal repeat (LTR) retrotransposons, terminal inverted repeat (TIR) transposons, short TIR transposons known as miniature inverted transposable elements (MITEs), and Helitrons. Performance metrics include sensitivity, specificity, accuracy, precision, FDR, and F1. Using the most robust programs, we create a comprehensive pipeline called Extensive de-novo TE Annotator (EDTA) that produces a filtered non-redundant TE library for annotation of structurally intact and fragmented elements. EDTA also deconvolutes nested TE insertions frequently found in highly repetitive genomic regions. Using other model species with curated TE libraries (maize and Drosophila), EDTA is shown to be robust across both plant and animal species. CONCLUSIONS The benchmarking results and pipeline developed here will greatly facilitate TE annotation in eukaryotic genomes. These annotations will promote a much more in-depth understanding of the diversity and evolution of TEs at both intra- and inter-species levels. EDTA is open-source and freely available: https://github.com/oushujun/EDTA.
Collapse
Affiliation(s)
- Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Weija Su
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Yi Liao
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Jireh R A Agda
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Adam J Hellinga
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | - Tyler A Elliott
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- USDA-ARS NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, 14853, USA
| | - Thomas Peterson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA.
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
21
|
Maughan PJ, Lee R, Walstead R, Vickerstaff RJ, Fogarty MC, Brouwer CR, Reid RR, Jay JJ, Bekele WA, Jackson EW, Tinker NA, Langdon T, Schlueter JA, Jellen EN. Genomic insights from the first chromosome-scale assemblies of oat (Avena spp.) diploid species. BMC Biol 2019; 17:92. [PMID: 31757219 PMCID: PMC6874827 DOI: 10.1186/s12915-019-0712-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cultivated hexaploid oat (Common oat; Avena sativa) has held a significant place within the global crop community for centuries; although its cultivation has decreased over the past century, its nutritional benefits have garnered increased interest for human consumption. We report the development of fully annotated, chromosome-scale assemblies for the extant progenitor species of the As- and Cp-subgenomes, Avena atlantica and Avena eriantha respectively. The diploid Avena species serve as important genetic resources for improving common oat's adaptive and food quality characteristics. RESULTS The A. atlantica and A. eriantha genome assemblies span 3.69 and 3.78 Gb with an N50 of 513 and 535 Mb, respectively. Annotation of the genomes, using sequenced transcriptomes, identified ~ 50,000 gene models in each species-including 2965 resistance gene analogs across both species. Analysis of these assemblies classified much of each genome as repetitive sequence (~ 83%), including species-specific, centromeric-specific, and telomeric-specific repeats. LTR retrotransposons make up most of the classified elements. Genome-wide syntenic comparisons with other members of the Pooideae revealed orthologous relationships, while comparisons with genetic maps from common oat clarified subgenome origins for each of the 21 hexaploid linkage groups. The utility of the diploid genomes was demonstrated by identifying putative candidate genes for flowering time (HD3A) and crown rust resistance (Pc91). We also investigate the phylogenetic relationships among other A- and C-genome Avena species. CONCLUSIONS The genomes we report here are the first chromosome-scale assemblies for the tribe Poeae, subtribe Aveninae. Our analyses provide important insight into the evolution and complexity of common hexaploid oat, including subgenome origin, homoeologous relationships, and major intra- and intergenomic rearrangements. They also provide the annotation framework needed to accelerate gene discovery and plant breeding.
Collapse
Affiliation(s)
- Peter J Maughan
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA.
| | - Rebekah Lee
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA
| | - Rachel Walstead
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | | | - Melissa C Fogarty
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA
| | - Cory R Brouwer
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Robert R Reid
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Jeremy J Jay
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | | | | | | | - Tim Langdon
- IBERS, Aberystwyth University, Aberystwyth, Wales, UK
| | | | - Eric N Jellen
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA
| |
Collapse
|
22
|
Ramakrishnan M, Zhou M, Pan C, Hänninen H, Yrjälä K, Vinod KK, Tang D. Affinities of Terminal Inverted Repeats to DNA Binding Domain of Transposase Affect the Transposition Activity of Bamboo Ppmar2 Mariner-Like Element. Int J Mol Sci 2019; 20:ijms20153692. [PMID: 31357686 PMCID: PMC6696609 DOI: 10.3390/ijms20153692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022] Open
Abstract
Mariner-like elements (MLE) are a super-family of DNA transposons widespread in animal and plant genomes. Based on their transposition characteristics, such as random insertions and high-frequency heterogeneous transpositions, several MLEs have been developed to be used as tools in gene tagging and gene therapy. Two active MLEs, Ppmar1 and Ppmar2, have previously been identified in moso bamboo (Phyllostachys edulis). Both of these have a preferential insertion affinity to AT-rich region and their insertion sites are close to random in the host genome. In Ppmar2 element, we studied the affinities of terminal inverted repeats (TIRs) to DNA binding domain (DBD) and their influence on the transposition activity. We could identify two putative boxes in the TIRs which play a significant role in defining the TIR's affinities to the DBD. Seven mutated TIRs were constructed, differing in affinities based on similarities with those of other plant MLEs. Gel mobility shift assays showed that the TIR mutants with mutation sites G669A-C671A had significantly higher affinities than the mutants with mutation sites C657T-A660T. The high-affinity TIRs indicated that their transposition frequency was 1.5-2.0 times higher than that of the wild type TIRs in yeast transposition assays. The MLE mutants with low-affinity TIRs had relatively lower transposition frequency from that of wild types. We conclude that TIR affinity to DBD significantly affects the transposition activity of Ppmar2. The mutant MLEs highly active TIRs constructed in this study can be used as a tool for bamboo genetic studies.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| | - Chunfang Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Kim Yrjälä
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Kunnummal Kurungara Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Rice Breeding and Genetics Research Centre, Aduthurai, Tamil Nadu 612101, India
| | - Dingqin Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
23
|
Xin Y, Ma B, Xiang Z, He N. Amplification of miniature inverted-repeat transposable elements and the associated impact on gene regulation and alternative splicing in mulberry ( Morus notabilis). Mob DNA 2019; 10:27. [PMID: 31289464 PMCID: PMC6593561 DOI: 10.1186/s13100-019-0169-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background Miniature inverted-repeat transposable elements (MITEs) are common in eukaryotic genomes, and are important for genomic evolution. Results In the present study, the identification of MITEs in the mulberry genome revealed 286,122 MITE-related sequences, including 90,789 full-length elements. The amplification of mulberry MITEs and the influence of MITEs on the evolution of the mulberry genome were analyzed. The timing of MITE amplifications varied considerably among the various MITE families. Fifty-one MITE families have undergone a single round of amplification, while the other families developed from multiple amplifications. Most mulberry MITEs were inserted near genes and some could regulate gene expression through small RNAs. An analysis of transgenic plants indicated that MITE insertions can upregulate the expression of a target gene. Moreover, MITEs are frequently associated with alternative splicing events (exonizations). Conclusion The data presented herein provide insights into the generation of MITEs as well as their impact on gene regulation and evolution in mulberry. Electronic supplementary material The online version of this article (10.1186/s13100-019-0169-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Youchao Xin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715 China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715 China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715 China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715 China
| |
Collapse
|
24
|
Tang Y, Ma X, Zhao S, Xue W, Zheng X, Sun H, Gu P, Zhu Z, Sun C, Liu F, Tan L. Identification of an active miniature inverted-repeat transposable element mJing in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:639-653. [PMID: 30689248 PMCID: PMC6850418 DOI: 10.1111/tpj.14260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/01/2019] [Accepted: 01/18/2019] [Indexed: 05/27/2023]
Abstract
Miniature inverted-repeat transposable elements (MITEs) are structurally homogeneous non-autonomous DNA transposons with high copy numbers that play important roles in genome evolution and diversification. Here, we analyzed the rice high-tillering dwarf (htd) mutant in an advanced backcross population between cultivated and wild rice, and identified an active MITE named miniature Jing (mJing). The mJing element belongs to the PIF/Harbinger superfamily. japonica rice var. Nipponbare and indica var. 93-11 harbor 72 and 79 mJing family members, respectively, have undergone multiple rounds of amplification bursts during the evolution of Asian cultivated rice (Oryza sativa L.). A heterologous transposition experiment in Arabidopsis thaliana indicated that the autonomous element Jing is likely to have provides the transposase needed for mJing mobilization. We identified 297 mJing insertion sites and their presence/absence polymorphism among 71 rice samples through targeted high-throughput sequencing. The results showed that the copy number of mJing varies dramatically among Asian cultivated rice (O. sativa), its wild ancestor (O. rufipogon), and African cultivated rice (O. glaberrima) and that some mJing insertions are subject to directional selection. These findings suggest that the amplification and removal of mJing elements have played an important role in rice genome evolution and species diversification.
Collapse
Affiliation(s)
- Yanyan Tang
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijing100193China
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Xin Ma
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Shuangshuang Zhao
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Wei Xue
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Xu Zheng
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Hongying Sun
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Ping Gu
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Zuofeng Zhu
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijing100193China
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijing100193China
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Lubin Tan
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| |
Collapse
|
25
|
Marand AP, Zhao H, Zhang W, Zeng Z, Fang C, Jiang J. Historical Meiotic Crossover Hotspots Fueled Patterns of Evolutionary Divergence in Rice. THE PLANT CELL 2019; 31:645-662. [PMID: 30705136 PMCID: PMC6482639 DOI: 10.1105/tpc.18.00750] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/28/2019] [Indexed: 05/15/2023]
Abstract
Recombination plays an integral role in the creation of novel genetic variation in sexually reproducing species. Despite this important role, the determinants and evolution of crossover hotspots have remained poorly understood in plants. Here, we present a comparative analysis of two rice (Oryza sativa) historical recombination maps from two subspecies (indica and japonica) using 150 resequenced genomes. Fine-scale recombination rates and crossover hotspots were validated by comparison with a consensus genetic map and empirically derived crossovers, respectively. Strikingly, nearly 80% of crossover hotspots were unique to each subspecies, despite their relatively recent divergence and broad-scale correlated recombination rates. Crossover hotspots were enriched with Stowaway and P instability factor (PIF)/Harbinger transposons and overlapped accessible chromatin regions. Increased nucleotide diversity and signatures of population differentiation augmented by Stowaway and PIF/Harbinger transposons were prevalent at subspecies-specific crossover hotspots. Motifs derived from lineage-specific indica and japonica crossover hotspots were nearly identical in the two subspecies, implicating a core set of crossover motifs in rice. Finally, Stowaway and PIF/Harbinger transposons were associated with stabilized G/C bias within highly active hotspots, suggesting that hotspot activity can be fueled by de novo variation. These results provide evolutionary insight into historical crossover hotspots as potentially powerful drivers of sequence and subspecies evolution in plants.
Collapse
Affiliation(s)
- Alexandre P Marand
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Hainan Zhao
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Zixian Zeng
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Chao Fang
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
26
|
Vaschetto LM, Ortiz N. The Role of Sequence Duplication in Transcriptional Regulation and Genome Evolution. Curr Genomics 2019; 20:405-408. [PMID: 32476997 PMCID: PMC7235390 DOI: 10.2174/1389202920666190320140721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/26/2022] Open
Abstract
Sequence duplication is nowadays recognized as an important mechanism that underlies the evolution of eukaryote genomes, being indeed one of the most powerful strategies for the generation of adaptive diversity by modulating transcriptional activity. The evolutionary novelties simultaneously associated with sequence duplication and differential gene expression can be collectively referred to as duplication-mediated transcriptional regulation. In the last years, evidence has emerged supporting the idea that sequence duplication and functionalization represent important evolutionary strategies acting at the genome level, and both coding and non-coding sequences have been found to be targets of such events. Moreover, it has been proposed that deleterious effects of sequence duplication might be potentially silenced by endogenous cell machinery (i.e., RNA interference, epigenetic repressive marks, etc). Along these lines, our aim is to highlight the role of sequence duplication on transcriptional activity and the importance of both in genome evolution.
Collapse
Affiliation(s)
- Luis M Vaschetto
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas (IDEA, CONICET), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina.,Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, (FCEFyN, UNC), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina
| | - Natalia Ortiz
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas (IDEA, CONICET), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina.,Cátedra de Genética de Poblaciones y Evolución, Facultad de Ciencias Exactas, Físicas y Naturales, UNC, Córdoba, Argentina
| |
Collapse
|
27
|
Transposable Elements: Classification, Identification, and Their Use As a Tool For Comparative Genomics. Methods Mol Biol 2019; 1910:177-207. [PMID: 31278665 DOI: 10.1007/978-1-4939-9074-0_6] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Most genomes are populated by hundreds of thousands of sequences originated from mobile elements. On the one hand, these sequences present a real challenge in the process of genome analysis and annotation. On the other hand, they are very interesting biological subjects involved in many cellular processes. Here we present an overview of transposable elements biodiversity, and we discuss different approaches to transposable elements detection and analyses.
Collapse
|
28
|
Keidar-Friedman D, Bariah I, Kashkush K. Genome-wide analyses of miniature inverted-repeat transposable elements reveals new insights into the evolution of the Triticum-Aegilops group. PLoS One 2018; 13:e0204972. [PMID: 30356268 PMCID: PMC6200218 DOI: 10.1371/journal.pone.0204972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 09/08/2018] [Indexed: 11/19/2022] Open
Abstract
The sequence drafts of wild emmer and bread wheat facilitated high resolution, genome-wide analysis of transposable elements (TEs), which account for up to 90% of the wheat genome. Despite extensive studies, the role of TEs in reshaping nascent polyploid genomes remains to be fully understood. In this study, we retrieved miniature inverted-repeat transposable elements (MITEs) from the recently published genome drafts of Triticum aestivum, Triticum turgidum ssp. dicoccoides, Aegilops tauschii and the available genome draft of Triticum urartu. Overall, 239,126 MITE insertions were retrieved, including 3,874 insertions of a newly identified, wheat-unique MITE family that we named "Inbar". The Stowaway superfamily accounts for ~80% of the retrieved MITE insertions, while Thalos is the most abundant family. MITE insertions are distributed in the seven homologous chromosomes of the wild emmer and bread wheat genomes. The remarkably high level of insertions in the B sub-genome (~59% of total retrieved MITE insertions in the wild emmer genome draft, and ~41% in the bread wheat genome draft), emphasize its highly repetitive nature. Nearly 52% of all MITE insertions were found within or close (less than 100bp) to coding genes, and ~400 MITE sequences were found in the bread wheat transcriptome, indicating that MITEs might have a strong impact on wheat genome expression. In addition, ~40% of MITE insertions were found within TE sequences, and remarkably, ~90% of Inbar insertions were located in retrotransposon sequences. Our data thus shed new light on the role of MITEs in the diversification of allopolyploid wheat species.
Collapse
Affiliation(s)
| | - Inbar Bariah
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
29
|
Amorim IC, Costa RGC, Xavier C, de Moura RDC. Characterization and chromosomal mapping of the DgmarMITE transposon in populations of Dichotomius (Luederwaldtinia) sericeus species complex (Coleoptera: Scarabaeidae). Genet Mol Biol 2018; 41:419-425. [PMID: 29870572 PMCID: PMC6082228 DOI: 10.1590/1678-4685-gmb-2017-0230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/23/2017] [Indexed: 01/01/2023] Open
Abstract
Transposable elements are dispersed repetitive DNA sequences that can move within the genome and are related to genome and chromosome evolution, adaptation, and speciation. The aim of this study was to characterize and determine the chromosomal location and accumulation of a Mariner-like element in populations of four phylogenetically related species of the Dichotomius (Luederwaldtinia) sericeus complex. Mapping of the isolated element was performed by fluorescent in situ hybridization in different populations of analyzed species. Characterization of the isolated element revealed a degenerated transposon, named DgmarMITE. This transposon is 496-bp-long, AT rich (57%), and contains 24 bp terminal inverted repeats. In situ mapping revealed presence of this element only in two out of four species analyzed. DgmarMITE sites were located in heterochromatic and euchromatic regions and varied in location and number on the karyotypes of Dichotomius (L.) gilletti and D. (L.) guaribensis across different populations. These results demonstrate differential accumulation of the DgmarMITE in genomes of these species, which is probably due to the occurrence of ectopic recombination and cross-mobilization of the element mediated by the transposase of closely related or unrelated transposable elements.
Collapse
Affiliation(s)
- Igor Costa Amorim
- Universidade de PernambucoUniversidade de PernambucoInstituto de Ciências
BiológicasLaboratório de Biodiversidade e Genética de
InsetosRecifePEBrazilLaboratório de Biodiversidade e Genética de
Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco,
Recife, PE, Brazil
- Universidade Federal de
PernambucoUniversidade Federal de
PernambucoCentro de BiociênciasDepartamento de GenéticaRecifePEBrazilDepartamento de Genética, Centro de
Biociências, Universidade Federal de Pernambuco, Recife, PE,
Brazil
| | - Rafaelle Grazielle Coelho Costa
- Universidade de PernambucoUniversidade de PernambucoInstituto de Ciências
BiológicasLaboratório de Biodiversidade e Genética de
InsetosRecifePEBrazilLaboratório de Biodiversidade e Genética de
Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco,
Recife, PE, Brazil
| | - Crislaine Xavier
- Universidade de PernambucoUniversidade de PernambucoInstituto de Ciências
BiológicasLaboratório de Biodiversidade e Genética de
InsetosRecifePEBrazilLaboratório de Biodiversidade e Genética de
Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco,
Recife, PE, Brazil
- Universidade Federal de
PernambucoUniversidade Federal de
PernambucoCentro de BiociênciasDepartamento de GenéticaRecifePEBrazilDepartamento de Genética, Centro de
Biociências, Universidade Federal de Pernambuco, Recife, PE,
Brazil
| | - Rita de Cássia de Moura
- Universidade de PernambucoUniversidade de PernambucoInstituto de Ciências
BiológicasLaboratório de Biodiversidade e Genética de
InsetosRecifePEBrazilLaboratório de Biodiversidade e Genética de
Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco,
Recife, PE, Brazil
| |
Collapse
|
30
|
Sahebi M, Hanafi MM, van Wijnen AJ, Rice D, Rafii MY, Azizi P, Osman M, Taheri S, Bakar MFA, Isa MNM, Noor YM. Contribution of transposable elements in the plant's genome. Gene 2018; 665:155-166. [PMID: 29684486 DOI: 10.1016/j.gene.2018.04.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamed M Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | | - David Rice
- Department of Molecular Biology & Biotecnology, University of Sheffield, United Kingdom
| | - M Y Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parisa Azizi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamad Osman
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
31
|
The Functional Impact of Transposable Elements on the Diversity of Plant Genomes. DIVERSITY 2018. [DOI: 10.3390/d10020018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Stelmach K, Macko-Podgórni A, Machaj G, Grzebelus D. Miniature Inverted Repeat Transposable Element Insertions Provide a Source of Intron Length Polymorphism Markers in the Carrot ( Daucus carota L.). FRONTIERS IN PLANT SCIENCE 2017; 8:725. [PMID: 28536590 PMCID: PMC5422474 DOI: 10.3389/fpls.2017.00725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/19/2017] [Indexed: 05/27/2023]
Abstract
The prevalence of non-autonomous class II transposable elements (TEs) in plant genomes may serve as a tool for relatively rapid and low-cost development of gene-associated molecular markers. Miniature inverted-repeat transposable element (MITE) copies inserted within introns can be exploited as potential intron length polymorphism (ILP) markers. ILPs can be detected by PCR with primers anchored in exon sequences flanking the target introns. Here, we designed primers for 209 DcSto (Daucus carota Stowaway-like) MITE insertion sites within introns along the carrot genome and validated them as candidate ILP markers in order to develop a set of markers for genotyping the carrot. As a proof of concept, 90 biallelic DcS-ILP markers were selected and used to assess genetic diversity of 27 accessions comprising wild Daucus carota and cultivated carrot of different root shape. The number of effective alleles was 1.56, mean polymorphism informative content was 0.27, while the average observed and expected heterozygosity was 0.24 and 0.34, respectively. Sixty-seven loci showed positive values of Wright's fixation index. Using Bayesian approach, two clusters comprising four wild and 23 cultivated accessions, respectively, were distinguished. Within the cultivated carrot gene pool, four subclusters representing accessions from Chantenay, Danvers, Imperator, and Paris Market types were revealed. It is the first molecular evidence for root-type associated diversity structure in western cultivated carrot. DcS-ILPs detected substantial genetic diversity among the studied accessions and, showing considerable discrimination power, may be exploited as a tool for germplasm characterization and analysis of genome relationships. The developed set of DcS-ILP markers is an easily accessible molecular marker genotyping system based on TE insertion polymorphism.
Collapse
|
33
|
Gim JA, Kim HS. Identification and Expression of Equine MER-Derived miRNAs. Mol Cells 2017; 40:262-270. [PMID: 28320202 PMCID: PMC5424272 DOI: 10.14348/molcells.2017.2295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 11/27/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, small RNAs (21-23 nucleotides) that function in gene silencing and translational inhibition via the RNA interference mechanism. Most miRNAs originate from host genomic regions, such as intergenic regions, introns, exons, and transposable elements (TEs). Here, we focused on the palindromic structure of medium reiteration frequencies (MERs), which are similar to precursor miRNAs. Five MER consensus sequences (MER5A1, MER53, MER81, MER91C, and MER117) were matched with paralogous transcripts predicted to be precursor miRNAs in the horse genome (equCab2) and located in either intergenic regions or introns. The MER5A1, MER53, and MER91C sequences obtained from RepeatMasker were matched with the eca-miR-544b, eca-miR-1302, and eca-miR-652 precursor sequences derived from Ensembl transcript database, respectively. Each precursor form was anticipated to yield two mature forms, and we confirmed miRNA expression in six different tissues (cerebrum, cerebellum, lung, spleen, adrenal gland, and duodenum) of one thorough-bred horse. MER5A1-derived miRNAs generally showed significantly higher expression in the lung than in other tissues. MER91C-derived miRNA-5p also showed significantly higher expression in the duodenum than in other tissues (cerebellum, lung, spleen, and adrenal gland). The MER117-overlapped expressed sequence tag generated polycistronic miRNAs, which showed higher expression in the duodenum than other tissues. These data indicate that horse MER transposons encode miR-NAs that are expressed in several tissues and are thought to have biological functions.
Collapse
Affiliation(s)
- Jeong-An Gim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241,
Korea
- Genetic Engineering Institute, Pusan National University, Busan 46241,
Korea
- The Genomics Institute, Life Sciences Department, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241,
Korea
- Genetic Engineering Institute, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
34
|
Genome-wide analysis of transposable elements in the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): description of novel families. Mol Genet Genomics 2017; 292:565-583. [PMID: 28204924 DOI: 10.1007/s00438-017-1291-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
The coffee berry borer (CBB) Hypothenemus hampei is the most limiting pest of coffee production worldwide. The CBB genome has been recently sequenced; however, information regarding the presence and characteristics of transposable elements (TEs) was not provided. Using systematic searching strategies based on both de novo and homology-based approaches, we present a library of TEs from the draft genome of CBB sequenced by the Colombian Coffee Growers Federation. The library consists of 880 sequences classified as 66% Class I (LTRs: 46%, non-LTRs: 20%) and 34% Class II (DNA transposons: 8%, Helitrons: 16% and MITEs: 10%) elements, including families of the three main LTR (Gypsy, Bel-Pao and Copia) and non-LTR (CR1, Daphne, I/Nimb, Jockey, Kiri, R1, R2 and R4) clades and DNA superfamilies (Tc1-mariner, hAT, Merlin, P, PIF-Harbinger, PiggyBac and Helitron). We propose the existence of novel families: Hypo, belonging to the LTR Gypsy superfamily; Hamp, belonging to non-LTRs; and rosa, belonging to Class II or DNA transposons. Although the rosa clade has been previously described, it was considered to be a basal subfamily of the mariner family. Based on our phylogenetic analysis, including Tc1, mariner, pogo, rosa and Lsra elements from other insects, we propose that rosa and Lsra elements are subfamilies of an independent family of Class II elements termed rosa. The annotations obtained indicate that a low percentage of the assembled CBB genome (approximately 8.2%) consists of TEs. Although these TEs display high diversity, most sequences are degenerate, with few full-length copies of LTR and DNA transposons and several complete and putatively active copies of non-LTR elements. MITEs constitute approximately 50% of the total TEs content, with a high proportion associated with DNA transposons in the Tc1-mariner superfamily.
Collapse
|
35
|
Zhou MB, Hu H, Miskey C, Lazarow K, Ivics Z, Kunze R, Yang G, Izsvák Z, Tang DQ. Transposition of the bamboo Mariner-like element Ppmar1 in yeast. Mol Phylogenet Evol 2017; 109:367-374. [PMID: 28189615 DOI: 10.1016/j.ympev.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/30/2022]
Abstract
The moso bamboo genome contains the two structurally intact and thus potentially functional mariner-like elements Ppmar1 and Ppmar2. Both elements contain perfect terminal inverted repeats (TIRs) and a full-length intact transposase gene. Here we investigated whether Ppmar1 is functional in yeast (Saccharomyces cerevisiae). We have designed a two-component system consisting of a transposase expression cassette and a non-autonomous transposon on two separate plasmids. We demonstrate that the Ppmar1 transposase Pptpase1 catalyses excision of the non-autonomous Ppmar1NA element from the plasmid and reintegration at TA dinucleotide sequences in the yeast chromosomes. In addition, we generated 14 hyperactive Ppmar1 transposase variants by systematic single amino acid substitutions. The most active transposase variant, S171A, induces 10-fold more frequent Ppmar1NA excisions in yeast than the wild type transposase. The Ppmar1 transposon is a promising tool for insertion mutagenesis in moso bamboo and may be used in other plants as an alternative to the established transposon tagging systems.
Collapse
Affiliation(s)
- Ming-Bing Zhou
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China
| | - Hui Hu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China
| | - Csaba Miskey
- Paul Ehrlich Institute, Paul Ehrlich Str. 51-59, 63225 Langen, Germany
| | - Katina Lazarow
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Zoltán Ivics
- Paul Ehrlich Institute, Paul Ehrlich Str. 51-59, 63225 Langen, Germany
| | - Reinhard Kunze
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Guojun Yang
- Department of Biology, University of Toronto, Mississauga, ON, Canada
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany.
| | - Ding-Qin Tang
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China.
| |
Collapse
|
36
|
Han MJ, Zhou QZ, Zhang HH, Tong X, Lu C, Zhang Z, Dai F. iMITEdb: the genome-wide landscape of miniature inverted-repeat transposable elements in insects. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw148. [PMID: 28025339 PMCID: PMC5199201 DOI: 10.1093/database/baw148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/19/2016] [Accepted: 10/18/2016] [Indexed: 01/23/2023]
Abstract
Miniature inverted-repeat transposable elements (MITEs) have attracted much attention due to their widespread occurrence and high copy numbers in eukaryotic genomes. However, the systematic knowledge about MITEs in insects and other animals is still lacking. In this study, we identified 6012 MITE families from 98 insect species genomes. Comparison of these MITEs with known MITEs in the NCBI non-redundant database and Repbase showed that 5701(∼95%) of 6012 MITE families are novel. The abundance of MITEs varies drastically among different insect species, and significantly correlates with genome size. In general, larger genomes contain more MITEs than small genomes. Furthermore, all identified MITEs were included in a newly constructed database (iMITEdb) (http://gene.cqu.edu.cn/iMITEdb/), which has functions such as browse, search, BLAST and download. Overall, our results not only provide insight on insect MITEs but will also improve assembly and annotation of insect genomes. More importantly, the results presented in this study will promote studies of MITEs function, evolution and application in insects. Database URL: http://gene.cqu.edu.cn/iMITEdb/
Collapse
Affiliation(s)
- Min-Jin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | - Qiu-Zhong Zhou
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hua-Hao Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang 332000, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400715, China
| |
Collapse
|
37
|
Zhou M, Tao G, Pi P, Zhu Y, Bai Y, Meng X. Genome-wide characterization and evolution analysis of miniature inverted-repeat transposable elements (MITEs) in moso bamboo (Phyllostachys heterocycla). PLANTA 2016; 244:775-787. [PMID: 27160169 DOI: 10.1007/s00425-016-2544-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/01/2016] [Indexed: 06/05/2023]
Abstract
Moso bamboo MITEs were genome-wide identified first time, and data shows that MITEs contribute to the genomic diversity and differentiation of bamboo. Miniature inverted-repeat transposable elements (MITEs) are widespread in animals and plants. There are a large number of transposable elements in moso bamboo (Phyllostachys heterocycla var. pubescens) genome, but the genome-wide information of moso bamboo MITEs is not known yet. Here we identified 362 MITE families with a total of 489,592 MITE-related sequences, accounting for 4.74 % of the moso bamboo genome. The 362 MITE families are clustered into six known and one unknown super-families. Our analysis indicated that moso bamboo MITEs preferred to reside in or near the genes that might be involved in regulation of host gene expression. Of the seven super-families, three might undergo major expansion event twice, respectively, during 8-11 million years ago (mya) ago and 22-28 mya ago; two might experience a long expansion period from 6 to 13 mya. Almost 1/3 small RNAs might be derived from the MITE sequences. Some MITE families generate small RNAs mainly from the terminals, while others predominantly from the central region. Given the high copy number of MITEs, many siRNAs and miRNAs derived from MITE sequences and the preferential insertion of MITE into gene regions, MITEs may contribute to the genomic diversity and differentiation of bamboo.
Collapse
Affiliation(s)
- Mingbing Zhou
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China.
| | - Guiyun Tao
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Peiyao Pi
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Yihang Zhu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Youhuang Bai
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Xianwen Meng
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| |
Collapse
|
38
|
Hoshino A, Yoneda Y, Kuboyama T. A Stowaway transposon disrupts the InWDR1 gene controlling flower and seed coloration in a medicinal cultivar of the Japanese morning glory. Genes Genet Syst 2016; 91:37-40. [PMID: 27074980 DOI: 10.1266/ggs.15-00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Floricultural cultivars of the Japanese morning glory (Ipomoea nil) carry transposons of the Tpn1 family as active spontaneous mutagens. Half of the characterized mutations related to floricultural traits were caused by insertion of Tpn1 family elements. In addition, mutations comprising insertions of several bp, presumed to be footprints generated by transposon excisions, were also found. Among these, ca-1 and ca-2 are 7-bp insertions at the same position in the InWDR1 gene, which encodes a multifunctional transcription regulator. InWDR1 enhances anthocyanin pigmentation in blue flowers and red stems, and promotes dark brown seed pigmentation as well as seed-trichome formation. The recessive ca mutants show white flowers and whitish seeds. We characterized here a white flower and whitish seed line that is used as a medicinal herb. The mutant line carries a novel ca allele named ca-3, which is the InWDR1 gene carrying an insertion of a Stowaway-like transposon, InSto1. The ca-3 allele is the first example of a mutation induced by transposons other than those in the Tpn1 family in I. nil. Because InSto1 and the 7-bp putative footprints are inserted at identical positions in InWDR1, ca-3 is likely to be the ancestor of ca-1 and ca-2. According to Japanese historical records on whitish seeds of I. nil, putative ca mutants appeared at the end of the 17th century, at the latest. This is around one hundred years before the appearance of many floricultural mutants. This suggests that ca-3 is one of the oldest mutations, and that its origin is different from that of most floricultural mutations in I. nil.
Collapse
|
39
|
Wang L, Peng Q, Zhao J, Ren F, Zhou H, Wang W, Liao L, Owiti A, Jiang Q, Han Y. Evolutionary origin of Rosaceae-specific active non-autonomous hAT elements and their contribution to gene regulation and genomic structural variation. PLANT MOLECULAR BIOLOGY 2016; 91:179-91. [PMID: 26941188 DOI: 10.1007/s11103-016-0454-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
Transposable elements account for approximately 30 % of the Prunus genome; however, their evolutionary origin and functionality remain largely unclear. In this study, we identified a hAT transposon family, termed Moshan, in Prunus. The Moshan elements consist of three types, aMoshan, tMoshan, and mMoshan. The aMoshan and tMoshan types contain intact or truncated transposase genes, respectively, while the mMoshan type is miniature inverted-repeat transposable element (MITE). The Moshan transposons are unique to Rosaceae, and the copy numbers of different Moshan types are significantly correlated. Sequence homology analysis reveals that the mMoshan MITEs are direct deletion derivatives of the tMoshan progenitors, and one kind of mMoshan containing a MuDR-derived fragment were amplified predominately in the peach genome. The mMoshan sequences contain cis-regulatory elements that can enhance gene expression up to 100-fold. The mMoshan MITEs can serve as potential sources of micro and long noncoding RNAs. Whole-genome re-sequencing analysis indicates that mMoshan elements are highly active, and an insertion into S-haplotype-specific F-box gene was reported to cause the breakdown of self-incompatibility in sour cherry. Taken together, all these results suggest that the mMoshan elements play important roles in regulating gene expression and driving genomic structural variation in Prunus.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Qian Peng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, People's Republic of China
| | - Jianbo Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, A12, Ruiwangfen, Beijing, 100093, People's Republic of China
| | - Fei Ren
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, A12, Ruiwangfen, Beijing, 100093, People's Republic of China
| | - Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, People's Republic of China
| | - Wei Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Liao Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Albert Owiti
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, People's Republic of China
| | - Quan Jiang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, A12, Ruiwangfen, Beijing, 100093, People's Republic of China.
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
40
|
Zhao D, Ferguson AA, Jiang N. What makes up plant genomes: The vanishing line between transposable elements and genes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:366-80. [PMID: 26709091 DOI: 10.1016/j.bbagrm.2015.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023]
Abstract
The ultimate source of evolution is mutation. As the largest component in plant genomes, transposable elements (TEs) create numerous types of mutations that cannot be mimicked by other genetic mechanisms. When TEs insert into genomic sequences, they influence the expression of nearby genes as well as genes unlinked to the insertion. TEs can duplicate, mobilize, and recombine normal genes or gene fragments, with the potential to generate new genes or modify the structure of existing genes. TEs also donate their transposase coding regions for cellular functions in a process called TE domestication. Despite the host defense against TE activity, a subset of TEs survived and thrived through discreet selection of transposition activity, target site, element size, and the internal sequence. Finally, TEs have established strategies to reduce the efficacy of host defense system by increasing the cost of silencing TEs. This review discusses the recent progress in the area of plant TEs with a focus on the interaction between TEs and genes.
Collapse
Affiliation(s)
- Dongyan Zhao
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA
| | - Ann A Ferguson
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA
| | - Ning Jiang
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA.
| |
Collapse
|
41
|
Sun C, Feschotte C, Wu Z, Mueller RL. DNA transposons have colonized the genome of the giant virus Pandoravirus salinus. BMC Biol 2015; 13:38. [PMID: 26067596 PMCID: PMC4495683 DOI: 10.1186/s12915-015-0145-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/03/2015] [Indexed: 01/06/2023] Open
Abstract
Background Transposable elements are mobile DNA sequences that are widely distributed in prokaryotic and eukaryotic genomes, where they represent a major force in genome evolution. However, transposable elements have rarely been documented in viruses, and their contribution to viral genome evolution remains largely unexplored. Pandoraviruses are recently described DNA viruses with genome sizes that exceed those of some prokaryotes, rivaling parasitic eukaryotes. These large genomes appear to include substantial noncoding intergenic spaces, which provide potential locations for transposable element insertions. However, no mobile genetic elements have yet been reported in pandoravirus genomes. Results Here, we report a family of miniature inverted-repeat transposable elements (MITEs) in the Pandoravirus salinus genome, representing the first description of a virus populated with a canonical transposable element family that proliferated by transposition within the viral genome. The MITE family, which we name Submariner, includes 30 copies with all the hallmarks of MITEs: short length, terminal inverted repeats, TA target site duplication, and no coding capacity. Submariner elements show signs of transposition and are undetectable in the genome of Pandoravirus dulcis, the closest known relative Pandoravirus salinus. We identified a DNA transposon related to Submariner in the genome of Acanthamoeba castellanii, a species thought to host pandoraviruses, which contains remnants of coding sequence for a Tc1/mariner transposase. These observations suggest that the Submariner MITEs of P. salinus belong to the widespread Tc1/mariner superfamily and may have been mobilized by an amoebozoan host. Ten of the 30 MITEs in the P. salinus genome are located within coding regions of predicted genes, while others are close to genes, suggesting that these transposons may have contributed to viral genetic novelty. Conclusions Our discovery highlights the remarkable ability of DNA transposons to colonize and shape genomes from all domains of life, as well as giant viruses. Our findings continue to blur the division between viral and cellular genomes, adhering to the emerging view that the content, dynamics, and evolution of the genomes of giant viruses do not substantially differ from those of cellular organisms. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0145-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Sun
- Department of Biology, Colorado State University, Campus Delivery 1878, Fort Collins, CO, 80523-1878, USA.
| | - Cédric Feschotte
- Department of Human Genetics, The University of Utah, Salt Lake City, UT, 84112, USA.
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Campus Delivery 1878, Fort Collins, CO, 80523-1878, USA.
| | - Rachel Lockridge Mueller
- Department of Biology, Colorado State University, Campus Delivery 1878, Fort Collins, CO, 80523-1878, USA.
| |
Collapse
|
42
|
Fattash I, Lee CN, Mo K, Yang G. Efficient transposition of the youngest miniature inverted repeat transposable element family of yellow fever mosquito in yeast. FEBS J 2015; 282:1829-40. [PMID: 25754725 DOI: 10.1111/febs.13257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/13/2015] [Accepted: 03/04/2015] [Indexed: 01/16/2023]
Abstract
Miniature inverted repeat transposable elements (MITEs) are often the most numerous DNA transposons in plant and animal genomes. The dramatic amplification of MITE families during evolution is puzzling, because the transposase sources for the vast majority of MITE families are unknown. The yellow fever mosquito genome contains > 220-Mb MITE sequences; however, transposition activity has not been demonstrated for any of the MITE families. The Gnome elements are the youngest MITE family in this genome, with at least 116 identical copies. To test whether the putative autonomous element Ozma is capable of mobilizing Gnome and its two sibling MITEs, analyses were performed in a yeast transposition assay system. Whereas the wild-type transposase resulted in very low transposition activity, mutations in the region containing a putative nuclear export signal motif resulted in a dramatic (at least 4160-fold) increase in transposition frequency. We have also demonstrated that each residue of the novel DD37E motif is required for the activity of the Ozma transposase. Footprint sequences left at the donor sites suggest that the transposase may cleave between the second and the third nucleotides from the 5' ends of the elements. The excised elements reinsert specifically at dinucleotide 'TA', ~ 55% of them in yeast genes. The elements described in this article could potentially be useful as genetic tools for genetic manipulation of mosquitoes.
Collapse
Affiliation(s)
- Isam Fattash
- Department of Biology, University of Toronto Mississauga, ON, Canada
| | - Chia-Ni Lee
- Department of Biology, University of Toronto Mississauga, ON, Canada
| | - Kaiguo Mo
- Department of Biology, University of Toronto Mississauga, ON, Canada
| | - Guojun Yang
- Department of Biology, University of Toronto Mississauga, ON, Canada
| |
Collapse
|
43
|
Zhou MB, Zhong H, Hu JL, Tang DQ. Ppmar1andPpmar2: the first two complete and intact full-lengthmariner-like elements isolated inPhyllostachys edulis. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/12538078.2014.999117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Luchetti A. terMITEs: miniature inverted-repeat transposable elements (MITEs) in the termite genome (Blattodea: Termitoidae). Mol Genet Genomics 2015; 290:1499-509. [PMID: 25711308 DOI: 10.1007/s00438-015-1010-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/12/2015] [Indexed: 11/28/2022]
Abstract
Transposable elements (TEs) are discrete DNA sequences which are able to replicate and jump into different genomic locations. Miniature inverted-repeats TEs (MITEs) are non-autonomous DNA elements whose origin is still poorly understood. Recently, some MITEs were found to contain core repeats that can be arranged in tandem arrays; in some instances, these arrays have even given rise to satellite DNAs in the (peri)centromeric region of the host chromosomes. I report the discovery and analysis of three new MITEs found in the genome of several termite species (hence the name terMITEs) in two different families. For two of the MITEs (terMITE1-Tc1/mariner superfamily; terMITE2-piggyBac superfamily), evidence of past mobility was retrieved. Moreover, these two MITEs contained core repeats, 16 bp and 114 bp long respectively, exhibiting copy number variation. In terMITE2, the tandem duplication appeared associated with element degeneration, in line with a recently proposed evolutionary model on MITEs and the origin of tandem arrays. Concerning their genomic distribution, terMITE1 and terMITE3 appeared more frequently inserted close to coding regions while terMITE2 was mostly associated with TEs. Although MITEs are commonly distributed in coding regions, terMITE2 distribution is in line with that of other insects' piggyBac-related elements and of other small TEs found in termite genomes. This has been explained through insertional preference rather than through selective processes. Data presented here add to the knowledge on the poorly exploited polyneopteran genomes and will provide an interesting framework in which to study TEs' evolution and host's life history traits.
Collapse
Affiliation(s)
- Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, via Selmi 3, 40126, Bologna, Italy,
| |
Collapse
|
45
|
The genomic proliferation of transposable elements in colonizing populations: Schistosoma mansoni in the new world. Genetica 2015; 143:287-98. [PMID: 25681233 DOI: 10.1007/s10709-015-9825-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
Abstract
Transposable elements (TEs) are mobile genes with an inherent ability to move within and among genomes. Theory predicts that TEs proliferate extensively during physiological stress due to the breakdown of TE repression systems. We tested this hypothesis in Schistosoma mansoni, a widespread trematode parasite that causes the human disease schistosomiasis. According to phylogenetic analysis, S. mansoni invaded the new world during the last 500 years. We hypothesized that new world strains of S. mansoni would have more copies of TEs than old world strains due to the physiological stress associated with invasion of the new world. We quantified the copy number of six TEs (Saci-1, Saci-2 and Saci-3, Perere-1, Merlin-sm1, and SmTRC1) in the genome and the transcriptome of old world and new world strains of S. mansoni, using qPCR relative quantification. As predicted, the genomes of new world parasites contain significantly more copies of class I and class II TEs in both laboratory and field strains. However, such differences are not observed in the transcriptome suggesting that either TE silencing mechanisms have reactivated to control the expression of these elements or the presence of inactive truncated copies of TEs.
Collapse
|
46
|
Menzel G, Heitkam T, Seibt KM, Nouroz F, Müller-Stoermer M, Heslop-Harrison JS, Schmidt T. The diversification and activity of hAT transposons in Musa genomes. Chromosome Res 2014; 22:559-71. [DOI: 10.1007/s10577-014-9445-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 11/29/2022]
|
47
|
Thomas J, Phillips CD, Baker RJ, Pritham EJ. Rolling-circle transposons catalyze genomic innovation in a mammalian lineage. Genome Biol Evol 2014; 6:2595-610. [PMID: 25223768 PMCID: PMC4224331 DOI: 10.1093/gbe/evu204] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rolling-circle transposons (Helitrons) are a newly discovered group of mobile DNA widespread in plant and invertebrate genomes but limited to the bat family Vespertilionidae among mammals. Little is known about the long-term impact of Helitron activity because the genomes where Helitron activity has been extensively studied are predominated by young families. Here, we report a comprehensive catalog of vetted Helitrons from the 7× Myotis lucifugus genome assembly. To estimate the timing of transposition, we scored presence/absence across related vespertilionid genome sequences with estimated divergence times. This analysis revealed that the Helibat family has been a persistent source of genomic innovation throughout the vespertilionid diversification from approximately 30–36 Ma to as recently as approximately 1.8–6 Ma. This is the first report of persistent Helitron transposition over an extended evolutionary timeframe. These findings illustrate that the pattern of Helitron activity is akin to the vertical persistence of LINE retrotransposons in primates and other mammalian lineages. Like retrotransposition in primates, rolling-circle transposition has generated lineage-specific variation and accounts for approximately 110 Mb, approximately 6% of the genome of M. lucifugus. The Helitrons carry a heterogeneous assortment of host sequence including retroposed messenger RNAs, retrotransposons, DNA transposons, as well as introns, exons and regulatory regions (promoters, 5′-untranslated regions [UTRs], and 3′-UTRs) of which some are evolving in a pattern suggestive of purifying selection. Evidence that Helitrons have contributed putative promoters, exons, splice sites, polyadenylation sites, and microRNA-binding sites to transcripts otherwise conserved across mammals is presented, and the implication of Helitron activity to innovation in these unique mammals is discussed.
Collapse
Affiliation(s)
- Jainy Thomas
- Department of Human Genetics, University of Utah
| | - Caleb D Phillips
- Department of Biological Sciences and Museum, Texas Tech University
| | - Robert J Baker
- Department of Biological Sciences and Museum, Texas Tech University
| | | |
Collapse
|
48
|
Scalvenzi T, Pollet N. Insights on genome size evolution from a miniature inverted repeat transposon driving a satellite DNA. Mol Phylogenet Evol 2014; 81:1-9. [PMID: 25193611 DOI: 10.1016/j.ympev.2014.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/20/2014] [Accepted: 08/12/2014] [Indexed: 12/28/2022]
Abstract
The genome size in eukaryotes does not correlate well with the number of genes they contain. We can observe this so-called C-value paradox in amphibian species. By analyzing an amphibian genome we asked how repetitive DNA can impact genome size and architecture. We describe here our discovery of a Tc1/mariner miniature inverted-repeat transposon family present in Xenopus frogs. These transposons named miDNA4 are unique since they contain a satellite DNA motif. We found that miDNA4 measured 331 bp, contained 25 bp long inverted terminal repeat sequences and a sequence motif of 119 bp present as a unique copy or as an array of 2-47 copies. We characterized the structure, dynamics, impact and evolution of the miDNA4 family and its satellite DNA in Xenopus frog genomes. This led us to propose a model for the evolution of these two repeated sequences and how they can synergize to increase genome size.
Collapse
Affiliation(s)
- Thibault Scalvenzi
- Institute of Systems and Synthetic Biology, CNRS, Université d'Evry Val d'Essonne, Bâtiment 3, Genopole® campus 3, 1, rue Pierre Fontaine, F-91058 Evry, France
| | - Nicolas Pollet
- Institute of Systems and Synthetic Biology, CNRS, Université d'Evry Val d'Essonne, Bâtiment 3, Genopole® campus 3, 1, rue Pierre Fontaine, F-91058 Evry, France.
| |
Collapse
|
49
|
First evidence of mariner-like transposons in the genome of the marine microalga Amphora acutiuscula (Bacillariophyta). Protist 2014; 165:730-44. [PMID: 25250954 DOI: 10.1016/j.protis.2014.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022]
Abstract
Mariner-like elements (MLEs) are transposable elements able to move in the host genomes by a "cut and paste" mechanism. They have been found in numerous organisms. We succeeded in amplifying complete and truncated MLEs in the marine diatom Amphora acutiuscula. Full-length MLEs of 2,100bp delimited by imperfect Terminal Inverted Repeats revealed an intact Open Reading Frame, suggesting that the MLEs could be active. The DNA binding domain of the corresponding putative transposase could have two Helix-Turn-Helix and a Nuclear Location Site motifs, and its catalytic domain includes a particular triad of aspartic acids DD43D not previously reported. The number of copies was estimated to be 38, including approximately 20 full-length elements. Phylogenetic analysis shows that these peculiar MLEs differ from plant and other stramenopile MLEs and that they could constitute a new sub-family of Tc1-mariner elements.
Collapse
|
50
|
Yang G, Fattash I, Lee CN, Liu K, Cavinder B. Birth of three stowaway-like MITE families via microhomology-mediated miniaturization of a Tc1/Mariner element in the yellow fever mosquito. Genome Biol Evol 2014; 5:1937-48. [PMID: 24068652 PMCID: PMC3814204 DOI: 10.1093/gbe/evt146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Eukaryotic genomes contain numerous DNA transposons that move by a cut-and-paste mechanism. The majority of these elements are self-insufficient and dependent on their autonomous relatives to transpose. Miniature inverted repeat transposable elements (MITEs) are often the most numerous nonautonomous DNA elements in a higher eukaryotic genome. Little is known about the origin of these MITE families as few of them are accompanied by their direct ancestral elements in a genome. Analyses of MITEs in the yellow fever mosquito identified its youngest MITE family, designated as Gnome, that contains at least 116 identical copies. Genome-wide search for direct ancestral autonomous elements of Gnome revealed an elusive single copy Tc1/Mariner-like element, named as Ozma, that encodes a transposase with a DD37E triad motif. Strikingly, Ozma also gave rise to two additional MITE families, designated as Elf and Goblin. These three MITE families were derived at different times during evolution and bear internal sequences originated from different regions of Ozma. Upon close inspection of the sequence junctions, the internal deletions during the formation of these three MITE families always occurred between two microhomologous sites (6–8 bp). These results suggest that multiple MITE families may originate from a single ancestral autonomous element, and formation of MITEs can be mediated by sequence microhomology. Ozma and its related MITEs are exceptional candidates for the long sought-after endogenous active transposon tool in genetic control of mosquitoes.
Collapse
Affiliation(s)
- Guojun Yang
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
- *Corresponding author: E-mail:
| | - Isam Fattash
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Chia-Ni Lee
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Kun Liu
- Department of Botany and Plant Sciences, University of California Riverside
| | - Brad Cavinder
- Department of Plant Pathology and Microbiology, University of California Riverside
| |
Collapse
|