1
|
Hou C. Energetic cost of biosynthesis is a missing link between growth and longevity in mammals. Proc Natl Acad Sci U S A 2024; 121:e2315921121. [PMID: 38709928 PMCID: PMC11098097 DOI: 10.1073/pnas.2315921121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
The comparative studies of aging have established a negative correlation between Gompertz postnatal growth constant and maximum lifespan across mammalian species, but the underlying physiological mechanism remains unclear. This study shows that the Gompertz growth constant can be decomposed into two energetic components, mass-specific metabolic rate and the energetic cost of biosynthesis, and that after controlling the former as a confounder, the negative correlation between growth constant and lifespan still exists due to a 100-fold variation in the latter, revealing that the energetic cost of biosynthesis is a link between growth and longevity in mammals. Previously, the energetic cost of biosynthesis has been thought to be a constant across species and therefore was not considered a contributor to the variation in any life history traits, such as growth and lifespan. This study employs a recently proposed model based on energy conservation to explain the physiological effect of the variation in this energetic cost on the aging process and illustrates its role in linking growth and lifespan. The conventional life history theory suggested a tradeoff between growth and somatic maintenance, but the findings in this study suggest that allocating more energy to biosynthesis may enhance the somatic maintenance and extend lifespan and, hence, reveal a more complex nature of the tradeoff.
Collapse
Affiliation(s)
- Chen Hou
- Biology Department, College of Arts, Sciences, and Education, Missouri University of Science and Technology, Rolla, MO65401
| |
Collapse
|
2
|
Green CJ, Hou C. Comparison of Energy Budget of Cockroach Nymph (Hemimetabolous) and Hornworm (Holometabolous) under Food Restriction. INSECTS 2024; 15:36. [PMID: 38249042 PMCID: PMC10816355 DOI: 10.3390/insects15010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Animals with different life histories budget their intake energy differently when food availability is low. It has been shown previously that hornworm (larva of Manduca sexta), a holometabolous insect species with a short development stage, prioritizes growth at the price of metabolism under food restriction, but it is unclear how hemimetabolous insect species with a relatively long development period budget their intake energy under food scarcity. Here, we use orange head cockroaches (Eublaberus posticus) to investigate this question. We found that for both species under food restriction, rates of metabolism and growth were suppressed, but the degree of reduction was more severe in growth than that of metabolism for cockroaches. Under both free-feeding and food restriction conditions, hornworms allocated a larger fraction of assimilated energy to growth than to metabolism, and cockroaches were the opposite. More importantly, when food availability was low, the fraction of assimilated energy allocated to growth was reduced by 120% in cockroaches, and the energy from growth was channeled to compensate for the reduction in metabolism; but, the fraction of assimilated energy allocated to growth was only reduced by 14% in hornworms. These results suggest that, compared to hornworms, cockroaches prioritize metabolism over growth.
Collapse
Affiliation(s)
| | - Chen Hou
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA;
| |
Collapse
|
3
|
Chellappa K, Brinkman JA, Mukherjee S, Morrison M, Alotaibi MI, Carbajal KA, Alhadeff AL, Perron IJ, Yao R, Purdy CS, DeFelice DM, Wakai MH, Tomasiewicz J, Lin A, Meyer E, Peng Y, Arriola Apelo SI, Puglielli L, Betley JN, Paschos GK, Baur JA, Lamming DW. Hypothalamic mTORC2 is essential for metabolic health and longevity. Aging Cell 2019; 18:e13014. [PMID: 31373126 PMCID: PMC6718533 DOI: 10.1111/acel.13014] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/26/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved protein kinase that regulates growth and metabolism. mTOR is found in two protein complexes, mTORC1 and mTORC2, that have distinct components and substrates and are both inhibited by rapamycin, a macrolide drug that robustly extends lifespan in multiple species including worms and mice. Although the beneficial effect of rapamycin on longevity is generally attributed to reduced mTORC1 signaling, disruption of mTORC2 signaling can also influence the longevity of worms, either positively or negatively depending on the temperature and food source. Here, we show that loss of hypothalamic mTORC2 signaling in mice decreases activity level, increases the set point for adiposity, and renders the animals susceptible to diet-induced obesity. Hypothalamic mTORC2 signaling normally increases with age, and mice lacking this pathway display higher fat mass and impaired glucose homeostasis throughout life, become more frail with age, and have decreased overall survival. We conclude that hypothalamic mTORC2 is essential for the normal metabolic health, fitness, and lifespan of mice. Our results have implications for the use of mTORC2-inhibiting pharmaceuticals in the treatment of brain cancer and diseases of aging.
Collapse
Affiliation(s)
- Karthikeyani Chellappa
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jacqueline A. Brinkman
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Sarmistha Mukherjee
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Mark Morrison
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Mohammed I. Alotaibi
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Endocrinology and Reproductive Physiology Graduate Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Kathryn A. Carbajal
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Amber L. Alhadeff
- Department of Biology, School of Arts and SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Isaac J. Perron
- Center for Sleep and Circadian Neurobiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Rebecca Yao
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Cole S. Purdy
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Denise M. DeFelice
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Matthew H. Wakai
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Jay Tomasiewicz
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Amy Lin
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Emma Meyer
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Yajing Peng
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Sebastian I. Arriola Apelo
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Luigi Puglielli
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - J. Nicholas Betley
- Department of Biology, School of Arts and SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Georgios K. Paschos
- Center for Sleep and Circadian Neurobiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- The Institute for Translational Medicine and Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Dudley W. Lamming
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Endocrinology and Reproductive Physiology Graduate Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
4
|
Fan R, Olbricht G, Baker X, Hou C. Birth mass is the key to understanding the negative correlation between lifespan and body size in dogs. Aging (Albany NY) 2017; 8:3209-3222. [PMID: 27956710 PMCID: PMC5270664 DOI: 10.18632/aging.101081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/21/2016] [Indexed: 01/13/2023]
Abstract
Larger dog breeds live shorter than the smaller ones, opposite of the mass-lifespan relationship observed across mammalian species. Here we use data from 90 dog breeds and a theoretical model based on the first principles of energy conservation and life history tradeoffs to explain the negative correlation between longevity and body size in dogs. We found that the birth/adult mass ratio of dogs scales negatively with adult size, which is different than the weak interspecific scaling in mammals. Using the model, we show that this ratio, as an index of energy required for growth, is the key to understanding why the lifespan of dogs scales negatively with body size. The model also predicts that the difference in mass-specific lifetime metabolic energy usage between dog breeds is proportional to the difference in birth/adult mass ratio. Empirical data on lifespan, body mass, and metabolic scaling law of dogs strongly supports this prediction.
Collapse
Affiliation(s)
- Rong Fan
- Biology Department, Missouri University of Science and Technology, Rolla, MO 65409, USA.,Second Hospital Affiliated to Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Gayla Olbricht
- Mathematics and Statistics Department, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Xavior Baker
- Biology Department, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Chen Hou
- Biology Department, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
5
|
Sex-dependent effects of larval food stress on adult performance under semi-natural conditions: only a matter of size? Oecologia 2017; 184:633-642. [PMID: 28685203 PMCID: PMC5511311 DOI: 10.1007/s00442-017-3903-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/20/2017] [Indexed: 12/12/2022]
Abstract
Organisms with complex life-cycles acquire essential nutrients as juveniles, and hence even a short-term food stress during development can impose serious fitness costs apparent in adults. We used the Glanville fritillary butterfly to investigate the effects of larval food stress on adult performance under semi-natural conditions in a population enclosure. We were specifically interested in whether the negative effects observed were due to body mass reduction only or whether additional effects unrelated to pupal mass were evident. The two sexes responded differently to the larval food stress. In females, larval food stress reduced pupal mass and reproductive performance. The reduced reproductive performance was partially mediated by pupal mass reduction. Food stressed females also had reduced within-patch mobility, and this effect was not dependent on pupal mass. Conversely, food stress had no effect on male pupal mass, suggesting a full compensation via prolonged development time. Nonetheless, food stressed males were less likely to sire any eggs, potentially due to changes in their territorial behavior, as indicated by food stress also increasing male within-patch mobility (i.e., patrolling behavior). When males did sire eggs, the offspring number and viability were unaffected by male food stress treatment. Viability was in general higher for offspring sired by lighter males. Our study highlights how compensatory mechanisms after larval food stress can act in a sex-specific manner and that the alteration in body mass is only partially responsible for the reduced adult performance observed.
Collapse
|
6
|
Amunugama K, Jiao L, Olbricht GR, Walker C, Huang YW, Nam PK, Hou C. Cellular oxidative damage is more sensitive to biosynthetic rate than to metabolic rate: A test of the theoretical model on hornworms (Manduca sexta larvae). Exp Gerontol 2016; 82:73-80. [PMID: 27296440 DOI: 10.1016/j.exger.2016.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/11/2016] [Accepted: 05/27/2016] [Indexed: 11/17/2022]
Abstract
We develop a theoretical model from an energetic viewpoint for unraveling the entangled effects of metabolic and biosynthetic rates on oxidative cellular damage accumulation during animal's growth, and test the model by experiments in hornworms. The theoretical consideration suggests that most of the cellular damages caused by the oxidative metabolism can be repaired by the efficient maintenance mechanisms, if the energy required by repair is unlimited. However, during growth a considerable amount of energy is allocated to the biosynthesis, which entails tradeoffs with the requirements of repair. Thus, the model predicts that cellular damage is more influenced by the biosynthetic rate than the metabolic rate. To test the prediction, we induced broad variations in metabolic and biosynthetic rates in hornworms, and assayed the lipid peroxidation and protein carbonyl. We found that the increase in the cellular damage was mainly caused by the increase in biosynthetic rate, and the variations in metabolic rate had negligible effect. The oxidative stress hypothesis of aging suggests that high metabolism leads to high cellular damage and short lifespan. However, some empirical studies showed that varying biosynthetic rate, rather than metabolic rate, changes animal's lifespan. The conflicts between the empirical evidence and the hypothesis are reconciled by this study.
Collapse
Affiliation(s)
- Kaushalya Amunugama
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Lihong Jiao
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Chance Walker
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Paul K Nam
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Chen Hou
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, United States.
| |
Collapse
|
7
|
Hou C, Amunugama K. On the complex relationship between energy expenditure and longevity: Reconciling the contradictory empirical results with a simple theoretical model. Mech Ageing Dev 2015; 149:50-64. [DOI: 10.1016/j.mad.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/06/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
|
8
|
Food restriction alters energy allocation strategy during growth in tobacco hornworms (Manduca sexta larvae). Naturwissenschaften 2015; 102:40. [DOI: 10.1007/s00114-015-1289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 11/25/2022]
|
9
|
Hou C. Increasing Energetic Cost of Biosynthesis during Growth Makes Refeeding Deleterious. Am Nat 2014; 184:233-47. [DOI: 10.1086/676856] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Hou C. The energy trade-off between growth and longevity. Mech Ageing Dev 2013; 134:373-80. [DOI: 10.1016/j.mad.2013.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/05/2013] [Indexed: 01/25/2023]
|
11
|
Wells JCK, Stock JT. Re-examining heritability: genetics, life history and plasticity. Trends Endocrinol Metab 2011; 22:421-8. [PMID: 21757369 DOI: 10.1016/j.tem.2011.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/04/2011] [Accepted: 05/25/2011] [Indexed: 11/24/2022]
Abstract
Human life-history traits (growth, maturation, nutritional status) are increasingly associated with risk of chronic degenerative disease. Twin studies suggest high heritability of such traits; however, although sophisticated approaches have identified genetic variation underlying a proportion of this heritability, studies also increasingly demonstrate significant plasticity, and many life-history traits are able to change by one standard deviation (SD) over 3-6 generations. Developments in our understanding of the contributions of genetics and plasticity to human life history are likely to improve understanding of the growing burden of chronic diseases. We argue that a life-history approach to understanding variation in the human phenotype must integrate these two risk components, and highlight the important contribution of plasticity to changes in disease prevalence.
Collapse
Affiliation(s)
- Jonathan C K Wells
- Childhood Nutrition Research Centre, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| | | |
Collapse
|
12
|
Mendenhall AR, Wu D, Park SK, Cypser JR, Tedesco PM, Link CD, Phillips PC, Johnson TE. Genetic dissection of late-life fertility in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2011; 66:842-54. [PMID: 21622982 DOI: 10.1093/gerona/glr089] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The large post-reproductive life span reported for the free-living hermaphroditic nematode, Caenorhabditis elegans, which lives for about 10 days after its 5-day period of self-reproduction, seems at odds with evolutionary theory. Species with long post-reproductive life spans such as mammals are sometimes explained by a need for parental care or transfer of information. This does not seem a suitable explanation for C elegans. Previous reports have shown that C elegans can regain fertility when mated after the self-fertile period but did not report the functional limits. Here, we report the functional life span of the C elegans germ line when mating with males. We show that C elegans can regain fertility late in life (significantly later than in previous reports) and that the end of this period corresponds quite well to its 3-week total life span. Genetic analysis reveals that late-life fertility is controlled by conserved pathways involved with aging and dietary restriction.
Collapse
|
13
|
Hou C, Bolt K, Bergman A. A general life history theory for effects of caloric restriction on health maintenance. BMC SYSTEMS BIOLOGY 2011; 5:78. [PMID: 21595962 PMCID: PMC3123202 DOI: 10.1186/1752-0509-5-78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/19/2011] [Indexed: 12/18/2022]
Abstract
Background Caloric restriction (CR) has been shown to keep organisms in a relatively youthful and healthy state compared to ad libitum fed counterparts, as well as to extend the lifespan of a diverse set of organisms. Several attempts have been made to understand the underlying mechanisms from the viewpoint of energy tradeoffs in organisms' life histories. However, most models are based on assumptions which are difficult to justify, or are endowed with free-adjusting parameters whose biological relevancy is unclear. Results In this paper, we derive a general quantitative, predictive model based on physiological data for endotherms. We test the hypothesis that an animal's state of health is correlated with biological mechanisms responsible for the maintenance of that animal's functional integrities. Such mechanisms require energy. By suppressing animals' caloric energy supply and biomass synthesis, CR alters animals' energy allocation strategies and channels additional energy to those maintenance mechanisms, therefore enhancing their performance. Our model corroborates the observation that CR's effects on health maintenance are positively correlated with the degree and duration of CR. Furthermore, our model shows that CR's effects on health maintenance are negatively correlated to the temperature drop observed in endothermic animals, and is positively correlated to animals' body masses. These predictions can be tested by further experimental research. Conclusion Our model reveals how animals will alter their energy budget when food availability is low, and offers better understanding of the tradeoffs between growth and somatic maintenance; therefore shedding new light on aging research from an energetic viewpoint.
Collapse
Affiliation(s)
- Chen Hou
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|