1
|
Almalki WH, Salman Almujri S. Oxidative stress and senescence in aging kidneys: the protective role of SIRT1. EXCLI JOURNAL 2024; 23:1030-1067. [PMID: 39391060 PMCID: PMC11464868 DOI: 10.17179/excli2024-7519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024]
Abstract
Aging leads to a gradual decline in kidney function, making the kidneys increasingly vulnerable to various diseases. Oxidative stress, together with cellular senescence, has been established as paramount in promoting the aging process of the kidney. Oxidative stress, defined as an imbalance between ROS formation and antioxidant defense mechanisms, has been implicated in the kidney's cellular injury, inflammation, and premature senescence. Concurrently, the accumulation of SCs in the kidney also exacerbates oxidative stress via the secretion of pro-inflammatory and tissue-damaging factors as the senescence-associated secretory phenotype (SASP). Recently, SIRT1, a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, has been pivotal in combating oxidative stress and cellular senescence in the aging kidney. SIRT1 acts as a potential antioxidant molecule through myriad pathways that influence diverse transcription factors and enzymes essential in maintaining redox homeostasis. SIRT1 promotes longevity and renal health by modulating the acetylation of cell cycle and senescence pathways. This review covers the complex relationship between oxidative stress and cellular senescence in the aging kidney, emphasizing the protective role of SIRT1. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
2
|
Dunn SE, Perry WA, Klein SL. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol 2024; 20:37-55. [PMID: 37993681 DOI: 10.1038/s41581-023-00787-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Biological sex differences refer to differences between males and females caused by the sex chromosome complement (that is, XY or XX), reproductive tissues (that is, the presence of testes or ovaries), and concentrations of sex steroids (that is, testosterone or oestrogens and progesterone). Although these sex differences are binary for most human individuals and mice, transgender individuals receiving hormone therapy, individuals with genetic syndromes (for example, Klinefelter and Turner syndromes) and people with disorders of sexual development reflect the diversity in sex-based biology. The broad distribution of sex steroid hormone receptors across diverse cell types and the differential expression of X-linked and autosomal genes means that sex is a biological variable that can affect the function of all physiological systems, including the immune system. Sex differences in immune cell function and immune responses to foreign and self antigens affect the development and outcome of diverse diseases and immune responses.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Whitney A Perry
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
3
|
Perna A, Ruggiero B, Podestà MA, Perico L, Orisio S, Debiec H, Remuzzi G, Ruggenenti P. Sexual dimorphic response to rituximab treatment: A longitudinal observational study in a large cohort of patients with primary membranous nephropathy and persistent nephrotic syndrome. Front Pharmacol 2022; 13:958136. [PMID: 36120314 PMCID: PMC9479107 DOI: 10.3389/fphar.2022.958136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Rituximab is one of the first-line therapies for patients with membranous nephropathy (MN) at high risk of progression towards kidney failure. We investigated whether the response to Rituximab was affected by sex and anti-PLA2R antibody levels in 204 consecutive patients (148 males and 56 females) with biopsy-proven MN who were referred to the Nephrology Unit of the Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII from March 2001 to October 2016 and managed conservatively for at least 6 months. The primary outcome was a combined endpoint of complete (proteinuria <0.3 g/24 h) or partial (proteinuria <3.0 g/24 h and >50% reduction vs. baseline) remission. Patients gave written informed consent to Rituximab treatment. The study was internally funded. No pharmaceutical company was involved. Anti-PLA2R antibodies were detectable in 125 patients (61.3%). At multivariable analyses, female gender (p = 0.0198) and lower serum creatinine levels (p = 0.0108) emerged as independent predictors of better outcome (p = 0.0198). The predictive value of proteinuria (p = 0.054) and anti-PLA2R titer (p = 0.0766) was borderline significant. Over a median (IQR) of 24.8 (12.0-36.0) months, 40 females (71.4%) progressed to the combined endpoint compared with 73 males (49.3%). Anti-PLA2R titers at baseline [127.6 (35.7-310.8) vs. 110.1 (39.9-226.7) RU/ml] and after Rituximab treatment were similar between the sexes. However, the event rate was significantly higher in females than in males [HR (95%): 2.12 (1.44-3.12), p = 0.0001]. Forty-five of the 62 patients (72.3%) with anti-PLA2R titer below the median progressed to the combined endpoint versus 35 of the 63 (55.6%) with higher titer [HR (95%): 1.97 (1.26-3.07), p < 0.0029]. The highest probability of progressing to the combined endpoint was observed in females with anti-PLA2R antibody titer below the median (86.7%), followed by females with anti-PLA2R antibody titer above the median (83.3%), males with titer below the median (68.1%), and males with titer above the median (44.4%). This trend was statistically significant (p = 0.0023). Similar findings were observed for complete remission (proteinuria <0.3 g/24 h) and after analysis adjustments for baseline serum creatinine. Thus, despite similar immunological features, females were more resilient to renal injury following Rituximab therapy. These findings will hopefully open new avenues to identify the molecular pathways underlying sex-related nephroprotective effects.
Collapse
Affiliation(s)
- Annalisa Perna
- Department of Renal Medicine, Centro di Ricerche Cliniche Aldo e Cale Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Barbara Ruggiero
- Department of Renal Medicine, Centro di Ricerche Cliniche Aldo e Cale Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Manuel Alfredo Podestà
- Department of Renal Medicine, Centro di Ricerche Cliniche Aldo e Cale Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
- Department of Health Sciences, Università Degli Studi di Milano, Milano, Italy
| | - Luca Perico
- Department of Renal Medicine, Centro di Ricerche Cliniche Aldo e Cale Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Silvia Orisio
- Department of Renal Medicine, Centro di Ricerche Cliniche Aldo e Cale Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Hanna Debiec
- Sorbonne Université and Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche, Paris, France
| | - Giuseppe Remuzzi
- Department of Renal Medicine, Centro di Ricerche Cliniche Aldo e Cale Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Piero Ruggenenti
- Department of Renal Medicine, Centro di Ricerche Cliniche Aldo e Cale Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
- Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
4
|
Yan T, Yang S, Zhou X, Zhang C, Zhu X, Ma W, Tang S, Li J. Chronic kidney disease among greenhouse workers and field workers in China. CHEMOSPHERE 2022; 302:134905. [PMID: 35561762 DOI: 10.1016/j.chemosphere.2022.134905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Agricultural workers are at increased risk of developing chronic kidney disease of non-traditional etiology (CKDnt). The environment in solar greenhouse has high-intensity agricultural hazard factors. However, the association between solar greenhouse work and CKDnt remains unknown. OBJECTIVES We aimed to evaluate the relationship among solar greenhouse work, field work, and CKDnt risk, and to explore gender differences in CKDnt risk among solar greenhouse workers. METHODS Solar greenhouse workers and field workers were selected as the greenhouse worker and field worker groups in a cross-sectional study. Individuals with an estimated glomerular filtration rate (eGFR) of <60 ml/min per 1.73 m2 were defined as CKDnt patients. Binary logistic regression and generalized linear regression models were used to estimate the association among solar greenhouse workers, field workers and CKDnt. Furthermore, gender differences in CKDnt were also analyzed. RESULTS A total of 638 solar greenhouse workers and 231 field workers were included. The prevalence of CKDnt was 2.8% in the solar greenhouse workers and 0.4% in the field workers, and the prevalence of CKDnt was higher in female solar greenhouse workers than in males. The eGFR reduced by 20.0% (19.74 ml/min per 1.73 m2) in the greenhouse worker group compared with that in the field worker group (p < 0.05). Generalized linear analysis showed that the level of eGFR was lower in women than that in men after adjusting for parameters (β = -10.99 [-12.79, -9.10]). CONCLUSION Solar greenhouse workers may be at an increased risk of CKDnt, and women are more vulnerable.
Collapse
Affiliation(s)
- Tenglong Yan
- Beijing Institute of Occupational Disease Prevention and Treatment, Beijing 100093, China
| | - Siwen Yang
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing 102308, China
| | - Xingfan Zhou
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Chuyi Zhang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Xiaojun Zhu
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing 102308, China.
| | - Wenjun Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Shichuan Tang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Jue Li
- Beijing Institute of Occupational Disease Prevention and Treatment, Beijing 100093, China
| |
Collapse
|
5
|
Laouari D, Vergnaud P, Hirose T, Zaidan M, Rabant M, Nguyen C, Burtin M, Legendre C, Codogno P, Friedlander G, Anglicheau D, Terzi F. The sexual dimorphism of kidney growth in mice and humans. Kidney Int 2022; 102:78-95. [PMID: 35337891 DOI: 10.1016/j.kint.2022.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
Kidney mass and function are sexually determined, but the cellular events and the molecular mechanisms involved in this dimorphism are poorly characterized. By combining female and male mice with castration/replacement experiments, we showed that male mice exhibited kidney overgrowth from five weeks of age. This effect was organ specific, since liver and heart weight were comparable between males and females, regardless of age. Consistently, the androgen receptor was found to be expressed in the kidneys of males, but not in the liver. In growing mice, androgens led to kidney overgrowth by first inducing a burst of cell proliferation and then an increase of cell size. Remarkably, androgens were also required to maintain cell size in adults. In fact, orchiectomy resulted in smaller kidneys in a matter of few weeks. These changes paralleled the changes of the expression of ornithine decarboxylase and cyclin D1, two known mediators of kidney growth, whereas, unexpectedly, mTORC1 and Hippo pathways did not seem to be involved. Androgens also enhanced kidney autophagy, very likely by increasing transcription factor EB nuclear translocation. Functionally, the increase of tubular mass resulted in increased sodium/phosphate transport. These findings were relevant to humans. Remarkably, by studying living gender-paired kidney donors-recipients, we showed that tubular cell size increased three months after transplantation in men as compared to women, regardless of the donor gender. Thus, our results identify novel signaling pathways that may be involved in androgen-induced kidney growth and homeostasis, and suggest that androgens determine kidney size after transplantation.
Collapse
Affiliation(s)
- Denise Laouari
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France
| | - Paul Vergnaud
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France; Service de Néphrologie Pédiatrique-Hémodialyse-Transplantation, AP-HP, Hôpital Necker, Paris, France
| | - Takuo Hirose
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France
| | - Mohamad Zaidan
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France; Service de Néphrologie-Transplantation, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marion Rabant
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France; Service d'Anatomo-Pathologie, AP-HP, Hôpital Necker, Paris, France
| | - Clément Nguyen
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France
| | - Martine Burtin
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France
| | - Christophe Legendre
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France; Service de Néphrologie-Transplantation, AP-HP, Hôpital Necker, Paris, France
| | - Patrice Codogno
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France
| | - Gerard Friedlander
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France
| | - Dany Anglicheau
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France; Service de Néphrologie-Transplantation, AP-HP, Hôpital Necker, Paris, France
| | - Fabiola Terzi
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France.
| |
Collapse
|
6
|
Kaplan A, Abidi E, Habeichi NJ, Ghali R, Alawasi H, Fakih C, Zibara K, Kobeissy F, Husari A, Booz GW, Zouein FA. Gender-biased kidney damage in mice following exposure to tobacco cigarette smoke: More protection in premenopausal females. Physiol Rep 2021; 8:e14339. [PMID: 31981316 PMCID: PMC6981307 DOI: 10.14814/phy2.14339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple clinical studies documented renal damage in chronic cigarette smokers (CS) irrespective of their age and gender. Premenopausal female smokers are known to exert a certain cardiovascular and renal protection with undefined mechanisms. Given the multiple demographic variables within clinical studies, this experimental study was designed to be the first to assess whether gender‐biased CS‐induced kidney damage truly exists between premenopausal female and age‐matched C57Bl6J male mice when compared to their relative control groups. Following 6 weeks of CS exposure, cardiac function, inflammatory marker production, fibrosis formation, total and glomerular ROS levels, and glomerulotubular homeostasis were assessed in both genders. Although both CS‐exposed male and female mice exhibited comparable ROS fold change relative to their respective control groups, CS‐exposed male mice showed a more pronounced fibrotic deposition, inflammation, and glomerulotubular damage profile. However, the protection observed in CS‐exposed female group was not absolute. CS‐exposed female mice exhibited a significant increase in fibrosis, ROS production, and glomerulotubular alteration but with a pronounced anti‐inflammatory profile when compared to their relative control groups. Although both CS‐exposed genders presented with altered glomerulotubular homeostasis, the alteration phenotype between genders was different. CS‐exposed males showed a significant decrease in Bowman's space along with reduced tubular diameter consistent with an endocrinization pattern of chronic tubular atrophy, suggestive of an advanced stage of glomerulotubular damage. CS‐exposed female group, on the other hand, displayed glomerular hypertrophy with a mild tubular dilatation profile suggestive of an early stage of glomerulotubular damage that generally precedes collapse. In conclusion, both genders are prone to CS‐induced kidney damage with pronounced female protection due to a milder damage slope.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Emna Abidi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada J Habeichi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rana Ghali
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiam Alawasi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Christina Fakih
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmad Husari
- Department of Internal Medicine, Respiratory Diseases and Sleep Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
7
|
Bovée DM, Cuevas CA, Zietse R, Danser AHJ, Mirabito Colafella KM, Hoorn EJ. Salt-sensitive hypertension in chronic kidney disease: distal tubular mechanisms. Am J Physiol Renal Physiol 2020; 319:F729-F745. [DOI: 10.1152/ajprenal.00407.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) causes salt-sensitive hypertension that is often resistant to treatment and contributes to the progression of kidney injury and cardiovascular disease. A better understanding of the mechanisms contributing to salt-sensitive hypertension in CKD is essential to improve these outcomes. This review critically explores these mechanisms by focusing on how CKD affects distal nephron Na+ reabsorption. CKD causes glomerulotubular imbalance with reduced proximal Na+ reabsorption and increased distal Na+ delivery and reabsorption. Aldosterone secretion further contributes to distal Na+ reabsorption in CKD and is not only mediated by renin and K+ but also by metabolic acidosis, endothelin-1, and vasopressin. CKD also activates the intrarenal renin-angiotensin system, generating intratubular angiotensin II to promote distal Na+ reabsorption. High dietary Na+ intake in CKD contributes to Na+ retention by aldosterone-independent activation of the mineralocorticoid receptor mediated through Rac1. High dietary Na+ also produces an inflammatory response mediated by T helper 17 cells and cytokines increasing distal Na+ transport. CKD is often accompanied by proteinuria, which contains plasmin capable of activating the epithelial Na+ channel. Thus, CKD causes both local and systemic changes that together promote distal nephron Na+ reabsorption and salt-sensitive hypertension. Future studies should address remaining knowledge gaps, including the relative contribution of each mechanism, the influence of sex, differences between stages and etiologies of CKD, and the clinical relevance of experimentally identified mechanisms. Several pathways offer opportunities for intervention, including with dietary Na+ reduction, distal diuretics, renin-angiotensin system inhibitors, mineralocorticoid receptor antagonists, and K+ or H+ binders.
Collapse
Affiliation(s)
- Dominique M. Bovée
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Vascular Medicine, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Catharina A. Cuevas
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert Zietse
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katrina M. Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Oliveira IO, Mintem GC, Oliveira PD, Freitas DF, Brum CB, Wehrmeister FC, Gigante DP, Horta BL, Menezes AMB. Uric acid is independent and inversely associated to glomerular filtration rate in young adult Brazilian individuals. Nutr Metab Cardiovasc Dis 2020; 30:1289-1298. [PMID: 32576415 DOI: 10.1016/j.numecd.2020.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/19/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Uric acid, the end-product of human purine metabolism, is associated with hypertension, diabetes and obesity. It has also been independently associated with the onset of chronic kidney disease in several populations. In this study, the association between serum uric acid (SUA) level and estimated glomerular filtration rate (eGFR) was investigated in healthy individuals belonging to two Brazilian birth cohorts. METHODS AND RESULTS Data from 3541 to 3482 individuals, aged 30 and 22-years old, respectively, was included. eGFR was calculated using Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation based on creatinine measurement. Regression analyses were sex-stratified due to interaction between SUA and sex (p < 0.001) and adjusted for perinatal, cardiometabolic and behavioral variables. We observed an inverse association between eGFR and SUA even after adjustment. In the highest tertile (3rd) of SUA, the eGFR coefficients at 30-years were-0.21 (95%CI -0.24;-0.18) for men and -0.20 (95%CI -0.23; -0.17) for women; at 22-years, were -0.09 (95%CI -0.12;-0.05) for men and -0.13 (95%CI -0.15; -0.10) for women. Higher differences among exponential means (95% CI) of eGFR between the 1st and the 3rd tertile of SUA were seen in older participants, being more pronounced in men. At 22-years, the highest difference was found in women. CONCLUSIONS In young healthy individuals from a low-middle income country, SUA level was inversely associated with eGFR. Gender-related differences in eGFR according tertiles of SUA were higher in men at 30-years and in women at 22-years.
Collapse
Affiliation(s)
- Isabel O Oliveira
- Federal University of Pelotas, Rua Marechal Deodoro, 1160, 3° piso, Centro, Caixa Postal 464, Pelotas, Rio Grande do Sul, 96020-220, Brazil; Department of Physiology and Pharmacology, Biology Institute, Federal University of Pelotas, S/N, Campus, Capão do Leão, RS, 96160-000, Brazil.
| | - Gicele C Mintem
- Nutrition Faculty, Federal University of Pelotas, Rua Gomes Carneiro, 1, Centro, Pelotas, RS, 96010-610, Brazil
| | - Paula D Oliveira
- Federal University of Pelotas, Rua Marechal Deodoro, 1160, 3° piso, Centro, Caixa Postal 464, Pelotas, Rio Grande do Sul, 96020-220, Brazil
| | - Deise F Freitas
- Federal University of Pelotas, Rua Marechal Deodoro, 1160, 3° piso, Centro, Caixa Postal 464, Pelotas, Rio Grande do Sul, 96020-220, Brazil
| | - Clarice B Brum
- Federal University of Pelotas, Rua Marechal Deodoro, 1160, 3° piso, Centro, Caixa Postal 464, Pelotas, Rio Grande do Sul, 96020-220, Brazil
| | - Fernando C Wehrmeister
- Federal University of Pelotas, Rua Marechal Deodoro, 1160, 3° piso, Centro, Caixa Postal 464, Pelotas, Rio Grande do Sul, 96020-220, Brazil
| | - Denise P Gigante
- Federal University of Pelotas, Rua Marechal Deodoro, 1160, 3° piso, Centro, Caixa Postal 464, Pelotas, Rio Grande do Sul, 96020-220, Brazil; Nutrition Faculty, Federal University of Pelotas, Rua Gomes Carneiro, 1, Centro, Pelotas, RS, 96010-610, Brazil
| | - Bernardo L Horta
- Federal University of Pelotas, Rua Marechal Deodoro, 1160, 3° piso, Centro, Caixa Postal 464, Pelotas, Rio Grande do Sul, 96020-220, Brazil
| | - Ana Maria B Menezes
- Federal University of Pelotas, Rua Marechal Deodoro, 1160, 3° piso, Centro, Caixa Postal 464, Pelotas, Rio Grande do Sul, 96020-220, Brazil
| |
Collapse
|
9
|
Obert LA, Frazier KS. Intrarenal Renin–Angiotensin System Involvement in the Pathogenesis of Chronic Progressive Nephropathy—Bridging the Informational Gap Between Disciplines. Toxicol Pathol 2019; 47:799-816. [DOI: 10.1177/0192623319861367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic progressive nephropathy (CPN) is the most commonly encountered spontaneous background finding in laboratory rodents. Various theories on its pathogenesis have been proposed, but there is a paucity of data regarding specific mechanisms or physiologic pathways involved in early CPN development. The current CPN mechanism of action for tumorigenesis is largely based on its associated increase in tubular cell proliferation without regard to preceding subcellular degenerative changes. Combing through the published literature from multiple biology disciplines provided insight into the preceding cellular events. Mechanistic pathways involved in the progressive age-related decline in rodent kidney function and several key inflexion points have been identified. These critical pathway factors were then connected using data from renal models from multiple rodent strains, other species, and mechanistic work in humans to form a cohesive picture of pathways and protein interactions. Abundant data linked similar renal pathologies to local events involving hypoxia (hypoxia-inducible factor 1α), altered intrarenal renin–angiotensin system (RAS), oxidative stress (nitric oxide), and pro-inflammatory pathways (transforming growth factor β), with positive feedback loops and downstream effectors amplifying the injury and promoting scarring. Intrarenal RAS alterations seem to be central to all these events and may be critical to CPN development and progression.
Collapse
|
10
|
Toba H, Lindsey ML. Extracellular matrix roles in cardiorenal fibrosis: Potential therapeutic targets for CVD and CKD in the elderly. Pharmacol Ther 2019; 193:99-120. [PMID: 30149103 PMCID: PMC6309764 DOI: 10.1016/j.pharmthera.2018.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Whereas hypertension, diabetes, and dyslipidemia are age-related risk factors for cardiovascular disease (CVD) and chronic kidney disease (CKD), aging alone is an independent risk factor. With advancing age, the heart and kidney gradually but significantly undergo inflammation and subsequent fibrosis, which eventually results in an irreversible decline in organ physiology. Through cardiorenal network interactions, cardiac dysfunction leads to and responds to renal injury, and both facilitate aging effects. Thus, a comprehensive strategy is needed to evaluate the cardiorenal aging network. Common hallmarks shared across systems include extracellular matrix (ECM) accumulation, along with upregulation of matrix metalloproteinases (MMPs) including MMP-9. The wide range of MMP-9 substrates, including ECM components and inflammatory cytokines, implicates MMP-9 in a variety of pathological and age-related processes. In particular, there is strong evidence that inflammatory cell-derived MMP-9 exacerbates cardiorenal aging. This review explores the potential therapeutic targets against CVD and CKD in the elderly, focusing on ECM and MMP roles.
Collapse
Affiliation(s)
- Hiroe Toba
- Department of Clinical Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|
11
|
Patil CN, Racusen LC, Reckelhoff JF. Consequences of advanced aging on renal function in chronic hyperandrogenemic female rat model: implications for aging women with polycystic ovary syndrome. Physiol Rep 2018; 5:5/20/e13461. [PMID: 29051304 PMCID: PMC5661229 DOI: 10.14814/phy2.13461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 01/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine and reproductive disorder in premenopausal women, characterized by hyperandrogenemia, metabolic syndrome, and inflammation. Women who had PCOS during their reproductive years remain hyperandrogenemic after menopause. The consequence of chronic hyperandrogenemia with advanced aging has not been studied to our knowledge. We have characterized a model of hyperandrogenemia in female rats and have aged them to 22–25 months to mimic advanced aging in hyperandrogenemic women, and tested the hypothesis that chronic exposure to hyperandrogenemia with aging has a deleterious effect on renal function. Female rats were chronically implanted with dihydrotestosterone pellets (DHT 7.5 mg/90 days) that were changed every 85 days or placebo pellets, and renal function was measured by clearance methods. Aging DHT‐treated females had a threefold higher level of DHT with significantly higher body weight, mean arterial pressure, left kidney weight, proteinuria, and kidney injury molecule‐1 (KIM‐1), than did age‐matched controls. In addition, DHT‐treated‐old females had a 60% reduction in glomerular filtration rate, 40% reduction in renal plasma flow, and significant reduction in urinary nitrate and nitrite excretion (UNOxV), an index of nitric oxide production. Morphological examination of kidneys showed that old DHT‐treated females had significant focal segmental glomerulosclerosis, global sclerosis, and interstitial fibrosis compared to controls. Thus chronic hyperandrogenemia that persists into old age in females is associated with renal injury. These data suggest that women with chronic hyperandrogenemia such as in PCOS may be at increased risk for development of chronic kidney disease with advanced age.
Collapse
Affiliation(s)
- Chetan N Patil
- Department of Physiology, The Women's Health Research Center University of Mississippi Medical Center, Jackson, Mississippi.,Department of Biophysics, The Women's Health Research Center University of Mississippi Medical Center, Jackson, Mississippi
| | - Lorraine C Racusen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jane F Reckelhoff
- Department of Physiology, The Women's Health Research Center University of Mississippi Medical Center, Jackson, Mississippi .,Department of Biophysics, The Women's Health Research Center University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
12
|
Carrero JJ, Hecking M, Chesnaye NC, Jager KJ. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. NATURE REVIEWS. NEPHROLOGY 2018. [PMID: 29355169 DOI: 10.1038/nrneph.2017.181.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Improved understanding of sex and gender-specific differences in the aetiology, mechanisms and epidemiology of chronic kidney disease (CKD) could help nephrologists better address the needs of their patients. Population-based studies indicate that CKD epidemiology differs by sex, affecting more women than men, especially with regard to stage G3 CKD. The effects of longer life expectancy on the natural decline of glomerular filtration rate (GFR) with age, as well as potential overdiagnosis of CKD through the inappropriate use of GFR equations, might be in part responsible for the greater prevalence of CKD in women. Somewhat paradoxically, there seems to be a preponderance of men among patients starting renal replacement therapy (RRT); the protective effects of oestrogens in women and/or the damaging effects of testosterone, together with unhealthier lifestyles, might cause kidney function to decline faster in men than in women. Additionally, elderly women seem to be more inclined to choose conservative care instead of RRT. Dissimilarities between the sexes are also apparent in the outcomes of CKD. In patients with predialysis CKD, mortality is higher in men than women; however, this difference disappears for patients on RRT. Although access to living donor kidneys among men and women seems equal, women have reduced access to deceased donor transplantation. Lastly, health-related quality of life while on RRT is poorer in women than men, and women report a higher burden of symptoms. These findings provide insights into differences in the underlying pathophysiology of disease as well as societal factors that can be addressed to reduce disparities in access to care and outcomes for patients with CKD.
Collapse
Affiliation(s)
- Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Centre for Gender Medicine, Karolinska Institutet, Nobels Väg 12A, BOX 281, 171 77 Stockholm, Sweden
| | - Manfred Hecking
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Nicholas C Chesnaye
- European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Kitty J Jager
- European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| |
Collapse
|
13
|
Carrero JJ, Hecking M, Chesnaye NC, Jager KJ. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat Rev Nephrol 2018; 14:151-164. [PMID: 29355169 DOI: 10.1038/nrneph.2017.181] [Citation(s) in RCA: 518] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Improved understanding of sex and gender-specific differences in the aetiology, mechanisms and epidemiology of chronic kidney disease (CKD) could help nephrologists better address the needs of their patients. Population-based studies indicate that CKD epidemiology differs by sex, affecting more women than men, especially with regard to stage G3 CKD. The effects of longer life expectancy on the natural decline of glomerular filtration rate (GFR) with age, as well as potential overdiagnosis of CKD through the inappropriate use of GFR equations, might be in part responsible for the greater prevalence of CKD in women. Somewhat paradoxically, there seems to be a preponderance of men among patients starting renal replacement therapy (RRT); the protective effects of oestrogens in women and/or the damaging effects of testosterone, together with unhealthier lifestyles, might cause kidney function to decline faster in men than in women. Additionally, elderly women seem to be more inclined to choose conservative care instead of RRT. Dissimilarities between the sexes are also apparent in the outcomes of CKD. In patients with predialysis CKD, mortality is higher in men than women; however, this difference disappears for patients on RRT. Although access to living donor kidneys among men and women seems equal, women have reduced access to deceased donor transplantation. Lastly, health-related quality of life while on RRT is poorer in women than men, and women report a higher burden of symptoms. These findings provide insights into differences in the underlying pathophysiology of disease as well as societal factors that can be addressed to reduce disparities in access to care and outcomes for patients with CKD.
Collapse
Affiliation(s)
- Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Centre for Gender Medicine, Karolinska Institutet, Nobels Väg 12A, BOX 281, 171 77 Stockholm, Sweden
| | - Manfred Hecking
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Nicholas C Chesnaye
- European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Kitty J Jager
- European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| |
Collapse
|
14
|
Abstract
SummaryBackground: Age is an important and independent risk factor for venous thromboembolism (VTE) and pulmonary embolism (PE). The objectives of this study were to investigate the effects of aging process on PE with regard to the severity of PE, symptoms, inhospital death, history of PE, ECG, echocardiographic, and laboratory findings.Methods: 182 patients with confirmed PE were reviewed retrospectively and subdivided into 4 age groups (<60, 60–69, 70–79 and ≥ 80 years). Analysis of patients’ symptoms, history, echocardiographic, electrocardiographic and laboratory parameters was performed.Results: Proportion of women increased with age (<60 years: 41.5 % vs. 80+ years: 73.1 %, P<0.05). Also percentage of right ventricular dysfunction (RVD) was highest in eldest age group (60–69 years: 42.4 % vs. 80+ years: 75 %, P<0.05). Systolic pulmonary artery pressure (sPAP) was significantly higher in the 80+ years age group. The sPAP was constant from the <60 years group (29.0 ± 17.4 mmHg) to the 60–69 years group (27.4 ± 19.3 mmHg), and increased from the 60–69 years and 70–79 years group (33.8 ± 17.5 mmHg) to the 80+ years groups (44.3 ± 14.3 mmHg) (<60 vs. 80+ and 60–69 vs. 80+ years: respectively P<0.001 and 70–79 vs. 80+ years: P<0.05).Regression model for PE patients 80years showed an association between age 80+ and female gender (OR, 2.53; 95%CI: 1.07–5.99, p<0.05), right bundle branch block (OR, 3.07; 95%CI: 1.05–9.02, p<0.05), RVD (OR, 2.53; 95%CI: 1.07–6.00, p<0.05) and sPAP (OR, 1.05; 95%CI: 1.02–1.08, p<0.001). Pearson correlation matrix revealed a significant correlation between age and sPAP (r=0.30, P<0.001).Conclusions: Right ventricular load at acute PE event, evident from RVD and elevated sPAP, increases with age. RVD is connected with higher mortality in PE patients. High sPAP at acute PE event is one of the well-known risk factors for the development of chronic thromboembolic pulmonary hypertension in long-term. Proportion of female PE patients increases with age.
Collapse
|
15
|
Keller K, Beule J, Balzer JO, Dippold W. Renal function as a cofactor for risk stratification and short-term outcome in acute pulmonary embolism. Exp Gerontol 2017; 100:11-16. [DOI: 10.1016/j.exger.2017.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 12/15/2022]
|
16
|
Schmitt R, Melk A. Molecular mechanisms of renal aging. Kidney Int 2017; 92:569-579. [DOI: 10.1016/j.kint.2017.02.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022]
|
17
|
Sex and gender differences in chronic kidney disease: progression to end-stage renal disease and haemodialysis. Clin Sci (Lond) 2017; 130:1147-63. [PMID: 27252402 DOI: 10.1042/cs20160047] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/29/2016] [Indexed: 01/04/2023]
Abstract
Sex and gender differences are of fundamental importance in most diseases, including chronic kidney disease (CKD). Men and women with CKD differ with regard to the underlying pathophysiology of the disease and its complications, present different symptoms and signs, respond differently to therapy and tolerate/cope with the disease differently. Yet an approach using gender in the prevention and treatment of CKD, implementation of clinical practice guidelines and in research has been largely neglected. The present review highlights some sex- and gender-specific evidence in the field of CKD, starting with a critical appraisal of the lack of inclusion of women in randomized clinical trials in nephrology, and thereafter revisits sex/gender differences in kidney pathophysiology, kidney disease progression, outcomes and management of haemodialysis care. In each case we critically consider whether apparent discrepancies are likely to be explained by biological or psycho-socioeconomic factors. In some cases (a few), these findings have resulted in the discovery of disease pathways and/or therapeutic opportunities for improvement. In most cases, they have been reported as merely anecdotal findings. The aim of the present review is to expose some of the stimulating hypotheses arising from these observations as a preamble for stricter approaches using gender for the prevention and treatment of CKD and its complications.
Collapse
|
18
|
Epochs in the depressor/pressor balance of the renin-angiotensin system. Clin Sci (Lond) 2017; 130:761-71. [PMID: 27128801 DOI: 10.1042/cs20150939] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
The renin-angiotensin system (RAS) plays a commanding role in the regulation of extracellular fluid homoeostasis. Tigerstadt and Bergman first identified the RAS more than two centuries ago. By the 1980s a voyage of research and discovery into the mechanisms and actions of this system led to the development of drugs that block the RAS, which have become the mainstay for the treatment of cardiovascular and renal disease. In the last 25 years new components of the RAS have come to light, including the angiotensin type 2 receptor (AT2R) and the angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) [Ang(1-7)]/Mas receptor (MasR) axis. These have been shown to counter the classical actions of angiotensin II (AngII) at the predominant angiotensin type 1 receptor (AT1R). Our studies, and those of others, have demonstrated that targeting these depressor RAS pathways may be therapeutically beneficial. It is apparent that the evolution of both the pressor and depressor RAS pathways is distinct throughout life and that the depressor/pressor balance of the RAS vary between the sexes. These temporal patterns of expression suggest that therapies targeting the RAS could be optimized for discrete epochs in life.
Collapse
|
19
|
|
20
|
Barsha G, Denton KM, Mirabito Colafella KM. Sex- and age-related differences in arterial pressure and albuminuria in mice. Biol Sex Differ 2016; 7:57. [PMID: 27895890 PMCID: PMC5109725 DOI: 10.1186/s13293-016-0110-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/22/2016] [Indexed: 11/25/2022] Open
Abstract
Background Animal models have become valuable experimental tools for understanding the pathophysiology and therapeutic interventions in cardiovascular disease. Yet to date, few studies document the age- and sex-related differences in arterial pressure, circadian rhythm, and renal function in normotensive mice under basal conditions, across the life span. We hypothesized that mice display similar sex- and age-related differences in arterial pressure and renal function to humans. Methods Mean arterial pressure (MAP) and circadian rhythm of arterial pressure were measured over 3 days via radiotelemetry, in 3- and 5-month-old (adult) and 14- and 18-month-old (aged) FVB/N and in 5-month-old (adult) C57BL/6 male and female normotensive mice. In FVB/N mice, albuminuria from 24-h urine samples as well as body, heart, and kidney weights were measured at each age. Results Twenty-four-hour MAP was greater in males than females at 3, 5, and 14 months of age. A similar sex difference in arterial pressure was observed in C57BL/6 mice at 5 months of age. In FVB/N mice, 24-h MAP increased with age, with females displaying a greater increase between 3 and 18 months of age than males, such that MAP was no longer different between the sexes at 18 months of age. A circadian pattern was observed in arterial pressure, heart rate, and locomotor activity, with values for each greater during the active (night/dark) than the inactive (day/light) period. The night-day dip in MAP was greater in males and increased with age in both sexes. Albuminuria was greater in males than females, increased with age in both sexes, and rose to a greater level in males than females at 18 months of age. Conclusions Arterial pressure and albuminuria increase in an age- and sex-specific manner in mice, similar to patterns observed in humans. Thus, mice represent a useful model for studying age and sex differences in the regulation of arterial pressure and renal disease. Understanding the mechanisms that underlie the pathophysiology of cardiovascular disease may lead to new and better-tailored therapies for men and women.
Collapse
Affiliation(s)
- Giannie Barsha
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Clayton, Australia.,Department of Physiology, Monash University, 26 Innovation Walk (Building 13F), Clayton, VIC 3800 Australia
| | - Kate M Denton
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Clayton, Australia.,Department of Physiology, Monash University, 26 Innovation Walk (Building 13F), Clayton, VIC 3800 Australia
| | - Katrina M Mirabito Colafella
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Clayton, Australia.,Department of Physiology, Monash University, 26 Innovation Walk (Building 13F), Clayton, VIC 3800 Australia
| |
Collapse
|
21
|
Vinod C, Jagota A. Daily NO rhythms in peripheral clocks in aging male Wistar rats: protective effects of exogenous melatonin. Biogerontology 2016; 17:859-871. [PMID: 27614960 DOI: 10.1007/s10522-016-9656-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
Abstract
In mammals suprachiasmatic nucleus (SCN), acts as a light entrainable master clock and by generation of temporal oscillations regulates the peripheral organs acting as autonomous clocks resulting in overt behavioral and physiological rhythms. SCN also controls synthesis and release of melatonin (hormonal message for darkness) from pineal. Nitric Oxide (NO) acts as an important neurotransmitter in generating the phase shifts of circadian rhythms and participates in sleep-wake processes, maintenance of vascular tone as well as signalling and regulating inflammatory processes. Aging is associated with disruption of circadian timing system and decline in endogenous melatonin leading to several physiological disorders. Here we report the effect of aging on NO daily rhythms in various peripheral clocks such as kidney, intestine, liver, heart, lungs and testis. NO levels were measured at zeitgeber time (ZT) 0, 6, 12 and 18 in these tissues using Griess assay in male Wistar rats. Aging resulted in alteration of NO levels as well as phase of NO in both 12 and 24 months groups. Correlation analysis demonstrated loss of stoichiometric interaction between the various peripheral clocks with aging. Age induced alterations in NO daily rhythms were found to be most significant in liver and, interestingly least in lungs. Neurohormone melatonin, an endogenous synchroniser and an antiaging agent decreases with aging. We report further differential restoration with exogenous melatonin administration of age induced alterations in NO daily rhythms and mean levels in kidney, intestine and liver and the stoichiometric interactions between the various peripheral clocks.
Collapse
Affiliation(s)
- Ch Vinod
- Neurobiology and Molecular Chronobiology Lab, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Anita Jagota
- Neurobiology and Molecular Chronobiology Lab, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
22
|
Roncal-Jimenez CA, Ishimoto T, Lanaspa MA, Milagres T, Hernando AA, Jensen T, Miyazaki M, Doke T, Hayasaki T, Nakagawa T, Marumaya S, Long DA, Garcia GE, Kuwabara M, Sánchez-Lozada LG, Kang DH, Johnson RJ. Aging-associated renal disease in mice is fructokinase dependent. Am J Physiol Renal Physiol 2016; 311:F722-F730. [PMID: 27465991 DOI: 10.1152/ajprenal.00306.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/26/2016] [Indexed: 01/31/2023] Open
Abstract
Aging-associated kidney disease is usually considered a degenerative process associated with aging. Recently, it has been shown that animals can produce fructose endogenously, and that this can be a mechanism for causing kidney damage in diabetic nephropathy and in association with recurrent dehydration. We therefore hypothesized that low-level metabolism of endogenous fructose might play a role in aging-associated kidney disease. Wild-type and fructokinase knockout mice were fed a normal diet for 2 yr that had minimal (<5%) fructose content. At the end of 2 yr, wild-type mice showed elevations in systolic blood pressure, mild albuminuria, and glomerular changes with mesangial matrix expansion, variable mesangiolysis, and segmental thrombi. The renal injury was amplified by provision of high-salt diet for 3 wk, as noted by the presence of glomerular hypertrophy, mesangial matrix expansion, and alpha smooth muscle actin expression, and with segmental thrombi. Fructokinase knockout mice were protected from renal injury both at baseline and after high salt intake (3 wk) compared with wild-type mice. This was associated with higher levels of active (phosphorylated serine 1177) endothelial nitric oxide synthase in their kidneys. These studies suggest that aging-associated renal disease might be due to activation of specific metabolic pathways that could theoretically be targeted therapeutically, and raise the hypothesis that aging-associated renal injury may represent a disease process as opposed to normal age-related degeneration.
Collapse
Affiliation(s)
| | - Takuji Ishimoto
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado; Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Tamara Milagres
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Ana Andres Hernando
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Thomas Jensen
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Tomohito Doke
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Hayasaki
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiko Nakagawa
- TMK Project, Medical Innovation Center, Kyoto University, Kyoto, Japan
| | - Shoichi Marumaya
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, United Kingdom
| | - Gabriela E Garcia
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Masanari Kuwabara
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology and Department of Nephrology, Instituto Nacional de Cardiologia I.Ch., Mexico City, Mexico
| | - Duk-Hee Kang
- Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Republic of Korea; and
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado; Division of Nephrology, Eastern Colorado Health Care System, Department of Veteran Affairs, Denver, Colorado
| |
Collapse
|
23
|
Hewitson TD, Boon WC, Simpson ER, Smith ER, Samuel CS. Estrogens do not protect, but androgens exacerbate, collagen accumulation in the female mouse kidney after ureteric obstruction. Life Sci 2016; 158:130-6. [PMID: 27373424 DOI: 10.1016/j.lfs.2016.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/24/2016] [Indexed: 11/18/2022]
Abstract
AIMS Controversy surrounds the gender basis of progression in chronic kidney disease. Unfortunately, most experimental studies addressing this question do not distinguish between direct effects of estrogen and indirect activation of estrogen receptors through conversion of testosterone to 17β-estradiol by aromatase. We examined the pathogenesis of renal fibrosis in female aromatase knockout (ArKO) mice, which lack circulating and stored estrogens, while having normal levels of testosterone. MAIN METHODS ArKO mice and their wild-type (ArWT) counterparts were subjected to unilateral ureteric obstruction (UUO), with kidney tissue collected at day(D) 0, 3 and 9 post-UUO. Effects of 5α-dihydrotestosterone (DHT) administration on each genotype were also studied. Tissue was assessed biochemically and histochemically for fibrosis. Western blot analysis was used to measure α-smooth muscle actin (α-SMA) expression and TGF-β1 signalling. Matrix metalloproteinase-2 (MMP-2) activity was measured by zymography. KEY FINDINGS UUO increased collagen content over time (p<0.05 (D3) and p<0.01 (D9) vs day 0), with no difference between genotypes in qualitative (collagen IV staining) and quantitative (hydroxyproline concentration) analyses. Systemic administration of non-aromatizable DHT increased collagen content after 3days of UUO in both genotypes. This was not paralleled by any change in α-SMA (myofibroblast burden) or TGF-β1 signalling but was commensurate with DHT reducing MMP2 activity in both genotypes (p<0.05 vs genotype controls). SIGNIFICANCE Physiological concentrations of estrogens do not protect the injured kidney from fibrosis progression. Androgens rather than estrogens are the relevant factor involved in regulating disease-related renal scarring in this model.
Collapse
Affiliation(s)
- Tim D Hewitson
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Carlton, Victoria, Australia
| | - Wah Chin Boon
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Prince Henry's Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | - Evan R Simpson
- Prince Henry's Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Edward R Smith
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Chrishan S Samuel
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
24
|
Seppi T, Prajczer S, Dörler MM, Eiter O, Hekl D, Nevinny-Stickel M, Skvortsova I, Gstraunthaler G, Lukas P, Lechner J. Sex Differences in Renal Proximal Tubular Cell Homeostasis. J Am Soc Nephrol 2016; 27:3051-3062. [PMID: 27127188 DOI: 10.1681/asn.2015080886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/22/2016] [Indexed: 12/15/2022] Open
Abstract
Studies in human patients and animals have revealed sex-specific differences in susceptibility to renal diseases. Because actions of female sex hormones on normal renal tissue might protect against damage, we searched for potential influences of the female hormone cycle on basic renal functions by studying excretion of urinary marker proteins in healthy human probands. We collected second morning spot urine samples of unmedicated naturally ovulating women, postmenopausal women, and men daily and determined urinary excretion of the renal tubular enzymes fructose-1,6-bisphosphatase and glutathione-S-transferase-α Additionally, we quantified urinary excretion of blood plasma proteins α1-microglobulin, albumin, and IgG. Naturally cycling women showed prominent peaks in the temporal pattern of urinary fructose-1,6-bisphosphatase and glutathione-S-transferase-α release exclusively within 7 days after ovulation or onset of menses. In contrast, postmenopausal women and men showed consistently low levels of urinary fructose-1,6-bisphosphatase excretion over comparable periods. We did not detect changes in urinary α1-microglobulin, albumin, or IgG excretion. Results of this study indicate that proximal tubular tissue architecture, representing a nonreproductive organ-derived epithelium, undergoes periodical adaptations phased by the female reproductive hormone cycle. The temporally delimited higher rate of enzymuria in ovulating women might be a sign of recurring increases of tubular cell turnover that potentially provide enhanced repair capacity and thus, higher resistance to renal damage.
Collapse
Affiliation(s)
- Thomas Seppi
- Department of Therapeutic Radiology and Oncology and
| | - Sinikka Prajczer
- Division of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Oliver Eiter
- Division of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel Hekl
- Department of Therapeutic Radiology and Oncology and
| | | | | | | | - Peter Lukas
- Department of Therapeutic Radiology and Oncology and
| | - Judith Lechner
- Division of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
The association of serum cathepsin B concentration with age-related cardiovascular-renal subclinical state in a healthy Chinese population. Arch Gerontol Geriatr 2016; 65:146-55. [PMID: 27032082 DOI: 10.1016/j.archger.2016.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 02/23/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022]
Abstract
CONTEXT Cathepsin B (CTSB) is an important enzyme for many physiological and pathological processes, and its activity increases with age. Here, we explored the association between serum CTSB and aging-related subclinical cardiovascular and renal status in a healthy Chinese population. METHODS The study included 369 healthy individuals aged 36-87 years. Cardiovascular structure and function were assessed by the left ventricular ejection fraction, the early-diastolic peak flow velocity to late-diastolic peak flow velocity ratio at the mitral leaflet tips, carotid intima-media thickness (IMT), the diameter of the bilateral common carotid artery (D), and blood systolic peak (SPV) and end diastolic velocities, which were measured by M-mode ultrasonography. Serum CTSB, insulin-like growth factor-1 (IGF-1), 1, 25-dihydroxy vitamin D3, and parathyroid hormone (PTH) were measured by enzyme-linked immunosorbent assay. RESULTS In men, serum CTSB was significantly related to IMT and IMT/D in the unadjusted model, and these associations were lost after age adjustment. In women, serum CTSB remained significantly associated with serum creatinine (SCr) (p=0.009), estimated glomerular filtration rate (p=0.048) and IMT/D (p=0.017) following full adjustment. PTH was independently associated with SCr. IGF-1 was significantly associated with SPV in women. CTSB was correlated with metabolic and endocrine biomarkers. CONCLUSION Serum CTSB was associated with aging-related cardiovascular-renal parameters even in healthy people. Measurement of serum CTSB alone or in combination with metabolic and endocrine biomarkers can provide valuable information for predicting cardiovascular-renal function in healthy people, especially in elderly women.
Collapse
|
26
|
Black MJ, Lim K, Zimanyi MA, Sampson AK, Bubb KJ, Flower RL, Parkington HC, Tare M, Denton KM. Accelerated age-related decline in renal and vascular function in female rats following early-life growth restriction. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1153-61. [DOI: 10.1152/ajpregu.00403.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/13/2015] [Indexed: 11/22/2022]
Abstract
Many studies report sexual dimorphism in the fetal programming of adult disease. We hypothesized that there would be differences in the age-related decline in renal function between male and female intrauterine growth-restricted rats. Early-life growth restriction was induced in rat offspring by administering a low-protein diet (LPD; 8.7% casein) to dams during pregnancy and lactation. Control dams were fed a normal-protein diet (NPD; 20% casein). Mean arterial pressure (MAP) and renal structure and function were assessed in 32- and 100-wk-old offspring. Mesenteric artery function was examined at 100 wk using myography. At 3 days of age, body weight was ∼24% lower ( P < 0.0001) in LPD offspring; this difference was still apparent at 32 wk but not at 100 wk of age. MAP was not different between the male NPD and LPD groups at either age. However, MAP was greater in LPD females compared with NPD females at 100 wk of age (∼10 mmHg; P < 0.001). Glomerular filtration rate declined with age in the NPD male, LPD male and LPD female offspring (∼45%, all P < 0.05), but not in NPD female offspring. Mesenteric arteries in the aged LPD females had reduced sensitivity to nitric oxide donors compared with their NPD counterparts, suggesting that vascular dysfunction may contribute to the increased risk of disease in aged females. In conclusion, females growth-restricted in early life were no longer protected from an age-related decline in renal and arterial function, and this was associated with increased arterial pressure without evidence of renal structural damage.
Collapse
Affiliation(s)
- M. Jane Black
- Department of Anatomy, Monash University, Clayton, Victoria, Australia and Developmental Biology; and
| | - Kyungjoon Lim
- Department of Anatomy, Monash University, Clayton, Victoria, Australia and Developmental Biology; and
| | - Monika A. Zimanyi
- Department of Anatomy, Monash University, Clayton, Victoria, Australia and Developmental Biology; and
| | - Amanda K. Sampson
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Kristen J. Bubb
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Rebecca L. Flower
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | | - Marianne Tare
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Kate M. Denton
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
27
|
Keller K, Beule J, Schulz A, Coldewey M, Dippold W, Balzer JO. D-dimer for risk stratification in haemodynamically stable patients with acute pulmonary embolism. Adv Med Sci 2015; 60:204-10. [PMID: 25847178 DOI: 10.1016/j.advms.2015.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/30/2015] [Accepted: 02/20/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE Patients with submassive pulmonary embolism (PE) have a higher short-term mortality than those with low-risk PE. Rapid identification of submassive PE is important for adequate treatment of non-massive PE. We aimed to investigate the utility of D-dimer for the prediction of submassive PE stadium in normotensive PE patients. PATIENTS AND METHODS Normotensive PE patients were classified into submassive or low-risk PE groups. In addition to the comparison of the groups, area under the curve (AUC) and D-dimer cut-off for the prediction of submassive PE stadium, multi-variate logistic regression for association between D-dimer values above this cut-off and submassive PE stadium were also calculated. RESULTS The data of 129 normotensive PE patients (59.7% women, mean age 70.0 years (60.7/81.0)) were analysed retrospectively. Patients with submassive PE were older (75.0 years (61.7/81.0) vs. 66.5 years (55.7/74.2), P=0.026) and more frequently female (63.6% vs. 53.8%, P=0.35). Heart rate (100.0beats/min (85.0/108.0) vs. 80.0beats/min (70.0/96.2), P<0.0001), systolic pulmonary-artery pressure (41.55±16.79mmHg vs. 22.62±14.81mmHg, P<0.0001), and D-dimer (2.00mg/l (1.09/3.98) vs. 1.21mg/l (0.75/1.99), P=0.011) were higher in patients with submassive PE. D-dimer values >1.32mg/l were indicative of submassive PE and shock-index ≥0.7. The effectiveness (AUC) of the test was 0.63 for submassive PE and 0.64 for shock-index ≥0.7. D-dimer values >1.32mg/l were associated with submassive PE stadium (OR 3.81 (95% CI: 1.74-8.35), P=0.00083) as well as with systolic blood pressure (OR 0.98 (95% CI: 0.97-0.99), P=0.033), heart rate (OR 1.02 (95% CI: 1.00-1.04), P=0.023) and shock-index value (OR 15.89 (95% CI: 1.94-130.08), P=0.0099). CONCLUSIONS D-dimer values >1.32mg/l are indicative of submassive PE stadium and shock-index ≥0.7. Efficacy of D-dimer for predicting submassive PE stadium was only weak to moderate.
Collapse
|
28
|
Herlan L, Unland J, Langer S, Schulte L, Schütten S, García-Prieto CF, Kossmehl P, Fernández-Alfonso MS, Schulz A, Kreutz R. Development of progressive albuminuria in male Munich Wistar Frömter rats is androgen dependent. Physiol Genomics 2015; 47:281-9. [PMID: 25969455 DOI: 10.1152/physiolgenomics.00008.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022] Open
Abstract
Munich Wistar Frömter (MWF) rats develop spontaneous albuminuria that is linked to autosomal genetic loci and inherit a nephron deficit in both female and male animals, respectively. However, albuminuria and kidney damage are clearly more pronounced in males. Here we tested whether androgens and the androgen receptor influence albuminuria in male MWF. We first demonstrated in a pilot study that orchiectomy (Ox) of male MWF led to a significant suppression of urinary albumin excretion (UAE), while continuous testosterone supplementation in MWF Ox led to UAE levels similar to sham-operated (Sham) MWF rats. Subsequently, we performed a comparative main study between male MWF and normal Wistar rats to evaluate the effect of the androgen receptor on UAE development in adult animals up to the age of 18 wk. MWF Sham developed a marked increase in UAE compared with Wistar Sham (48.30 ± 6.16 vs. 0.42 ± 0.08 mg/24 h, P < 0.0001). UAE was significantly lower in MWF Ox compared with MWF Sham (-55%, P < 0.0001). In MWF Ox animals supplemented with testosterone and treated with the androgen receptor antagonist flutamide (OxTF) UAE at 18 wk was even lower compared with MWF Ox (-71%, P < 0.01) and similar to age-matched female MWF. The mRNA expression of renal tubular injury markers Kim1 and NGAL was increased in MWF Sham compared with Wistar Sham (P < 0.0008, respectively) and expression decreased significantly in MWF OxTF (P < 0.0004, respectively). Thus, the sexual dimorphism in albuminuria development in MWF can be attributed to testosterone and the androgen receptor in male rats.
Collapse
Affiliation(s)
- Laura Herlan
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Unland
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Langer
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Schulte
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabrina Schütten
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Concha F García-Prieto
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain; and
| | - Peter Kossmehl
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Angela Schulz
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Reinhold Kreutz
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany;
| |
Collapse
|
29
|
Pijacka W, Clifford B, Tilburgs C, Joles JA, Langley-Evans S, McMullen S. Protective role of female gender in programmed accelerated renal aging in the rat. Physiol Rep 2015; 3:3/4/e12342. [PMID: 25902787 PMCID: PMC4425955 DOI: 10.14814/phy2.12342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The aging kidney exhibits a progressive decline in glomerular filtration rate, accompanied by inflammatory and oxidative damage. We hypothesized that accelerated, age-related progression of renal injury is ovarian hormones-dependant. To address this we used an established model of developmentally programmed accelerated renal aging in the rat, superimposed by ovariectomy to assess interactions between ovarian hormones and the aging process. Under our experimental conditions, we found that kidney function worsens with age, that is GFR reduces over 18 month analyzed time-course and this was worsened by fetal exposure to maternal low-protein diet and absence of estrogen. Reduction in GFR was followed by increases in albuminuria, proteinuria, inflammatory markers, and tissue carbonyls, all suggesting inflammatory response and oxidative stress. This was associated with changes in AGTR2 expression which was greater at 18 months of age compared to earlier time points, but in MLP offspring only. Our studies show an influence of ovarian hormones on programmed accelerated renal aging and the AGTR2 across the lifespan. The main findings are that ovariectomy is a risk factor for increased aging-related renal injury and that this and oxidative damage might be related to changes in AGTR2 expression.
Collapse
Affiliation(s)
- Wioletta Pijacka
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Bethan Clifford
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Chantal Tilburgs
- Department of Nephrology and Hypertension, University Medical Centre, Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Centre, Utrecht, The Netherlands
| | - Simon Langley-Evans
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Sarah McMullen
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| |
Collapse
|
30
|
Sasser JM, Brinson KN, Tipton AJ, Crislip GR, Sullivan JC. Blood pressure, sex, and female sex hormones influence renal inner medullary nitric oxide synthase activity and expression in spontaneously hypertensive rats. J Am Heart Assoc 2015; 4:jah3899. [PMID: 25862792 PMCID: PMC4579936 DOI: 10.1161/jaha.114.001738] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background We previously reported that sexually mature female spontaneously hypertensive rats (SHRs) have greater nitric oxide (NO) synthase (NOS) enzymatic activity in the renal inner medulla (IM), compared to age‐matched males. However, the mechanisms responsible for this sexual dimorphism are unknown. The current study tested the hypothesis that sex differences in renal IM NOS activity and NOS1 expression in adult SHRs develop with sexual maturation and increases in blood pressure (BP) in a female sex hormone‐dependent manner. Methods and Results Renal IM were isolated from sexually immature 5‐week‐old and sexually mature 13‐week‐old male and female SHRs. Whereas NOS activity and NOS1 expression were comparable in 5‐ and 13‐week‐old male SHRs and 5‐week‐old female SHRs, 13‐week‐old females had greater NOS activity and NOS1 expression, compared to 5‐week‐old female SHRs and age‐matched males. NOS3 expression was greater in 5‐week‐old than 13‐week‐old SHRs regardless of sex. Treatment with antihypertensive therapy (hydrochlorothiazide and reserpine) from 6 to 12 weeks of age to attenuate age‐related increases in BP abolished the sex difference in NOS activity and NOS1 expression between sexually mature SHR males and females. To assess the role of female sex hormones in age‐related increases in NOS, additional females were ovariectomized (OVX), and NOS activity was studied 8 weeks post‐OVX. OVX decreased NOS activity and NOS1 expression. Conclusions The sex difference in renal IM NOS in SHR is mediated by a sex hormone‐ and BP‐dependent increase in NOS1 expression and NOS activity exclusively in females.
Collapse
Affiliation(s)
- Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS (J.M.S.)
| | - Krystal N Brinson
- Department of Physiology, Georgia Regents University, Augusta, GA (K.N.B., A.J.T., R.C., J.C.S.)
| | - Ashlee J Tipton
- Department of Physiology, Georgia Regents University, Augusta, GA (K.N.B., A.J.T., R.C., J.C.S.)
| | - G Ryan Crislip
- Department of Physiology, Georgia Regents University, Augusta, GA (K.N.B., A.J.T., R.C., J.C.S.)
| | - Jennifer C Sullivan
- Department of Physiology, Georgia Regents University, Augusta, GA (K.N.B., A.J.T., R.C., J.C.S.)
| |
Collapse
|
31
|
Tamma G, Goswami N, Reichmuth J, De Santo NG, Valenti G. Aquaporins, vasopressin, and aging: current perspectives. Endocrinology 2015; 156:777-88. [PMID: 25514088 DOI: 10.1210/en.2014-1812] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Functioning of the hypothalamic-neurohypophyseal-vasopressin axis is altered in aging, and the pathway may represent a plausible target to slow the process of aging. Arginine vasopressin, a nine-amino acid peptide that is secreted from the posterior pituitary in response to high plasma osmolality and hypotension, is central in this pathway. Vasopressin has important roles in circulatory and water homoeostasis mediated by vasopressin receptor subtypes V1a (vascular), V1b (pituitary), and V2 (vascular, renal). A dysfunction in this pathway as a result of aging can result in multiple abnormalities in several physiological systems. In addition, vasopressin plasma concentration is significantly higher in males than in females and vasopressin-mediated effects on renal and vascular targets are more pronounced in males than in females. These findings may be caused by sex differences in vasopressin secretion and action, making men more susceptible than females to diseases like hypertension, cardiovascular and chronic kidney diseases, and urolithiasis. Recently the availability of new, potent, orally active vasopressin receptor antagonists, the vaptans, has strongly increased the interest on vasopressin and its receptors as a new target for prevention of age-related diseases associated with its receptor-altered signaling. This review summarizes the recent literature in the field of vasopressin signaling in age-dependent abnormalities in kidney, cardiovascular function, and bone function.
Collapse
Affiliation(s)
- Grazia Tamma
- Department of Biosciences, Biotechnologies, and Biopharmaceutics (G.T., G.V.), University of Bari, 70125 Bari, Italy; Istituto Nazionale di Biostrutture e Biosistemi (G.T., G.V.), 00136 Roma, Italy; Gravitational Physiology and Medicine Research Unit (N.G., J.R.), Institute of Physiology, Medical University of Graz, 8036 Graz, Austria; Department of Medicine (N.G.D.S.), Second University of Naples, 80138 Naples, Italy; and Centro di Eccellenza di Genomica (G.V.) Campo Biomedico Ed Agrario, University of Bari, 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
32
|
Mirabito KM, Hilliard LM, Head GA, Widdop RE, Denton KM. Pressor responsiveness to angiotensin II in female mice is enhanced with age: role of the angiotensin type 2 receptor. Biol Sex Differ 2014; 5:13. [PMID: 25774285 PMCID: PMC4358320 DOI: 10.1186/s13293-014-0013-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/02/2014] [Indexed: 11/10/2022] Open
Abstract
Background The pressor response to angiotensin II (AngII) is attenuated in adult females as compared to males via an angiotensin type 2 receptor (AT2R)-dependent pathway. We hypothesized that adult female mice are protected against AngII-induced hypertension via an enhanced AT2R-mediated pathway and that in reproductively senescent females this pathway is no longer operative. Methods Mean arterial pressure was measured via telemetry in 4-month-old (adult) and 16-month-old (aged) and aged ovariectomized (aged-OVX) wild-type and AT2R knockout (AT2R-KO) female mice during baseline and 14-day infusion of vehicle (saline) or AngII (600 ng/kg/min s.c.). Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to determine renal gene expression of angiotensin receptors and angiotensin-converting enzyme 2 in response to 14-day treatment with vehicle or AngII. Results Basal mean arterial pressure was similar between the groups. The pressor response to AngII was augmented in adult AT2R-KO compared to adult wild-type mice (29 ± 3 mmHg versus 10 ± 4 mmHg, respectively, on day 14 as compared to basal mean arterial pressure, P = 0.002). In wild-type mice, pressor responsiveness to AngII was augmented with age, such that the pressor response to AngII was similar between aged AT2R-KO and wild-type female mice (31 ± 4 mmHg versus 34 ± 3 mmHg, respectively, on day 14, P = 0.9). There were no significant differences in pressor responsiveness to AngII between aged and aged-OVX mice. Vehicle-treated aged wild-type mice had a lower renal AT2R/AT1R balance as compared to adult counterparts. In response to AngII, the renal AT2R/AT1R balance in aged wild-type females was greater than that observed in vehicle-treated aged wild-type females and adult wild-type females, yet the protective effects of AT2R activation were not restored. Conclusions The protective role of the AT2R depressor pathway is lost with age in female mice. Therefore, targeting deficits in AT2R expression and/or signaling may represent a novel anti-hypertensive approach in aged females.
Collapse
Affiliation(s)
- Katrina M Mirabito
- Department of Physiology, Monash University, Building 13F, Victoria 3800, Australia
| | - Lucinda M Hilliard
- Department of Physiology, Monash University, Building 13F, Victoria 3800, Australia
| | - Geoffrey A Head
- Baker IDI Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia
| | - Robert E Widdop
- Department of Pharmacology, Monash University, Building 13E, Victoria 3800, Australia
| | - Kate M Denton
- Department of Physiology, Monash University, Building 13F, Victoria 3800, Australia
| |
Collapse
|
33
|
Loria AS, Brinson KN, Fox BM, Sullivan JC. Sex-specific alterations in NOS regulation of vascular function in aorta and mesenteric arteries from spontaneously hypertensive rats compared to Wistar Kyoto rats. Physiol Rep 2014; 2:2/8/e12125. [PMID: 25168874 PMCID: PMC4246578 DOI: 10.14814/phy2.12125] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The present study tested the hypothesis that spontaneously hypertensive rats (SHR) have impaired nitric oxide synthase (NOS)‐mediated regulation of vascular function versus Wistar‐Kyoto rats (WKY). Aorta and small mesenteric arteries were studied from male and female SHR (M SHR and F SHR) and WKY (M WKY and F WKY). Phenylephrine (PE)‐induced vasoconstriction was greater in aorta of M SHR versus all others (P < 0.05); there were neither sex nor strain differences in PE contraction in mesenteric arteries. The NOS inhibitor l‐Nitro‐Arginine Methyl Ester (l‐NAME) increased PE‐induced vasoconstriction in all rats, although the increase was the least in male SHR (P < 0.05), revealing a blunted vasoconstrictor buffering capacity of NOS. l‐NAME increased sensitivity to PE‐induced constriction only in mesenteric arteries of SHR, although, the maximal percent increase in contraction was comparable among groups. ACh‐induced relaxation was also less in aorta from M SHR versus all others (P < 0.05). ACh relaxation was comparable among groups in mesenteric arteries, although SHR exhibited a greater NOS component to ACh‐induced relaxation than WKY. To gain mechanistic insight into sex and strain differences in vascular function, NOS activity and NOS3 protein expression were measured. Aortic NOS activity was comparable between groups and M SHR had greater NOS3 expression than M WKY. In contrast, although vascular function was largely maintained in mesenteric arteries of SHR, NOS activity was less in SHR versus WKY. In conclusion, M SHR exhibit a decrease in NOS regulation of vascular function compared to F SHR and WKY, although this is not mediated by decreases in NOS activity and/or expression. The present study tested the hypothesis that spontaneously hypertensive rats (SHR) have impaired nitric oxide synthase (NOS)‐mediated regulation of vascular function versus Wistar‐Kyoto rats (WKY). Aorta and small mesenteric arteries were studied from male and female SHR and WKY. Male SHR showed a decreased NOS regulation of vascular function compared to F SHR and WKY, although this was not mediated by decreases in NOS activity and/or expression.
Collapse
Affiliation(s)
- Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, St. Lexington, Kentucky
| | - Krystal N Brinson
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| | - Brandon M Fox
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| | | |
Collapse
|
34
|
Mirabito KM, Hilliard LM, Kett MM, Brown RD, Booth SC, Widdop RE, Moritz KM, Evans RG, Denton KM. Sex- and age-related differences in the chronic pressure-natriuresis relationship: role of the angiotensin type 2 receptor. Am J Physiol Renal Physiol 2014; 307:F901-7. [PMID: 25164079 DOI: 10.1152/ajprenal.00288.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sex hormones regulate the renin-angiotensin system. For example, estrogen enhances expression of the angiotensin type 2 receptor. We hypothesized that activation of the angiotensin type 2 receptor shifts the chronic pressure-natriuresis relationship leftward in females compared with males and that this effect is lost with age. Mean arterial pressure was measured by radiotelemetry in adult (4 mo old) and aged (14 mo old) wild-type and angiotensin type 2 receptor knockout male and female mice. Chronic pressure-natriuresis curves were constructed while mice were maintained on a normal-salt (0.26%) diet and following 6 days of high salt (5.0%) diet. Mean arterial pressure was lower in adult wild-type females than males (88 ± 1 and 97 ± 1 mmHg, respectively), a difference that was maintained with age, but was absent in adult knockout mice. In wild-type females, the chronic pressure-natriuresis relationship was shifted leftward compared with knockout females, an effect that was lost with age. In males, the chronic pressure-natriuresis relationship was not influenced by angiotensin type 2 receptor deficiency. Compared with age-matched females, the chronic pressure-natriuresis relationships in male mice were shifted rightward. Renal expression of the angiotensin type 2 receptor was fourfold greater in adult wild-type females than males. With age, the angiotensin type 2 receptor-to-angiotensin type 1 receptor balance was reduced in females. Conversely, in males, angiotensin receptor expression did not vary significantly with age. In conclusion, the angiotensin type 2 receptor modulates the chronic pressure-natriuresis relationship in an age- and sex-dependent manner.
Collapse
Affiliation(s)
- Katrina M Mirabito
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Lucinda M Hilliard
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Michelle M Kett
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Russell D Brown
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Sean C Booth
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia; and
| | - Karen M Moritz
- School of Biomedical Sciences, University of Queensland, St. Lucia Queensland, Australia
| | - Roger G Evans
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Kate M Denton
- Department of Physiology, Monash University, Clayton, Victoria, Australia;
| |
Collapse
|
35
|
Keller K, Beule J, Coldewey M, Dippold W, Balzer JO. Impact of advanced age on the severity of normotensive pulmonary embolism. Heart Vessels 2014; 30:647-56. [DOI: 10.1007/s00380-014-0533-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 05/30/2014] [Indexed: 11/30/2022]
|
36
|
Abstract
Hypertension is a complex and multifaceted disease, and there are well established sex differences in many aspects of blood pressure (BP) control. The intent of this review is to highlight recent work examining sex differences in the molecular mechanisms of BP control in hypertension to assess whether the "one-size-fits-all" approach to BP control is appropriate with regard to sex.
Collapse
|
37
|
Ritz SA, Antle DM, Côté J, Deroy K, Fraleigh N, Messing K, Parent L, St-Pierre J, Vaillancourt C, Mergler D. First steps for integrating sex and gender considerations into basic experimental biomedical research. FASEB J 2013; 28:4-13. [PMID: 24056086 DOI: 10.1096/fj.13-233395] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In recent decades there has been an increasing recognition of the need to account for sex and gender in biology and medicine, in order to develop a more comprehensive understanding of biological phenomena and to address gaps in medical knowledge that have arisen due to a generally masculine bias in research. We have noted that as basic experimental biomedical researchers, we face unique challenges to the incorporation of sex and gender in our work, and that these have remained largely unarticulated, misunderstood, and unaddressed in the literature. Here, we describe some of the specific challenges to the incorporation of sex and gender considerations in research involving cell cultures and laboratory animals. In our view, the mainstreaming of sex and gender considerations in basic biomedical research depends on an approach that will allow scientists to address these issues in ways that do not undermine our ability to pursue our fundamental scientific interests. To that end, we suggest a number of strategies that allow basic experimental researchers to feasibly and meaningfully take sex and gender into account in their work.
Collapse
Affiliation(s)
- Stacey A Ritz
- 1Northern Ontario School of Medicine, East Campus-Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vamos Z, Cseplo P, Ivic I, Matics R, Hamar J, Koller A. Age Determines the Magnitudes of Angiotensin II-Induced Contractions, mRNA, and Protein Expression of Angiotensin Type 1 Receptors in Rat Carotid Arteries. J Gerontol A Biol Sci Med Sci 2013; 69:519-26. [DOI: 10.1093/gerona/glt128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
39
|
Uzun D, Korkmaz GG, Sitar ME, Cebe T, Yanar K, Cakatay U, Aydın S. Oxidative damage parameters in renal tissues of aged and young rats based on gender. Clin Interv Aging 2013; 8:809-15. [PMID: 23847413 PMCID: PMC3700783 DOI: 10.2147/cia.s46188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Aging is characterized by a gradual functional decrease of all systems including the kidneys. Growing evidence links altered lipid protein redox-homeostasis with renal dysfunction. The effect of sexual dimorphism on the lipid protein redox-homeostasis mechanisms in the aging kidney is obscure. In the current study, we aimed to investigate redox homeostasis as it related to sexual dimorphism on protein oxidation and lipid peroxidation parameters, as protein carbonyl (PCO), total thiol (T-SH), advanced oxidation protein products (AOPP), malondialdehyde, glutathione (GSH), and superoxide dismutase (SOD) activity, as potential aging biomarkers, which may contribute to an analysis of the free radical theory of aging. MATERIALS AND METHODS The study was carried out with 16 naturally aged rats (24 months old; eight males and eight females) and their corresponding young rat groups as controls (6 months old; eight males and eight females). All of the aforementioned parameters (PCO, T-SH, AOPP, MDA, GSH, SOD) were measured manually instead of automated devices or ELISA kits. RESULTS PCO, AOPP, and malondialdehyde levels in aged rats were significantly higher in the older rat group than in the younger rat group, whereas SOD activities were significantly lower in old rats. T-SH levels were not significantly different in male groups; however, T-SH levels were lower in the aged female group than in the young female control group. In addition, GSH levels were significantly different between the aged rat group and the corresponding young control group for both genders. CONCLUSION With respect to PCO and AOPP, impaired redox homeostasis is substantially more prominent in males than females. The decrease of G-SH levels in male groups could be attributed to stabilizing the redox status of protein thiol groups by the depletion of the GSH groups. Considering the results, the renal tissue proteins and lipids in different genders may have different susceptibilities to oxidative damage.
Collapse
Affiliation(s)
- Duygu Uzun
- Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|