1
|
Saleh Z, Mirzazadeh S, Mirzaei F, Heidarnejad K, Meri S, Kalantar K. Alterations in metabolic pathways: a bridge between aging and weaker innate immune response. FRONTIERS IN AGING 2024; 5:1358330. [PMID: 38505645 PMCID: PMC10949225 DOI: 10.3389/fragi.2024.1358330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Aging is a time-dependent progressive physiological process, which results in impaired immune system function. Age-related changes in immune function increase the susceptibility to many diseases such as infections, autoimmune diseases, and cancer. Different metabolic pathways including glycolysis, tricarboxylic acid cycle, amino acid metabolism, pentose phosphate pathway, fatty acid oxidation and fatty acid synthesis regulate the development, differentiation, and response of adaptive and innate immune cells. During aging all these pathways change in the immune cells. In addition to the changes in metabolic pathways, the function and structure of mitochondria also have changed in the immune cells. Thereby, we will review changes in the metabolism of different innate immune cells during the aging process.
Collapse
Affiliation(s)
- Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Mirzazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mirzaei
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Heidarnejad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
[Immunosenescence, viral infections and nutrition: A narrative review of scientific available evidence]. Rev Esp Geriatr Gerontol 2021; 57:33-38. [PMID: 34844781 DOI: 10.1016/j.regg.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 01/22/2023]
Abstract
Aging of the immune system, or immunosenescence, alters the viral immune response in the elderly, especially when frailty exists. Research findings have demonstrated an imbalance in pro- and anti-inflammatory mechanisms, reduced production and diversification of T lymphocytes, and an alteration in immunovigilance and antibody synthesis. In this context, nutrition has a role in combating sarcopenia and frailty. Some food components that contribute to immune-competence are protein, vitamin D, n-3 fatty acids, antioxidant vitamins (vitamins C and E), zinc, selenium and iron. In times of a pandemic, nutritional recommendations for immune-competence in the elderly should be based on clinical studies. In this article, immunosenescence and its relationship to nutrition are addressed, including interventions studied in the context of the COVID-19 pandemic.
Collapse
|
3
|
Lazić A, Kalinova KN, Packer J, Pae R, Petrović MB, Popović D, Sievert DEC, Stafford-Johnson N. Social nudges for vaccination: How communicating herd behaviour influences vaccination intentions. Br J Health Psychol 2021; 26:1219-1237. [PMID: 34495566 PMCID: PMC8646271 DOI: 10.1111/bjhp.12556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/05/2021] [Indexed: 11/28/2022]
Abstract
Objectives This Registered Report attempted to conceptually replicate the finding that communicating herd immunity increases vaccination intentions (Betsch, et al., 2017, Nat. Hum. Behav., 0056). An additional objective was to explore the roles of descriptive social norms (vaccination behaviour of others) and the herd‐immunity threshold (coverage needed to stop disease transmission). Design An online experiment with a 2 (herd‐immunity explanation: present vs. absent) × 3 (descriptive norm: high vs. low vs. absent) × 2 (herd‐immunity threshold: present vs. absent) between‐subjects fractional design. Methods Sample consisted of 543 people (aged 18–64) residing in the United Kingdom. Participants first received an explanation of herd immunity emphasising social benefits (protecting others) in both textual and animated‐infographic form. Next, they were faced with fictitious information about the disease, the vaccine, their country’s vaccination coverage (80% or 20%), and the herd‐immunity threshold (90%). Vaccination intention was self‐rated. Results Compared to the control, communicating social benefits of herd immunity was effective in increasing vaccination intentions (F(1,541) = 6.97, p = .009, Partial Eta‐Squared = 0.013). Communicating the descriptive norm or the herd‐immunity threshold alongside the herd‐immunity explanation demonstrated no observable effect. Conclusion Communicating social benefits of herd immunity increased self‐reported vaccination intentions against a fictitious disease, replicating previous findings. Although this result is positive, the practical relevance may be limited. Further research into the effect of social nudges to motivate vaccination is required, particularly with respect to the recent pandemic context and varying levels of vaccine hesitancy.
Collapse
Affiliation(s)
| | | | | | | | | | - Dora Popović
- University of Zagreb, Croatia.,Institute of Social Sciences Ivo Pilar, Croatia
| | | | | |
Collapse
|
4
|
Saint-Criq V, Lugo-Villarino G, Thomas M. Dysbiosis, malnutrition and enhanced gut-lung axis contribute to age-related respiratory diseases. Ageing Res Rev 2021; 66:101235. [PMID: 33321253 DOI: 10.1016/j.arr.2020.101235] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Older people are at an increased risk of developing respiratory diseases such as chronic obstructive pulmonary diseases, asthma, idiopathic pulmonary fibrosis or lung infections. Susceptibility to these diseases is partly due to the intrinsic ageing process, characterized by genomic, cellular and metabolic hallmarks and immunosenescence, and is associated with changes in the intestinal microbiota. Importantly, in the lungs, ageing is also associated with a dysbiosis and loss of resilience of the resident microbiota and alterations of the gut-lung axis. Notably, as malnutrition is often observed in the elderly, nutrition is one of the most accessible modifiable factors affecting both senescence and microbiota. This article reviews the changes affecting the lung and its resident microbiota during ageing, as well as the interconnections between malnutrition, senescence, microbiota, gut-lung axis and respiratory health. As the communication along the gut-lung axis becomes more permissive with ageing, this review also explores the evidence that the gut and lung microbiota are key players in the maintenance of healthy lungs, and as such, are potential targets for nutrition-based preventive strategies against lung disease in elderly populations.
Collapse
|
5
|
Kannan S, Kurupati RK, Doyle SA, Freeman GJ, Schmader KE, Ertl HCJ. BTLA expression declines on B cells of the aged and is associated with low responsiveness to the trivalent influenza vaccine. Oncotarget 2016; 6:19445-55. [PMID: 26277622 PMCID: PMC4637297 DOI: 10.18632/oncotarget.4597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/11/2015] [Indexed: 12/31/2022] Open
Abstract
Virus-neutralizing antibody and B cell responses to influenza A viruses were measured in 35 aged and 28 middle-aged individuals following vaccination with the 2012 and 2013 trivalent inactivated influenza vaccines. Antibody responses to the vaccine strains were lower in the aged. An analysis of B cell subsets by flow cytometry with stains for immunoregulators showed that B cells of multiple subsets from the aged as compared to younger human subjects showed differences in the expression of the co-inhibitor B and T lymphocyte attenuator (BTLA). Expression of BTLA inversely correlated with age and appears to be linked to shifting the nature of the response from IgM to IgG. High BTLA expression on mature B cells was linked to higher IgG responses to the H1N1 virus. Finally, high BTLA expression on isotype switched memory B cells was linked to better preservation of virus neutralizing antibody titers and improved recall responses to vaccination given the following year.
Collapse
Affiliation(s)
- Senthil Kannan
- Biomedical Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.,The Wistar Institute, Philadelphia, PA, USA
| | | | - Susan A Doyle
- GRECC, Durham VA Medical Center and Center for the Study of Aging and Human, Development and Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Gordon J Freeman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth E Schmader
- GRECC, Durham VA Medical Center and Center for the Study of Aging and Human, Development and Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
6
|
Van Der Meeren O, Crasta P, Cheuvart B, De Ridder M. Characterization of an age-response relationship to GSK's recombinant hepatitis B vaccine in healthy adults: An integrated analysis. Hum Vaccin Immunother 2016; 11:1726-9. [PMID: 25996260 PMCID: PMC4514334 DOI: 10.1080/21645515.2015.1039758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The immune system becomes less effective with age, and older age is associated with an increased susceptibility to diseases and reduced responses to vaccination. Furthermore, some adult populations, such as those with diabetes mellitus, are at increased risk of acute hepatitis B virus (HBV) infection. Decreasing responses to vaccination with advanced age have been described, but it is not known at what age immunogenicity starts to reduce, or until what age immunogenicity remains acceptable (for example ≥80 % seroprotection post-vaccination). We characterized the relationship between age and seroprotection rate induced by recombinant HBV vaccination by conducting a pooled analysis of clinical trial data. Healthy adults aged ≥20 y who had been vaccinated with 20μg HBV vaccine (Engerix™ B, GSK Vaccines, Belgium) in a 0, 1, 6 months schedule in 11 studies since 1996 were included. The observed seroprotection rate, defined as an anti-HBV surface antigen antibody concentration ≥10 mIU/ml was 94.5% in the whole population (N = 2,620, Total vaccinated cohort), ranging from 98.6% in adults vaccinated at age 20–24 years, to 64.8% in those vaccinated at age ≥65 y A model on seroprotection rates showed a statistically significant decrease with age, and predicted that the anti-HBs seroprotection rate remains ≥90% up to 49 y of age and ≥80% up to 60 y of age. Individuals at risk of HBV infection should be vaccinated as early in life as possible to improve the likelihood of achieving seroprotection. Additional studies are needed to identify whether unvaccinated individuals older than 60 y would benefit from regimens that include additional or higher vaccine doses.
Collapse
|
7
|
Reduced levels of cytosolic DNA sensor AIM2 are associated with impaired cytokine responses in healthy elderly. Exp Gerontol 2016; 78:39-46. [PMID: 26944367 DOI: 10.1016/j.exger.2016.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/02/2016] [Accepted: 02/26/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Human aging is associated with remodeling of the immune system. While most studies on immunosenescence have focused on adaptive immunity, the effects of aging on innate immunity are not well understood. Here, we investigated whether aging affects cytokine responses to a wide range of well-defined pattern recognition receptor (PRR) ligands, such as ligands for Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), retinoic-acid-inducible gene-I like receptors (RLRs) and the cytosolic DNA sensor absent in melanoma 2 (AIM2). METHOD Blood was collected from 16 young (20-39 years) and 18 elderly (60-84 years) healthy participants. Pro-inflammatory cytokine (TNF-α, IL-1β, IL-6, and IL-8) production in a whole blood assay (WBA) after stimulation with TLR ligands (Pam3csk4, poly(I:C), LPS, CpG), CLR ligand (β-glucan), NLR ligand (MDP), RLR ligands (5'ppp-dsDNA and poly(I:C)/lyovec) and the AIM2 ligand (poly(dA:dT) was assessed by ELISA. TLR2 and TLR4 expression by leukocytes and monocytes was determined by flow-cytometry. Expression of AIM2 by peripheral blood mononuclear cells (PBMC) was assessed by qRT-PCR and Western blot. RESULT Cytokine responses to Pam3csk4, poly(I:C) and CpG, β-glucan, MDP, 5'ppp-dsDNA and poly(I:C)/lyovec were comparable between young and old participants. We observed a higher IL-8 response following stimulation of elderly blood samples with the TLR4 ligand LPS, which was associated with higher proportions of TLR4 expressing monocytes. Interestingly, stimulation of whole blood cells with the AIM2 ligand poly(dA:dT) resulted in significantly lower cytokine responses in old participants. Moreover, these lower cytokine responses were associated with lower AIM2 protein expression and activation in PBMC of old participants. CONCLUSION Our findings reveal an age-dependent reduction of AIM2 expression and activation which may explain reduced cytokine responses to the cytosolic DNA mimic poly(dA:dT) in healthy elderly individuals. Reduced AIM2-mediated sensing with age may contribute to increased vulnerability to bacterial or viral infections in the elderly.
Collapse
|
8
|
Kurupati RK, Kannan S, Xiang ZQ, Doyle S, Ratcliffe S, Schmader KE, Ertl HCJ. B cell responses to the 2011/12-influenza vaccine in the aged. Aging (Albany NY) 2013; 5:209-26. [PMID: 23674565 PMCID: PMC3629292 DOI: 10.18632/aging.100541] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antibody and B cell responses to influenza A viruses were measured over a period of 2 months in 30 aged and 15 middle-aged individuals following vaccination with the 2011/12 trivalent inactivated influenza vaccine by micro-neutralization assays, ELISAs, ELISpot assays and cell surface staining with lineage-defining antibodies followed by multicolor flow cytometry. Both cohorts developed comparable antibody responses to the H3N2 virus of the vaccine while responses to the H1N1 virus were compromised in the aged. ELISpot assays of peripheral blood mononuclear cells (PBMCs) gave comparable results for the two cohorts. Analysis by flow cytometry upon staining of CD19+IgD-CD20- PBMCs with antibodies to CD27 and CD38 showed markedly reduced increases of such cells following vaccination in the aged. Additional analysis of cells from a subset of 10 younger and 10 aged individuals indicated that in the aged a portion of IgG producing cells lose expression of CD27 and reduce expression of CD38.
Collapse
|
9
|
Abstract
Given the "inborn" nature of the innate immune system, it is surprising to find that innate immune function does in fact change with age. Similar patterns of distinct Toll-like-receptor-mediated immune responses come to light when one contrasts innate immune development at the beginning of life with that toward the end of life. Importantly, these developmental patterns of innate cytokine responses correlate with clinical patterns of susceptibility to disease: A heightened risk of suffering from excessive inflammation is often detected in prematurely born infants, disappears over the first few months of life, and reappears toward the end of life. In addition, risk periods for particular infections in early life reemerge in older adults. The near-mirror-image patterns that emerge in contrasts of early versus late innate immune ontogeny emphasize changes in host-environment interactions as the underlying molecular and teleologic drivers.
Collapse
|
10
|
Khan I, Prasad NG. The aging of the immune response in Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 2012; 68:129-35. [PMID: 22879448 DOI: 10.1093/gerona/gls144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Senescence of functional immunity in invertebrates has been a topic of recent interest. Results from previous studies have been inconsistent with older adults exhibiting wide variation in response to infection. In the present study, we assayed the senescence of functional immune response using a large outbred population of Drososphila melanogaster as the model host and Serratia marcescens as the model pathogen. We assessed the effect of an individual's age, parental age, sex, and mating status on overall antibacterial immunity. We found an improvement of immunity with the progression of age with 13-day-old flies exhibiting lower bacterial load compared with 3-day-old flies. Parental age did not show consistent effects on the antibacterial immunity of the offspring. Neither mating status nor the sex of an individual had any significant effect on immune response.
Collapse
Affiliation(s)
- Imroze Khan
- Indian Institute of Science Education and Research Kolkata, Nadia, India
| | | |
Collapse
|
11
|
|
12
|
Volkova M, Zhang Y, Shaw AC, Lee PJ. The role of Toll-like receptors in age-associated lung diseases. J Gerontol A Biol Sci Med Sci 2012; 67:247-53. [PMID: 22396470 PMCID: PMC3297763 DOI: 10.1093/gerona/glr226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 11/08/2011] [Indexed: 11/12/2022] Open
Abstract
The aging lung is faced with unique challenges. The lungs are the only internal organ with a direct interface with both the internal and the external environments and as a consequence are constantly sampling diverse, potentially injurious, elements. Therefore, the lungs have evolved a sophisticated, multilayered detection system to distinguish low-level, nonharmful signals from those that are toxic. A family of innate immune receptors, Toll-like receptors (TLRs), appears to serve such a function. Initially described as pattern-recognition receptors that recognize and protect against microbes, TLRs can also respond to diverse, nonmicrobial signals. The role of Toll-like receptors in noninfectious, age-related chronic lung disease is poorly understood. This review presents our current understanding of the biology of age-related lung diseases with a focus on the role of Toll-like receptors in idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and late-onset asthma.
Collapse
Affiliation(s)
- Maria Volkova
- Department of Internal Medicine and Section of Pulmonary and Critical Care Medicine
| | - Yitao Zhang
- Department of Internal Medicine and Section of Pulmonary and Critical Care Medicine
| | - Albert C. Shaw
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut
| | - Patty J. Lee
- Department of Internal Medicine and Section of Pulmonary and Critical Care Medicine
| |
Collapse
|