1
|
Livnat A, Love AC. Mutation and evolution: Conceptual possibilities. Bioessays 2024; 46:e2300025. [PMID: 38254311 DOI: 10.1002/bies.202300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 01/24/2024]
Abstract
Although random mutation is central to models of evolutionary change, a lack of clarity remains regarding the conceptual possibilities for thinking about the nature and role of mutation in evolution. We distinguish several claims at the intersection of mutation, evolution, and directionality and then characterize a previously unrecognized category: complex conditioned mutation. Empirical evidence in support of this category suggests that the historically famous fluctuation test should be revisited, and new experiments should be undertaken with emerging experimental techniques to facilitate detecting mutation rates within specific loci at an ultra-high, individual base pair resolution.
Collapse
Affiliation(s)
- Adi Livnat
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Alan C Love
- Department of Philosophy and Minnesota Center for Philosophy of Science, University of Minnesota (Twin Cities), Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Nguyen A, Maisnier-Patin S, Yamayoshi I, Kofoid E, Roth JR. Selective Inbreeding: Genetic Crosses Drive Apparent Adaptive Mutation in the Cairns-Foster System of Escherichia coli. Genetics 2020; 214:333-354. [PMID: 31810989 PMCID: PMC7017022 DOI: 10.1534/genetics.119.302754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/02/2019] [Indexed: 01/09/2023] Open
Abstract
The Escherichia coli system of Cairns and Foster employs a lac frameshift mutation that reverts rarely (10-9/cell/division) during unrestricted growth. However, when 108 cells are plated on lactose medium, the nongrowing lawn produces ∼50 Lac+ revertant colonies that accumulate linearly with time over 5 days. Revertants carry very few associated mutations. This behavior has been attributed to an evolved mechanism ("adaptive mutation" or "stress-induced mutagenesis") that responds to starvation by preferentially creating mutations that improve growth. We describe an alternative model, "selective inbreeding," in which natural selection acts during intercellular transfer of the plasmid that carries the mutant lac allele and the dinB gene for an error-prone polymerase. Revertant genome sequences show that the plasmid is more intensely mutagenized than the chromosome. Revertants vary widely in their number of plasmid and chromosomal mutations. Plasmid mutations are distributed evenly, but chromosomal mutations are focused near the replication origin. Rare, heavily mutagenized, revertants have acquired a plasmid tra mutation that eliminates conjugation ability. These findings support the new model, in which revertants are initiated by rare pre-existing cells (105) with many copies of the F'lac plasmid. These cells divide under selection, producing daughters that mate. Recombination between donor and recipient plasmids initiates rolling-circle plasmid over-replication, causing a mutagenic elevation of DinB level. A lac+ reversion event starts chromosome replication and mutagenesis by accumulated DinB. After reversion, plasmid transfer moves the revertant lac+ allele into an unmutagenized cell, and away from associated mutations. Thus, natural selection explains why mutagenesis appears stress-induced and directed.
Collapse
Affiliation(s)
- Amanda Nguyen
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Sophie Maisnier-Patin
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Itsugo Yamayoshi
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Eric Kofoid
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - John R Roth
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| |
Collapse
|
3
|
Selection and Plasmid Transfer Underlie Adaptive Mutation in Escherichia coli. Genetics 2018; 210:821-841. [PMID: 30194073 DOI: 10.1534/genetics.118.301347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/30/2018] [Indexed: 11/18/2022] Open
Abstract
In the Cairns-Foster adaptive mutation system, a +1 lac frameshift mutant of Escherichia coli is plated on lactose medium, where the nondividing population gives rise to Lac+ revertant colonies during a week under selection. Reversion requires the mutant lac allele to be located on a conjugative F'lac plasmid that also encodes the error-prone DNA polymerase, DinB. Rare plated cells with multiple copies of the mutant F'lac plasmid initiate the clones that develop into revertants under selection. These initiator cells arise before plating, and their extra lac copies allow them to divide on lactose and produce identical F'lac-bearing daughter cells that can mate with each other. DNA breaks can form during plasmid transfer and their recombinational repair can initiate rolling-circle replication of the recipient plasmid. This replication is mutagenic because the amplified plasmid encodes the error-prone DinB polymerase. A new model proposes that Lac+ revertants arise during mutagenic over-replication of the F'lac plasmid under selection. This mutagenesis is focused on the plasmid because the cell chromosome replicates very little. The outer membrane protein OmpA is essential for reversion under selection. OmpA helps cells conserve energy and may stabilize the long-term mating pairs that produce revertants.
Collapse
|
4
|
Hull RM, Cruz C, Jack CV, Houseley J. Environmental change drives accelerated adaptation through stimulated copy number variation. PLoS Biol 2017; 15:e2001333. [PMID: 28654659 PMCID: PMC5486974 DOI: 10.1371/journal.pbio.2001333] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/23/2017] [Indexed: 01/01/2023] Open
Abstract
Copy number variation (CNV) is rife in eukaryotic genomes and has been implicated in many human disorders, particularly cancer, in which CNV promotes both tumorigenesis and chemotherapy resistance. CNVs are considered random mutations but often arise through replication defects; transcription can interfere with replication fork progression and stability, leading to increased mutation rates at highly transcribed loci. Here we investigate whether inducible promoters can stimulate CNV to yield reproducible, environment-specific genetic changes. We propose a general mechanism for environmentally-stimulated CNV and validate this mechanism for the emergence of copper resistance in budding yeast. By analysing a large cohort of individual cells, we directly demonstrate that CNV of the copper-resistance gene CUP1 is stimulated by environmental copper. CNV stimulation accelerates the formation of novel alleles conferring enhanced copper resistance, such that copper exposure actively drives adaptation to copper-rich environments. Furthermore, quantification of CNV in individual cells reveals remarkable allele selectivity in the rate at which specific environments stimulate CNV. We define the key mechanistic elements underlying this selectivity, demonstrating that CNV is regulated by both promoter activity and acetylation of histone H3 lysine 56 (H3K56ac) and that H3K56ac is required for CUP1 CNV and efficient copper adaptation. Stimulated CNV is not limited to high-copy CUP1 repeat arrays, as we find that H3K56ac also regulates CNV in 3 copy arrays of CUP1 or SFA1 genes. The impact of transcription on DNA damage is well understood, but our research reveals that this apparently problematic association forms a pathway by which mutations can be directed to particular loci in particular environments and furthermore that this mutagenic process can be regulated through histone acetylation. Stimulated CNV therefore represents an unanticipated and remarkably controllable pathway facilitating organismal adaptation to new environments. Evolutionary theory asserts that adaptive mutations, which improve cellular fitness in challenging environments, occur at random and cannot be controlled by the cell. The mutation mechanisms involved are of widespread importance, governing diverse processes from the acquisition of resistance during chemotherapy to the emergence of nonproductive clones during industrial fermentations. Here we ask whether eukaryotic cells are in fact capable of stimulating useful, adaptive mutations at environmentally relevant loci. We show that yeast cells exposed to copper stimulate copy number amplification of the copper resistance gene CUP1, leading to the rapid emergence of adapted clones, and that this stimulation depends on the highly regulated acetylation of histone H3 lysine 56. Stimulated copy number variation (CNV) operates at sites of preexisting copy number variation, which are common in eukaryotic genomes, and provides cells with a remarkable and unexpected ability to alter their own genome in response to the environment.
Collapse
Affiliation(s)
- Ryan M. Hull
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Cristina Cruz
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Carmen V. Jack
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Simplification, Innateness, and the Absorption of Meaning from Context: How Novelty Arises from Gradual Network Evolution. Evol Biol 2017; 44:145-189. [PMID: 28572690 PMCID: PMC5429377 DOI: 10.1007/s11692-017-9407-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/06/2017] [Indexed: 02/07/2023]
Abstract
How does new genetic information arise? Traditional thinking holds that mutation happens by accident and then spreads in the population by either natural selection or random genetic drift. There have been at least two fundamental conceptual problems with imagining an alternative. First, it seemed that the only alternative is a mutation that responds "smartly" to the immediate environment; but in complex multicellulars, it is hard to imagine how this could be implemented. Second, if there were mechanisms of mutation that "knew" what genetic changes would be favored in a given environment, this would have only begged the question of how they acquired that particular knowledge to begin with. This paper offers an alternative that avoids these problems. It holds that mutational mechanisms act on information that is in the genome, based on considerations of simplicity, parsimony, elegance, etc. (which are different than fitness considerations). This simplification process, under the performance pressure exerted by selection, not only leads to the improvement of adaptations but also creates elements that have the capacity to serve in new contexts they were not originally selected for. Novelty, then, arises at the system level from emergent interactions between such elements. Thus, mechanistically driven mutation neither requires Lamarckian transmission nor closes the door on novelty, because the changes it implements interact with one another globally in surprising and beneficial ways. Finally, I argue, for example, that genes used together are fused together; that simplification leads to complexity; and that evolution and learning are conceptually linked.
Collapse
|
6
|
|
7
|
Abstract
Early research on the origins and mechanisms of mutation led to the establishment of the dogma that, in the absence of external forces, spontaneous mutation rates are constant. However, recent results from a variety of experimental systems suggest that mutation rates can increase in response to selective pressures. This chapter summarizes data demonstrating that,under stressful conditions, Escherichia coli and Salmonella can increase the likelihood of beneficial mutations by modulating their potential for genetic change.Several experimental systems used to study stress-induced mutagenesis are discussed, with special emphasison the Foster-Cairns system for "adaptive mutation" in E. coli and Salmonella. Examples from other model systems are given to illustrate that stress-induced mutagenesis is a natural and general phenomenon that is not confined to enteric bacteria. Finally, some of the controversy in the field of stress-induced mutagenesis is summarized and discussed, and a perspective on the current state of the field is provided.
Collapse
|
8
|
Hershberg R. Mutation--The Engine of Evolution: Studying Mutation and Its Role in the Evolution of Bacteria. Cold Spring Harb Perspect Biol 2015; 7:a018077. [PMID: 26330518 DOI: 10.1101/cshperspect.a018077] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mutation is the engine of evolution in that it generates the genetic variation on which the evolutionary process depends. To understand the evolutionary process we must therefore characterize the rates and patterns of mutation. Starting with the seminal Luria and Delbruck fluctuation experiments in 1943, studies utilizing a variety of approaches have revealed much about mutation rates and patterns and about how these may vary between different bacterial strains and species along the chromosome and between different growth conditions. This work provides a critical overview of the results and conclusions drawn from these studies, of the debate surrounding some of these conclusions, and of the challenges faced when studying mutation and its role in bacterial evolution.
Collapse
Affiliation(s)
- Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
9
|
Maisnier-Patin S, Roth JR. The Origin of Mutants Under Selection: How Natural Selection Mimics Mutagenesis (Adaptive Mutation). Cold Spring Harb Perspect Biol 2015; 7:a018176. [PMID: 26134316 PMCID: PMC4484973 DOI: 10.1101/cshperspect.a018176] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Selection detects mutants but does not cause mutations. Contrary to this dictum, Cairns and Foster plated a leaky lac mutant of Escherichia coli on lactose medium and saw revertant (Lac(+)) colonies accumulate with time above a nongrowing lawn. This result suggested that bacteria might mutagenize their own genome when growth is blocked. However, this conclusion is suspect in the light of recent evidence that revertant colonies are initiated by preexisting cells with multiple copies the conjugative F'lac plasmid, which carries the lac mutation. Some plated cells have multiple copies of the simple F'lac plasmid. This provides sufficient LacZ activity to support plasmid replication but not cell division. In nongrowing cells, repeated plasmid replication increases the likelihood of a reversion event. Reversion to lac(+) triggers exponential cell growth leading to a stable Lac(+) revertant colony. In 10% of these plated cells, the high-copy plasmid includes an internal tandem lac duplication, which provides even more LacZ activity—sufficient to support slow growth and formation of an unstable Lac(+) colony. Cells with multiple copies of the F'lac plasmid have an increased mutation rate, because the plasmid encodes the error-prone (mutagenic) DNA polymerase, DinB. Without DinB, unstable and stable Lac(+) revertant types form in equal numbers and both types arise with no mutagenesis. Amplification and selection are central to behavior of the Cairns-Foster system, whereas mutagenesis is a system-specific side effect or artifact caused by coamplification of dinB with lac. Study of this system has revealed several broadly applicable principles. In all populations, gene duplications are frequent stable genetic polymorphisms, common near-neutral mutant alleles can gain a positive phenotype when amplified under selection, and natural selection can operate without cell division when variability is generated by overreplication of local genome subregions.
Collapse
Affiliation(s)
- Sophie Maisnier-Patin
- Department of Microbiology and Molecular Genetic, University of California, Davis, California 95616
| | - John R Roth
- Department of Microbiology and Molecular Genetic, University of California, Davis, California 95616
| |
Collapse
|
10
|
A source of artifact in the lacZ reversion assay in Escherichia coli. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 784-785:23-30. [PMID: 26046973 DOI: 10.1016/j.mrgentox.2015.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/06/2015] [Accepted: 04/15/2015] [Indexed: 11/20/2022]
Abstract
The lacZ reversion assay in Escherichia coli measures point mutations that occur by specific base substitutions and frameshift mutations. The tester strains cannot use lactose as a carbon source (Lac(-)), and revertants are easily detected by growth on lactose medium (Lac(+)). Six strains identify the six possible base substitutions, and five strains measure +G, -G, -CG, +A and -A frameshifts. Strong mutagens give dose-dependent increases in numbers of revertants per plate and revertant frequencies. Testing compounds that are arguably nonmutagens or weakly mutagenic, we often noted statistically significant dose-dependent increases in revertant frequency that were not accompanied by an absolute increase in numbers of revertants. The increase in frequency was wholly ascribable to a declining number of viable cells owing to toxicity. Analysis of the conditions revealed that the frequency of spontaneous revertants is higher when there are fewer viable cells per plate. The phenomenon resembles "adaptive" or "stress" mutagenesis, whereby lactose revertants accumulate in Lac(-) bacteria under starvation conditions in the absence of catabolite repression. Adaptive mutation is observed after long incubation and might be expected to be irrelevant in a standard assay using 48-h incubation. However, we found that elevated revertant frequencies occur under typical assay conditions when the bacterial lawn is thin, and this can cause increases in revertant frequency that mimic chemical mutagenesis when treatments are toxic but not mutagenic. Responses that resemble chemical mutagenesis were observed in the absence of mutagenic treatment in strains that revert by different frameshift mutations. The magnitude of the artifact is affected by cell density, dilution, culture age, incubation time, catabolite repression and the age and composition of media. Although the specific reversion assay is effective for quickly distinguishing classes of mutations induced by potent mutagens, its utility for discerning effects of weak mutagens may be compromised by the artifact.
Collapse
|
11
|
Abstract
The origin of mutations under selection has been intensively studied using the Cairns-Foster system, in which cells of an Escherichia coli lac mutant are plated on lactose and give rise to 100 Lac+ revertants over several days. These revertants have been attributed variously to stress-induced mutagenesis of nongrowing cells or to selective improvement of preexisting weakly Lac+ cells with no mutagenesis. Most revertant colonies (90%) contain stably Lac+ cells, while others (10%) contain cells with an unstable amplification of the leaky mutant lac allele. Evidence is presented that both stable and unstable Lac+ revertant colonies are initiated by preexisting cells with multiple copies of the F'lac plasmid, which carries the mutant lac allele. The tetracycline analog anhydrotetracycline (AnTc) inhibits growth of cells with multiple copies of the tetA gene. Populations with tetA on their F'lac plasmid include rare cells with an elevated plasmid copy number and multiple copies of both the tetA and lac genes. Pregrowth of such populations with AnTc reduces the number of cells with multiple F'lac copies and consequently the number of Lac+ colonies appearing under selection. Revertant yield is restored rapidly by a few generations of growth without AnTc. We suggest that preexisting cells with multiple F'lac copies divide very little under selection but have enough energy to replicate their F'lac plasmids repeatedly until reversion initiates a stable Lac+ colony. Preexisting cells whose high-copy plasmid includes an internal lac duplication grow under selection and produce an unstable Lac+ colony. In this model, all revertant colonies are initiated by preexisting cells and cannot be stress induced.
Collapse
|
12
|
Livnat A. Interaction-based evolution: how natural selection and nonrandom mutation work together. Biol Direct 2013; 8:24. [PMID: 24139515 PMCID: PMC4231362 DOI: 10.1186/1745-6150-8-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/26/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The modern evolutionary synthesis leaves unresolved some of the most fundamental, long-standing questions in evolutionary biology: What is the role of sex in evolution? How does complex adaptation evolve? How can selection operate effectively on genetic interactions? More recently, the molecular biology and genomics revolutions have raised a host of critical new questions, through empirical findings that the modern synthesis fails to explain: for example, the discovery of de novo genes; the immense constructive role of transposable elements in evolution; genetic variance and biochemical activity that go far beyond what traditional natural selection can maintain; perplexing cases of molecular parallelism; and more. PRESENTATION OF THE HYPOTHESIS Here I address these questions from a unified perspective, by means of a new mechanistic view of evolution that offers a novel connection between selection on the phenotype and genetic evolutionary change (while relying, like the traditional theory, on natural selection as the only source of feedback on the fit between an organism and its environment). I hypothesize that the mutation that is of relevance for the evolution of complex adaptation-while not Lamarckian, or "directed" to increase fitness-is not random, but is instead the outcome of a complex and continually evolving biological process that combines information from multiple loci into one. This allows selection on a fleeting combination of interacting alleles at different loci to have a hereditary effect according to the combination's fitness. TESTING AND IMPLICATIONS OF THE HYPOTHESIS This proposed mechanism addresses the problem of how beneficial genetic interactions can evolve under selection, and also offers an intuitive explanation for the role of sex in evolution, which focuses on sex as the generator of genetic combinations. Importantly, it also implies that genetic variation that has appeared neutral through the lens of traditional theory can actually experience selection on interactions and thus has a much greater adaptive potential than previously considered. Empirical evidence for the proposed mechanism from both molecular evolution and evolution at the organismal level is discussed, and multiple predictions are offered by which it may be tested. REVIEWERS This article was reviewed by Nigel Goldenfeld (nominated by Eugene V. Koonin), Jürgen Brosius and W. Ford Doolittle.
Collapse
Affiliation(s)
- Adi Livnat
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061,
USA
| |
Collapse
|
13
|
Wang QM, Wang L. An evolutionary view of plant tissue culture: somaclonal variation and selection. PLANT CELL REPORTS 2012; 31:1535-47. [PMID: 22610486 DOI: 10.1007/s00299-012-1281-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 04/30/2012] [Accepted: 04/30/2012] [Indexed: 05/20/2023]
Abstract
Plants regenerated from in vitro cultures possess an array of genetic and epigenetic changes. This phenomenon is known as 'somaclonal variation' and the frequency of somaclonal variation (SV) is usually elevated far beyond that expected in nature. Initially, the relationship between time in culture and detected SV was found to support the widespread belief that SV accumulates with culture age. However, a few studies indicated that older cultures yielded regenerants with less SV. What leads to this seemed contradiction? In this article, we have proposed a novel in vitro callus selection hypothesis, differentiation bottleneck (D-bottleneck) and dedifferentiation bottleneck (Dd-bottleneck), which consider natural selection theory to be fit for cell population in vitro. The results of multiplication races between the cells with the true-to-type phenotype and the deleterious cells determine the increase/decrease of SV frequencies in calli or regenerants as in vitro culture time goes on. The possibility of interpreting the complex situation of time-related SV by the evolutionary theory is discussed in this paper. In addition, the SV threshold, space-determined hypothesis and D-bottleneck are proposed to interpret the loss of the regenerability through a long period of plant tissue culture (PTC).
Collapse
Affiliation(s)
- Qin-Mei Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, People's Republic of China.
| | | |
Collapse
|
14
|
Abstract
Populations adapt physiologically using regulatory mechanisms and genetically by means of mutations that improve growth. During growth under selection, genetic adaptation can be rapid. In several genetic systems, the speed of adaptation has been attributed to cellular mechanisms that increase mutation rates in response to growth limitation. An alternative possibility is that growth limitation serves only as a selective agent but acts on small-effect mutations that are common under all growth conditions. The genetic systems that initially suggested stress-induced mutagenesis have been analyzed without regard for multistep adaptation and some include features that make such analysis difficult. To test the selection-only model, a simpler system is examined, whose behavior was originally attributed to stress-induced mutagenesis (Yang et al. 2001, 2006). A population with a silent chromosomal lac operon gives rise to Lac+ revertant colonies that accumulate over 6 days under selection. Each colony contains a mixture of singly and doubly mutant cells. Evidence is provided that the colonies are initiated by pre-existing single mutants with a weak Lac+ phenotype. Under selection, these cells initiate slow-growing clones, in which a second mutation arises and improves growth of the resulting double mutant. The system shows no evidence of general mutagenesis during selection. Selection alone may explain rapid adaptation in this and other systems that give the appearance of mutagenesis.
Collapse
|
15
|
Abstract
Evolutionary approaches to culture remain contentious. A source of contention is that cultural mutation may be substantial and, if it drives cultural change, then current evolutionary models are not adequate. But we lack studies quantifying the contribution of mutations to directional cultural change. We estimated the contribution of one type of cultural mutations--modification of memes--to directional cultural change using an amenable study system: learned birdsongs in a species that recently entered an urban habitat. Many songbirds have higher minimum song frequency in cities, to alleviate masking by low-frequency noise. We estimated that the input of meme modifications in an urban songbird population explains about half the extent of the population divergence in song frequency. This contribution of cultural mutations is large, but insufficient to explain the entire population divergence. The remaining divergence is due to selection of memes or creation of new memes. We conclude that the input of cultural mutations can be quantitatively important, unlike in genetic evolution, and that it operates together with other mechanisms of cultural evolution. For this and other traits, in which the input of cultural mutations might be important, quantitative studies of cultural mutation are necessary to calibrate realistic models of cultural evolution.
Collapse
Affiliation(s)
- Gonçalo C Cardoso
- Department of Zoology, University of Melbourne, VIC 3010, Australia.
| | | |
Collapse
|
16
|
Effect of translesion DNA polymerases, endonucleases and RpoS on mutation rates in Salmonella typhimurium. Genetics 2010; 185:783-95. [PMID: 20421601 DOI: 10.1534/genetics.110.116376] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that bacteria have evolved mechanisms to increase their mutation rate in response to various stresses and that the translesion DNA polymerase Pol IV under control of the LexA regulon and the alternative sigma factor RpoS are involved in regulating this mutagenesis. Here we examined in Salmonella enterica serovar Typhimurium LT2 the rates for four different types of mutations (rifampicin, nalidixic acid, and chlorate resistance and Lac(+) reversion) during various growth conditions and with different levels of four translesion DNA polymerases (Pol II, Pol IV, Pol V, and SamAB) and RpoS. Constitutive derepression of the LexA regulon by a lexA(def) mutation had no effect on Lac(+) reversion rates but increased the other three mutation rates up to 11-fold, and the contribution of the translesion DNA polymerases to this mutagenesis varied with the type of mutation examined. The increase in mutation rates in the lexA(def) mutant required the presence of the LexA-controlled UvrB protein and endonucleases UvrC and Cho. With regard to the potential involvement of RpoS in mutagenesis, neither an increase in RpoS levels conferred by artificial overexpression from a plasmid nor long-term stationary phase incubation or slow growth caused an increase in any of the four mutation rates measured, alone or in combination with overexpression of the translesion DNA polymerases. In conclusion, mutation rates are remarkably robust and no combination of growth conditions, induction of translesion DNA polymerases by inactivation of LexA, or increased RpoS expression could confer an increase in mutation rates higher than the moderate increase caused by derepression of the LexA regulon alone.
Collapse
|
17
|
Shcherbakov VP. Biological species is the only possible form of existence for higher organisms: the evolutionary meaning of sexual reproduction. Biol Direct 2010; 5:14. [PMID: 20307287 PMCID: PMC2847548 DOI: 10.1186/1745-6150-5-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 03/22/2010] [Indexed: 11/22/2022] Open
Abstract
Consistent holistic view of sexual species as the highest form of biological existence is presented. The Weismann's idea that sex and recombination provide the variation for the natural selection to act upon is dominated in most discussions of the biological meaning of the sexual reproduction. Here, the idea is substantiated that the main advantage of sex is the opposite: the ability to counteract not only extinction but further evolution as well. Living systems live long owing to their ability to reproduce themselves with a high fidelity. Simple organisms (like bacteria) reach the continued existence due to the high fidelity of individual genome replication. In organisms with a large genome and complex development, the achievable fidelity of DNA replication is not enough for the precise reproduction of the genome. Such species must be capable of surviving and must remain unchanged in spite of the continuous changes of their genes. This problem has no solution in the frame of asexual ("homeogenomic") lineages. They would rapidly degrade and become extinct or blurred out in the course of the reckless evolution. The core outcome of the transition to sexual reproduction was the creation of multiorganismic entity - biological species. Individual organisms forfeited their ability to reproduce autonomously. It implies that individual organisms forfeited their ability to substantive evolution. They evolve as a part of the biological species. In case of obligatory sexuality, there is no such a thing as synchronic multi-level selection. Natural selection cannot select anything that is not a unit of reproduction. Hierarchy in biology implies the functional predestination of the parts for the sake of the whole. A crucial feature of the sexual reproduction is the formation of genomes of individual organisms by random picking them over from the continuously shuffled gene pool instead of the direct replication of the ancestor's genome. A clear anti-evolutionary consequence of the sexuality is evident from the fact that the genotypes of the individuals with an enhanced competitiveness are not transmitted to the next generation. Instead, after mating with "ordinary" individuals, these genotypes scatter and rearrange in new gene combinations, thus preventing the winner from exploiting the success.
Collapse
Affiliation(s)
- Victor P Shcherbakov
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region, Russia.
| |
Collapse
|
18
|
The tandem inversion duplication in Salmonella enterica: selection drives unstable precursors to final mutation types. Genetics 2010; 185:65-80. [PMID: 20215473 DOI: 10.1534/genetics.110.114074] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During growth under selection, mutant types appear that are rare in unselected populations. Stress-induced mechanisms may cause these structures or selection may favor a series of standard events that modify common preexisting structures. One such mutation is the short junction (SJ) duplication with long repeats separated by short sequence elements: AB*(CD)*(CD)*E (* = a few bases). Another mutation type, described here, is the tandem inversion duplication (TID), where two copies of a parent sequence flank an inverse-order segment: AB(CD)(E'D'C'B')(CD)E. Both duplication types can amplify by unequal exchanges between direct repeats (CD), and both are rare in unselected cultures but common after prolonged selection for amplification. The observed TID junctions are asymmetric (aTIDs) and may arise from a symmetrical precursor (sTID)-ABCDE(E'D'C'B'A')ABCDE-when sequential deletions remove each palindromic junction. Alternatively, one deletion can remove both sTID junctions to generate an SJ duplication. It is proposed that sTID structures form frequently under all growth conditions, but are usually lost due to their instability and fitness cost. Selection for increased copy number helps retain the sTID and favors deletions that remodel junctions, improve fitness, and allow higher amplification. Growth improves with each step in formation of an SJ or aTID amplification, allowing selection to favor completion of the mutation process.
Collapse
|
19
|
Gonzalez C, Hadany L, Ponder RG, Price M, Hastings PJ, Rosenberg SM. Mutability and importance of a hypermutable cell subpopulation that produces stress-induced mutants in Escherichia coli. PLoS Genet 2008; 4:e1000208. [PMID: 18833303 PMCID: PMC2543114 DOI: 10.1371/journal.pgen.1000208] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 08/25/2008] [Indexed: 01/03/2023] Open
Abstract
In bacterial, yeast, and human cells, stress-induced mutation mechanisms are induced in growth-limiting environments and produce non-adaptive and adaptive mutations. These mechanisms may accelerate evolution specifically when cells are maladapted to their environments, i.e., when they are are stressed. One mechanism of stress-induced mutagenesis in Escherichia coli occurs by error-prone DNA double-strand break (DSB) repair. This mechanism was linked previously to a differentiated subpopulation of cells with a transiently elevated mutation rate, a hypermutable cell subpopulation (HMS). The HMS could be important, producing essentially all stress-induced mutants. Alternatively, the HMS was proposed to produce only a minority of stress-induced mutants, i.e., it was proposed to be peripheral. We characterize three aspects of the HMS. First, using improved mutation-detection methods, we estimate the number of mutations per genome of HMS-derived cells and find that it is compatible with fitness after the HMS state. This implies that these mutants are not necessarily an evolutionary dead end, and could contribute to adaptive evolution. Second, we show that stress-induced Lac(+) mutants, with and without evidence of descent from the HMS, have similar Lac(+) mutation sequences. This provides evidence that HMS-descended and most stress-induced mutants form via a common mechanism. Third, mutation-stimulating DSBs introduced via I-SceI endonuclease in vivo do not promote Lac(+) mutation independently of the HMS. This and the previous finding support the hypothesis that the HMS underlies most stress-induced mutants, not just a minority of them, i.e., it is important. We consider a model in which HMS differentiation is controlled by stress responses. Differentiation of an HMS potentially limits the risks of mutagenesis in cell clones.
Collapse
Affiliation(s)
- Caleb Gonzalez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Graduate Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lilach Hadany
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Rebecca G. Ponder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mellanie Price
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Graduate Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
20
|
Accumulation of mutants in "aging" bacterial colonies is due to growth under selection, not stress-induced mutagenesis. Proc Natl Acad Sci U S A 2008; 105:11863-8. [PMID: 18701713 DOI: 10.1073/pnas.0804739105] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several bacterial systems show behavior interpreted as evidence for stress-induced mutagenesis (adaptive mutation), a postulated process by which nongrowing cells temporarily increase their general mutation rate. Theoretical considerations suggest that periodic stress-induced general mutagenesis would not be advantageous in the long term, due to the high cost of deleterious mutations. Alternative explanations have been tested for very few of the systems used as evidence for stress-induced mutation. In one prominent system, mutants resistant to rifampicin (Rif(R); rpoB; RNA polymerase) accumulate in cell populations that "age" on solid medium with little net growth. Mutant accumulation was initially attributed to stress-induced general mutagenesis in nongrowing cells. Evidence is presented that these Rif(R) mutants accumulate because they grow faster than parent cells during the aging period. Direct tests revealed no increase in the frequency of other mutant types during the aging period.
Collapse
|
21
|
Abstract
Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution.
Collapse
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
22
|
Cirz RT, Romesberg FE. Controlling mutation: intervening in evolution as a therapeutic strategy. Crit Rev Biochem Mol Biol 2008; 42:341-54. [PMID: 17917871 DOI: 10.1080/10409230701597741] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mutation is the driving force behind many processes linked to human disease, including cancer, aging, and the evolution of drug resistance. Mutations have traditionally been considered the inevitable consequence of replicating large genomes with polymerases of finite fidelity. Observations over the past several decades, however, have led to a new perspective on the process of mutagenesis. It has become clear that, under some circumstances, mutagenesis is a regulated process that requires the induction of pro-mutagenic enzymes and that, at least in bacteria, this induction may facilitate evolution. Herein, we review what is known about induced mutagenesis in bacteria as well as evidence that it contributes to the evolution of antibiotic resistance. Finally, we discuss the possibility that components of induced mutation pathways might be targeted for inhibition as a novel therapeutic strategy to prevent the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Ryan T Cirz
- The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
23
|
Roth JR, Kugelberg E, Reams AB, Kofoid E, Andersson DI. Origin of mutations under selection: the adaptive mutation controversy. Annu Rev Microbiol 2006; 60:477-501. [PMID: 16761951 DOI: 10.1146/annurev.micro.60.080805.142045] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Growth under selection causes new genotypes to predominate in a population. It is difficult to determine whether selection stimulates formation of new mutations or merely allows faster growth of mutants that arise independent of selection. In the practice of microbial genetics, selection is used to detect and enumerate pre-existing mutants; stringent conditions prevent growth of the parent and allow only the pre-existing mutants to grow. Used in this way, selection detects rare mutations that cause large, easily observable phenotypic changes. In natural populations, selection is imposed on growing cells and can detect the more common mutations that cause small growth improvements. As slightly improved clones expand, they can acquire additional mutational improvements. Selected sequential clonal expansions have huge power to produce new genotypes and have been suggested to underlie tumor progression. We suggest that the adaptive mutation controversy has persisted because the distinction between these two uses of selection has not been appreciated.
Collapse
Affiliation(s)
- John R Roth
- Microbiology Section, Division of Biological Sciences, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
24
|
Cirz RT, Jones MB, Gingles NA, Minogue TD, Jarrahi B, Peterson SN, Romesberg FE. Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin. J Bacteriol 2006; 189:531-9. [PMID: 17085555 PMCID: PMC1797410 DOI: 10.1128/jb.01464-06] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Staphylococcus aureus infections can be difficult to treat due to both multidrug resistance and the organism's remarkable ability to persist in the host. Persistence and the evolution of resistance may be related to several complex regulatory networks, such as the SOS response, which modifies transcription in response to environmental stress. To understand how S. aureus persists during antibiotic therapy and eventually emerges resistant, we characterized its global transcriptional response to ciprofloxacin. We found that ciprofloxacin induces prophage mobilization as well as significant alterations in metabolism, most notably the up-regulation of the tricarboxylic acid cycle. In addition, we found that ciprofloxacin induces the SOS response, which we show, by comparison of a wild-type strain and a non-SOS-inducible lexA mutant strain, includes the derepression of 16 genes. While the SOS response of S. aureus is much more limited than those of Escherichia coli and Bacillus subtilis, it is similar to that of Pseudomonas aeruginosa and includes RecA, LexA, several hypothetical proteins, and a likely error-prone Y family polymerase whose homologs in other bacteria are required for induced mutation. We also examined induced mutation and found that either the inability to derepress the SOS response or the lack of the LexA-regulated polymerase renders S. aureus unable to evolve antibiotic resistance in vitro in response to UV damage. The data suggest that up-regulation of the tricarboxylic acid cycle and induced mutation facilitate S. aureus persistence and evolution of resistance during antibiotic therapy.
Collapse
Affiliation(s)
- Ryan T Cirz
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Kugelberg E, Kofoid E, Reams AB, Andersson DI, Roth JR. Multiple pathways of selected gene amplification during adaptive mutation. Proc Natl Acad Sci U S A 2006; 103:17319-24. [PMID: 17082307 PMCID: PMC1633709 DOI: 10.1073/pnas.0608309103] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a phenomenon referred to as "adaptive mutation," a population of bacterial cells with a mutation in the lac operon (lac-) accumulates Lac+ revertants during prolonged exposure to selective growth conditions (lactose). Evidence was provided that selective conditions do not increase the mutation rate but instead favor the growth of rare cells with a duplication of the leaky lac allele. A further increase in copy number (amplification) improves growth and increases the likelihood of a sequence change by adding more mutational targets to the clone (cells and lac copies per cell). These duplications and amplifications are described here. Before selection, cells with large (134-kb) lac duplications and long junction sequences (>1 kb) were common (0.2%). The same large repeats were found after selection in cells with a low-copy-number lac amplification. Surprisingly, smaller repeats (average, 34 kb) were found in high-copy-number amplifications. The small-repeat duplications form when deletions modify a preexisting large-repeat duplication. The shorter repeat size allowed higher lac amplification and better growth on lactose. Thus, selection favors a succession of gene-amplification types that make sequence changes more probable by adding targets. These findings are relevant to genetic adaptation in any biological systems in which fitness can be increased by adding gene copies (e.g., cancer and bacterial drug resistance).
Collapse
Affiliation(s)
- Elisabeth Kugelberg
- *Section of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616; and
| | - Eric Kofoid
- *Section of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616; and
| | - Andrew B. Reams
- *Section of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616; and
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, S-751-23 Uppsala University, Uppsala, Sweden
| | - John R. Roth
- *Section of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Fehér T, Cseh B, Umenhoffer K, Karcagi I, Pósfai G. Characterization of cycA mutants of Escherichia coli. An assay for measuring in vivo mutation rates. Mutat Res 2006; 595:184-90. [PMID: 16376388 DOI: 10.1016/j.mrfmmm.2005.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/07/2005] [Accepted: 11/18/2005] [Indexed: 11/20/2022]
Abstract
Quantitative assessment of the spontaneous or induced genomic mutation rate, a fundamental evolutionary parameter, usually requires the use of well-characterized mutant selection systems. Although there is a great number of genetic selection schemes available in Escherichia coli, the selection of D-cycloserine resistant mutants is shown here to be particularly useful to yield a general view of mutation rates and spectra. The combination of a well-defined experimental protocol with the Ma-Sandri-Sarkar maximum likelihood method of fluctuation analysis results in reproducible data, adequate for statistical comparisons. The straightforward procedure is based on a simple phenotype-genotype relationship, and detects mutations in the single-copy, chromosomal cycA gene, involved in the uptake of D-cycloserine. In contrast to the widely used rifampicin resistance assay, the procedure selects mutations which are neutral in respect of cell growth. No specific genetic background is needed, and practically the entire mutation spectrum (base substitutions, frameshifts, deletions, insertions) can simultaneously be measured. A systematic analysis of cycA mutations revealed a spontaneous mutation rate of 6.54 x 10(-8) in E. coli K-12 MG1655. The mutation spectrum was dominated by point mutations (base substitutions, frameshifts), spread over the entire gene. IS insertions, caused by IS1, IS2, IS3, IS4, IS5 and IS150, represented 24% of the mutations.
Collapse
Affiliation(s)
- Tamás Fehér
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | | | | | | | | |
Collapse
|
27
|
Maisnier-Patin S, Roth JR, Fredriksson A, Nyström T, Berg OG, Andersson DI. Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nat Genet 2005; 37:1376-9. [PMID: 16273106 DOI: 10.1038/ng1676] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 08/17/2005] [Indexed: 11/08/2022]
Abstract
The relationship between the number of randomly accumulated mutations in a genome and fitness is a key parameter in evolutionary biology. Mutations may interact such that their combined effect on fitness is additive (no epistasis), reinforced (synergistic epistasis) or mitigated (antagonistic epistasis). We measured the decrease in fitness caused by increasing mutation number in the bacterium Salmonella typhimurium using a regulated, error-prone DNA polymerase (polymerase IV, DinB). As mutations accumulated, fitness costs increased at a diminishing rate. This suggests that random mutations interact such that their combined effect on fitness is mitigated and that the genome is buffered against the fitness reduction caused by accumulated mutations. Levels of the heat shock chaperones DnaK and GroEL increased in lineages that had accumulated many mutations, and experimental overproduction of GroEL further increased the fitness of lineages containing deleterious mutations. These findings suggest that overexpression of chaperones contributes to antagonistic epistasis.
Collapse
Affiliation(s)
- Sophie Maisnier-Patin
- Department of Bacteriology, Swedish Institute for Infectious Disease Control and Microbiology and Tumor Center, Karolinska Institute, S-171 82 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
What are the genetic origins of human pathogens? An international group of scientists discussed this topic at a workshop that took place in late October 2004 in Baeza (Spain). Focusing primarily on bacterial pathogens, they examined the role that pathogenicity islands and bacteriophages play on determining the virulence properties that distinguish closely related members of a given species, such as host range and tissue specificity. They also discussed an instance in which closely related bacterial species differ in the production of a cell surface modification mediating resistance to an antibiotic as a result of the disparate regulation of homologous genes. In certain pathogens, genes normally carrying out housekeeping functions may adopt new functions, whereas in other organisms, genes that respond to stresses associated with non-host environments are silenced during infection to prevent the expression of products that interfere with the normal colonization process. The adaptive behaviour of certain pathogens relies on gene variation at certain loci that by virtue of containing polymeric repeats in regulatory or coding regions, can generate variants that may or may not express products that modify the cell surface of the organism. The meeting also addressed the properties of ORFan genes, which have no homologues in the sequence databases, as well as the creation of genes de novo by duplication and divergence.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Howard Hughes Medical Institute, Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Ave., St. Louis, Missouri 63110-1093, USA.
| | | |
Collapse
|
29
|
Hastings PJ, Slack A, Petrosino JF, Rosenberg SM. Adaptive amplification and point mutation are independent mechanisms: evidence for various stress-inducible mutation mechanisms. PLoS Biol 2004; 2:e399. [PMID: 15550983 PMCID: PMC529313 DOI: 10.1371/journal.pbio.0020399] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 09/20/2004] [Indexed: 11/22/2022] Open
Abstract
“Adaptive mutation” denotes a collection of processes in which cells respond to growth-limiting environments by producing compensatory mutants that grow well, apparently violating fundamental principles of evolution. In a well-studied model, starvation of stationary-phase lac− Escherichia coli cells on lactose medium induces Lac+ revertants at higher frequencies than predicted by usual mutation models. These revertants carry either a compensatory frameshift mutation or a greater than 20-fold amplification of the leaky lac allele. A crucial distinction between alternative hypotheses for the mechanisms of adaptive mutation hinges on whether these amplification and frameshift mutation events are distinct, or whether amplification is a molecular intermediate, producing an intermediate cell type, in colonies on a pathway to frameshift mutation. The latter model allows the evolutionarily conservative idea of increased mutations (per cell) without increased mutation rate (by virtue of extra gene copies per cell), whereas the former requires an increase in mutation rate, potentially accelerating evolution. To resolve these models, we probed early events leading to rare adaptive mutations and report several results that show that amplification is not the precursor to frameshift mutation but rather is an independent adaptive outcome. (i) Using new high-resolution selection methods and stringent analysis of all cells in very young (micro)colonies (500–10,000 cells), we find that most mutant colonies contain no detectable lac-amplified cells, in contrast with previous reports. (ii) Analysis of nascent colonies, as young as the two-cell stage, revealed mutant Lac+ cells with no lac-amplified cells present. (iii) Stringent colony-fate experiments show that microcolonies of lac-amplified cells grow to form visible colonies of lac-amplified, not mutant, cells. (iv) Mutant cells do not overgrow lac-amplified cells in microcolonies fast enough to mask the lac-amplified cells. (v) lac-amplified cells are not SOS-induced, as was proposed to explain elevated mutation in a sequential model. (vi) Amplification, and not frameshift mutation, requires DNA polymerase I, demonstrating that mutation is separable from amplification, and also illuminating the amplification mechanism. We conclude that amplification and mutation are independent outcomes of adaptive genetic change. We suggest that the availability of alternative pathways for genetic/evolutionary adaptation and clonal expansion under stress may be exploited during processes ranging from the evolution of drug resistance to cancer progression. Cells can respond to stress by apparently increasing their mutation rate. This study provides evidence that there is more than one pathway by which cells achieve such a response
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| | | | | | | |
Collapse
|
30
|
Pettersson ME, Andersson DI, Roth JR, Berg OG. The amplification model for adaptive mutation: simulations and analysis. Genetics 2004; 169:1105-15. [PMID: 15489536 PMCID: PMC1449099 DOI: 10.1534/genetics.104.030338] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been proposed that the lac revertants arising under selective conditions in the Cairns experiment do not arise by stress-induced mutagenesis of stationary phase cells as has been previously assumed. Instead, these revertants may arise within growing clones initiated by cells with a preexisting duplication of the weakly functional lac allele used in this experiment. It is proposed that spontaneous stepwise increases in lac copy number (amplification) allow a progressive improvement in growth. Reversion is made more likely primarily by the resultant increase in the number of mutational targets--more cells with more lac copies. The gene amplification model requires no stress-induced variation in the rate or target specificity of mutation and thus does not violate neo-Darwinian theory. However, it does require that a multistep process of amplification, reversion, and amplification segregation be completed within approximately 20 generations of growth. This work examines the proposed amplification model from a theoretical point of view, formalizing it into a mathematical framework and using this to determine what would be required for the process to occur within the specified period. The analysis assumes no stress-induced change in mutation rate and describes only the growth improvement occurring during the process of amplification and subsequent elimination of excess mutant lac copies. The dynamics of the system are described using Monte Carlo simulations and numerical integration of the deterministic equations governing the system. The results imply that the amplification model can account for the behavior of the system using biologically reasonable parameter values and thus can, in principle, explain Cairnsian adaptive mutation.
Collapse
Affiliation(s)
- Mats E Pettersson
- Department of Molecular Evolution, Uppsala University EBC, SE-75236 Uppsala, Sweden
| | | | | | | |
Collapse
|
31
|
Cairns J, Foster PL. The risk of lethals for hypermutating bacteria in stationary phase. Genetics 2004; 165:2317-8; author reply 2319-21. [PMID: 14738105 PMCID: PMC1462888 DOI: 10.1093/genetics/165.4.2317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Roth JR, Andersson DI. Adaptive mutation: how growth under selection stimulates Lac(+) reversion by increasing target copy number. J Bacteriol 2004; 186:4855-60. [PMID: 15262920 PMCID: PMC451646 DOI: 10.1128/jb.186.15.4855-4860.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- John R Roth
- University of California Davis, Microbiology Section, One Shields Ave., Davis, CA 95616, USA.
| | | |
Collapse
|
33
|
Ilves H, Hõrak R, Teras R, Kivisaar M. IHF is the limiting host factor in transposition of Pseudomonas putida transposon Tn4652 in stationary phase. Mol Microbiol 2004; 51:1773-85. [PMID: 15009901 DOI: 10.1111/j.1365-2958.2003.03948.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transpositional activity of mobile elements is not constant. Conditional regulation of host factors involved in transposition may severely change the activity of mobile elements. We have demonstrated previously that transposition of Tn4652 in Pseudomonas putida is a stationary phase-specific event, which requires functional sigma S (Ilves et al., 2001, J Bacteriol 183: 5445-5448). We hypothesized that integration host factor (IHF), the concentration of which is increased in starving P. putida, might contribute to the transposition of Tn4652 as well. Here, we demonstrate that transposition of Tn4652 in stationary phase P. putida is essentially limited by the amount of IHF. No transposition of Tn4652 occurs in a P. putida ihfA-defective strain. Moreover, overexpression of IHF results in significant enhancement of transposition compared with the wild-type strain. This indicates that the amount of IHF is a bottleneck in Tn4652 transposition. Gel mobility shift and DNase I footprinting studies revealed that IHF is necessary for the binding of transposase to both transposon ends. In vitro, transposase can bind to inverted repeats of transposon only after the binding of IHF. The results obtained in this study indicate that, besides sigma S, IHF is another host factor that is implicated in the elevation of transposition in stationary phase.
Collapse
Affiliation(s)
- Heili Ilves
- Estonian Biocentre and Institute of Molecular and Cell Biology, Tartu University, 23 Riia Street, 51010 Tartu, Estonia
| | | | | | | |
Collapse
|
34
|
Koch AL. Catastrophe and what to do about it if you are a bacterium: the importance of frameshift mutants. Crit Rev Microbiol 2004; 30:1-6. [PMID: 15116759 DOI: 10.1080/10408410490266401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Key problems that bacteria have historically faced are the challenges of the lack of essential nutrients and the presence of antibiotics produced naturally, but there are many other challenges. It appears that for many of these challenges the bacteria have mechanisms encoded in their genomes that are not usually functioning, but may be "turned on" when needed, even if the need only occurs once in hundreds of thousands of generations. Such mechanisms at other times somehow need to be "turned off" because they may cause a slight disadvantage, or even a grave disadvantage to the cell compared with wild-type cells during the time the population is not being challenged. On the other hand, a gene cannot simply be discarded because it might be needed again. How do microorganisms solve the problem of responding to challenges that only occur rarely? I suggest that in most cases, the mutation must occur by the existence of a readily reversible mutation. The mutation in likely the result of a frameshift mutation that caused the response and later another frameshift occurs to return the genome to its original state.
Collapse
Affiliation(s)
- Arthur L Koch
- Biology Department, Indiana University, Bloomington, Indiana 47405-6801, USA.
| |
Collapse
|
35
|
Roth JR, Andersson DI. Amplification–mutagenesis—how growth under selection contributes to the origin of genetic diversity and explains the phenomenon of adaptive mutation. Res Microbiol 2004; 155:342-51. [PMID: 15207866 DOI: 10.1016/j.resmic.2004.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 01/20/2004] [Indexed: 11/30/2022]
Abstract
The behavior of a particular bacterial genetic system has been interpreted as evidence that selective stress induces general mutagenesis or even preferentially directs mutations to sites that improve growth (adaptive mutation). It has been proposed that changes in mutability are a programmed response to stress in non-growing cells. In contrast, the amplification-mutagenesis model suggests that stress has no direct effect on the mutation rate and that mutations arise in cells growing under strong selection. In this model, stress serves only as a selective pressure that favors cells with multiple copies of a growth-limiting gene. Mutations are made more probable because more target copies are added to the selection plate-more cells with more mutational targets per cell. The amplification-mutagenesis process involves standard genetic events and therefore should apply to all biological systems. Idiosyncrasies of the particular system described here accelerate this process, allowing an evolutionary series of events to be completed in only a few days.
Collapse
Affiliation(s)
- John R Roth
- Section of Microbiology, University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
36
|
Tenaillon O, Denamur E, Matic I. Evolutionary significance of stress-induced mutagenesis in bacteria. Trends Microbiol 2004; 12:264-70. [PMID: 15165604 DOI: 10.1016/j.tim.2004.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutagenesis is often increased in bacterial populations as a consequence of stress-induced genetic pathways. Analysis of the molecular mechanisms involved suggests that mutagenesis might be increased as a by-product of the stress response of the organism. By contrast, computer simulations and analyses of stress-inducible phenotypes among natural isolates of Escherichia coli suggest that stress-induced mutagenesis (SIM) could be the result of selection because of the beneficial mutations that such a process can potentially generate. Regardless of the nature of the selective pressure acting on SIM, it is possible that the resulting increased genetic variability plays an important role in bacterial evolution.
Collapse
Affiliation(s)
- Olivier Tenaillon
- INSERM E0339 Faculté de Médecine Xavier Bichat, Université Denis Diderot-Paris VII, 16 rue Henri Huchard 75870 Paris cedex 18, France.
| | | | | |
Collapse
|
37
|
Abstract
A recent study indicates that the genomic mutation rate of the gut bacterium Escherichia coli is substantially higher in nongrowing than growing cultures. These findings are important in the light of the ongoing controversy over the generality and robustness of stationary phase mutagenesis and its evolutionary implications.
Collapse
Affiliation(s)
- Paul Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
38
|
Tegova R, Tover A, Tarassova K, Tark M, Kivisaar M. Involvement of error-prone DNA polymerase IV in stationary-phase mutagenesis in Pseudomonas putida. J Bacteriol 2004; 186:2735-44. [PMID: 15090515 PMCID: PMC387815 DOI: 10.1128/jb.186.9.2735-2744.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 01/23/2004] [Indexed: 11/20/2022] Open
Abstract
In this work we studied involvement of DNA polymerase IV (Pol IV) (encoded by the dinB gene) in stationary-phase mutagenesis in Pseudomonas putida. For this purpose we constructed a novel set of assay systems that allowed detection of different types of mutations (e.g., 1-bp deletions and different base substitutions) separately. A significant effect of Pol IV became apparent when the frequency of accumulation of 1-bp deletion mutations was compared in the P. putida wild-type strain and its Pol IV-defective dinB knockout derivative. Pol IV-dependent mutagenesis caused a remarkable increase (approximately 10-fold) in the frequency of accumulation of 1-bp deletion mutations on selective plates in wild-type P. putida populations starved for more than 1 week. No effect of Pol IV on the frequency of accumulation of base substitution mutations in starving P. putida cells was observed. The occurrence of 1-bp deletions in P. putida cells did not require a functional RecA protein. RecA independence of Pol IV-associated mutagenesis was also supported by data showing that transcription from the promoter of the P. putida dinB gene was not significantly influenced by the DNA damage-inducing agent mitomycin C. Therefore, we hypothesize that mechanisms different from the classical RecA-dependent SOS response could elevate Pol IV-dependent mutagenesis in starving P. putida cells.
Collapse
Affiliation(s)
- Radi Tegova
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia
| | | | | | | | | |
Collapse
|
39
|
Roth JR, Kofoid E, Roth FP, Berg OG, Seger J, Andersson DI. Adaptive Mutation Requires No Mutagenesis—Only Growth Under Selection: A Response. Genetics 2003. [DOI: 10.1093/genetics/165.4.2319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- John R Roth
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Eric Kofoid
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Frederick P Roth
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Otto G Berg
- Department of Molecular Evolution, Evolution Biology Centre, Uppsala University, SE-75236 Uppsala, Sweden
| | - Jon Seger
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Dan I Andersson
- Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden
| |
Collapse
|
40
|
Slechta ES, Bunny KL, Kugelberg E, Kofoid E, Andersson DI, Roth JR. Adaptive mutation: general mutagenesis is not a programmed response to stress but results from rare coamplification of dinB with lac. Proc Natl Acad Sci U S A 2003; 100:12847-52. [PMID: 14559967 PMCID: PMC240707 DOI: 10.1073/pnas.1735464100] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a particular genetic system, selection stimulates reversion of a lac mutation and causes genome-wide mutagenesis (adaptive mutation). Selection allows rare plated cells with a duplication of the leaky lac allele to initiate clones within which further lac amplification improves growth rate. Growth and amplification add mutational targets to each clone and thereby increase the likelihood of reversion. We suggest that general mutagenesis occurs only in clones whose lac amplification includes the nearby dinB+ gene (for error-prone DNA polymerase IV). Thus mutagenesis is not a programmed response to stress but a side effect of amplification in a few clones; it is not central to the effect of selection on reversion.
Collapse
Affiliation(s)
- E. Susan Slechta
- Microbiology Section, Division of Biological Sciences, University of California, Davis, CA 95616; Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden; and Karolinska Institute of Microbiology, Tumour Biology Center, S-171 77 Solna, Sweden
| | - Kim L. Bunny
- Microbiology Section, Division of Biological Sciences, University of California, Davis, CA 95616; Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden; and Karolinska Institute of Microbiology, Tumour Biology Center, S-171 77 Solna, Sweden
| | - Elisabeth Kugelberg
- Microbiology Section, Division of Biological Sciences, University of California, Davis, CA 95616; Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden; and Karolinska Institute of Microbiology, Tumour Biology Center, S-171 77 Solna, Sweden
| | - Eric Kofoid
- Microbiology Section, Division of Biological Sciences, University of California, Davis, CA 95616; Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden; and Karolinska Institute of Microbiology, Tumour Biology Center, S-171 77 Solna, Sweden
| | - Dan I. Andersson
- Microbiology Section, Division of Biological Sciences, University of California, Davis, CA 95616; Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden; and Karolinska Institute of Microbiology, Tumour Biology Center, S-171 77 Solna, Sweden
| | - John R. Roth
- Microbiology Section, Division of Biological Sciences, University of California, Davis, CA 95616; Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden; and Karolinska Institute of Microbiology, Tumour Biology Center, S-171 77 Solna, Sweden
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Abstract
Bacterial adaptation to antibiotics has been very successful and over the past decade the increase in antibiotic resistance has generated considerable medical problems. Even though many drug resistances confer a fitness cost, suggesting that they might disappear by reducing the volume of antibiotic use, increasing evidence obtained from laboratory and epidemiological studies indicate that several processes will act to cause long-term persistence of resistant bacteria. Compensatory evolution that ameliorates the costs of resistance, the occurrence of cost-free resistances and genetic linkage between non-selected and selected resistances will confer a stabilization of the resistant bacteria. Thus, it is of importance that we forcefully implement strategies to reduce the rate of appearance and spread of resistant bacteria to allow new drug discovery to catch up with bacterial resistance development.
Collapse
Affiliation(s)
- Dan I Andersson
- Swedish Institute for Infectious Disease Control, Dept. of Bacteriology, Nobels väg 18, S-171 82, Stockholm, Sweden.
| |
Collapse
|
42
|
Elena SF, Lenski RE. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 2003; 4:457-69. [PMID: 12776215 DOI: 10.1038/nrg1088] [Citation(s) in RCA: 891] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microorganisms have been mutating and evolving on Earth for billions of years. Now, a field of research has developed around the idea of using microorganisms to study evolution in action. Controlled and replicated experiments are using viruses, bacteria and yeast to investigate how their genomes and phenotypic properties evolve over hundreds and even thousands of generations. Here, we examine the dynamics of evolutionary adaptation, the genetic bases of adaptation, tradeoffs and the environmental specificity of adaptation, the origin and evolutionary consequences of mutators, and the process of drift decay in very small populations.
Collapse
Affiliation(s)
- Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | | |
Collapse
|