1
|
He Z, Song AY, Schrott R, Feinberg JI, Bakulski KM, Benke KS, Croen LA, Hertz-Picciotto I, Schmidt RJ, Lyall K, Newschaffer CJ, Fallin MD, Volk HE, Ladd-Acosta C. The association of prenatal ambient air pollution with placental epigenetic gestational age at birth. Environ Epidemiol 2025; 9:e384. [PMID: 40331055 PMCID: PMC12055125 DOI: 10.1097/ee9.0000000000000384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/15/2025] [Indexed: 05/08/2025] Open
Abstract
Background Prenatal air pollutants have been associated with adverse birth outcomes, and DNA methylation (DNAm) changes in placenta may contribute to these associations. DNAm-based epigenetic gestational age (GA) estimators are emerging biomarkers for aging/biological age that can reflect early-life exposures and predict long-term health outcomes. We leveraged 103 mother-offspring pairs from the Early Autism Risk Longitudinal Investigation cohort to assess associations between prenatal air pollution and placental epigenetic GA at birth. Methods Prenatal air pollution concentrations (NO2, O3, PM2.5, and PM10) were estimated from weekly data from monitoring stations near maternal residence and calculated for preconception and pregnancy periods. DNAm from fetal-side placenta samples was measured on Illumina HumanMethylation450 BeadChip. Epigenetic GA was computed using Lee's robust placenta clock algorithm. GA acceleration/deceleration was the residual of predicted epigenetic GA on chronologic GA, adjusted (intrinsic) or unadjusted (extrinsic) for cell type proportions. We used linear regressions to examine associations between average air pollution levels in each period and GA acceleration/deceleration, and weekly distributed lag models to examine critical exposure windows. Results Higher pregnancy average O3 and PM10 exposures were associated with decelerated intrinsic (β = -0.65 and -0.79) and extrinsic GA (β = -0.69 and -0.74) at birth (per 10-unit increment). Trimester-specific analyses revealed higher O3 and PM10 exposures in trimesters 2 to 3 associated with decelerated GA at birth. Weekly distributed lag models suggested pregnancy weeks 21 to 31 and 21 to 29 were critical windows of O3 and PM10 exposures, respectively. Conclusions Prenatal air pollution exposures, especially during mid- to late-pregnancy, were associated with lower biological maturity at birth.
Collapse
Affiliation(s)
- Zhengting He
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Ashley Y. Song
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Rose Schrott
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Jason I. Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Kelly S. Benke
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Pleasanton, California
- Department of Health Systems Science, Kaiser Permanente School of Medicine, Pasadena, California
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California at Davis (UC Davis), Davis, California
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Sacramento, California
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, University of California at Davis (UC Davis), Davis, California
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Sacramento, California
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania
| | - Craig J. Newschaffer
- College of Health and Human Development, Pennsylvania State University, State College, Pennsylvania
| | | | - Heather E. Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Christine Ladd-Acosta
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
2
|
Maimaitiyiming M, Yang Y, Jia X, Zhang X. Association of body age and multiorgan ages with cognitive decline in older adults: a nationwide longitudinal study. Age Ageing 2025; 54:afaf132. [PMID: 40421639 DOI: 10.1093/ageing/afaf132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND It is unknown whether the relationship between ageing of different organs and cognitive decline varies in older adults. OBJECTIVES This study investigated the association of body ageing and organ-specific ageing with cognitive decline, and whether this relationship was strengthened by hearing loss. METHODS The study included older adults free from cognitive impairment, drawn from the Chinese Longitudinal Healthy Longevity Survey. Organ-specific ages were estimated using the support vector machines. The age gap and ageing rate were calculated. Cognitive function was assessed at each visit using the Mini-mental State Examination, and a linear mixed-effects model was employed for analysis. RESULTS Over a median follow-up period of 6 years, of 1003 older adults (mean age 80.8 ± 10.9 years, 47.7% female) included, 187 (18.6%) experienced cognitive impairment. Compared to individuals with biological younger for body, musculoskeletal system and immune system, biological older (age gap > 0) was associated with faster cognitive decline (βbody = -0.229, 95% confidence interval [CI]: -0.435, -0.023; βmuscle = -0.294, 95% CI: -0.500, -0.088; βimmune = -0.246, 95% CI: -0.452, -0.041), but not for cardiometabolic and renal systems. A linear positive dose-response association between age gap and cognitive impairment was uniquely observed for musculoskeletal system, whereas null associations for other organ systems. Moreover, higher ageing rates of body and musculoskeletal system were associated with faster cognitive decline. In the joint exposure analysis, hearing loss significantly strengthened the body age gap/ageing rate-cognitive decline association. CONCLUSIONS Advanced biological ageing of the body, musculoskeletal system and immune system, particularly in the presence of hearing loss, accelerates cognitive decline.
Collapse
Affiliation(s)
- Maiwulamujiang Maimaitiyiming
- School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Yun Yang
- School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Xueyao Jia
- School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Xinyu Zhang
- School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
3
|
Gampawar P, Veeranki SPK, Petrovic K, Schmidt R, Schmidt H. Epigenetic age acceleration is related to cognitive decline in the elderly: Results of the Austrian Stroke Prevention Study. Psychiatry Clin Neurosci 2025; 79:229-238. [PMID: 39921552 PMCID: PMC12047057 DOI: 10.1111/pcn.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/10/2025]
Abstract
AIM Epigenetic clocks, quantifying biological age through DNA methylation (DNAmAge), have emerged as potential indicators of brain aging. As the variety of DNAmAge algorithms grows, consensus on their efficacy in predicting age-related changes is lacking. This study aimed to explore the intricate relationship between diverse DNAmAge algorithms and structural and cognitive markers of brain aging. METHODS Within a cohort of 796 elderly patients (mean age, 65.8 ± 7.9 years), we scrutinized 11 DNAmAge algorithms, including Horvath, Hannum, Zhang's clocks, PhenoAge, GrimAge, DunedinPACE, and principal component (PC)-based PCHorvath, PCHannum, PCPhenoAge, and PCGrimAge. We evaluated their association with baseline cognition and cognitive decline, assessed through follow-up evaluations at three (T1) and six (T2) years postbaseline. Additionally, we examined their relationship with structural magnetic resonance imaging markers of brain aging, including white matter. RESULTS Zhang's clock was the best predictor of decline in memory (β = -0.04) and global cognition (β = -0.03), whereas PCGrimAge was the best predictor of speed decline (β = -0.17). The DNAmAge algorithms were the second-best predictors in explaining cognitive variability after education in memory and global cognition (R2 partial = 1.66% to 2.82%) and the best predictors for speed decline (R2 partial = 2.13%). PC-trained DNAmAge algorithms outperformed their respective original version. CONCLUSION DNAmAge algorithms are strong and independent predictors of cognitive decline in the normal elderly population and explain additional variability in cognitive decline beyond that accounted for by conventional risk factors.
Collapse
Affiliation(s)
- Piyush Gampawar
- Research Unit‐Genetic EpidemiologyInstitute of Molecular Biology and Biochemistry, Medical University of GrazGrazAustria
- The Division of General PaediatricsMedical University of GrazGrazAustria
| | - Sai Pavan Kumar Veeranki
- Institute of Neural Engineering, Technical University of GrazGrazAustria
- Steuerung IT, Steiermaerkische Krankenanstalten G.m.b.HGrazAustria
| | | | - Reinhold Schmidt
- University Clinic for Neurology, Medical University of GrazGrazAustria
| | - Helena Schmidt
- Research Unit‐Genetic EpidemiologyInstitute of Molecular Biology and Biochemistry, Medical University of GrazGrazAustria
| |
Collapse
|
4
|
Fornage M, Tarraf W, Xia R, Ordonez A, Sofer T, Márquez F, Thyagarajan B, Talavera GA, Gallo LC, DeCarli C, González HM. Longitudinal associations of epigenetic aging with cognitive aging in Hispanic/Latino adults from the Hispanic Community Health Study/Study of Latinos. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.03.25325181. [PMID: 40236421 PMCID: PMC11998844 DOI: 10.1101/2025.04.03.25325181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Due to the paucity of longitudinal DNA methylation data (DNAm), especially among Hispanic/Latino adults, the association between changes in epigenetic clocks over time and cognitive aging phenotypes has not been investigated. This longitudinal study included 2671 Hispanic/Latino adults (57 years; 66% women) with blood DNAm data and neurocognitive function assessed at two visits approximately 7 years apart. We evaluated the associations of 5 epigenetic clocks and their between-visit change with multiple measures of cognitive aging that included a global cognitive function score at each visit, between-visit change in global cognitive function score, MCI diagnosis, and presence of significant cognitive decline at visit 2 (V2). There were significant associations between greater acceleration for all clocks and lower global cognitive function at each visit. The strongest associations were observed for GrimAge and DunedinPACE. Similar results were observed for domain-specific cognitive function at each visit and MCI diagnosis at V2. There was a significant association of decline in global cognitive function with increase in age acceleration between the two visits for PhenoAge and GrimAge. Between-visit increase in age acceleration for these two clocks was also associated with a greater risk of MCI diagnosis and presence of significant cognitive decline at V2. Epigenetic aging is associated with lower global and domain-specific cognitive function, greater cognitive decline, and greater risk of MCI in Hispanic/Latino adults. Longitudinal assessment of change in age acceleration for second-generation clocks, GrimAge and PhenoAge may provide additional value in predicting cognitive aging beyond a single time point assessment.
Collapse
|
5
|
Ke Y, Chen P, Wu C, Wang Q, Zeng K, Liang M. β2-microglobulin and cognitive decline: unraveling the mediating role of the Dunedin Pace of Aging methylation. Front Aging Neurosci 2025; 17:1505185. [PMID: 40201544 PMCID: PMC11975875 DOI: 10.3389/fnagi.2025.1505185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025] Open
Abstract
Background Progressive cognitive decline is inevitable with aging. Growing evidence links β2-microglobulin (B2M) to aging and cognitive decline. However, the current evidence is inadequate to establish a definitive association. This study aims to investigate the relationship between B2M levels and cognitive performance, together with the mediating effect of the pace of biological aging. Methods Utilizing the 1999-2002 National Health and Nutrition Examination Survey (NHANES) database, cognitive performance was measured via the Digit Symbol Substitution Test (DSST), while the pace of biological aging was quantified using a new generation DNA methylation algorithm, Dunedin Pace of Aging methylation (DunedinPoAm). Weighted multivariable linear regression was used to explore the relationship between B2M levels and cognitive performance. Furthermore, subgroup analysis and interaction tests were performed to assess the relationship's stability. Mediation analysis was conducted to investigate the mediating effect of DunedinPoAm on the association between B2M levels and cognitive performance. Results The study included 1,267 participants aged 60 and over. After correcting for all confounders, for each one-unit increment in log-transformed B2M levels, the DSST score fell by 5.13 points (95%CI -9.03 to -1.24), while the level of DunedinPoAm increased by 0.04 (95%CI 0.01-0.07). The analysis of the trend test yielded identical results (p for trend <0.05). Additionally, across every subgroup analyzed, the correlation between B2M levels and cognitive performance was stable (p for interaction >0.05). Further mediation analysis showed that DunedinPoAm mediated 9.0% (95%CI 0.1-43.2%) of the association between B2M and cognitive performance. Conclusion These findings suggested a substantial link between elevated B2M levels and cognitive decline among U.S. older adults, partly mediated through the faster pace of aging. This correlation highlights the potential of B2M as a biomarker for early detection and therapeutic intervention of aging-related cognitive decline.
Collapse
Affiliation(s)
- Yujun Ke
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ping Chen
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chunlan Wu
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qinqin Wang
- Department of Rheumatology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, China
| | - Kai Zeng
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Min Liang
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Noble A, Motta R, Cabras S, Flores BM, Nowak J, Glapa-Nowak A, Geremia A, Satsangi J, Culver E. Epigenetic age acceleration and methylation differences in IgG4-related cholangitis and primary sclerosing cholangitis. Clin Epigenetics 2025; 17:6. [PMID: 39819503 PMCID: PMC11740490 DOI: 10.1186/s13148-024-01803-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/14/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND IgG4-related cholangitis (IgG4-SC) and primary sclerosing cholangitis (PSC) are chronic fibro-inflammatory hepatobiliary conditions, with genetic, environmental, and immunologic risk factors, in which epigenetic alterations may provide insights into pathophysiology and novel biomarkers. This study is the first to assess methylation signatures in IgG4-SC. RESULTS Whole blood DNA methylation profiling and genotyping was performed in 264 individuals; 47 with IgG4-SC, 65 with PSC, 64 with ulcerative colitis (UC), and 88 healthy controls. We identified 19 significant methylation differences between IgG4-SC and controls and 38 between PSC and controls. IgG4-SC and PSC shared 8 probes. Inflammatory genes (including CEP97, IFNAR1, TXK, HERC6, C5orf36, PYY, and MTRNR2L1) were predominantly involved in dysregulated methylation. Epigenetic age acceleration was observed in patients with IgG4-SC, but not in those with PSC or UC. meQTL analyses to identify genetic determinants of methylation revealed a strong human leucocyte antigen (HLA) signal in both PSC and IgG4-SC (HLA-DQB2, HLA-DPA1, HLA-F and HLA-DRA). CONCLUSIONS We identify novel epigenetic alterations in IgG4-SC and PSC, with biological age acceleration in IgG4-SC, providing insights into disease pathogenesis, and highlight the role of genetic variation especially within the HLA region in shaping the methylome.
Collapse
Affiliation(s)
- Alexandra Noble
- Translational Gastroenterology and Liver Unit, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| | - Rodrigo Motta
- Translational Gastroenterology and Liver Unit, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| | - Silvia Cabras
- Translational Gastroenterology and Liver Unit, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| | - Belen Moron Flores
- Translational Gastroenterology and Liver Unit, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| | - Jan Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Glapa-Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alessandra Geremia
- Translational Gastroenterology and Liver Unit, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| | - Jack Satsangi
- Translational Gastroenterology and Liver Unit, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Emma Culver
- Translational Gastroenterology and Liver Unit, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| |
Collapse
|
7
|
Bell SA, Beam CR, Zandi E, Kam A, Andrews E, Becker J, Finkel D, Davis DW, Turkheimer E. Second Generation DNA Methylation Age Predicts Cognitive Change in Midlife: The Moderating Role of Childhood Socioeconomic Status. RESEARCH SQUARE 2024:rs.3.rs-5551592. [PMID: 39764108 PMCID: PMC11703339 DOI: 10.21203/rs.3.rs-5551592/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
DNA methylation age (DNAmAge) surpasses chronological age in its ability to predict age-related morbidities and mortality. This study analyzed data from 287 middle-aged twins in the Louisville Twin Study (mean age 51.9 years ± 7.03) to investigate the effect of DNAmAge acceleration on change in IQ (ΔIQ) between childhood and midlife, while testing childhood socioeconomic status (SES) as a moderator of the relationship. DNAmAge was estimated with five commonly used algorithms (Horvath, Horvath Skin and Blood, GrimAge, and PhenoAge). A factor analysis of these measures produced a two-factor structure which we identified as first generation and second generation measures. Results of genetically informed, quasi-causal regression models indicated that accelerated second generation DNAmAge predicted more negative ΔIQ from childhood to midlife, after accounting for genetic and environmental confounds shared by twins. The relationship between DNAmAge and ΔIQ was moderated by childhood SES, with a stronger effect observed among twins from low SES backgrounds. Second generation DNAmAge measures trained to estimate phenotypic biological age show promise in their predictive value for cognitive decline in midlife. Our genetically informed twin design suggested that DNAmAge may represent a biological pathway through which early-life socioeconomic disadvantage impacts midlife cognitive health.
Collapse
Affiliation(s)
| | | | - Ebrahim Zandi
- Keck School of Medicine, University of Southern California
| | - Alyssa Kam
- Department of Psychology, University of Southern California
| | | | - Jonathan Becker
- Department of Family and Geriatric Medicine, University of Louisville School of Medicine
| | | | - Deborah W Davis
- Department of Pediatrics, University of Louisville School of Medicine
| | | |
Collapse
|
8
|
Knisely MR, Masese RV, Mathias JG, Yang Q, Hatch D, Lê BM, Luyster F, Garrett ME, Tanabe PJ, Shah NR, Ashley-Koch A. Epigenetic Aging Associations With Psychoneurological Symptoms and Social Functioning in Adults With Sickle Cell Disease. Biol Res Nurs 2024; 26:508-517. [PMID: 38679469 PMCID: PMC11532642 DOI: 10.1177/10998004241250322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Objective: Sickle cell disease (SCD), the most common inherited blood disorder in the United States, is associated with severe psychoneurological symptoms. While epigenetic age acceleration has been linked to psychoneurological symptom burden in other diseases, this connection is unexplored in SCD. This study aimed to assess the association between epigenetic age acceleration and psychoneurological symptom burden in SCD. Methods: In this cross-sectional study, emotional impact, pain impact, sleep impact, social functioning, and cognitive function were assessed in 87 adults living with SCD. DNA methylation data were generated from blood specimens and used to calculate epigenetic age using five clocks (Horvath, Hannum, PhenoAge, GrimAge, & DunedinPACE). Associations between epigenetic age acceleration and symptoms were assessed. Results: The sample (N = 87) had a mean (SD) chronologic age was 30.6 (8.1) years. Epigenetic age acceleration was associated with several symptom outcomes. GrimAge age acceleration (β = -0.49, p = .03) and increased DunedinPACE (β = -2.23, p = .004) were associated with worse emotional impact scores. PhenoAge (β = -0.32, p = .04) and the GrimAge (β = -0.48, p = .05) age acceleration were associated with worse pain impact scores. Increased DunedinPACE (β = -2.07 p = .04) were associated with worse sleep impact scores. Increased DunedinPACE (β = -2.87, p = .005) was associated with worse social functioning scores. We did not find associations between epigenetic age acceleration and cognitive function in this sample. Conclusion: Epigenetic age acceleration was associated with worse symptom experiences, suggesting the potential for epigenetic age acceleration as a biomarker to aid in risk stratification or targets for intervention to mitigate symptom burden in SCD.
Collapse
Affiliation(s)
| | - Rita V. Masese
- Center for Bioethics, Department of Social Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joacy G. Mathias
- Division of Women’s Community and Population Health, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Qing Yang
- Duke University School of Nursing, Durham, NC, USA
| | - Daniel Hatch
- Duke University School of Nursing, Durham, NC, USA
| | - Brandon M. Lê
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Faith Luyster
- University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
| | | | | | - Nirmish R. Shah
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
9
|
Chen J, Moubadder L, Clausing ES, Kezios KL, Conneely KN, Hüls A, Baccarelli A, Factor-Litvak P, Cirrillo P, Shelton RC, Link BG, Suglia SF. Associations of childhood, adolescence, and midlife cognitive function with DNA methylation age acceleration in midlife. Aging (Albany NY) 2024; 16:9350-9368. [PMID: 38874516 PMCID: PMC11210249 DOI: 10.18632/aging.205943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
Prior studies showed increased age acceleration (AgeAccel) is associated with worse cognitive function among old adults. We examine the associations of childhood, adolescence and midlife cognition with AgeAccel based on DNA methylation (DNAm) in midlife. Data are from 359 participants who had cognition measured in childhood and adolescence in the Child Health and Development study, and had cognition, blood based DNAm measured during midlife in the Disparities study. Childhood cognition was measured by Raven's Progressive Matrices and Peabody Picture Vocabulary Test (PPVT). Adolescent cognition was measured only by PPVT. Midlife cognition included Wechsler Test of Adult Reading (WTAR), Verbal Fluency (VF), Digit Symbol (DS). AgeAccel measures including Horvath, Hannum, PhenoAge, GrimAge and DunedinPACE were calculated from DNAm. Linear regressions adjusted for potential confounders were utilized to examine the association between each cognitive measure in relation to each AgeAccel. There are no significant associations between childhood cognition and midlife AgeAccel. A 1-unit increase in adolescent PPVT, which measures crystalized intelligence, is associated with 0.048-year decrease of aging measured by GrimAge and this association is attenuated after adjustment for adult socioeconomic status. Midlife crystalized intelligence measure WTAR is negatively associated with PhenoAge and DunedinPACE, and midlife fluid intelligence measure (DS) is negatively associated with GrimAge, PhenoAge and DunedinPACE. AgeAccel is not associated with VF in midlife. In conclusion, our study showed the potential role of cognitive functions at younger ages in the process of biological aging. We also showed a potential relationship of both crystalized and fluid intelligence with aging acceleration.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Leah Moubadder
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Elizabeth S. Clausing
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- School of Global Integrative Studies, University of Nebraska, Lincoln, NE 68508, USA
| | - Katrina L. Kezios
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Karen N. Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Piera Cirrillo
- Child Health and Development Studies, Public Health Institute, Washington, DC 20024, USA
| | - Rachel C. Shelton
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Bruce G. Link
- Department of Sociology, University of California Riverside, Riverside, CA 92507, USA
| | - Shakira F. Suglia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Graves AJ, Danoff JS, Kim M, Brindley SR, Skyberg AM, Giamberardino SN, Lynch ME, Straka BC, Lillard TS, Gregory SG, Connelly JJ, Morris JP. Accelerated epigenetic age is associated with whole-brain functional connectivity and impaired cognitive performance in older adults. Sci Rep 2024; 14:9646. [PMID: 38671048 PMCID: PMC11053089 DOI: 10.1038/s41598-024-60311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
While chronological age is a strong predictor for health-related risk factors, it is an incomplete metric that fails to fully characterize the unique aging process of individuals with different genetic makeup, neurodevelopment, and environmental experiences. Recent advances in epigenomic array technologies have made it possible to generate DNA methylation-based biomarkers of biological aging, which may be useful in predicting a myriad of cognitive abilities and functional brain network organization across older individuals. It is currently unclear which cognitive domains are negatively correlated with epigenetic age above and beyond chronological age, and it is unknown if functional brain organization is an important mechanism for explaining these associations. In this study, individuals with accelerated epigenetic age (i.e. AgeAccelGrim) performed worse on tasks that spanned a wide variety of cognitive faculties including both fluid and crystallized intelligence (N = 103, average age = 68.98 years, 73 females, 30 males). Additionally, fMRI connectome-based predictive models suggested a mediating mechanism of functional connectivity on epigenetic age acceleration-cognition associations primarily in medial temporal lobe and limbic structures. This research highlights the important role of epigenetic aging processes on the development and maintenance of healthy cognitive capacities and function of the aging brain.
Collapse
Affiliation(s)
| | | | - Minah Kim
- University of Virginia, Charlottesville, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Raab H, Hauser ER, Kwee LC, Shah SH, Kraus WE, Ward-Caviness CK. Associations among NMR-measured inflammatory and metabolic biomarkers and accelerated aging in cardiac catheterization patients. Aging (Albany NY) 2024; 16:6652-6672. [PMID: 38656877 PMCID: PMC11087135 DOI: 10.18632/aging.205758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
Research into aging has grown substantially with the creation of molecular biomarkers of biological age that can be used to determine age acceleration. Concurrently, nuclear magnetic resonance (NMR) assessment of biomarkers of inflammation and metabolism provides researchers with new ways to examine intermediate risk factors for chronic disease. We used data from a cardiac catheterization cohort to examine associations between biomarkers of cardiometabolic health and accelerated aging assessed using both gene expression (Transcriptomic Age) and DNA methylation (Hannum Age, GrimAge, Horvath Age, and Phenotypic Age). Linear regression models were used to associate accelerated aging with each outcome (cardiometabolic health biomarkers) while adjusting for chronological age, sex, race, and neighborhood socioeconomic status. Our study shows a robust association between GlycA and GrimAge (5.71, 95% CI = 4.36, 7.05, P = 7.94 × 10-16), Hannum Age (1.81, 95% CI = 0.65, 2.98, P = 2.30 × 10-3), and Phenotypic Age (2.88, 95% CI = 1.91, 3.87, P = 1.21 × 10-8). We also saw inverse associations between apolipoprotein A-1 and aging biomarkers. These associations provide insight into the relationship between aging and cardiometabolic health that may be informative for vulnerable populations.
Collapse
Affiliation(s)
- Henry Raab
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC 27514, USA
| | - Elizabeth R. Hauser
- Duke University Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Lydia Coulter Kwee
- Duke University Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Svati H. Shah
- Duke University Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - William E. Kraus
- Duke University Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Cavin K. Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC 27514, USA
| |
Collapse
|
12
|
Porter HL, Ansere VA, Undi RB, Hoolehan W, Giles CB, Brown CA, Stanford D, Huycke MM, Freeman WM, Wren JD. Methylation Array Signals are Predictive of Chronological Age Without Bisulfite Conversion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572465. [PMID: 38187520 PMCID: PMC10769286 DOI: 10.1101/2023.12.20.572465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
DNA methylation data has been used to make "epigenetic clocks" which attempt to measure chronological and biological aging. These models rely on data derived from bisulfite-based measurements, which exploit a semi-selective deamination and a genomic reference to determine methylation states. Here, we demonstrate how another hallmark of aging, genomic instability, influences methylation measurements in both bisulfite sequencing and methylation arrays. We found that non-methylation factors lead to "pseudomethylation" signals that are both confounding of epigenetic clocks and uniquely age predictive. Quantifying these covariates in aging studies will be critical to building better clocks and designing appropriate studies of epigenetic aging.
Collapse
Affiliation(s)
- Hunter L Porter
- Oklahoma Medical Research Foundation
- University of Oklahoma Health Sciences Center
- Oklahoma Nathan Shock Center
| | - Victor A Ansere
- Oklahoma Medical Research Foundation
- University of Oklahoma Health Sciences Center
| | | | - Walker Hoolehan
- Oklahoma Medical Research Foundation
- University of Oklahoma Health Sciences Center
| | | | - Chase A Brown
- Oklahoma Medical Research Foundation
- University of Oklahoma Health Sciences Center
| | | | | | - Willard M Freeman
- Oklahoma Medical Research Foundation
- University of Oklahoma Health Sciences Center
- Oklahoma Nathan Shock Center
| | - Jonathan D Wren
- Oklahoma Medical Research Foundation
- University of Oklahoma Health Sciences Center
- Oklahoma Nathan Shock Center
| |
Collapse
|
13
|
Fekete M, Lehoczki A, Tarantini S, Fazekas-Pongor V, Csípő T, Csizmadia Z, Varga JT. Improving Cognitive Function with Nutritional Supplements in Aging: A Comprehensive Narrative Review of Clinical Studies Investigating the Effects of Vitamins, Minerals, Antioxidants, and Other Dietary Supplements. Nutrients 2023; 15:5116. [PMID: 38140375 PMCID: PMC10746024 DOI: 10.3390/nu15245116] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cognitive impairment and dementia are burgeoning public health concerns, especially given the increasing longevity of the global population. These conditions not only affect the quality of life of individuals and their families, but also pose significant economic burdens on healthcare systems. In this context, our comprehensive narrative review critically examines the role of nutritional supplements in mitigating cognitive decline. Amidst growing interest in non-pharmacological interventions for cognitive enhancement, this review delves into the efficacy of vitamins, minerals, antioxidants, and other dietary supplements. Through a systematic evaluation of randomized controlled trials, observational studies, and meta-analysis, this review focuses on outcomes such as memory enhancement, attention improvement, executive function support, and neuroprotection. The findings suggest a complex interplay between nutritional supplementation and cognitive health, with some supplements showing promising results and others displaying limited or context-dependent effectiveness. The review highlights the importance of dosage, bioavailability, and individual differences in response to supplementation. Additionally, it addresses safety concerns and potential interactions with conventional treatments. By providing a clear overview of current scientific knowledge, this review aims to guide healthcare professionals and researchers in making informed decisions about the use of nutritional supplements for cognitive health.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Andrea Lehoczki
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary;
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
14
|
Lynch M, Em Arpawong T, Beam CR. Associations Between Longitudinal Loneliness, DNA Methylation Age Acceleration, and Cognitive Functioning. J Gerontol B Psychol Sci Soc Sci 2023; 78:2045-2059. [PMID: 37718577 PMCID: PMC10699733 DOI: 10.1093/geronb/gbad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 09/19/2023] Open
Abstract
OBJECTIVES Loneliness may influence aging biomarkers related to cognitive functioning, for example, through accelerated DNA methylation (DNAm) aging. METHODS In the present study, we tested whether six common DNAm age acceleration measures mediated the effects of baseline loneliness and five different longitudinal loneliness trajectories on general cognitive ability, immediate memory recall, delayed memory recall, and processing speed in 1,814 older adults in the Health and Retirement Study. RESULTS We found that baseline loneliness and individuals who belong to the highest loneliness trajectories had poorer general cognitive ability and memory scores. Only DNAm age acceleration measures that index physiological comorbidities, unhealthy lifestyle factors (e.g., smoking), and mortality risk-mediated effects of baseline loneliness on general cognitive ability and memory functioning but not processing speed. These same DNAm measures mediated effects of the moderate-but-declining loneliness trajectory on cognitive functioning. Additionally, immediate and delayed memory scores were mediated by GrimAge Accel in the lowest and two highest loneliness trajectory groups. Total and mediated effects of loneliness on cognitive functioning outcomes were mainly accounted for by demographic, social, psychological, and physiological covariates, most notably self-rated health, depressive symptomatology, objective social isolation, and body mass index. DISCUSSION Current findings suggest that DNAm biomarkers of aging, particularly GrimAge Accel, have promise for explaining the prospective association between loneliness and cognitive functioning outcomes.
Collapse
Affiliation(s)
- Morgan Lynch
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Thalida Em Arpawong
- Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Christopher R Beam
- Department of Psychology, University of Southern California, Los Angeles, California, USA
- Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
15
|
Ungvari A, Gulej R, Csik B, Mukli P, Negri S, Tarantini S, Yabluchanskiy A, Benyo Z, Csiszar A, Ungvari Z. The Role of Methionine-Rich Diet in Unhealthy Cerebrovascular and Brain Aging: Mechanisms and Implications for Cognitive Impairment. Nutrients 2023; 15:4662. [PMID: 37960316 PMCID: PMC10650229 DOI: 10.3390/nu15214662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
As aging societies in the western world face a growing prevalence of vascular cognitive impairment and Alzheimer's disease (AD), understanding their underlying causes and associated risk factors becomes increasingly critical. A salient concern in the western dietary context is the high consumption of methionine-rich foods such as red meat. The present review delves into the impact of this methionine-heavy diet and the resultant hyperhomocysteinemia on accelerated cerebrovascular and brain aging, emphasizing their potential roles in cognitive impairment. Through a comprehensive exploration of existing evidence, a link between high methionine intake and hyperhomocysteinemia and oxidative stress, mitochondrial dysfunction, inflammation, and accelerated epigenetic aging is drawn. Moreover, the microvascular determinants of cognitive deterioration, including endothelial dysfunction, reduced cerebral blood flow, microvascular rarefaction, impaired neurovascular coupling, and blood-brain barrier (BBB) disruption, are explored. The mechanisms by which excessive methionine consumption and hyperhomocysteinemia might drive cerebromicrovascular and brain aging processes are elucidated. By presenting an intricate understanding of the relationships among methionine-rich diets, hyperhomocysteinemia, cerebrovascular and brain aging, and cognitive impairment, avenues for future research and potential therapeutic interventions are suggested.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Translational Medicine, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
16
|
Felt JM, Yusupov N, Harrington KD, Fietz J, Zhang Z“Z, Sliwinski MJ, Ram N, O'Donnell KJ, BeCOME Working Group, Meaney MJ, Putnam FW, Noll JG, Binder EB, Shenk CE. Epigenetic age acceleration as a biomarker for impaired cognitive abilities in adulthood following early life adversity and psychiatric disorders. Neurobiol Stress 2023; 27:100577. [PMID: 37885906 PMCID: PMC10597797 DOI: 10.1016/j.ynstr.2023.100577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Background Early life adversity and psychiatric disorders are associated with earlier declines in neurocognitive abilities during adulthood. These declines may be preceded by changes in biological aging, specifically epigenetic age acceleration, providing an opportunity to uncover genome-wide biomarkers that identify individuals most likely to benefit from early screening and prevention. Methods Five unique epigenetic age acceleration clocks derived from peripheral blood were examined in relation to latent variables of general and speeded cognitive abilities across two independent cohorts: 1) the Female Growth and Development Study (FGDS; n = 86), a 30-year prospective cohort study of substantiated child sexual abuse and non-abused controls, and 2) the Biological Classification of Mental Disorders study (BeCOME; n = 313), an adult community cohort established based on psychiatric disorders. Results A faster pace of biological aging (DunedinPoAm) was associated with lower general cognitive abilities in both cohorts and slower speeded abilities in the BeCOME cohort. Acceleration in the Horvath clock was significantly associated with slower speeded abilities in the BeCOME cohort but not the FGDS. Acceleration in the Hannum clock and the GrimAge clock were not significantly associated with either cognitive ability. Accelerated PhenoAge was associated with slower speeded abilities in the FGDS but not the BeCOME cohort. Conclusions The present results suggest that epigenetic age acceleration has the potential to serve as a biomarker for neurocognitive decline in adults with a history of early life adversity or psychiatric disorders. Estimates of epigenetic aging may identify adults at risk of cognitive decline that could benefit from early neurocognitive screening.
Collapse
Affiliation(s)
- John M. Felt
- Center for Healthy Aging, The Pennsylvania State University, United States
| | - Natan Yusupov
- Department Genes and Environment, Max Planck Institute of Psychiatry - Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Germany
| | | | - Julia Fietz
- Department Genes and Environment, Max Planck Institute of Psychiatry - Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Germany
| | | | - Martin J. Sliwinski
- Center for Healthy Aging, The Pennsylvania State University, United States
- Department of Human Development and Family Studies, The Pennsylvania State University, United States
| | - Nilam Ram
- Department of Communications, Stanford University, United States
- Department of Psychology, Stanford University, United States
| | - Kieran J. O'Donnell
- Child Study Center, Yale University, United States
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University, United States
- The Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research, Canada
| | - BeCOME Working Group
- Department Genes and Environment, Max Planck Institute of Psychiatry - Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael J. Meaney
- The Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research, Canada
- Singapore Institute of Clinical Sciences, Singapore
| | - Frank W. Putnam
- Department of Psychiatry, University of North Carolina School of Medicine, United States
| | - Jennie G. Noll
- Department of Human Development and Family Studies, The Pennsylvania State University, United States
| | - Elisabeth B. Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry - Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States
| | - Chad E. Shenk
- Department of Human Development and Family Studies, The Pennsylvania State University, United States
- Department of Pediatrics, The Pennsylvania State University College of Medicine, United States
| |
Collapse
|
17
|
Milicic L, Porter T, Vacher M, Laws SM. Utility of DNA Methylation as a Biomarker in Aging and Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:475-503. [PMID: 37313495 PMCID: PMC10259073 DOI: 10.3233/adr-220109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/23/2023] [Indexed: 06/15/2023] Open
Abstract
Epigenetic mechanisms such as DNA methylation have been implicated in a number of diseases including cancer, heart disease, autoimmune disorders, and neurodegenerative diseases. While it is recognized that DNA methylation is tissue-specific, a limitation for many studies is the ability to sample the tissue of interest, which is why there is a need for a proxy tissue such as blood, that is reflective of the methylation state of the target tissue. In the last decade, DNA methylation has been utilized in the design of epigenetic clocks, which aim to predict an individual's biological age based on an algorithmically defined set of CpGs. A number of studies have found associations between disease and/or disease risk with increased biological age, adding weight to the theory of increased biological age being linked with disease processes. Hence, this review takes a closer look at the utility of DNA methylation as a biomarker in aging and disease, with a particular focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Lidija Milicic
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Michael Vacher
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- CSIRO Health and Biosecurity, Australian e-Health Research Centre, Floreat, Western Australia
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
18
|
Felt J, Harrington K, Ram N, O’Donnell K, Sliwinski M, Benson L, Zhang Z, Meaney M, Putnam F, Noll J, Shenk C. Receptive Language Abilities for Females Exposed to Early Life Adversity: Modification by Epigenetic Age Acceleration at Midlife in a 30-Year Prospective Cohort Study. J Gerontol B Psychol Sci Soc Sci 2023; 78:585-595. [PMID: 36190812 PMCID: PMC10066744 DOI: 10.1093/geronb/gbac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Deviations from normative trajectories of receptive language abilities following early life adversity (ELA) may indicate an elevated risk for advanced cognitive aging and related morbidities. Accelerated epigenetic aging at midlife may further identify those at greatest risk for advanced cognitive aging following ELA. We examined whether accelerations in epigenetic aging at midlife can identify those individuals who demonstrated the greatest change in receptive language abilities following ELA. METHODS Data were drawn from the Female Growth and Development Study (n = 86), a 30-year prospective cohort study of females exposed to substantiated child sexual abuse (CSA), a severe ELA, and a non-CSA comparison condition. The Peabody Picture Vocabulary Test-Revised (PPVT-R) measured receptive language abilities on 6 occasions from childhood to mid-life. Interindividual differences in PPVT-R trajectories were examined in relation to CSA exposure and across 5 independent measures of epigenetic age acceleration derived from first (Horvath DNAmAge, Hannum DNAmAge) and second (GrimAge, PhenoAge, Dunedin Pace of Aging) generation epigenetic clocks. RESULTS Quadratic growth models revealed that PPVT-R scores were significantly lower at age 25 for females exposed to CSA. Specifically, CSA exposed females had lower intercepts when GrimAge was accelerated and a smaller quadratic trend when PhenoAge was accelerated. DISCUSSION ELA is associated with significant differences in development of receptive language abilities with the most pronounced differences observed for females with accelerated epigenetic ages at mid-life. These findings suggest that epigenetic age acceleration could serve as an indicator of differences in cognitive aging and portend to later adulthood cognitive functioning.
Collapse
Affiliation(s)
- John M Felt
- Center for Healthy Aging, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Karra D Harrington
- Center for Healthy Aging, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Nilam Ram
- Department of Communications, Stanford University, Stanford, California, USA
- Department of Psychology, Stanford University, Stanford, California, USA
| | - Kieran J O’Donnell
- Child Study Center, Yale University, New Haven, Connecticut, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University, New Haven, Connecticut, USA
- The Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Child and Brain Developmental Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Martin J Sliwinski
- Center for Healthy Aging, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lizbeth Benson
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zhenyu Zhang
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Michael J Meaney
- The Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Child and Brain Developmental Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- Singapore Institute of Clinical Sciences, Singapore
| | - Frank W Putnam
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jennie G Noll
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chad E Shenk
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Pediatrics, The Pennsylvania State University School of Medicine, University Park, Pennsylvania, USA
| |
Collapse
|
19
|
Li Z, Zong X, Li D, He Y, Tang J, Hu M, Chen X. Epigenetic clock analysis of blood samples in drug-naive first-episode schizophrenia patients. BMC Psychiatry 2023; 23:45. [PMID: 36650462 PMCID: PMC9843886 DOI: 10.1186/s12888-023-04533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe and chronic psychiatric disorder with premature age-related physiological changes. However, numerous previous studies examined the epigenetic age acceleration in SCZ patients and yielded inconclusive results. In this study, we propose to explore the epigenetic age acceleration in drug-naive first-episode SCZ (FSCZ) patients and investigate whether epigenetic age acceleration is associated with antipsychotic treatment, psychotic symptoms, cognition, and subcortical volumes. METHODS We assessed the epigenetic age in 38 drug-naive FSCZ patients and 38 healthy controls by using three independent clocks, including Horvath, Hannum and Levine algorithms. The epigenetic age measurements in SCZ patients were repeated after receiving 8 weeks risperidone monotherapy. RESULTS Our findings showed significantly positive correlations between epigenetic ages assessed by three clocks and chronological age in both FSCZ patients and healthy controls. Compared with healthy controls, drug-naive FSCZ patients have a significant epigenetic age deceleration in Horvath clock (p = 0.01), but not in Hannum clock (p = 0.07) and Levine clock (p = 0.43). The epigenetic ages of Hannum clock (p = 0.002) and Levine clock (p = 0.01) were significantly accelerated in SCZ patients after 8-week risperidone treatment. However, no significant associations between epigenetic age acceleration and psychotic symptoms, cognitive function, as well as subcortical volumes were observed in FSCZ patients. CONCLUSION These results demonstrate that distinct epigenetic clocks are sensitive to different aspects of aging process. Further investigations with comprehensive epigenetic clock analyses and large samples are required to confirm our findings.
Collapse
Affiliation(s)
- Zongchang Li
- grid.216417.70000 0001 0379 7164Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, No 139 Renmin Road, Changsha, Hunan 410011 P. R. China ,grid.216417.70000 0001 0379 7164China National Technology Institute on Mental Disorders & Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Xiaofen Zong
- grid.412632.00000 0004 1758 2270Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - David Li
- grid.216417.70000 0001 0379 7164Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, No 139 Renmin Road, Changsha, Hunan 410011 P. R. China
| | - Ying He
- grid.216417.70000 0001 0379 7164Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, No 139 Renmin Road, Changsha, Hunan 410011 P. R. China ,grid.216417.70000 0001 0379 7164China National Technology Institute on Mental Disorders & Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Jinsong Tang
- grid.13402.340000 0004 1759 700XDepartment of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Maolin Hu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, P. R. China.
| | - Xiaogang Chen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, No 139 Renmin Road, Changsha, Hunan, 410011, P. R. China. .,China National Technology Institute on Mental Disorders & Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, P. R. China.
| |
Collapse
|
20
|
Vyas CM, Sadreyev RI, Gatchel JR, Kang JH, Reynolds CF, Mischoulon D, Chang G, Hazra A, Manson JE, Blacker D, Vivo ID, Okereke OI. Pilot Study of Second-Generation DNA Methylation Epigenetic Markers in Relation to Cognitive and Neuropsychiatric Symptoms in Older Adults. J Alzheimers Dis 2023; 93:1563-1575. [PMID: 37212116 PMCID: PMC10336852 DOI: 10.3233/jad-230093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND Associations between epigenetic aging with cognitive aging and neuropsychiatric measures are not well-understood. OBJECTIVE 1) To assess cross-sectional correlations between second-generation DNA methylation (DNAm)-based clocks of healthspan and lifespan (i.e., GrimAge, PhenoAge, and DNAm-based estimator of telomere length [DNAmTL]) and cognitive and neuropsychiatric measures; 2) To examine longitudinal associations between change in DNAm markers and change in cognition over 2 years. METHODS Participants were members of VITAL-DEP (VITamin D and OmegA-3 TriaL- Depression Endpoint Prevention) study. From previously ascertained cognitive groups (i.e., cognitively normal and mild cognitive impairment), we randomly selected 45 participants, aged≥60 years, who completed in-person neuropsychiatric assessments at baseline and 2 years. The primary outcome was global cognitive score (averaging z-scores of 9 tests). Neuropsychiatric Inventory severity scores were mapped from neuropsychiatric symptoms (NPS) from psychological scales and structured diagnostic interviews. DNAm was assayed using Illumina MethylationEPIC 850K BeadChip at baseline and 2 years. We calculated baseline partial Spearman correlations between DNAm markers and cognitive and NPS measures. We constructed multivariable linear regression models to examine longitudinal relations between DNAm markers and cognition. RESULTS At baseline, we observed a suggestive negative correlation between GrimAge clock markers and global cognition but no signal between DNAm markers and NPS measures. Over 2 years: each 1-year increase in DNAmGrimAge was significantly associated with faster declines in global cognition; each 100-base pair increase in DNAmTL was significantly associated with better global cognition. CONCLUSION We found preliminary evidence of cross-sectional and longitudinal associations between DNAm markers and global cognition.
Collapse
Affiliation(s)
- Chirag M. Vyas
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer R. Gatchel
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Geriatric Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Jae H. Kang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles F. Reynolds
- Department of Psychiatry, UPMC and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Grace Chang
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, Boston, MA, USA
| | - Aditi Hazra
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - JoAnn E. Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Deborah Blacker
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Olivia I. Okereke
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
21
|
Spartano NL, Wang R, Yang Q, Chernofsky A, Murabito JM, Levy D, Vasan RS, DeCarli C, Maillard P, Seshadri S, Beiser AS. Association of Physical Inactivity with MRI Markers of Brain Aging: Assessing Mediation by Cardiometabolic and Epigenetic Factors. J Alzheimers Dis 2023; 95:561-572. [PMID: 37574733 PMCID: PMC11694349 DOI: 10.3233/jad-230289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Cardiometabolic risk factors and epigenetic patterns, increased in physically inactive individuals, are associated with an accelerated brain aging process. OBJECTIVE To determine whether cardiometabolic risk factors and epigenetic patterns mediate the association of physical inactivity with unfavorable brain morphology. METHODS We included dementia and stroke free participants from the Framingham Heart Study Third Generation and Offspring cohorts who had accelerometery and brain MRI data (n = 2,507, 53.9% women, mean age 53.9 years). We examined mediation by the 2017-revised Framingham Stroke Risk Profile (FSRP, using weights for age, cardiovascular disease, atrial fibrillation, diabetes and smoking status, antihypertension medications, and systolic blood pressure) and the homeostatic model of insulin resistance (HOMA-IR) in models of the association of physical inactivity with brain aging, adjusting for age, age-squared, sex, accelerometer wear time, cohort, time from exam-to-MRI, and season. We similarly assessed mediation by an epigenetic age-prediction algorithm, GrimAge, in a smaller sample of participants who had DNA methylation data (n = 1,418). RESULTS FSRP and HOMA-IR explained 8.3-20.5% of associations of higher moderate-to-vigorous physical activity (MVPA), higher steps, and lower sedentary time with higher brain volume. Additionally, FSRP and GrimAge explained 10.3-22.0% of associations of physical inactivity with lower white matter diffusivity and FSRP explained 19.7% of the association of MVPA with lower free water accumulation. CONCLUSION Our results suggest that cardiometabolic risk factors and epigenetic patterns partially mediate the associations of physical inactivity with lower brain volume, higher white matter diffusivity, and aggregation of free water in the extracellular compartments of the brain.
Collapse
Affiliation(s)
- Nicole L. Spartano
- Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Boston University Chobanian & Avedisian School of Medicine (BUCASM), Boston, MA, USA
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA, USA
| | - Ruiqi Wang
- Department of Biostatistics, Boston University School of Public Health (BUSPH), Boston, MA, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health (BUSPH), Boston, MA, USA
| | - Ariel Chernofsky
- Department of Biostatistics, Boston University School of Public Health (BUSPH), Boston, MA, USA
| | - Joanne M. Murabito
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA, USA
- Section of General Internal Medicine, Department of Medicine, BUCASM, Boston, MA, USA
| | - Daniel Levy
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ramachandran S. Vasan
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA, USA
- Section of Preventive Medicine and Epidemiology, Evans Department of Medicine, BUSM, Boston, MA, USA
- Department of Epidemiology, BUSPH, Boston, MA, USA
- UT School of Public Health in San Antonio, TX, and UT Health Sciences Center in San Antonio, TX, USA
| | - Charles DeCarli
- Department of Neurology University of California Davis, Davis, CA, USA
| | - Pauline Maillard
- Department of Neurology University of California Davis, Davis, CA, USA
| | - Sudha Seshadri
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, BUSM, Boston, MA, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Alexa S. Beiser
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health (BUSPH), Boston, MA, USA
- Department of Neurology, BUSM, Boston, MA, USA
| |
Collapse
|
22
|
Yang GS, Yang K, Weaver MT, Lynch Kelly D, Dorsey SG, Jackson-Cook CK, Lyon DE. Exploring the relationship between DNA methylation age measures and psychoneurological symptoms in women with early-stage breast cancer. Support Care Cancer 2022; 31:65. [PMID: 36538110 DOI: 10.1007/s00520-022-07519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE The epigenetic clock has been acknowledged as an indicator for molecular aging, but few studies have examined possible associations of DNA methylation (DNAm) age or age acceleration (AA) with symptom burden in individuals who are treated for cancer. This study explored the association of DNAm age or AA with psychoneurological (PN) symptoms, including cognitive impairment, fatigue, sleep disturbances, pain, and depressive symptoms, in breast cancer survivors over a 2-year period. METHODS We measured PN symptoms using reliable instruments and DNAm levels by Infinium HumanMethylation450K BeadChip (N = 72). DNAm age was calculated by the Horvath, Grim, and Hannum-based intrinsic and extrinsic age estimations. AA was defined by the residual regressing estimated epigenetic age on chronological age. Mixed regression models were fitted for AA and changes in AA to study the association over time. Separate linear regression models and a mixed-effects model were fitted for AA at each time point. RESULTS Horvath-AA, Grim-AA, and extrinsic epigenetic AA were significantly changed over time, while intrinsic epigenetic AA did not exhibit any temporal changes. Increased AA was associated with greater anxiety and fatigue, as well as worse cognitive memory, adjusting for race, BMI, income, chemotherapy, radiation therapy, and chronological age. Increased DNAm age was associated with greater anxiety over 2 years. CONCLUSION Our findings suggest DNAm age and AA may be associated with PN symptoms over the course of cancer treatment and survivorship. Some PN symptoms may be amenable to preventive interventions targeted to epigenetic clocks that influence aging-associated processes.
Collapse
Affiliation(s)
- Gee Su Yang
- University of Connecticut School of Nursing, Storrs, CT, USA
| | - Kai Yang
- Medical College of Wisconsin Department of Institute for Health and Equity Division of Biostatistics, Milwaukee, WI, USA
| | | | | | - Susan G Dorsey
- School of Nursing Department of Pain and Translational Symptom Science, University of Maryland, Baltimore, MD, USA
| | - Colleen K Jackson-Cook
- Department of Pathology & Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Debra E Lyon
- University of Florida College of Nursing, Gainesville, FL, USA.
| |
Collapse
|
23
|
Liu C, Wang Z, Hui Q, Goldberg J, Smith NL, Shah AJ, Murrah N, Shallenberger L, Diggers E, Bremner JD, Sun YV, Vaccarino V. Association between depression and epigenetic age acceleration: A co-twin control study. Depress Anxiety 2022; 39:741-750. [PMID: 35758529 PMCID: PMC9729366 DOI: 10.1002/da.23279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Prior studies have shown inconsistent findings of an association between depression and epigenetic aging. DNA methylation (DNAm) age acceleration can measure biological aging. We adopted a robust co-twin control study design to examine whether depression is associated with DNAm age acceleration after accounting for the potential confounding influences of genetics and family environment. METHODS We analyzed data on a sub-cohort of the Vietnam Era Twin Registry. A total of 291 twins participated at baseline and 177 at follow-up visit after a mean of 11.7 years, with 111 participants having DNA samples for both time points. Depression was measured using the Beck Depression Inventory II (BDI-II). Six measures of DNAm age acceleration were computed at each time point, including Horvath's DNAm age acceleration (HorvathAA), intrinsic epigenetic age acceleration (IEAA), Hannum's DNAm age acceleration (HannumAA), extrinsic epigenetic age acceleration (EEAA), GrimAge acceleration (GrimAA), and PhenoAge acceleration (PhenoAA). Mixed-effects modeling was used to assess the within-pair association between depression and DNAm age acceleration. RESULTS At baseline, a 10-unit higher BDI-II total score was associated with HannumAA (0.73 years, 95% confidence interval [CI] 0.13-1.33, p = .019) and EEAA (0.94 years, 95% CI 0.22-1.66, p = .012). At follow-up, 10-unit higher BDI-II score was associated with PhenoAA (1.32 years, 95% CI 0.18-2.47, p = .027). CONCLUSION We identified that depression is associated with higher levels of DNAm age acceleration. Further investigation is warranted to better understand the underlying mechanisms for the potential causal relationship between depression and accelerated aging.
Collapse
Affiliation(s)
- Chang Liu
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Zeyuan Wang
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Qin Hui
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Jack Goldberg
- Vietnam Era Twin Registry, Seattle Epidemiologic Research and Information Center, Cooperative Studies Program, Office of Research and Development, Department of Veterans Affairs, Seattle, WA, USA
| | - Nicholas L. Smith
- Vietnam Era Twin Registry, Seattle Epidemiologic Research and Information Center, Cooperative Studies Program, Office of Research and Development, Department of Veterans Affairs, Seattle, WA, USA
| | - Amit J. Shah
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Atlanta VA Health Care System, 1670 Clairmont Road, Decatur, GA 30033, USA
| | - Nancy Murrah
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Lucy Shallenberger
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Emily Diggers
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - J. Douglas Bremner
- Atlanta VA Health Care System, 1670 Clairmont Road, Decatur, GA 30033, USA
- Departments of Psychiatry and Behavioral Sciences and Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Yan V. Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
- Atlanta VA Health Care System, 1670 Clairmont Road, Decatur, GA 30033, USA
| | - Viola Vaccarino
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
24
|
An evaluation of aging measures: from biomarkers to clocks. Biogerontology 2022; 24:303-328. [PMID: 36418661 DOI: 10.1007/s10522-022-09997-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
Abstract
With the increasing number of aged population and growing burden of healthy aging demands, a rational standard for evaluation aging is in urgent need. The advancement of medical testing technology and the prospering of artificial intelligence make it possible to evaluate the biological status of aging from a more comprehensive view. In this review, we introduced common aging biomarkers and concluded several famous aging clocks. Aging biomarkers reflect changes in the organism at a molecular or cellular level over time while aging clocks tend to be more of a generalization of the overall state of the organism. We expect to construct a framework for aging evaluation measurement from both micro and macro perspectives. Especially, population-specific aging clocks and multi-omics aging clocks may better fit the demands to evaluate aging in a comprehensive and multidimensional manner and make a detailed classification to represent different aging rates at tissue/organ levels. This framework will promisingly provide a crucial basis for disease diagnosis and intervention assessment in geroscience.
Collapse
|
25
|
Engelbrecht HR, Merrill SM, Gladish N, MacIsaac JL, Lin DTS, Ecker S, Chrysohoou CA, Pes GM, Kobor MS, Rehkopf DH. Sex differences in epigenetic age in Mediterranean high longevity regions. FRONTIERS IN AGING 2022; 3:1007098. [PMID: 36506464 PMCID: PMC9726738 DOI: 10.3389/fragi.2022.1007098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Sex differences in aging manifest in disparities in disease prevalence, physical health, and lifespan, where women tend to have greater longevity relative to men. However, in the Mediterranean Blue Zones of Sardinia (Italy) and Ikaria (Greece) are regions of centenarian abundance, male-female centenarian ratios are approximately one, diverging from the typical trend and making these useful regions in which to study sex differences of the oldest old. Additionally, these regions can be investigated as examples of healthy aging relative to other populations. DNA methylation (DNAm)-based predictors have been developed to assess various health biomarkers, including biological age, Pace of Aging, serum interleukin-6 (IL-6), and telomere length. Epigenetic clocks are biological age predictors whose deviation from chronological age has been indicative of relative health differences between individuals, making these useful tools for interrogating these differences in aging. We assessed sex differences between the Horvath, Hannum, GrimAge, PhenoAge, Skin and Blood, and Pace of Aging predictors from individuals in two Mediterranean Blue Zones and found that men displayed positive epigenetic age acceleration (EAA) compared to women according to all clocks, with significantly greater rates according to GrimAge (β = 3.55; p = 1.22 × 10-12), Horvath (β = 1.07; p = 0.00378) and the Pace of Aging (β = 0.0344; p = 1.77 × 10-08). Other DNAm-based biomarkers findings indicated that men had lower DNAm-predicted serum IL-6 scores (β = -0.00301, p = 2.84 × 10-12), while women displayed higher DNAm-predicted proportions of regulatory T cells than men from the Blue Zone (p = 0.0150, 95% Confidence Interval [0.00131, 0.0117], Cohen's d = 0.517). All clocks showed better correlations with chronological age in women from the Blue Zones than men, but all clocks showed large mean absolute errors (MAE >30 years) in both sexes, except for PhenoAge (MAE <5 years). Thus, despite their equal survival to older ages in these Mediterranean Blue Zones, men in these regions remain biologically older by most measured DNAm-derived metrics than women, with the exception of the IL-6 score and proportion of regulatory T cells.
Collapse
Affiliation(s)
- Hannah-Ruth Engelbrecht
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Sarah M. Merrill
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Gladish
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Julie L. MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - David T. S. Lin
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Simone Ecker
- UCL Cancer Institute, University College London, London, United Kingdom
| | | | - Giovanni M. Pes
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Michael S. Kobor
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Michael S. Kobor, ; David H. Rehkopf,
| | - David H. Rehkopf
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Palo Alto, CA, United States,*Correspondence: Michael S. Kobor, ; David H. Rehkopf,
| |
Collapse
|
26
|
Reed RG, Carroll JE, Marsland AL, Manuck SB. DNA methylation-based measures of biological aging and cognitive decline over 16-years: preliminary longitudinal findings in midlife. Aging (Albany NY) 2022; 14:9423-9444. [PMID: 36374219 PMCID: PMC9792211 DOI: 10.18632/aging.204376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
Abstract
DNA methylation-based (DNAm) measures of biological aging associate with increased risk of morbidity and mortality, but their links with cognitive decline are less established. This study examined changes over a 16-year interval in epigenetic clocks (the traditional and principal components [PC]-based Horvath, Hannum, PhenoAge, GrimAge) and pace of aging measures (Dunedin PoAm, Dunedin PACE) in 48 midlife adults enrolled in the longitudinal arm of the Adult Health and Behavior project (56% Female, baseline AgeM = 44.7 years), selected for discrepant cognitive trajectories. Cognitive Decliners (N = 24) were selected based on declines in a composite score derived from neuropsychological tests and matched with participants who did not show any decline, Maintainers (N = 24). Multilevel models with repeated DNAm measures within person tested the main effects of time, group, and group by time interactions. DNAm measures significantly increased over time generally consistent with elapsed time between study visits. There were also group differences: overall, Cognitive Decliners had an older PC-GrimAge and faster pace of aging (Dunedin PoAm, Dunedin PACE) than Cognitive Maintainers. There were no significant group by time interactions, suggesting accelerated epigenetic aging in Decliners remained constant over time. Older PC-GrimAge and faster pace of aging may be particularly sensitive to cognitive decline in midlife.
Collapse
Affiliation(s)
- Rebecca G. Reed
- Department of Psychology, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Judith E. Carroll
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Science, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Anna L. Marsland
- Department of Psychology, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stephen B. Manuck
- Department of Psychology, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
27
|
Sommerer Y, Dobricic V, Schilling M, Ohlei O, Bartrés-Faz D, Cattaneo G, Demuth I, Düzel S, Franzenburg S, Fuß J, Lindenberger U, Pascual-Leone Á, Sabet SS, Solé-Padullés C, Tormos JM, Vetter VM, Wesse T, Franke A, Lill CM, Bertram L. Epigenome-Wide Association Study in Peripheral Tissues Highlights DNA Methylation Profiles Associated with Episodic Memory Performance in Humans. Biomedicines 2022; 10:2798. [PMID: 36359320 PMCID: PMC9687249 DOI: 10.3390/biomedicines10112798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The decline in episodic memory (EM) performance is a hallmark of cognitive aging and an early clinical sign in Alzheimer’s disease (AD). In this study, we conducted an epigenome-wide association study (EWAS) using DNA methylation (DNAm) profiles from buccal and blood samples for cross-sectional (n = 1019) and longitudinal changes in EM performance (n = 626; average follow-up time 5.4 years) collected under the auspices of the Lifebrain consortium project. The mean age of participants with cross-sectional data was 69 ± 11 years (30−90 years), with 50% being females. We identified 21 loci showing suggestive evidence of association (p < 1 × 10−5) with either or both EM phenotypes. Among these were SNCA, SEPW1 (both cross-sectional EM), ITPK1 (longitudinal EM), and APBA2 (both EM traits), which have been linked to AD or Parkinson’s disease (PD) in previous work. While the EM phenotypes were nominally significantly (p < 0.05) associated with poly-epigenetic scores (PESs) using EWASs on general cognitive function, none remained significant after correction for multiple testing. Likewise, estimating the degree of “epigenetic age acceleration” did not reveal significant associations with either of the two tested EM phenotypes. In summary, our study highlights several interesting candidate loci in which differential DNAm patterns in peripheral tissue are associated with EM performance in humans.
Collapse
Affiliation(s)
- Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Marcel Schilling
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Campus Clínic August Pi i Sunyer, Casanova, 143, 08036 Barcelona, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Garcilaso, 57, 08027 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Plaça Cívica, Bellaterra, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles, Badalona, 08916 Barcelona, Spain
| | - Ilja Demuth
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases, Division of Lipid Metabolism, Charité—Universitätsmedizin Berlin (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin), Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Álvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Garcilaso, 57, 08027 Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, 1200 Centre St., Boston, MA 02131, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Sanaz Sedghpour Sabet
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Campus Clínic August Pi i Sunyer, Casanova, 143, 08036 Barcelona, Spain
| | - Josep M. Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Garcilaso, 57, 08027 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Plaça Cívica, Bellaterra, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles, Badalona, 08916 Barcelona, Spain
| | - Valentin Max Vetter
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases, Division of Lipid Metabolism, Charité—Universitätsmedizin Berlin (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tanja Wesse
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Christina M. Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Institute of Epidemiology and Social Medicine, University of Münster, Domagkstr. 3, 48149 Münster, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, London W68RP, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway
| |
Collapse
|
28
|
Liang WS, Goetz LH, Schork NJ. Assessing brain and biological aging trajectories associated with Alzheimer's disease. Front Neurosci 2022; 16:1036102. [PMID: 36389222 PMCID: PMC9650396 DOI: 10.3389/fnins.2022.1036102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
The development of effective treatments to prevent and slow Alzheimer's disease (AD) pathogenesis is needed in order to tackle the steady increase in the global prevalence of AD. This challenge is complicated by the need to identify key health shifts that precede the onset of AD and cognitive decline as these represent windows of opportunity for intervening and preventing disease. Such shifts may be captured through the measurement of biomarkers that reflect the health of the individual, in particular those that reflect brain age and biological age. Brain age biomarkers provide a composite view of the health of the brain based on neuroanatomical analyses, while biological age biomarkers, which encompass the epigenetic clock, provide a measurement of the overall health state of an individual based on DNA methylation analysis. Acceleration of brain and biological ages is associated with changes in cognitive function, as well as neuropathological markers of AD. In this mini-review, we discuss brain age and biological age research in the context of cognitive decline and AD. While more research is needed, studies show that brain and biological aging trajectories are variable across individuals and that such trajectories are non-linear at older ages. Longitudinal monitoring of these biomarkers may be valuable for enabling earlier identification of divergent pathological trajectories toward AD and providing insight into points for intervention.
Collapse
Affiliation(s)
- Winnie S. Liang
- NetBio, Inc., Los Angeles, CA, United States
- Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Laura H. Goetz
- NetBio, Inc., Los Angeles, CA, United States
- Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Nicholas J. Schork
- NetBio, Inc., Los Angeles, CA, United States
- Translational Genomics Research Institute, Phoenix, AZ, United States
| |
Collapse
|
29
|
Sugden K, Caspi A, Elliott ML, Bourassa KJ, Chamarti K, Corcoran DL, Hariri AR, Houts RM, Kothari M, Kritchevsky S, Kuchel GA, Mill JS, Williams BS, Belsky DW, Moffitt TE. Association of Pace of Aging Measured by Blood-Based DNA Methylation With Age-Related Cognitive Impairment and Dementia. Neurology 2022; 99:e1402-e1413. [PMID: 35794023 PMCID: PMC9576288 DOI: 10.1212/wnl.0000000000200898] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/13/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVES DNA methylation algorithms are increasingly used to estimate biological aging; however, how these proposed measures of whole-organism biological aging relate to aging in the brain is not known. We used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Framingham Heart Study (FHS) Offspring Cohort to test the association between blood-based DNA methylation measures of biological aging and cognitive impairment and dementia in older adults. METHODS We tested 3 "generations" of DNA methylation age algorithms (first generation: Horvath and Hannum clocks; second generation: PhenoAge and GrimAge; and third generation: DunedinPACE, Dunedin Pace of Aging Calculated from the Epigenome) against the following measures of cognitive impairment in ADNI: clinical diagnosis of dementia and mild cognitive impairment, scores on Alzheimer disease (AD) / Alzheimer disease and related dementias (ADRD) screening tests (Alzheimer's Disease Assessment Scale, Mini-Mental State Examination, and Montreal Cognitive Assessment), and scores on cognitive tests (Rey Auditory Verbal Learning Test, Logical Memory test, and Trail Making Test). In an independent replication in the FHS Offspring Cohort, we further tested the longitudinal association between the DNA methylation algorithms and the risk of developing dementia. RESULTS In ADNI (N = 649 individuals), the first-generation (Horvath and Hannum DNA methylation age clocks) and the second-generation (PhenoAge and GrimAge) DNA methylation measures of aging were not consistently associated with measures of cognitive impairment in older adults. By contrast, a third-generation measure of biological aging, DunedinPACE, was associated with clinical diagnosis of Alzheimer disease (beta [95% CI] = 0.28 [0.08-0.47]), poorer scores on Alzheimer disease/ADRD screening tests (beta [Robust SE] = -0.10 [0.04] to 0.08[0.04]), and cognitive tests (beta [Robust SE] = -0.12 [0.04] to 0.10 [0.03]). The association between faster pace of aging, as measured by DunedinPACE, and risk of developing dementia was confirmed in a longitudinal analysis of the FHS Offspring Cohort (N = 2,264 individuals, hazard ratio [95% CI] = 1.27 [1.07-1.49]). DISCUSSION Third-generation blood-based DNA methylation measures of aging could prove valuable for measuring differences between individuals in the rate at which they age and in their risk for cognitive decline, and for evaluating interventions to slow aging.
Collapse
Affiliation(s)
- Karen Sugden
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York.
| | - Avshalom Caspi
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Maxwell L Elliott
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Kyle J Bourassa
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Kartik Chamarti
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - David L Corcoran
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Ahmad R Hariri
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Renate M Houts
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Meeraj Kothari
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Stephen Kritchevsky
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - George A Kuchel
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Jonathan S Mill
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Benjamin S Williams
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Daniel W Belsky
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Terrie E Moffitt
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| |
Collapse
|
30
|
Zhou A, Wu Z, Zaw Phyo AZ, Torres D, Vishwanath S, Ryan J. Epigenetic aging as a biomarker of dementia and related outcomes: a systematic review. Epigenomics 2022; 14:1125-1138. [PMID: 36154448 DOI: 10.2217/epi-2022-0209] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Biological aging may be a robust biomarker of dementia or cognitive performance. This systematic review synthesized the evidence for an association between epigenetic aging and dementia, mild cognitive impairment and cognitive function. Methods: A systematic search was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results: 30 eligible articles were included. There was no strong evidence that accelerated epigenetic aging was associated with dementia/mild cognitive impairment (n = 7). There was some evidence of an association with poorer cognition (n = 20), particularly with GrimAge acceleration, but this was inconsistent and varied across cognitive domains. A meta-analysis was not performed due to high study heterogeneity. Conclusion: There is insufficient evidence to indicate that current epigenetic aging clocks can be clinically useful biomarkers of dementia or cognitive aging.
Collapse
Affiliation(s)
- Aoshuang Zhou
- Division of Epidemiology, Jockey Club School of Public Health & Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Zimu Wu
- Biological Neuropsychiatry & Dementia Unit, School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Aung Zaw Zaw Phyo
- Biological Neuropsychiatry & Dementia Unit, School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Daniel Torres
- Biological Neuropsychiatry & Dementia Unit, School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Swarna Vishwanath
- Biological Neuropsychiatry & Dementia Unit, School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Joanne Ryan
- Biological Neuropsychiatry & Dementia Unit, School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| |
Collapse
|
31
|
Liu H, Lutz M, Sheng L. Genetic association between epigenetic aging-acceleration and the progression of mild cognitive impairment to Alzheimer's disease. J Gerontol A Biol Sci Med Sci 2022; 77:1734-1742. [PMID: 35797594 PMCID: PMC9434458 DOI: 10.1093/gerona/glac138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and previous studies have showed its association with accelerated aging. In this study, we hypothesized that SNPs that contributed to aging acceleration are also associated with the progression from mild cognitive impairment (MCI) to AD. By applying genetic correlation analysis and single-locus survival analysis, we investigated the associations between intrinsic- and extrinsic-epigenetic-age-acceleration (IEAA and EEAA) related SNPs and the progression time from mild cognitive impairment (MCI) to AD dementia using the data of 767 MCI participants from the ADNI study and 1373 MCI patients from the NACC study. Genetic correlations were found between IEAA/EEAA and AD (positive for IEAA-AD and negative for EEAA-AD). We revealed that 70 IEAA and 81 EEAA SNPs had associations with the progression time from MCI to AD with Bayesian false-discovery probability (BFDP) ≤ 0.8 in the ADNI study, with 22 IEAA SNPs and 16 EEAA SNPs being replicated in the NACC study (P < 0.05). Polygenic risk score (PRS) analysis showed that EEAA PRS but not IEAA PRS was associated with AD progression and the trend of decreasing Fusiform gyrus volume in two datasets. Risk models incorporating both EAA PRSs did not show any significant improvement in predictive accuracy. Our results identified multiple genetic variants with pleiotropic effects on both EAA and AD, which suggested shared genetic architecture between epigenetic age acceleration and AD progression.
Collapse
Affiliation(s)
- Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Michael Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Luo Sheng
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
32
|
Milicic L, Vacher M, Porter T, Doré V, Burnham SC, Bourgeat P, Shishegar R, Doecke J, Armstrong NJ, Tankard R, Maruff P, Masters CL, Rowe CC, Villemagne VL, Laws SM. Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume. GeroScience 2022; 44:1807-1823. [PMID: 35445885 PMCID: PMC9213584 DOI: 10.1007/s11357-022-00558-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/30/2022] [Indexed: 12/21/2022] Open
Abstract
The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer's Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer's disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes.
Collapse
Affiliation(s)
- Lidija Milicic
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| | - Michael Vacher
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- CSIRO Health and Biosecurity, Australian E-Health Research Centre, Floreat, Western Australia, 6014, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, 6102, Australia
| | - Vincent Doré
- Australian E-Health Research Centre, CSIRO, Parkville, Victoria, 3052, Australia
- Department of Molecular Imaging and Therapy and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Samantha C Burnham
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
- Australian E-Health Research Centre, CSIRO, Parkville, Victoria, 3052, Australia
| | - Pierrick Bourgeat
- Australian E-Health Research Centre, CSIRO, Herston, Queensland, 4029, Australia
| | - Rosita Shishegar
- Australian E-Health Research Centre, CSIRO, Parkville, Victoria, 3052, Australia
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - James Doecke
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
- Australian E-Health Research Centre, CSIRO, Herston, Queensland, 4029, Australia
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Curtin University, Bentley, Western Australia, Australia
| | - Rick Tankard
- School of Mathematics and Statistics, Murdoch University, Perth, Western Australia, Australia
| | - Paul Maruff
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Cogstate Ltd, Melbourne, VIC, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Victor L Villemagne
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
- Department of Molecular Imaging and Therapy and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia.
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, 6102, Australia.
| |
Collapse
|
33
|
He L. Editorial: Epigenetic Clock: A Novel Tool for Nutrition Studies of Healthy Ageing. J Nutr Health Aging 2022; 26:316-317. [PMID: 35450985 DOI: 10.1007/s12603-022-1773-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- L He
- Lingxiao He, School of Public Health, Xiamen University, Xiang'an South Road, 361104 Xiamen, China
| |
Collapse
|
34
|
Shiau S, Arpadi SM, Shen Y, Cantos A, Ramon CV, Shah J, Jang G, Manly JJ, Brickman AM, Baccarelli AA, Yin MT. Epigenetic Aging Biomarkers Associated With Cognitive Impairment in Older African American Adults With Human Immunodeficiency Virus (HIV). Clin Infect Dis 2021; 73:1982-1991. [PMID: 34143869 PMCID: PMC8664485 DOI: 10.1093/cid/ciab563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Accelerated epigenetic aging using DNA methylation (DNAm)-based biomarkers has been reported in people with human immunodeficiency virus (HIV, PWH), but limited data are available among African Americans (AA), women, and older PWH. METHODS DNAm was measured using Illumina EPIC Arrays for 107 (69 PWH and 38 HIV-seronegative controls) AA adults ≥60 years in New York City. Six DNAm-based biomarkers of aging were estimated: (1) epigenetic age acceleration (EAA), (2) extrinsic epigenetic age acceleration (EEAA), (3) intrinsic epigenetic age acceleration (IEAA), (4) GrimAge, (5) PhenoAge, and (6) DNAm-estimated telomere length (DNAm-TL). The National Institutes of Health (NIH) Toolbox Cognition Battery (domains: executive function, attention, working memory, processing speed, and language) and Montreal Cognitive Assessment (MoCA) were administered. Participants were assessed for frailty by the Fried criteria. RESULTS The PWH and control groups did not differ by sex, chronological age, or ethnicity. In total, 83% of PWH had a viral load <50 copies/mL, and 94% had a recent CD4 ≥200 cells/µL. The PWH group had a higher EAA, EEAA, GrimAge, and PhenoAge, and a lower DNAm-TL compared to the controls. IEAA was not different between groups. For PWH, there were significant negative correlations between IEAA and executive function, attention, and working memory and PhenoAge and attention. No associations between biomarkers and frailty were detected. CONCLUSIONS Evidence of epigenetic age acceleration was observed in AA older PWH using DNAm-based biomarkers of aging. There was no evidence of age acceleration independent of cell type National Institutes of Health composition (IEAA) associated with HIV, but this measure was associated with decreased cognitive function among PWH.
Collapse
Affiliation(s)
- Stephanie Shiau
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Stephen M Arpadi
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
- ICAP at Columbia, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York, USA
| | - Yanhan Shen
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Anyelina Cantos
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Christian Vivar Ramon
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Jayesh Shah
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Grace Jang
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer J Manly
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Adam M Brickman
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York, USA
| | - Michael T Yin
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
35
|
Shadyab AH, McEvoy LK, Horvath S, Whitsel EA, Rapp SR, Espeland MA, Resnick SM, Manson JE, Chen JC, Chen BH, Li W, Hayden KM, Bao W, Kusters CDJ, LaCroix AZ. Association of Epigenetic Age Acceleration with Incident Mild Cognitive Impairment and Dementia Among Older Women. J Gerontol A Biol Sci Med Sci 2021; 77:1239-1244. [PMID: 34417803 PMCID: PMC9159659 DOI: 10.1093/gerona/glab245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Epigenetic age acceleration (AgeAccel), which indicates faster biological aging relative to chronological age, has been associated with lower cognitive function. However, the association of AgeAccel with mild cognitive impairment (MCI) or dementia is not well-understood. We examined associations of four AgeAccel measures with incident MCI and dementia. METHODS This prospective analysis included 578 older women from the Women's Health Initiative Memory Study selected for a case-cohort study of coronary heart disease (CHD). Women were free of CHD and cognitive impairment at baseline. Associations of AgeAccel measures (intrinsic AgeAccel [IEAA], extrinsic AgeAccel [EEAA], AgeAccelPheno, and AgeAccelGrim) with risks for incident adjudicated diagnoses of MCI and dementia overall and stratified by incident CHD status were evaluated. RESULTS IEAA was not significantly associated with MCI (HR 1.23; 95% CI 0.99-1.53), dementia (HR 1.10; 95% CI 0.88-1.38), or cognitive impairment (HR 1.18; 95% CI 0.99-1.40). In stratified analysis by incident CHD status, there was a 39% (HR 1.39; 95% CI 1.07-1.81) significantly higher risk of MCI for every 5-year increase in IEAA among women who developed CHD during follow-up. Other AgeAccel measures were not significantly associated with MCI or dementia. CONCLUSION IEAA was not significantly associated with cognitive impairment overall but was associated with impairment among women who developed CHD. Larger studies designed to examine associations of AgeAccel with cognitive impairment are needed, including exploration of whether associations are stronger in the setting of underlying vascular pathologies.
Collapse
Affiliation(s)
- Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Linda K McEvoy
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA.,Department of Radiology, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Eric A Whitsel
- Departments of Epidemiology and Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen R Rapp
- Department of Psychiatry and Behavioral Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mark A Espeland
- Division of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jiu-Chiuan Chen
- Departments of Preventive Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian H Chen
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Wenjun Li
- Department of Public Health, University of Massachusetts, Lowell, MA, USA
| | - Kathleen M Hayden
- Departments of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA
| | - Cynthia D J Kusters
- Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Andrea Z LaCroix
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|