1
|
Abstract
Reduction of insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) extends the lifespan of various species. So far, several longevity mouse models have been developed containing mutations related to growth signaling deficiency by targeting growth hormone (GH), IGF1, IGF1 receptor, insulin receptor, and insulin receptor substrate. In addition, p70 ribosomal protein S6 kinase 1 (S6K1) knockout leads to lifespan extension. S6K1 encodes an important kinase in the regulation of cell growth. S6K1 is regulated by mechanistic target of rapamycin (mTOR) complex 1. The v-myc myelocytomatosis viral oncogene homolog (MYC)-deficient mice also exhibits a longevity phenotype. The gene expression profiles of these mice models have been measured to identify their longevity mechanisms. Here, we summarize our knowledge of long-lived mouse models related to growth and discuss phenotypic characteristics, including organ-specific gene expression patterns.
Collapse
Affiliation(s)
- Seung-Soo Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea
| | - Cheol-Koo Lee
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02481, Korea
| |
Collapse
|
2
|
Aguiar-Oliveira MH, Bartke A. Growth Hormone Deficiency: Health and Longevity. Endocr Rev 2019; 40:575-601. [PMID: 30576428 PMCID: PMC6416709 DOI: 10.1210/er.2018-00216] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
The important role of GH in the control of mammalian longevity was first deduced from extended longevity of mice with genetic GH deficiency (GHD) or GH resistance. Mice with isolated GHD (IGHD) due to GHRH or GHRH receptor mutations, combined deficiency of GH, prolactin, and TSH, or global deletion of GH receptors live longer than do their normal siblings. They also exhibit multiple features of delayed and/or slower aging, accompanied by extension of healthspan. The unexpected, remarkable longevity benefit of severe endocrine defects in these animals presumably represents evolutionarily conserved trade-offs among aging, growth, maturation, fecundity, and the underlying anabolic processes. Importantly, the negative association of GH signaling with longevity extends to other mammalian species, apparently including humans. Data obtained in humans with IGHD type 1B, owing to a mutation of the GHRH receptor gene, in the Itabaianinha County, Brazil, provide a unique opportunity to study the impact of severe reduction in GH signaling on age-related characteristics, health, and functionality. Individuals with IGHD are characterized by proportional short stature, doll facies, high-pitched voices, and central obesity. They have delayed puberty but are fertile and generally healthy. Moreover, these IGHD individuals are partially protected from cancer and some of the common effects of aging and can attain extreme longevity, 103 years of age in one case. We think that low, but detectable, residual GH secretion combined with life-long reduction of circulating IGF-1 and with some tissue levels of IGF-1 and/or IGF-2 preserved may account for the normal longevity and apparent extension of healthspan in these individuals.
Collapse
Affiliation(s)
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois
| |
Collapse
|
3
|
Abstract
The interrelationships of growth hormone (GH) actions and aging are complex and incompletely understood. The very pronounced age-related decline in GH secretion together with benefits of GH therapy in individuals with congenital or adult GH deficiency (GHD) prompted interest in GH as an anti-aging agent. However, the benefits of treatment of normal elderly subjects with GH appear to be marginal and counterbalanced by worrisome side effects. In laboratory mice, genetic GH deficiency or resistance leads to a remarkable extension of longevity accompanied by signs of delayed and/or slower aging. Mechanisms believed to contribute to extended longevity of GH-related mutants include improved anti-oxidant defenses, enhanced insulin sensitivity and reduced insulin levels, reduced inflammation and cell senescence, major shifts in mitochondrial function and energy metabolism, and greater stress resistance. Negative association of the somatotropic signaling and GH/insulin-like growth factor 1 (IGF-1)-dependent traits with longevity has also been shown in other mammalian species. In humans, syndromes of GH resistance or deficiency have no consistent effect on longevity, but can provide striking protection from cancer, diabetes and atherosclerosis. More subtle alterations in various steps of GH and IGF-1 signaling are associated with reduced old-age mortality, particularly in women and with improved chances of attaining extremes of lifespan. Epidemiological studies raise a possibility that the relationship of IGF-1 and perhaps also GH levels with human healthy aging and longevity may be biphasic. However, the impact of somatotropic signaling on neoplastic disease is difficult to separate from its impact on aging, and IGF-1 levels exhibit opposite associations with different chronic, age-related diseases.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Justin Darcy
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA
| |
Collapse
|
4
|
Chung WH, Dao RL, Chen LK, Hung SI. The role of genetic variants in human longevity. Ageing Res Rev 2010; 9 Suppl 1:S67-78. [PMID: 20708717 PMCID: PMC7105197 DOI: 10.1016/j.arr.2010.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 08/03/2010] [Indexed: 01/04/2023]
Abstract
Human longevity is a complex phenotype with a strong genetic predisposition. Increasing evidence has revealed the genetic antecedents of human longevity. This article aims to review the data of various case/control association studies that examine the difference in genetic polymorphisms between long-lived people and younger subjects across different human populations. There are more than 100 candidate genes potentially involved in human longevity; this article particularly focuses on genes of the insulin/IGF-1 pathway, FOXO3A, FOXO1A, lipoprotein metabolism (e.g., APOE and PON1), and cell-cycle regulators (e.g., TP53 and P21). Since the confirmed genetic components for human longevity are few to date, further precise assessment of the genetic contributions is required. Gaining a better understanding of the contribution of genetics to human longevity may assist in the design of improved treatment methods for age-related diseases, delay the aging process, and, ultimately, prolong the human lifespan.
Collapse
|
5
|
Salvioli S, Capri M, Bucci L, Lanni C, Racchi M, Uberti D, Memo M, Mari D, Govoni S, Franceschi C. Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunol Immunother 2009; 58:1909-17. [PMID: 19139887 PMCID: PMC11030834 DOI: 10.1007/s00262-008-0639-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 12/02/2008] [Indexed: 11/30/2022]
Abstract
BACKGROUND Centenarians are exceptionally long living individuals who escaped the most common age-related diseases. In particular they appear to be effectively protected from cancers. The mechanisms that underlie this protection are quite complex and still largely unclear. AIM To critically analyse the literature in order to propose a unifying hypothesis that can account for this cancer protection in centenarians. METHODS Review of the scientific literature regarding three main players in tumourigenesis such as IGF-1, inflammation and p53, and centenarians. RESULTS Centenarians appear to be characterised by low IGF-1-mediated responses and high levels of anti-inflammatory cytokines such as IL-10 and TGF-beta, a condition that results in protection from cancer. Both inflammation and IGF-1 pathway converge on the tumour suppressor p53. Accordingly, some studies indicate that genetic variants of p53 are associated with human longevity by providing protection from cancer mortality. CONCLUSIONS The available data let us to hypothesise that among other possible mechanisms, well-preserved p53-mediated responses are likely a key factor contributing to protection from cancer in centenarians.
Collapse
Affiliation(s)
- Stefano Salvioli
- Department of Experimental Pathology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Maes OC, An J, Sarojini H, Wang E. Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev 2008; 129:534-41. [DOI: 10.1016/j.mad.2008.05.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/20/2008] [Accepted: 05/02/2008] [Indexed: 02/04/2023]
|
7
|
Swindell WR. Gene expression profiling of long-lived dwarf mice: longevity-associated genes and relationships with diet, gender and aging. BMC Genomics 2007; 8:353. [PMID: 17915019 PMCID: PMC2094713 DOI: 10.1186/1471-2164-8-353] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 10/03/2007] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Long-lived strains of dwarf mice carry mutations that suppress growth hormone (GH) and insulin-like growth factor I (IGF-I) signaling. The downstream effects of these endocrine abnormalities, however, are not well understood and it is unclear how these processes interact with aging mechanisms. This study presents a comparative analysis of microarray experiments that have measured hepatic gene expression levels in long-lived strains carrying one of four mutations (Prop1(df/df), Pit1(dw/dw), Ghrhr(lit/lit), GHR-KO) and describes how the effects of these mutations relate to one another at the transcriptional level. Points of overlap with the effects of calorie restriction (CR), CR mimetic compounds, low fat diets, gender dimorphism and aging were also examined. RESULTS All dwarf mutations had larger and more consistent effects on IGF-I expression than dietary treatments. In comparison to dwarf mutations, however, the transcriptional effects of CR (and some CR mimetics) overlapped more strongly with those of aging. Surprisingly, the Ghrhr(lit/lit) mutation had much larger effects on gene expression than the GHR-KO mutation, even though both mutations affect the same endocrine pathway. Several genes potentially regulated or co-regulated with the IGF-I transcript in liver tissue were identified, including a DNA repair gene (Snm1) that is upregulated in proportion to IGF-I inhibition. A total of 13 genes exhibiting parallel differential expression patterns among all four strains of long-lived dwarf mice were identified, in addition to 30 genes with matching differential expression patterns in multiple long-lived dwarf strains and under CR. CONCLUSION Comparative analysis of microarray datasets can identify patterns and consistencies not discernable from any one dataset individually. This study implements new analytical approaches to provide a detailed comparison among the effects of life-extending mutations, dietary treatments, gender and aging. This comparison provides insight into a broad range of issues relevant to the study of mammalian aging. In this context, 43 longevity-associated genes are identified and individual genes with the highest level of support among all microarray experiments are highlighted. These results provide promising targets for future experimental investigation as well as potential clues for understanding the functional basis of lifespan extension in mammalian systems.
Collapse
Affiliation(s)
- William R Swindell
- Department of Pathology, University of Michigan, 3118 BSRB, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Swindell WR. Genotype-by-age interaction and identification of longevity-associated genes from microarray data. AGE (DORDRECHT, NETHERLANDS) 2007; 29:97-102. [PMID: 19424835 PMCID: PMC2267658 DOI: 10.1007/s11357-007-9033-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 05/06/2007] [Indexed: 05/27/2023]
Abstract
Microarray-based comparisons of long-lived and normal mouse strains represent a promising approach for dissecting the basis of lifespan extension in higher organisms. Recently, Boylston et al. (2006) generated a genome-wide data set that allowed expression levels of Snell (Pit1 (dw/dw)) and Ames (Prop1 (df/df)) long-lived mice to be compared with age-matched control mice across different ages (6-24 months). Longevity-associated genes were identified as those genes exhibiting differential expression between long-lived and normal mice at every age examined. In this communication, an alternative approach to identifying longevity-associated genes is suggested and applied to the data sets considered by Boylston et al. (2006). Longevity-associated genes are defined as those exhibiting significant genotype-by-age interaction with respect to expression levels of long-lived and normal mice, and a total of 63 longevity-associated genes are identified. This approach may lend greater confidence to the inference that expression of identified genes specifically underlies aging differences between long-lived and normal genotypes.
Collapse
Affiliation(s)
- William R Swindell
- Department of Statistics and Probability, Michigan State University, A-413 Wells Hall, East Lansing, MI 48824, USA.
| |
Collapse
|
9
|
Salvioli S, Olivieri F, Marchegiani F, Cardelli M, Santoro A, Bellavista E, Mishto M, Invidia L, Capri M, Valensin S, Sevini F, Cevenini E, Celani L, Lescai F, Gonos E, Caruso C, Paolisso G, De Benedictis G, Monti D, Franceschi C. Genes, ageing and longevity in humans: problems, advantages and perspectives. Free Radic Res 2007; 40:1303-23. [PMID: 17090420 DOI: 10.1080/10715760600917136] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many epidemiological data indicate the presence of a strong familial component of longevity that is largely determined by genetics, and a number of possible associations between longevity and allelic variants of genes have been described. A breakthrough strategy to get insight into the genetics of longevity is the study of centenarians, the best example of successful ageing. We review the main results regarding nuclear genes as well as the mitochondrial genome, focusing on the investigations performed on Italian centenarians, compared to those from other countries. These studies produced interesting results on many putative "longevity genes". Nevertheless, many discrepancies are reported, likely due to the population-specific interactions between gene pools and environment. New approaches, including large-scale studies using high-throughput techniques, are urgently needed to overcome the limits of traditional association studies performed on a limited number of polymorphisms in order to make substantial progress to disentangle the genetics of a trait as complex as human longevity.
Collapse
Affiliation(s)
- S Salvioli
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Alvarez M, Ballantyne J. The identification of newborns using messenger RNA profiling analysis. Anal Biochem 2006; 357:21-34. [PMID: 16870130 DOI: 10.1016/j.ab.2006.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 06/13/2006] [Accepted: 06/14/2006] [Indexed: 11/16/2022]
Abstract
The ability to determine the physical characteristics of an individual depositing a bloodstain at a crime scene would be an invaluable tool to investigators, akin to eyewitness information. One useful biometric that may be amenable to molecular genetic analysis is the biological age of an individual. In theory, it may be possible to determine patterns of gene expression that are age specific, thereby permitting the distinction among tissue samples originating from individuals of different ages (e.g., newborn, adolescent, middle-age, elderly). We have discovered two novel isoforms of gamma hemoglobin messenger RNA, designated HBG1n and HBG2n, which exhibit an extremely restricted pattern of gene expression, being confined to newborn individuals. Multiplex quantitative reverse transcription PCR (qRT-PCR) assays incorporating these novel mRNAs have been designed, tested, and evaluated for their potential forensic use. The results indicate that the assays provide the ability to determine whether a bloodstain originated from a newborn.
Collapse
Affiliation(s)
- Michelle Alvarez
- Graduate Program in Biomolecular Science, University of Central Florida, Orlando, 32816, USA
| | | |
Collapse
|
11
|
Boylston WH, DeFord JH, Papaconstantinou J. Identification of longevity-associated genes in long-lived Snell and Ames dwarf mice. AGE (DORDRECHT, NETHERLANDS) 2006; 28:125-144. [PMID: 19943135 PMCID: PMC2464723 DOI: 10.1007/s11357-006-9008-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Accepted: 02/01/2006] [Indexed: 05/27/2023]
Abstract
Recent landmark molecular genetic studies have identified an evolutionarily conserved insulin/IGF-1 signal transduction pathway that regulates lifespan. In C. elegans, Drosophila, and rodents, attenuated insulin/IGF-1 signaling appears to regulate lifespan and enhance resistance to environmental stress. The Ames (Prop1 (df/df)) and Snell (Pit1 (dw/dw)) hypopituitary dwarf mice with growth hormone (GH), thyroid-stimulating hormone (TSH), and prolactin deficiencies live 40-60% longer than control mice. Both mutants are resistant to multiple forms of environmental stress in vitro. Taken collectively, these genetic models indicate that diminished insulin/IGF-l signaling may play a central role in the determination of mammalian lifespan by conferring resistance to exogenous and endogenous stressors. These pleiotropic endocrine pathways control diverse programs of gene expression that appear to orchestrate the development of a biological phenotype that promotes longevity. With the ability to investigate thousands of genes simultaneously, several microarray surveys have identified potential longevity assurance genes and provided information on the mechanism(s) by which the dwarf genotypes (dw/dw) and (df/df), and caloric restriction may lead to longevity. We propose that a comparison of specific changes in gene expression shared between Snell and Ames dwarf mice may provide a deeper understanding of the transcriptional mechanisms of longevity determination. Furthermore, we propose that a comparison of the physiological consequences of the Pit1dw and Prop1df mutations may reveal transcriptional profiles similar to those reported for the C. elegans and Drosophila mutants. In this study we have identified classes of genes whose expression is similarly affected in both Snell and Ames dwarf mice. Our comparative microarray data suggest that specific detoxification enzymes of the P(450) (CYP) family as well as oxidative and steroid metabolism may play a key role in longevity assurance of the Snell and Ames dwarf mouse mutants. We propose that the altered expression of these genes defines a biochemical phenotype which may promote longevity in Snell and Ames dwarf mice.
Collapse
Affiliation(s)
- W. H. Boylston
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas USA
| | - James H. DeFord
- The Clayton Foundation for Research, Houston, Texas USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555 USA
| | - John Papaconstantinou
- The Clayton Foundation for Research, Houston, Texas USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555 USA
| |
Collapse
|
12
|
Beyea JA, Sawicki G, Olson DM, List E, Kopchick JJ, Harvey S. Growth hormone (GH) receptor knockout mice reveal actions of GH in lung development. Proteomics 2006; 6:341-8. [PMID: 16287172 DOI: 10.1002/pmic.200500168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The presence of growth hormone (GH) and GH receptors (GHRs) in the lung suggests it is an autocrine/paracrine target site for pulmonary GH action and/or an endocrine site of pituitary GH action. Roles for GH in lung growth or pulmonary function are, however, uncertain. The possibility that pituitary and/or pulmonary GH have physiological roles in lung development has therefore been investigated in GHR knockout (KO or -/-) mice, using a proteomics approach to determine if an absence of GH-signaling affects the proteome of the developing lung. More than 600 proteins were detected by 2-DE in the lungs of control [GHR (+/+)] and GHR (-/-) mice at the end of the alveolarization period (at day 14 postnatally). Of these, 39 differed significantly in protein content at the p>0.05 level [6 were of higher abundance in the GHR (-/-) group, 33 were of lower abundance] and 17 differed at the p>0.02 level [5 of higher abundance in the GHR (-/-) group, 12 of lower abundance] and 7 were definitively identified by MS. Vimentin, a protein involved in cellular proliferation, was reduced in content by approximately 75% in the lungs of the GHR (-/-) mice. Three proteins involved in oxidative protection [SH3 domain-binding glutamic acid-rich-like protein, peroxiredoxin 6 (Prdx6), and isocitrate dehydrogenase 1] were also of lower content in the GHR (-/-) lungs (by approximately 88%, 81% and 70%, respectively). Prdx6 is also involved in lipid and surfactant metabolism, as is apolipoprotein A-IV, the lung content of which was reduced by approximately 73% in these mice. Proteasome 26S ATPase subunit 4, a protein involved in the non-lysosomal degradation of intracellular proteins, and electron flavoprotein alpha subunit , involved in intracellular metabolism, were also reduced in content in the lungs of the GHR (-/-) mice (by approximately 70% and 49%, respectively). These results therefore suggest that these proteins are normally dependent upon GH signaling, and that GH is normally involved in early lung growth, oxidative protection, lipid and energy metabolism and in proteasomal activity. These roles may reflect endocrine actions of pituitary GH and/or local autocrine/paracrine actions of GH produced within the lung.
Collapse
Affiliation(s)
- Jason A Beyea
- Department of Physiology, Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Yang CL, Kurczab T, Down G, Kealey T, Langlands K. Gene expression profiling of the ageing rat vibrissa follicle. Br J Dermatol 2005; 153:22-8. [PMID: 16029322 DOI: 10.1111/j.1365-2133.2005.06550.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The application of gene expression profiling to the study of chronological ageing has the potential to illuminate the molecular mechanisms underlying a complex and active process. For example, ageing of the skin and its constituent organs has myriad phenotypic consequences, and a better understanding of the means by which these changes arise has important corollaries for intervention strategies. OBJECTIVES We used a transcriptional profiling approach to investigate changes in gene expression associated with ageing of the large vibrissa follicle of the Wistar rat. METHODS Follicle mRNA isolated from male Wistar rats at 1 and 18 months of age was hybridized to Clontech Atlas 1.2 Rat cDNA macroarrays. Confirmation of array results was provided by the use of Northern blotting and immunohistochemistry. RESULTS Seven transcripts displayed at least a 1.6-fold increase in expression with age, of which APOD (2.5-fold), GSTM2 (2.0-fold) and NPY (1.8-fold) showed the greatest increases. Decreased expression was found in 19 transcripts, most notably in ALOX12 (13.3-fold) and GAP43 (12.6-fold) expression. CONCLUSIONS Follicular ageing is characterized by transcriptional changes associated with diverse aspects of keratinocyte metabolism, proliferation and development.
Collapse
Affiliation(s)
- C-L Yang
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hill's Road, Cambridge CB2 2QR, UK
| | | | | | | | | |
Collapse
|
14
|
Abstract
The important role of IGF and insulin-related signaling pathways in the control of longevity of worms and insects is very well documented. In the mouse, several spontaneous or experimentally induced mutations that interfere with GH biosynthesis, GH actions, or sensitivity to IGF-I lead to extended longevity. Increases in the average life span in these mutants range from approximately 20-70% depending on the nature of the endocrine defect, gender, diet, and/or genetic background. Extended longevity of hypopituitary and GH-resistant mice appears to be due to multiple mechanisms including reduced insulin levels, enhanced insulin sensitivity, alterations in carbohydrate and lipid metabolism, reduced generation of reactive oxygen species, enhanced resistance to stress, reduced oxidative damage, and delayed onset of age-related disease. There is considerable evidence to suggest that the genetic and endocrine mechanisms that influence aging and longevity in mice may play a similar role in other mammalian species, including the human.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Physiology and Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, 801 North Rutledge, Room 4389, Springfield, Illinois 62794-9628, USA.
| |
Collapse
|
15
|
Melov S, Hubbard A. Microarrays as a tool to investigate the biology of aging: a retrospective and a look to the future. ACTA ACUST UNITED AC 2004; 2004:re7. [PMID: 15498758 DOI: 10.1126/sageke.2004.42.re7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The use of microarrays as a tool to investigate fundamental biological questions has become ubiquitous over the past several years. Microarrays are becoming as common as the polymerase chain reaction or any of the other tools in the molecular biologist's armory. Unlike experiments involving other tools, however, the design and analysis of microarray experiments present some unique problems to molecular biologists, problems with which statisticians have long been familiar. In this overview of microarrays and aging-related research, we will review selected highlights of microarray studies that have been carried out to study aging to date, as well as discuss some of the potential problems that routinely arise during these types of experiments, especially in the context of aging.
Collapse
Affiliation(s)
- Simon Melov
- Buck Institute for Age Research, Novato, CA 94945, USA.
| | | |
Collapse
|
16
|
Boylston WH, Gerstner A, DeFord JH, Madsen M, Flurkey K, Harrison DE, Papaconstantinou J. Altered cholesterologenic and lipogenic transcriptional profile in livers of aging Snell dwarf (Pit1dw/dwJ) mice. Aging Cell 2004; 3:283-96. [PMID: 15379852 DOI: 10.1111/j.1474-9728.2004.00115.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Several murine models demonstrate that mammalian longevity can be increased by single gene mutations affecting endocrine signalling, particularly via the GH/IGF-1 axis. In this study, we identify age-independent patterns of hepatic gene expression characteristic of long-lived Snell (Pit1(dw/dwJ)) dwarf mice. Comparative microarray analysis of young and aged male livers was performed to discover specific genes differentially expressed between Pit1(dw/dwJ) and control mice. Further examination by real-time RT-PCR confirmed that transcripts encoding HMG-CoA synthase-1, HMG-CoA reductase, farnesyl diphosphate synthase, isopentenyl pyrophosphate isomerase, mevalonate decarboxylase, squalene epoxidase, lanosterol demethylase, malic enzyme and apolipoprotein A-IV were significantly decreased in both male and female Pit1(dw/dwJ) livers at 3-5 and 24-28 months of age. In contrast, transcripts encoding the beta(3)-adrenergic receptor, lipoprotein lipase, PPAR gamma and a very low-density lipoprotein receptor homologue were increased significantly in dwarf livers relative to age-matched controls. These studies reveal enduring transcriptional changes characteristic of Pit1(dw/dwJ) dwarf mice that involve genes regulating cholesterol biosynthesis, fatty acid metabolism and lipoprotein homeostasis. Linked to global energy metabolism, this stable shift in hepatic gene expression may contribute to longevity determination by influencing particular metabolic functions often compartmentalized within the mitochondrion and peroxisome; further this metabolic shift may also parallel many transcriptional changes induced by caloric restriction.
Collapse
Affiliation(s)
- William H Boylston
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77555-0643, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Kinney-Forshee BA, Kinney NE, Steger RW, Bartke A. Could a deficiency in growth hormone signaling be beneficial to the aging brain? Physiol Behav 2004; 80:589-94. [PMID: 14984790 DOI: 10.1016/j.physbeh.2003.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Revised: 09/26/2003] [Accepted: 10/15/2003] [Indexed: 11/29/2022]
Abstract
Several studies have shown that growth hormone (GH)-deficient/resistant animals have a prolonged lifespan compared with their normal siblings. Studies in our laboratory have suggested that both Ames dwarf and GH receptor/GH binding protein knockout (GH-R-KO) mice do not experience age-induced cognitive aging at the same rate as their normal siblings. The studies presented here were aimed at determining whether these long-lived mice experience a delay in age-related changes in behavior. Young and old mice of both strains were tested in an open-field task. In addition, mice of the GH-R-KO strain were tested in the water maze to confirm previous findings using the inhibitory avoidance task that suggested delayed cognitive aging. In each of these studies, normal (wild-type) animals of the same age, sex, and genetic background as the mutants served as controls. Old GH-R-KO mice did not experience the decline in locomotor activity or difference in activity levels in the open-field task seen in the normal animals. Young normal and young and old Ames dwarf mice spent less time in the center of the apparatus compared with old normal animals. There were no signs of age-related changes in emotionality within the GH-R-KO strain. Water maze results also showed that while old normal animals performed poorer than the young normal animals, old GH-R-KO mice did not perform differently from the young normal or young GH-R-KO groups. Taken together, these studies support our previous findings of delayed age-induced cognitive and behavioral decline in GH deficient/resistant mice.
Collapse
Affiliation(s)
- B A Kinney-Forshee
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901-6512,
| | | | | | | |
Collapse
|
18
|
Tsuchiya T, Dhahbi JM, Cui X, Mote PL, Bartke A, Spindler SR. Additive regulation of hepatic gene expression by dwarfism and caloric restriction. Physiol Genomics 2004; 17:307-15. [PMID: 15039484 DOI: 10.1152/physiolgenomics.00039.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Disrupted growth hormone/insulin-like growth factor-1 signaling (DF) and caloric restriction (CR) extend life span and delay the onset of age-related diseases in rodents. In combination, these interventions additively extend life span. To investigate the molecular basis for these effects, we performed genome-wide, microarray expression analysis of liver from homozygous and heterozygous Ames dwarf mice fed ad libitum or CR. CR and DF additively affected a group of 95 genes. Individually and together, DF and CR independently affected the expression of 212 and 77 genes, respectively. These results indicate that DF and CR affect overlapping sets of genes and additively affect a subset of genes. Together, the interventions produced changes in gene expression consistent with increased insulin, glucagon and catecholamine sensitivity, gluconeogenesis, protein turnover, lipid β-oxidation, apoptosis, and xenobiotic and oxidant metabolism; and decreased cell proliferation, lipid and cholesterol synthesis, and chaperone expression. These data suggest that the additive effects of DF and CR on life span develop from their additive effects on the level of expression of some genes and from their independent effects on other genes. These results provide a novel and focused group of genes closely associated with the regulation of life span in mammals.
Collapse
Affiliation(s)
- Tomoshi Tsuchiya
- Department of Biochemistry, University of California, Riverside 92521, USA
| | | | | | | | | | | |
Collapse
|
19
|
Dozmorov I, Knowlton N, Tang Y, Centola M. Statistical monitoring of weak spots for improvement of normalization and ratio estimates in microarrays. BMC Bioinformatics 2004; 5:53. [PMID: 15128432 PMCID: PMC415561 DOI: 10.1186/1471-2105-5-53] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2003] [Accepted: 05/05/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several aspects of microarray data analysis are dependent on identification of genes expressed at or near the limits of detection. For example, regression-based normalization methods rely on the premise that most genes in compared samples are expressed at similar levels and therefore require accurate identification of nonexpressed genes (additive noise) so that they can be excluded from the normalization procedure. Moreover, key regulatory genes can maintain stringent control of a given response at low expression levels. If arbitrary cutoffs are used for distinguishing expressed from nonexpressed genes, some of these key regulatory genes may be unnecessarily excluded from the analysis. Unfortunately, no accurate method for differentiating additive noise from genes expressed at low levels is currently available. RESULTS We developed a multistep procedure for analysis of mRNA expression data that robustly identifies the additive noise in a microarray experiment. This analysis is predicated on the fact that additive noise signals can be accurately identified by both distribution and statistical analysis. CONCLUSIONS Identification of additive noise in this manner allows exclusion of noncorrelated weak signals from regression-based normalization of compared profiles thus maximizing the accuracy of these methods. Moreover, genes expressed at very low levels can be clearly identified due to the fact that their expression distribution is stable and distinguishable from the random pattern of additive noise.
Collapse
Affiliation(s)
- Igor Dozmorov
- Department of Arthritis and Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Nicholas Knowlton
- Department of Arthritis and Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Yuhong Tang
- Department of Arthritis and Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael Centola
- Department of Arthritis and Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
20
|
Abstract
Ames dwarf mice and Snell dwarf mice lack growth hormone (GH), prolactin (PRL), and thyroid-stimulating hormone (TSH), live much longer than their normal siblings, and exhibit many symptoms of delayed aging. "Laron dwarf mice," produced by targeted disruption of the GH receptor/GH-binding protein gene (GHR-KO mice), are GH resistant and also live much longer than normal animals from the same line. Isolated GH deficiency in "little" mice is similarly associated with increased life span, provided that obesity is prevented by reducing fat content in the diet. Long-lived dwarf mice share many phenotypic characteristics with genetically normal (wild-type) animals subjected to prolonged caloric restriction (CR) but are not CR mimetics. We propose that mechanisms linking GH deficiency and GH resistance with delayed aging include reduced hepatic synthesis of insulin-like growth factor 1 (IGF-1), reduced secretion of insulin, increased hepatic sensitivity to insulin actions, reduced plasma glucose, reduced generation of reactive oxygen species, improved antioxidant defenses, increased resistance to oxidative stress, and reduced oxidative damage. The possible role of hypothyroidism, reduced body temperature, reduced adult body size, delayed puberty, and reduced fecundity in producing the long-lived phenotype of dwarf mice remains to be evaluated. An important role of IGF-1 and insulin in the control of mammalian longevity is consistent with the well-documented actions of homologous signaling pathways in invertebrates.
Collapse
Affiliation(s)
- Andrzej Bartke
- Geriatrics Research, Department of Medicine, Southern Illinois University School of Medicine, Springfield, Illinois 62794, USA
| | | |
Collapse
|
21
|
Gromov P, Skovgaard GL, Palsdottir H, Gromova I, Østergaard M, Celis JE. Protein profiling of the human epidermis from the elderly reveals up-regulation of a signature of interferon-gamma-induced polypeptides that includes manganese-superoxide dismutase and the p85beta subunit of phosphatidylinositol 3-kinase. Mol Cell Proteomics 2003; 2:70-84. [PMID: 12644569 DOI: 10.1074/mcp.m200051-mcp200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aging of the human skin is a complex process that consists of chronological and extrinsic aging, the latter caused mainly by exposure to ultraviolet radiation (photoaging). Here we present studies in which we have used proteomic profiling technologies and two-dimensional (2D) PAGE database resources to identify proteins whose expression is deregulated in the epidermis of the elderly. Fresh punch biopsies from the forearm of 20 pairs of young and old donors (21-30 and 75-92 years old, respectively) were dissected to yield an epidermal fraction that consisted mainly of differentiated cells. One- to two-mm3 epidermal pieces were labeled with [35S]methionine for 18 h, lysed, and subjected to 2D PAGE (isoelectric focusing and non-equilibrium pH gradient electrophoresis) and phosphorimage autoradiography. Proteins were identified by matching the gels with the master 2D gel image of human keratinocytes (proteomics.cancer.dk). In selected cases 2D PAGE immunoblotting and/or mass spectrometry confirmed the identity. Quantitative analysis of 172 well focused and abundant polypeptides showed that the level of most proteins (148) remains unaffected by the aging process. Twenty-two proteins were consistently deregulated by a factor of 1.5 or more across the 20 sample pairs. Among these we identified a group of six polypeptides (Mx-A, manganese-superoxide dismutase, tryptophanyl-tRNA synthetase, the p85beta subunit of phosphatidylinositol 3-kinase, and proteasomal proteins PA28-alpha and SSP 0107) that is induced by interferon-gamma in primary human keratinocytes and that represents a specific protein signature for the effect of this cytokine. Changes in the expression of the eukaryotic initiation factor 5A, NM23 H2, cyclophilin A, HSP60, annexin I, and plasminogen activator inhibitor 2 were also observed. Two proteins exhibited irregular behavior from individual to individual. Besides arguing for a role of interferon-gamma in the aging process, the biological activities associated with the deregulated proteins support the contention that aging is linked with increased oxidative stress that could lead to apoptosis in vivo.
Collapse
Affiliation(s)
- Pavel Gromov
- Department of Medical Biochemistry and Danish Centre for Molecular Gerontology, The University of Aarhus, Ole Worms Allé, build. 170, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
22
|
Bronikowski AM, Carter PA, Morgan TJ, Garland T, Ung N, Pugh TD, Weindruch R, Prolla TA. Lifelong voluntary exercise in the mouse prevents age-related alterations in gene expression in the heart. Physiol Genomics 2003; 12:129-38. [PMID: 12429864 DOI: 10.1152/physiolgenomics.00082.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We present the first quantitative gene expression analysis of cardiac aging under conditions of sedentary and active lifestyles using high-density oligonucleotide arrays representing 11,904 cDNAs and expressed sequence tags (ESTs). With these data, we test the hypothesis that exercise attenuates the gene expression changes that normally occur in the aging heart. Male mice (Mus domesticus) were sampled from the 16th generation of selective breeding for high voluntary exercise. For the selective breeding protocol, breeders were chosen based on the maximum number of wheel revolutions run on days 5 and 6 of a test at 8 wk of age. For the colony sampled herein, mice were housed individually over their entire lifetimes (from weaning) either with or without access to running wheels. The hearts of these two treatment groups (active and sedentary) were assayed at middle age (20 mo) and old age (33 mo). Genes significantly affected by age in the hearts of the sedentary population by at least a 50% expression change (n = 137) were distributed across several major categories, including inflammatory response, stress response, signal transduction, and energy metabolism. Genes significantly affected by age in the active population were fewer (n = 62). Of the 42 changes in gene expression that were common to both treatment groups, 32 (72%) displayed smaller fold changes as a result of exercise. Thus exercise offset many age-related gene expression changes observed in the hearts of the sedentary animals. These results suggest that adaptive physiological mechanisms that are induced by exercise can retard many effects of aging on heart muscle at the transcriptional level.
Collapse
Affiliation(s)
- A M Bronikowski
- Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Visala Rao D, Boyle GM, Parsons PG, Watson K, Jones GL. Influence of ageing, heat shock treatment and in vivo total antioxidant status on gene-expression profile and protein synthesis in human peripheral lymphocytes. Mech Ageing Dev 2003; 124:55-69. [PMID: 12618007 DOI: 10.1016/s0047-6374(02)00170-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ageing results in a progressive, intrinsic and generalised imbalance of the control of regulatory systems. A key manifestation of this complex biological process includes the attenuation of the universal stress response. Here we provide the first global assessment of the ageing process as it affects the heat shock response, utilising human peripheral lymphocytes and cDNA microarray analysis. The genomic approach employed in our preliminary study was supplemented with a proteomic approach. In addition, the current study correlates the in vivo total antioxidant status with the age-related differential gene expression as well as the translational kinetics of heat shock proteins (hsps). Most of the genes encoding stress response proteins on the 4224 element microarray used in this study were significantly elevated after heat shock treatment of lymphocytes obtained from both young and old individuals albeit to a greater extent in the young. Cell signaling and signal transduction genes as well as some oxidoreductases showed varied response. Results from translational kinetics of induction of major hsps, from 0 to 24 h recovery period were broadly consistent with the differential expression of HSC 70 and HSP 40 genes. Total antioxidant levels in plasma from old individuals were found to be significantly lower by comparison with young, in agreement with the widely acknowledged role of oxidant homeostasis in the ageing process.
Collapse
Affiliation(s)
- D Visala Rao
- Human Biology, School of Biological, Biomedical and Molecular Sciences, University of New England, Armidale, NSW 2351, Australia
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Miller RA, Chang Y, Galecki AT, Al-Regaiey K, Kopchick JJ, Bartke A. Gene expression patterns in calorically restricted mice: partial overlap with long-lived mutant mice. Mol Endocrinol 2002; 16:2657-66. [PMID: 12403853 DOI: 10.1210/me.2002-0142] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To gain insight into the pathways by which caloric restriction (CR) slows aging, gene expression levels were assessed for each of 2,352 genes in the livers of 9-month-old CR and control mice. A total of 352 genes were found to be significantly increased or decreased by CR. The distribution of affected genes among functional classes was similar to the distribution of genes within the test set. Surprisingly, a disruption or knockout of the gene for the GH receptor (GHR-KO), which also produces life extension, had a much smaller effect on gene expression, with no more than 10 genes meeting the selection criterion. There was, however, an interaction between the GHR-KO mutation and the CR diet: the effects of CR on gene expression were significantly lower in GHR-KO mice than in control mice. Of the 352 genes altered significantly by CR, 29 had shown a significant and parallel alteration in expression in a previous study of liver gene expression that compared mice of the long-lived Snell dwarf stock (dw/dw) to controls. These 29 genes, altered both by CR and in dwarf mice, provide a list of biochemical features common to both models of delayed aging, and thus merit confirmation and more detailed study.
Collapse
Affiliation(s)
- Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Terao A, Apte-Deshpande A, Dousman L, Morairty S, Eynon BP, Kilduff TS, Freund YR. Immune response gene expression increases in the aging murine hippocampus. J Neuroimmunol 2002; 132:99-112. [PMID: 12417439 DOI: 10.1016/s0165-5728(02)00317-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Using GeneChips, basal and lipopolysaccharide (LPS)-induced gene expression was examined in the hippocampus of 3-, 12-, 18- and 24-month-old male C57BL/6 mice to identify genes whose altered expression could influence hippocampal function in advanced age. Gene elements that changed with age were selected with a t-statistic and specific expression patterns were confirmed with real-time quantitative PCR. Basal expression of 128 gene elements clearly changed with age in the hippocampus. Fourteen gene elements showed increased expression with age and these increases were validated after LPS stimulation. Major histocompatibility complex (MHC) TL region and thymic shared antigen (TSA-1) gene expression increased, suggesting T cell activation in the hippocampus with age. Cytokine (interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha) and chemokine (macrophage chemotactic protein-1) expression increased sharply in 24-month-old mice. These findings are in contrast to a decrease in the peripheral immune response, documented by decreased T cell proliferation and decreased ratios of naive to memory T cells. Age-related increases in inflammatory potential in the brain may contribute to neurodegenerative diseases of the aged.
Collapse
Affiliation(s)
- Akira Terao
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Hsieh CC, DeFord JH, Flurkey K, Harrison DE, Papaconstantinou J. Implications for the insulin signaling pathway in Snell dwarf mouse longevity: a similarity with the C. elegans longevity paradigm. Mech Ageing Dev 2002; 123:1229-44. [PMID: 12020945 DOI: 10.1016/s0047-6374(02)00036-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mutation analyses in the nematode, Caenorhabditis elegans, and mice have identified genes that increase their life-span via hormonal signal transduction, i.e. the insulin/insulin-like growth factor-1 (IGF-1) pathway in nematodes, and the growth hormone (GH)-thyriod stimulating hormone (TSH)-prolactin system in Snell dwarf mouse mutants. We have shown that the GH deficiency due to Pit1 mutation in the long-lived Snell dwarf mice may decrease circulating insulin levels, thereby resulting in a decreased activity of the insulin/IGF-1 signaling pathway. The data presented are consistent with our hypothesis that the decreased circulating insulin levels resulting from the Pit1 mutation mimics a physiological state similar to that proposed to occur in the long-lived C. elegans, daf-2 mutant. Our studies demonstrate a series of changes in components of the insulin/IGF-1-signaling pathway that suggest a reduction-of-function of this pathway in the aged dwarf. These include a decreased IRS-2 pool level, a decrease in PI3K activity and its association with IRS-2 and decreased docking of p85alpha to IRS-2. Our data also suggest a preferential docking of IRS-2-p85 alpha -p110 alpha in the aged dwarf liver and IRS-2-p85 alpha -p110 beta in the aged control. We speculate that the preference for the p110 alpha-containing complex may be a specific characteristic of a downstream segment of the longevity-signaling cascade. We conclude that the Pit1 mutation may result in physiological homeostasis that favors longevity, and that the Snell dwarf mutant conforms to the nematode longevity paradigm.
Collapse
Affiliation(s)
- Ching-Chyuan Hsieh
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, 613 Basic Science Building, Rt. 0643, Galveston, TX 7755-0643, USA
| | | | | | | | | |
Collapse
|
28
|
Fu Z, Dozmorov IM, Keller ET. Osteoblasts produce soluble factors that induce a gene expression pattern in non-metastatic prostate cancer cells, similar to that found in bone metastatic prostate cancer cells. Prostate 2002; 51:10-20. [PMID: 11920953 DOI: 10.1002/pros.10056] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Progressive prostate cancer typically metastasizes to bone where prostate cancer cells gain an osteoblast-like phenotype and induce osteoblastic metastases through unknown mechanisms. To investigate the biology of prostate cancer skeletal metastases, we compared gene expression between the non-metastatic LNCaP cell line and its derivative cell line C4-2B that metastasizes to bone. METHODS Total RNA from LNCaP and C4-2B cell lines was isolated and used to probe membrane-based gene arrays (Comparison 1). Additionally, LNCaP cells were incubated in the absence or presence of conditioned media (CM) from a human osteoblast-like cell line (HOBIT) and total RNA from these cells was used to probe gene arrays (Comparison 2). Differential expression of genes was confirmed by RT-PCR. RESULTS Of the 1,176 genes screened, 35 were differentially expressed between LNCaP and C4-2B cells (Comparison 1). HOBIT-CM induced differential expression of 30 genes in LNCaP cells (Comparison 2). Interestingly, 19 genes that were differentially expressed in C4-2B vs. LNCaP also displayed a similar expression pattern in LNCaPs grown in HOBIT-CM. These genes are primarily involved in motility, metabolism, signal transduction, tumorigenesis, and apoptosis. CONCLUSIONS These results suggest that osteoblasts produce soluble factors that contribute to the progression of prostate cancer skeletal metastases, including their transition to an osteoblast-like phenotype. Additionally, these data provide targets to explore for further investigations towards defining the biology of skeletal metastases.
Collapse
Affiliation(s)
- Zheng Fu
- Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
29
|
Abstract
Advances in biotechnology have led to methods for quantifying the relative concentrations of thousands of mRNAs in parallel. While these are powerful methods that can be used for both hypothesis testing and hypothesis generation, gene transcript profiling has some limitations as a tool to study aging. These include the difficulty in separating effects of aging from analytical and biological variability, statistical problems associated with simultaneous determination of so many different gene transcripts, and uncertainty about the functional significance of changes in mRNA concentrations. In this review, these issues are discussed with a focus on two methods for profiling mRNAs--serial analysis of gene expression (SAGE) and DNA arrays.
Collapse
|
30
|
Abstract
Cells in the body grow and die, cells in lab dishes grow and die, and individual organisms grow and die. The parallels seem maddeningly obvious, but scores of scientists still labor to draw the correct connections, to uncover the mechanisms that underlie aging in cell culture flasks and in whole animals. Do our cells stop growing, quit working, cease dividing, or start dying as we age? Do we die when our cells do, or are we somehow more than the sum of our cells? For decades, scientists have searched for evidence that links changes in cell growth, cell function, cell division, and cell death to the phenomenon we call aging. Although definitive proof eludes them, researchers continue to conduct experiments in tissue culture and in animal models, amassing information that points us toward a greater understanding of what aging is--and is not.
Collapse
|
31
|
Bartke A, Coschigano K, Kopchick J, Chandrashekar V, Mattison J, Kinney B, Hauck S. Genes that prolong life: relationships of growth hormone and growth to aging and life span. J Gerontol A Biol Sci Med Sci 2001; 56:B340-9. [PMID: 11487592 DOI: 10.1093/gerona/56.8.b340] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutant mice with a combined deficiency of growth hormone (GH), prolactin, and thyrotropin, and knockout mice with GH resistance, live longer than their normal siblings. The extension of life span in these animals is very large (up to 65%), reproducible, and not limited to any particular genetic background or husbandry conditions. In addition to demonstrating that genes control aging in mammals, these findings suggest that GH actions, growth, and body size may have important roles in the determination of life span. We describe the key phenotypic characteristics of long-living mutant and knockout mice, with an emphasis on those characteristics that may be related to delayed aging in these animals. We also address the broader topic of the relationship between GH, growth, maturation, body size, and aging, and we attempt to reconcile the well-publicized antiaging action of GH with the evidence that suppression of GH release or action can prolong life.
Collapse
Affiliation(s)
- A Bartke
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901-6512, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
With recent sequencing of the genome and development of high-density array technology, it is now possible to assess global gene expression in cells/tissues by a technique that is sensitive, quantitative, and rapid. Gene expression array technology is extremely useful in studying a complex, multigenetic process, such as aging, where one needs to understand the interaction of a large number of genes. Although the technology holds great promise, it is novel and not yet well-established and there are no widely-accepted standards to guide investigators in the analysis and interpretation of the data obtained. Gene expression array analysis requires strong biostatistical support to minimize false-positives and maximize true-positives in candidate gene identification. It also requires independent validation of the array measurements using other detection methods. Confirmation that differentially expressed (transcribed) genes are reflected by differential expression at the protein level will ultimately be an important measurement. In this review, we focus on the three steps necessary for aging studies when using the gene expression array technology: (1) array hybridization; (2) biostatistical analysis; and (3) array result confirmation. Genes identified by several investigators for their age-associated change using the gene expression array systems are also discussed.
Collapse
Affiliation(s)
- E Han
- Department of Physiology, MSC 7756, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
33
|
Miller RA, Galecki A, Shmookler-Reis RJ. Interpretation, design, and analysis of gene array expression experiments. J Gerontol A Biol Sci Med Sci 2001; 56:B52-7. [PMID: 11213267 DOI: 10.1093/gerona/56.2.b52] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Experiments using arrays of cDNA targets to compare patterns of gene expression are beginning to play a prominent role in biogerontology, but drawing reliable conclusions from the resulting data sets requires careful application of statistical methods that discriminate chance events from those likely to reflect real differences among the samples under study. This essay discusses flaws in the logic of studies that base their conclusions on ratio calculations alone, reviews the multiple comparison traps inherent in high throughput systems that test a very large number of mRNAs simultaneously, and advocates a two-stage design in which significance testing applied to exploratory data is used to guide a second round of hypothesis-testing experiments conducted in a separate set of experimental samples.
Collapse
Affiliation(s)
- R A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor 48109-0940, USA.
| | | | | |
Collapse
|