1
|
Li J, Wang X, Zhang Y, Wei M, Qi J, Liu D, Wu R, Chen Q, Huang J. Ginsenoside Rg1 alleviates PCPA-induced insomnia by inhibiting NLRP3 inflammasome activation and pyroptosis through the Nrf2/HO-1 pathway in mice. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06828-5. [PMID: 40493075 DOI: 10.1007/s00213-025-06828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 05/27/2025] [Indexed: 06/12/2025]
Abstract
OBJECTIVES This study aims to investigate the neuroprotective effects of Ginsenoside Rg1 in alleviating P-chlorophenylalanine (PCPA)-induced insomnia and explore its underlying mechanisms involving the inhibition of NOD-Like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation and pyroptosis through the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) pathway in mice. METHODS Sprague-Dawley rats were randomly divided into five groups: control, sleep deprivation (SD, PCPA-induced insomnia), and three treatment groups receiving different doses of Ginsenoside Rg1 (low, medium, and high). Behavioral assessments included the Pentobarbital Sodium-Induced Sleep Test (PIST), Sucrose Preference Test (SPT), and Morris Water Maze (MWM). Histopathological and immunofluorescence evaluations of hippocampal tissues were performed. Enzyme-Linked Immunosorbent Assay (ELISA) was used to measure neurotransmitter levels (5-Hydroxytryptamine [5-HT], 5-Hydroxytryptophan [5-HTP], Gamma-aminobutyric acid [GABA], glutamate [GLU]) and pro-inflammatory cytokines (Tumor Necrosis Factor Alpha [TNF-α], Interleukin-6 [IL-6], Interleukin-1 beta [IL-1β], Interleukin-8 [IL-8]). In vitro, corticosterone-induced neurotoxicity in HT22 hippocampal cells was assessed, and the role of the Nrf2/HO-1 pathway was examined through molecular docking, gene silencing, and Western blot. RESULTS Ginsenoside Rg1 treatment significantly improved PCPA-induced insomnia symptoms in a dose-dependent manner, as evidenced by reduced sleep latency, increased sleep duration, restored sucrose preference, and improved spatial memory. Histopathological analysis revealed that Ginsenoside Rg1 mitigated neuronal damage and astrocytic activation. Neurotransmitter imbalances were corrected, and inflammation was alleviated, as reflected by reductions in pro-inflammatory cytokines and increased interleukin-10 (IL-10) levels. Mechanistically, Ginsenoside Rg1 inhibited NLRP3 inflammasome activation, pyroptosis, and reduced IL-1β and IL-8 levels in both in vivo and in vitro models. The activation of the Nrf2/HO-1 pathway was further confirmed by molecular docking, immunofluorescence, and Western blot, demonstrating that Nrf2 activation was critical for the anti-inflammatory effects of Ginsenoside Rg1. CONCLUSION Ginsenoside Rg1 effectively alleviates PCPA-induced insomnia by inhibiting NLRP3 inflammasome activation and pyroptosis, with its neuroprotective effects mediated through the activation of the Nrf2/HO-1 pathway. These findings suggest Ginsenoside Rg1 as a potential therapeutic agent for insomnia and related neuroinflammatory conditions.
Collapse
Affiliation(s)
- Jingyi Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou Street, Fuzhou, Fujian Province, 350122, China
| | - Xiufeng Wang
- Fujian Academy of Chinese Medical Sciences, No. 282 Wusi Road, Gulou District, Fuzhou, 350003, China
| | - Yu Zhang
- Fujian Academy of Chinese Medical Sciences, No. 282 Wusi Road, Gulou District, Fuzhou, 350003, China
| | - Min Wei
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou Street, Fuzhou, Fujian Province, 350122, China
| | - Jianqiang Qi
- Clinical Skills Teaching Center, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou Street, Fuzhou, 350122, Fujian Province, China
| | - Dan Liu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou Street, Fuzhou, Fujian Province, 350122, China
| | - Runhua Wu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou Street, Fuzhou, Fujian Province, 350122, China
| | - Qin Chen
- Clinical Skills Teaching Center, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou Street, Fuzhou, 350122, Fujian Province, China
| | - Junshan Huang
- Fujian Academy of Chinese Medical Sciences, No. 282 Wusi Road, Gulou District, Fuzhou, 350003, China.
| |
Collapse
|
2
|
Otgaar TC, Bernert M, Morris G, Baichan P, Bignoux MJ, Letsolo B, Weiss SFT, Ferreira E. 37 kDa LRP::FLAG enhances telomerase activity and reduces ageing markers in vivo. Cell Mol Life Sci 2025; 82:83. [PMID: 39985566 PMCID: PMC11846807 DOI: 10.1007/s00018-025-05593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 02/24/2025]
Abstract
Ageing is a degenerative process characterised by a decline in physiological functioning of the organism. One of the core regulators of cellular ageing are telomeres, repetitive DNA sequences of TTAGGG that cap the ends of chromosomes and are maintained by the ribonucleoprotein complex, telomerase. Age-dependent progressive loss of the telomere ends eventually induces cell cycle arrest for the induction of either replicative senescence or apoptosis. It was previously established that overexpression of the 37 kDa/ 67 kDa laminin receptor (LRP/LR) increased telomerase activity and telomere length while concomitantly reducing senescence markers in aged normal cells in vitro. Therefore, it was hypothesized that elevating LRP/LR in vivo may increase telomerase activity and hinder the ageing process on an organism scale. To this end, aged C57BL/6J mice were treated/transfected to induce an overexpression of LRP::FLAG. Various physiological tests and histological analyses were performed to assess overall organism fitness as well as to discern the treatments' ability at reducing tissue degeneration and atrophy. It was found that mice overexpressing LRP::FLAG displayed improved physiological characteristics and markedly less tissue degeneration and atrophy when compared to control and non-treated mice. Alongside these improvements, certain organs displayed increased telomerase activity with a corresponding elongation in average telomere length. In addition the overexpression of LRP::FLAG significantly improved various proliferative and anti-ageing associated proteins while causing a concomitant decrease in senescence associated proteins. These findings are therefore indicative of a novel function of LRP/LR delaying the onset of senescence, while also promoting healthier ageing through elevating TERT and telomerase activity.
Collapse
Affiliation(s)
- Tyrone C Otgaar
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Martin Bernert
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Gavin Morris
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Pavan Baichan
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Monique J Bignoux
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Boitelo Letsolo
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa.
| |
Collapse
|
3
|
Cui CH, Shin D, Hurh BS, Im WT. A Novel Ginsenoside-Transforming α-L-Rhamnosidase from Bifidobacterium: Screening, Characterization and Application. Biomolecules 2024; 14:1611. [PMID: 39766318 PMCID: PMC11673932 DOI: 10.3390/biom14121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Despite the rapid advancement of glycosidase biotechnology, ginsenoside-transforming rhamnosidases remain underexplored due to a lack of research. In this study, we aimed to bridge this gap by evaluating eight putative rhamnosidases for their ability to transform ginsenosides. Among them, a novel rhamnosidase (C118) from Bifidobacterium was identified as being efficient at hydrolyzing ginsenoside Re. This enzyme was expressed well in Escherichia coli and exhibited optimal activity at pH of 6.0 and 45 °C. Protein structural predictions revealed that the potential active hydrophobic area near an active pocket may influence the ginsenoside-transforming activities compared to non-active screened rhamnosidases. This enzyme's thermal stability exceeded that of the only previously known ginsenoside-transforming rhamnosidase, BD890. Additionally, the kcat/Km value of C118 was 1.45 times higher than that of BD890. Using recombinant C118 from E. coli, all ginsenoside Re in a PPT-type ginsenoside mixture (2.25 mg/mL) was converted after 12 h of reaction. To the best of our knowledge, this is the most efficient ginsenoside Re-transforming α-L-rhamnosidase reported to date, enhancing our understanding of rhamnosidase-substrate interactions and potentially improving the efficiency and specificity of the conversion process. These findings offer promising implications for the production of pharmacologically active ginsenosides in the pharmaceutical, cosmetic, and functional food industries.
Collapse
Affiliation(s)
- Chang-Hao Cui
- Sempio Fermentation Research Center, Sempio Foods Company, Osong 28156, Republic of Korea; (C.-H.C.); (D.S.)
| | - Doohang Shin
- Sempio Fermentation Research Center, Sempio Foods Company, Osong 28156, Republic of Korea; (C.-H.C.); (D.S.)
| | - Byung-Serk Hurh
- Sempio Fermentation Research Center, Sempio Foods Company, Osong 28156, Republic of Korea; (C.-H.C.); (D.S.)
| | - Wan-Taek Im
- Department of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- AceEMzyme Co., Ltd., Academic Industry Cooperation, Anseong 17579, Republic of Korea
| |
Collapse
|
4
|
Shi M, Fan H, Liu H, Zhang Y. Effects of saponins R b1 and R e in American ginseng intervention on intestinal microbiota of aging model. Front Nutr 2024; 11:1435778. [PMID: 39346650 PMCID: PMC11428427 DOI: 10.3389/fnut.2024.1435778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Aging brings about physiological dysfunction, disease, and eventual mortality. An increasing number of studies indicate that aging can easily lead to dysbiosis of the gut microbiota, which can further affect digestion, nerves, cognition, emotions, and more. Therefore, gut bacteria play an important role in regulating the physical functions of aging populations. While saponins, the primary components of American ginseng, are frequently utilized for treating common ailments in the elderly due to their potent antioxidant properties, there is a scarcity of comprehensive studies on aging organisms. This study focused on 18 month old aging mice and investigated the effects of single intervention and combined intervention of Rb1 and Re, the main components of Panax quinquefolium saponins, on the gut microbiota of aging mice. High throughput 16s RNA gene sequencing analysis was performed on the gut contents of the tested mice, and the results showed that Rb1 and Re had a significant impact on the gut microbiota. Rb1, Re, and Rb1 + Re can effectively enhance the diversity of gut microbiota, especially in the combined Rb1 + Re group, which can recover to the level of young mice. Re can promote the abundance of probiotics such as Lactobacillus, Lactobacillaceae, and Lactobacillus, and inhibit the abundance of harmful bacteria such as Enterobacteriaceae. This indicates that the intervention of Rb1, Re, and Rb1 + Re can maintain the homeostasis of gut microbiota, and the combined application of Rb1 + Re has a better effect. The relationship between aging, brain gut axis, and gut microbiota is very close. Saponins can improve the gut microbiota of aging individuals by maintaining the balance of gut microbiota and the normal function of the brain gut axis, enabling the body to achieve a gut microbiota homeostasis closer to that of young healthy mice.
Collapse
Affiliation(s)
- Mao Shi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - HongXiu Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - HongCheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - YanRong Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Lin L, Tang R, Liu Y, Li Z, Li H, Yang H. Research on the anti-aging mechanisms of Panax ginseng extract in mice: a gut microbiome and metabolomics approach. Front Pharmacol 2024; 15:1415844. [PMID: 38966558 PMCID: PMC11222675 DOI: 10.3389/fphar.2024.1415844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction: Aged-related brain damage and gut microbiome disruption are common. Research affirms that modulating the microbiota-gut-brain axis can help reduce age-related brain damage. Methods: Ginseng, esteemed in traditional Chinese medicine, is recognized for its anti-aging capabilities. However, previous Ginseng anti-aging studies have largely focused on diseased animal models. To this end, efforts were hereby made to explore the potential neuroprotective effects of fecal microbiota transplantation (FMT) from Ginseng-supplemented aged mice to those pre-treated with antibiotics. Results: As a result, FMT with specific modifications in natural aging mice improved animal weight gain, extended the telomere length, anti-oxidative stress in brain tissue, regulated the serum levels of cytokine, and balanced the proportion of Treg cells. Besides, FMT increased the abundance of beneficial bacteria of Lachnospiraceae, Dubosiella, Bacteroides, etc. and decreased the levels of potential pathogenic bacteria of Helicobacter and Lachnoclostridium in the fecal samples of natural aged mice. This revealed that FMT remarkably reshaped gut microbiome. Additionally, FMT-treated aged mice showed increased levels of metabolites of Ursolic acid, β-carotene, S-Adenosylmethionine, Spermidine, Guanosine, Celecoxib, Linoleic acid, etc., which were significantly positively correlated with critical beneficial bacteria above. Additionally, these identified critical microbiota and metabolites were mainly enriched in the pathways of Amino acid metabolism, Lipid metabolism, Nucleotide metabolism, etc. Furthermore, FMT downregulated p53/p21/Rb signaling and upregulated p16/p14, ATM/synapsin I/synaptophysin/PSD95, CREB/ERK/AKT signaling in brain damage following natural aging. Discussion: Overall, the study demonstrates that reprogramming of gut microbiota by FMT impedes brain damage in the natural aging process, possibly through the regulation of microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| | - Hongjun Yang
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Liu S, Wang M, Xiao H, Ye J, Cao L, Li W, Sun G. Advancements in research on the effects of panax notoginseng saponin constituents in ameliorating learning and memory disorders. Heliyon 2024; 10:e28581. [PMID: 38586351 PMCID: PMC10998096 DOI: 10.1016/j.heliyon.2024.e28581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Learning and memory disorder is a cluster of symptoms caused by neuronal aging and other diseases of the central nervous system (CNS). Panax notoginseng saponins (PNS) are a series of saponins derived from the natural active ingredients of traditional Chinese medicine (TCM) that have neuroprotective effects on the central nervous system. In this paper, we review the ameliorative effects and mechanisms of Panax notoginseng saponin-like components on learning and memory disorders to provide valuable references and insights for the development of new drugs for the treatment of learning and memory disorders. Our summary results suggest that Panax ginseng saponins have significant effects on improving learning and memory disorders, and these effects and potential mechanisms are mediated by their anti-inflammatory, anti-apoptotic, antioxidant, β-amyloid lowering, mitochondrial homeostasis in vivo, neuronal structure and function improving, neurogenesis promoting, neurotransmitter release regulating, and probiotic homeostasis in vivo activities. These findings suggest the potential of Panax notoginseng saponin-like constituents as drug candidates for improving learning and memory disorders.
Collapse
Affiliation(s)
- Shusen Liu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Haiyan Xiao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingxue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Li Cao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
7
|
Tian T, Ko CN, Luo W, Li D, Yang C. The anti-aging mechanism of ginsenosides with medicine and food homology. Food Funct 2023; 14:9123-9136. [PMID: 37766674 DOI: 10.1039/d3fo02580b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
With the acceleration of global aging and the rise in living standards, the achievement of healthy aging is becoming an imperative issue globally. Ginseng, a medicinal plant that has a long history of dietary intake and remarkable medicinal value, has become a research hotspot in the field of food and medicine. Ginsenosides, especially protopanaxadiol-type saponins and protopanaxatriol-type saponins, are among the most important active ingredients in ginseng. Ginsenosides have been found to exhibit powerful and diverse pharmacological activities, such as antiaging, antitumor, antifatigue and immunity enhancement activities. Their effects in antiaging mainly include (1) promotion of metabolism and stem cell proliferation, (2) protection of skin and nerves, (3) modulation of intestinal flora, (4) maintenance of mitochondrial function, and (5) enhancement of telomerase activity. The underlying mechanisms are primarily associated with the intervention of the signaling pathways in apoptosis, inflammation and oxidative stress. In this review, the mechanism of action of ginsenosides in antiaging as well as the potential values of developing ginsenoside-based functional foods and antiaging drugs are discussed.
Collapse
Affiliation(s)
- Tiantian Tian
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, Guangdong Province, 519087, China
| | - Chung-Nga Ko
- C-MER Dennis Lam and Partners Eye Center, Hong Kong International Eye Care Group, Hong Kong, China
| | - Wenya Luo
- Haikou Orthopedics and Diabetes Hospital, Haikou, Hainan, 570206, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China.
| |
Collapse
|
8
|
Malík M, Tlustoš P. Nootropic Herbs, Shrubs, and Trees as Potential Cognitive Enhancers. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061364. [PMID: 36987052 PMCID: PMC10056569 DOI: 10.3390/plants12061364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/13/2023]
Abstract
Plant-based nootropics are a diverse group of natural drugs that can improve cognitive abilities through various physiological mechanisms, especially in cases where these functions are weakened or impaired. In many cases, the nootropics enhance erythrocyte plasticity and inhibit aggregation, which improves the blood's rheological properties and increases its flow to the brain. Many of these formulations possess antioxidant activity that protects brain tissue from neurotoxicity and improves the brain's oxygen supply. They can induce the synthesis of neuronal proteins, nucleic acids, and phospholipids for constructing and repairing neurohormonal membranes. These natural compounds can potentially be present in a great variety of herbs, shrubs, and even some trees and vines. The plant species reviewed here were selected based on the availability of verifiable experimental data and clinical trials investigating potential nootropic effects. Original research articles, relevant animal studies, meta-analyses, systematic reviews, and clinical trials were included in this review. Selected representatives of this heterogeneous group included Bacopa monnieri (L.) Wettst., Centella asiatica (L.) Urban, Eleutherococcus senticosus (Rupr. & Maxim.) Maxim., Ginkgo biloba L., Lepidium meyenii Walp., Panax ginseng C.A. Meyer, Paullinia cupana Kunth, Rhodiola rosea L., Schisandra chinensis (Turcz.) Baill., and Withania somnifera (L.) Dunal. The species are depicted and described, together with their active components and nootropic effects, and evidence of their efficacy is presented. The study provides brief descriptions of the representative species, their occurrence, history, and the chemical composition of the principle medicinal compounds, with uses, indications, experimental treatments, dosages, possible side effects, and contraindications. Most plant nootropics must be taken at optimal doses for extended periods before measurable improvement occurs, but they are generally very well tolerated. Their psychoactive properties are not produced by a single molecule but by a synergistic combination of several compounds. The available data suggest that including extracts from these plants in medicinal products to treat cognitive disorders can have substantial potential therapeutic benefits.
Collapse
|
9
|
Wang Z, Zhang Z, Liu J, Guo M, Li H. Panax Ginseng in the treatment of Alzheimer's disease and vascular dementia. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
10
|
Du X, Lou N, Hu S, Xiao R, Chu C, Huang Q, Lu L, Li S, Yang J. Anti-Aging of the Nervous System and Related Neurodegenerative Diseases With Chinese Herbal Medicine. Am J Alzheimers Dis Other Demen 2023; 38:15333175231205445. [PMID: 37818604 PMCID: PMC10624054 DOI: 10.1177/15333175231205445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Human beings have always pursued a prolonged lifespan, while the aging of the nervous system is associated with a large variety of diseases. Pathological aging of the nervous system results in a series of neurodegenerative diseases and can cause disability and death in the elderly. Therefore, there is an urgent need for the prevention and treatment of nervous system aging. Chinese herbal medicines have a long history, featuring rich and safe ingredients, and have great potential for the development of anti-aging treatment. We searched the publications on PubMed with key words "anti-aging of the nervous system" and "Chinese herbal medicine" in recent 10 years, and found sixteen Chinese herbal medicines. Then by comparing their popularity of use as well as active components based on the research articles, five common Chinese herbal medicines namely Ginseng Radix, Lycii Fructus, Astragali Radix, Coptidis Rhizoma and Ginkgo Folium, were confirmed to be the most related to anti-nervous system aging and neural degenerative diseases. At the same time, the active ingredients, research models, action mechanisms and curative effects of these five common Chinese herbal medicines were reviewed. From the five common Chinese herbal medicines reviewed in this paper, many encouraging effects of Chinese herbal medicines on treating nervous system aging and related diseases were revealed and more potent herbs would be explored with the help of the proposed possible mechanisms.
Collapse
Affiliation(s)
- Xiaohui Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Nanbin Lou
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Sinan Hu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ruopeng Xiao
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qiankai Huang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Lin Lu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shanshan Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|
11
|
Wu Z, Huang J, Bai X, Wang Q, Wang F, Xu J, Tang H, Yin C, Wang Y, Yu F, Zhang H. Ginsenoside-Rg1 mitigates cardiac arrest-induced cognitive damage by modulating neuroinflammation and hippocampal plasticity. Eur J Pharmacol 2022; 938:175431. [PMID: 36463944 DOI: 10.1016/j.ejphar.2022.175431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Ginsenoside-Rg1 can effectively ameliorate mental disorders, but whether ginsenoside-Rg1 plays a neuroprotective role in cardiac arrest and cardiopulmonary resuscitation (CA/CPR)-induced cognitive impairment remains unclear. In this study, a 5-min asphyxia-based CA/CPR rat model was established to explore the mechanisms underlying the effects of ginsenoside-Rg1 (40 mg·kg-1·d-1, ip, 14 days) on its cognitive alterations. These CA/CPR rats displayed spatial learning and memory impairment in the Morris water maze, as reflected in the compromised basal synaptic transmission and long-term potentiation (LTP) at the Schaffer collateral of hippocampal CA1 area in vivo electrophysiology, whereas the ginsenoside-Rg1 remarkably mitigated these alterations. Next, we found that ginsenoside-Rg1 inhibited hippocampal neuroinflammation by alleviating the CA/CPR-induced hippocampal activation of microglia and astrocytes and the overexpression of related proinflammatory cytokines interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α). In addition, ginsenoside-Rg1 improved CA/CPR-induced hippocampal neuronal apoptosis, dendritic spines and synaptic ultrastructure defects as associated with the upregulation of the key synaptic regulatory proteins. Furthermore, ginsenoside-Rg1 could ameliorate CA/CPR-induced aberrant expression of the key regulators of hippocampal glutamate signaling pathways, excitatory amino acid transporter 2 (EAAT2), excitatory amino acid transporter 1 (EAAT1), Glutamine Synthetase (GS), GluN2B, and glutamate. In conclusion, ginsenoside-Rg1 exerts its neuroprotective effects by ameliorating hippocampus-dependent neuroglia activation-mediated neuroinflammation and neuroplasticity deficits, shedding new light on the therapeutic intervention of CA/CPR-related cognitive disorders.
Collapse
Affiliation(s)
- Zhangbi Wu
- Department of Emergency Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jialin Huang
- Department of Emergency Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xiaojie Bai
- Department of Emergency Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qunan Wang
- School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes/Anhui Provincial Key Laboratory of Population Health and Aristogenics, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China
| | - Fen Wang
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jun Xu
- Department of Emergency Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Huiping Tang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China; Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Chunying Yin
- Cryo-EM Center, University of Science and Technology of China, Hefei, 230027, China
| | - Yu Wang
- Department of Emergency Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Feng Yu
- Department of Emergency Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Hong Zhang
- Department of Emergency Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
12
|
Feng H, Xue M, Deng H, Cheng S, Hu Y, Zhou C. Ginsenoside and Its Therapeutic Potential for Cognitive Impairment. Biomolecules 2022; 12:1310. [PMID: 36139149 PMCID: PMC9496100 DOI: 10.3390/biom12091310] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive impairment (CI) is one of the major clinical features of many neurodegenerative diseases. It can be aging-related or even appear in non-central nerve system (CNS) diseases. CI has a wide spectrum that ranges from the cognitive complaint with normal screening tests to mild CI and, at its end, dementia. Ginsenosides, agents extracted from a key Chinese herbal medicine (ginseng), show great promise as a new therapeutic option for treating CI. This review covered both clinical trials and preclinical studies to summarize the possible mechanisms of how ginsenosides affect CI in different diseases. It shows that ginsenosides can modulate signaling pathways associated with oxidative stress, apoptosis, inflammation, synaptic plasticity, and neurogenesis. The involved signaling pathways mainly include the PI3K/Akt, CREB/BDNF, Keap1/Nrf2 signaling, and NF-κB/NLRP3 inflammasome pathways. We hope to provide a theoretical basis for the treatment of CI for related diseases by ginsenosides.
Collapse
Affiliation(s)
- Hui Feng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Mei Xue
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Hao Deng
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300073, China
| | - Shiqi Cheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Yue Hu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Chunxiang Zhou
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| |
Collapse
|
13
|
Malík M, Tlustoš P. Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs. Nutrients 2022; 14:3367. [PMID: 36014874 PMCID: PMC9415189 DOI: 10.3390/nu14163367] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/22/2022] Open
Abstract
Nootropics, also known as "smart drugs" are a diverse group of medicinal substances whose action improves human thinking, learning, and memory, especially in cases where these functions are impaired. This review provides an up-to-date overview of the potential effectiveness and importance of nootropics. Based on their nature and their effects, this heterogeneous group of drugs has been divided into four subgroups: classical nootropic compounds, substances increasing brain metabolism, cholinergic, and plants and their extracts with nootropic effects. Each subgroup of nootropics contains several main representatives, and for each one, its uses, indications, experimental treatments, dosage, and possible side effects and contraindications are discussed. For the nootropic plant extracts, there is also a brief description of each plant representative, its occurrence, history, and chemical composition of the medicinal part. Lastly, specific recommendations regarding the use of nootropics by both ill and healthy individuals are summarized.
Collapse
Affiliation(s)
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
14
|
The Effect of Guilingji Capsules on Vascular Mild Cognitive Impairment: A Randomized, Double-Blind, Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4778163. [PMID: 35116067 PMCID: PMC8807047 DOI: 10.1155/2022/4778163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
Abstract
Guilingji capsules (GLJC) have been shown to have antiaging effects and improve cognitive function. The aim of this study was to evaluate the clinical efficacy and safety of GLJC for the treatment of vascular mild cognitive impairment (VaMCI). A total of 96 patients with VaMCI (aged 60–85 years) were enrolled in this 24-week, randomized, double-blind, controlled clinical trial. The patients were randomly assigned to a GLJC group (n = 48) or a Ginkgo group (n = 48). Patients in the GLJC group were treated using GLJC, whereas those in the Ginkgo group received Ginkgo extract tablets. We evaluated the participants at baseline and after a 12- and 24-week treatment period using the Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), and Chinese Medicine Symptom Scale (CM-SS). The serum acetylcholine (Ach), acetylcholinesterase (AchE), homocysteine (Hcy), and high-sensitivity C-reactive protein (hs-CRP) serum levels of the patients were measured before and after 24-week treatment. Analysis of the results of both groups showed that both interventions significantly increased the MoCA and MMSE scores of the patients and decreased their ADAS-Cog and CM-SS scores (P < 0.05). The GLJC group showed greater improvement in MoCA, MMSE, and CM-SS scores than the Ginkgo group (P < 0.05). However, both groups showed a significant increase in serum Ach and a decrease in serum AchE, Hcy, and hs-CRP levels (P < 0.05). Furthermore, serum Ach increased and Hcy decreased more significantly in the GLJC group than in the Ginkgo group (P < 0.05). These findings indicate that GLJC can improve the cognitive function, cholinergic system, and inflammatory cytokine levels of patients with VaMCI. Furthermore, this treatment can improve symptoms of syndromes diagnosed according to traditional Chinese medicine practice in patients with VaMCI.
Collapse
|
15
|
Zhou D, Cen K, Liu W, Liu F, Liu R, Sun Y, Zhao Y, Chang J, Zhu L. Xuesaitong exerts long-term neuroprotection for stroke recovery by inhibiting the ROCKII pathway, in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113943. [PMID: 33617967 DOI: 10.1016/j.jep.2021.113943] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/17/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuesaitong (XST) is a traditional Chinese medicine injection with neuroprotective properties and has been extensively used to treat stroke for many years. The main component of XST is Panax notoginseng saponins (PNS), which is the main extract of the Chinese herbal medicine Panax notoginseng. AIM OF THE STUDY In this study, we investigated whether XST provided long-term neuroprotection by inhibiting neurite outgrowth inhibitor-A (Nogo-A) and the ROCKII pathway in experimental rats after middle cerebral artery occlusion (MCAO) and in SH-SY5Y cells exposed to oxygen-glucose deprivation/reperfusion (OGD/R). MATERIALS AND METHODS Rats with permanent MCAO were administered XST, Y27632, XST plus Y27632, and nimodipine for 14 and 28 days. Successful MCAO onset was confirmed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Neurological deficit score (NDS) was used to assess neurological impairment. Hematoxylin-eosin (HE) staining and immunohistochemical (IHC) analysis of synaptophysin (SYN) and postsynaptic density protein-95 (PSD-95) were performed to evaluate cerebral ischemic injury and the neuroprotective capability of XST. Nogo-A levels and the ROCKII pathway were detected by IHC analysis, western blotting, and quantitative real-time polymerase chain reaction (qRT-PCR) to explore the protective mechanism of XST. OGD/R model was established in SH-SY5Y cells. Cell counting kit 8 (CCK8) was applied to detect the optimum OGD time and XST concentration. The expression levels Nogo-A and ROCKII pathway were determined using western blotting. RESULTS Our results showed that XST reduced neurological dysfunction and pathological damage, promoted weight gain and synaptic regeneration, reduced Nogo-A mRNA and protein levels, and inhibited the ROCKII pathway in MCAO rats. CCK8 assay displayed that the optimal OGD time and optimal XST concentration were 7 h and 20 μg/mL respectively in SH-SY5Y cells. XST could evidently inhibit OGD/R-induced Nogo-A protein expression and ROCKII pathway activation in SH-SY5Y cells. CONCLUSIONS The present study suggested that XST exerted long-term neuroprotective effects that assisted in stroke recovery, possibly through inhibition of the ROCKII pathway.
Collapse
Affiliation(s)
- Dongrui Zhou
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Kai Cen
- Department of Stomatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Wei Liu
- Department of Rehabilitation, Beijing Children's Hospital, Capital Medical University, 100045, Beijing, China.
| | - Fengzhi Liu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Ruijia Liu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Yizhou Zhao
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Jingling Chang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Lingqun Zhu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China; Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| |
Collapse
|
16
|
Musillo C, Borgi M, Saul N, Möller S, Luyten W, Berry A, Cirulli F. Natural products improve healthspan in aged mice and rats: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 121:89-105. [PMID: 33309907 DOI: 10.1016/j.neubiorev.2020.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023]
Abstract
Over the last decades a decrease in mortality has paved the way for late onset pathologies such as cardiovascular, metabolic or neurodegenerative diseases. This evidence has led many researchers to shift their focus from researching ways to extend lifespan to finding ways to increase the number of years spent in good health; "healthspan" is indeed the emerging concept of such quest for ageing without chronic or disabling diseases and dysfunctions. Regular consumption of natural products might improve healthspan, although the mechanisms of action are still poorly understood. Since preclinical studies aimed to assess the efficacy and safety of these compounds are growing, we performed a systematic review and meta-analysis on the effects of natural products on healthspan in mouse and rat models of physiological ageing. Results indicate that natural compounds show robust effects improving stress resistance and cognitive abilities. These promising data call for further studies investigating the underlying mechanisms in more depth.
Collapse
Affiliation(s)
- Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy; PhD Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Marta Borgi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Nadine Saul
- Molecular Genetics Group, Faculty of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Steffen Möller
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057, Rostock, Germany
| | | | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
17
|
Proshkina E, Plyusnin S, Babak T, Lashmanova E, Maganova F, Koval L, Platonova E, Shaposhnikov M, Moskalev A. Terpenoids as Potential Geroprotectors. Antioxidants (Basel) 2020; 9:antiox9060529. [PMID: 32560451 PMCID: PMC7346221 DOI: 10.3390/antiox9060529] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Terpenes and terpenoids are the largest groups of plant secondary metabolites. However, unlike polyphenols, they are rarely associated with geroprotective properties. Here we evaluated the conformity of the biological effects of terpenoids with the criteria of geroprotectors, including primary criteria (lifespan-extending effects in model organisms, improvement of aging biomarkers, low toxicity, minimal adverse effects, improvement of the quality of life) and secondary criteria (evolutionarily conserved mechanisms of action, reproducibility of the effects on different models, prevention of age-associated diseases, increasing of stress-resistance). The number of substances that demonstrate the greatest compliance with both primary and secondary criteria of geroprotectors were found among different classes of terpenoids. Thus, terpenoids are an underestimated source of potential geroprotectors that can effectively influence the mechanisms of aging and age-related diseases.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Sergey Plyusnin
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Ekaterina Lashmanova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | | | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
- Correspondence: ; Tel.: +7-8212-312-894
| |
Collapse
|
18
|
Dong J, Liu X, Wang Y, Cai H, Le W. Nurr1 Cd11bcre conditional knockout mice display inflammatory injury to nigrostriatal dopaminergic neurons. Glia 2020; 68:2057-2069. [PMID: 32181533 DOI: 10.1002/glia.23826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Nuclear receptor-related 1 protein (NURR1) is essential for the development and maintenance of midbrain dopaminergic (DAergic) neurons. NURR1 also protects DAergic neurons against neuroinflammation. However, it remains to be determined to what extent does NURR1 exerts its protective function through acting autonomously in the microglia. Using Cre/lox gene targeting system, we deleted Nurr1 in the microglia of Nurr1Cd11bcre conditional knockout (cKO) mice. The Nurr1Cd11bcre cKO mice displayed age-dependent motor abnormalities and increased microglial activation, but with no obvious DAergic neurodegeneration. To boost the inflammatory injury, we systemically administered endotoxin lipopolysaccharide (LPS) to Nurr1Cd11bcre mice. As expected, LPS treatment exacerbated the motor phenotypes and inflammatory reactions in Nurr1Cd11bcre cKO mice. More importantly, LPS administration caused DAergic neuron loss and α-synuclein aggregation, two pathological hallmarks of Parkinson's disease (PD). Therefore, our findings provide in vivo evidence supporting a critical protective role of NURR1 in the microglia against inflammation-induced degeneration of DAergic neurons in PD.
Collapse
Affiliation(s)
- Jie Dong
- Liaoning Provincial Center for Clinical Research on Neurological Diseases and Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Xinyao Liu
- Liaoning Provincial Center for Clinical Research on Neurological Diseases and Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yuanyuan Wang
- Liaoning Provincial Center for Clinical Research on Neurological Diseases and Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases and Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute of Neurology, Sichuan Academy of Medical Science, Sichuan Provincial Hospital, Medical School of UESTC, China
| |
Collapse
|
19
|
Wang H, Liu N, Wei Y, Pei H, Liu M, Diao X, Zhang H, Li H. Efficacy and safety of Shenmayizhi decoction as an adjuvant treatment for vascular dementia: Study protocol for a randomized controlled trial. Medicine (Baltimore) 2019; 98:e18326. [PMID: 31852125 PMCID: PMC6922576 DOI: 10.1097/md.0000000000018326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Vascular dementia (VaD) is the second most common cause of dementia. The treatment of VaD still remains a challenge so far. Traditional Chinese Herbal medicine is a promising therapy due to their multiple components and targets. Shenmayizhi decoction (SMYZD), a Chinese Herbal prescription, has been reported its effective in alleviating cognitive dysfunction in clinical practice. However, strong clinical research of SMYZD in the treatment of VaD was lack. Therefore, we design this study to evaluate the adjuvant role of SMYZD in the treatment of VaD. METHODS This is a multicenter, randomized, blind, controlled trial. A total of 196 eligible patients will be assigned to receive Ginkgo biloba extracts (GBEs) plus SMYZD granule or GBEs plus SMYZD mimetic granule in a 1:1 ratio. The duration of the trial will be 12 weeks, and a follow-up will be performed at the 24th week. The primary outcomes are the National Institute of Health stroke scale (NIHSS) and the Alzheimer Disease Assessment Scale-cognitive subscale (ADAS-cog). The secondary outcomes include the Mini-Mental State Examination (MMSE), the traditional Chinese Medicine (TCM) syndrome scale, Activities of Daily Living (ADL), concentrations of hypersensitive C-reactive protein (Hs-CRP), neuron-specific enolase (NSE) and homocysteine (HCY) in serum. Researchers will record any adverse events throughout the trial. DISCUSSION This study will provide evidences to evaluate the efficacy and safety of SMYZD in combination with GBEs in treatment of VaD, as well as the adjuvant role of SMYZD in combination. TRIAL IS REGISTERED AT CHINESE CLINICAL TRIAL REGISTRY ChiCTR1800017359.
Collapse
Affiliation(s)
- Huichan Wang
- Graduate School, Beijing University of Chinese Medicine, Chaoyang District
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Nanyang Liu
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Yun Wei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Meixia Liu
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - XueMei Diao
- Graduate School, Beijing University of Chinese Medicine, Chaoyang District
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Huiqin Zhang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| |
Collapse
|
20
|
Lee CH, Park JH, Won MH. Protein expression changes of HCN1 and HCN2 in hippocampal subregions of gerbils during the normal aging process. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1308-1313. [PMID: 32128096 PMCID: PMC7038419 DOI: 10.22038/ijbms.2019.35760.8520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/14/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play essential roles in various hippocampal functions, including regulation of long-term potentiation, synaptic plasticity, and hippocampal-dependent cognitive process. The objective of this study was to investigate age-related changes in HCN1 and HCN2 protein expressions in gerbil hippocampus at various ages. MATERIALS AND METHODS In this study, the protein expressions of HCN1 and HCN2 were compared in the hippocampus at the ages of 1, 3, 12, and 24 months using Western blot analysis and immunohistochemistry. RESULTS Immunoreactivity of both HCN1 and HCN2 was shown primarily in cells of the pyramidal cell layer in the hippocampus proper and in cells of the granule cell layer in the dentate gyrus. HCN1 and HCN2 protein expression levels and immunoreactivity were significantly increased at three months (3 M) of age compared with those at 1 M of age. After that, both HCN1 and HCN2 expression levels in the hippocampus were gradually decreased with age. CONCLUSION Our results show that the normal aging process affects the expression levels of HCN1 and HCN2 in hippocampal cells in gerbils. There are marked reductions in HCN1 and HCN2 expressions in the aged hippocampus compared to the young hippocampus. Such reductions might be related to aging in the hippocampus.
Collapse
Affiliation(s)
- Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungnam 31116, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
21
|
Effects of Red Ginseng on Neural Injuries with Reference to the Molecular Mechanisms. J 2019. [DOI: 10.3390/j2020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Red ginseng, as an effective herbal medicine, has been traditionally and empirically used for the treatment of neuronal diseases. Many studies suggest that red ginseng and its ingredients protect the brain and spinal cord from neural injuries such as ischemia, trauma, and neurodegeneration. This review focuses on the molecular mechanisms underlying the neuroprotective effects of red ginseng and its ingredients. Ginsenoside Rb1 and other ginsenosides are regarded as the active ingredients of red ginseng; the anti-apoptotic, anti-inflammatory, and anti-oxidative actions of ginsenosides, together with a series of bioactive molecules relevant to the above actions, appear to account for the neuroprotective effects in vivo and/or in vitro. Moreover, in this review, the possibility is raised that more effective or stable neuroprotective derivatives based on the chemical structures of ginsenosides could be developed. Although further studies, including clinical trials, are necessary to confirm the pharmacological properties of red ginseng and its ingredients, red ginseng and its ingredients could be promising candidate drugs for the treatment of neural injuries.
Collapse
|
22
|
Ginsenoside Rg1 Prevents Chemotherapy-Induced Cognitive Impairment: Associations with Microglia-Mediated Cytokines, Neuroinflammation, and Neuroplasticity. Mol Neurobiol 2019; 56:5626-5642. [DOI: 10.1007/s12035-019-1474-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/10/2019] [Indexed: 12/26/2022]
|
23
|
Xu TZ, Shen XY, Sun LL, Chen YL, Zhang BQ, Huang DK, Li WZ. Ginsenoside Rg1 protects against H2O2‑induced neuronal damage due to inhibition of the NLRP1 inflammasome signalling pathway in hippocampal neurons in vitro. Int J Mol Med 2018; 43:717-726. [PMID: 30535505 PMCID: PMC6317692 DOI: 10.3892/ijmm.2018.4005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress and neuroinflammation are important in the pathogenesis of ageing and age-related neurodegenerative diseases, including Alzheimer’s disease. NADPH oxidase 2 (NOX2) is a major source of reactive oxygen species (ROS) in the brain. The nucleotide-binding oligomerisation domain (NOD)-like receptor protein 1 (NLRP1) inflammasome is responsible for the formation of pro-inflammatory molecules in neurons. Whether the NOX2-NLRP1 inflammasome signalling pathway is involved in neuronal ageing and age-related damage remains to be elucidated. Ginsenoside Rg1 (Rg1) is a steroidal saponin found in ginseng. In the present study, the primary hippocampal neurons were treated with H2O2 (200 µM) and Rg1 (1, 5 and 10 µM) for 24 h to investigate the protective effects and mechanisms of Rg1 on H2O2-induced hippocampal neuron damage, which mimics age-related damage. The results showed that H2O2 treatment significantly increased ROS production and upregulated the expression of NOX2 and the NLRP1 inflammasome, and led to neuronal senescence and damage to hippocampal neurons. Rg1 decreased ROS production, reducing the expression of NOX2 and the NLRP1 inflammasome in H2O2-treated hippocampal neurons. Furthermore, Rg1 and tempol treatment significantly decreased neuronal apoptosis and the expression of β-galactosidase, and alleviated the neuronal senescence and damage induced by H2O2. The present study indicates that Rg1 may reduce NOX2-mediated ROS generation, inhibit NLRP1 inflammasome activation, and inhibit neuronal senescence and damage.
Collapse
Affiliation(s)
- Tan-Zhen Xu
- Department of Pharmacology, Key Laboratory of Anti‑inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiao-Yan Shen
- Department of Pharmacology, Key Laboratory of Anti‑inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ling-Ling Sun
- Department of Pharmacology, Key Laboratory of Anti‑inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ya-Li Chen
- Department of Pharmacology, Key Laboratory of Anti‑inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bi-Qiong Zhang
- Department of Pharmacology, Key Laboratory of Anti‑inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Da-Ke Huang
- Synthetic Laboratory of Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei-Zu Li
- Department of Pharmacology, Key Laboratory of Anti‑inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
24
|
Age-dependent behavioral and biochemical characterization of single APP knock-in mouse (APP NL-G-F/NL-G-F) model of Alzheimer's disease. Neurobiol Aging 2018; 75:25-37. [PMID: 30508733 DOI: 10.1016/j.neurobiolaging.2018.10.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 12/23/2022]
Abstract
Saito et al developed a novel amyloid precursor protein (APP) knock-in mouse model (APPNL-G-F) for Alzheimer's disease (AD) to overcome the problem of overexpression of APP in available transgenic mouse models. However, this new mouse model for AD is not fully characterized age-dependently with respect to behavioral and biochemical changes. Therefore, in the present study, we performed an age-dependent behavioral and biochemical characterization of this newly developed mouse model. Here, we used 3-, 6-, 9-, and 12-month-old APPNL-G-F and C57BL/6J mice. We used a separate cohort of animals at each age point. Morris water maze, object recognition, and fear-conditioning tests were used for the assessment of learning and memory functions and open-field test to measure the general locomotor activity of mice. After each testing point, we perfused the mice and collected the brain for immunostaining. We performed the immunostaining for amyloid burden (4G8), glial fibrillary acidic protein, choline acetyltransferase, and tyrosine hydroxylase. The results of the present study indicate that APPNL-G-F mice showed age-dependent memory impairments with maximum impairment at the age of 12 months. These mice showed memory impairment in Morris water maze and fear conditioning tests when they were 6 months old, whereas, in object recognition test, memory deficit was found in 9-month-old mice. APPNL-G-F mice age dependently showed an increase in amyloid load in different brain regions. However, no amyloid pathology was found in 3-month-old APPNL-G-F mice. Choline acetyltransferase neurons in medial septum-diagonal band complex and tyrosine hydroxylase neurons in locus coeruleus were decreased significantly in APPNL-G-F mice. This mouse model also indicated an age-dependent increase in glial fibrillary acidic protein load. It can be concluded from the results that the APPNL-G-F mouse model may be used to explore the Aβ hypothesis, molecular, and cellular mechanisms involved in AD pathology and to screen the therapeutic potential compounds for the treatment of AD.
Collapse
|
25
|
Jakaria M, Haque ME, Kim J, Cho DY, Kim IS, Choi DK. Active ginseng components in cognitive impairment: Therapeutic potential and prospects for delivery and clinical study. Oncotarget 2018; 9:33601-33620. [PMID: 30323902 PMCID: PMC6173364 DOI: 10.18632/oncotarget.26035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Cognitive impairment is a state that affects thinking, communication, understanding, and memory, and is very common in various neurological disorders. Among many factors, age-related cognitive decline is an important area in mental health research. Research to find therapeutic medications or supplements to treat cognitive deficits and maintain cognitive health has been ongoing. Ginseng and its active components may have played a role in treating chronic disorders. Numerous preclinical studies have confirmed that ginseng and its active components such as ginsenosides, gintonin, and compound K are pharmacologically efficacious in different models of and are linked to cognitive impairment. Among their several roles, they act as an anti-neuroinflammatory and help fight against oxidative stress and modulate the cholinergic signal. These roles may be involved in enhancing cognition and attenuating impairment. There have been some clinical studies on the activity of ginseng in cognitive impairment, but many ginseng species and active compounds remain to be investigated. In addition, new formulations of active ginseng components such as nanoparticles and liposomes could be used for preclinical and clinical models of cognitive impairment. Here, we discuss the therapeutic potential of active ginseng components in cognitive impairment and their chemistry and pharmacokinetics and consider prospects for their delivery and clinical study with respect to cognitive impairment.
Collapse
Affiliation(s)
- Md. Jakaria
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Md. Ezazul Haque
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Joonsoo Kim
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - In-Su Kim
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
26
|
Li D, Ke Y, Zhan R, Liu C, Zhao M, Zeng A, Shi X, Ji L, Cheng S, Pan B, Zheng L, Hong H. Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice. Aging Cell 2018; 17:e12768. [PMID: 29749694 PMCID: PMC6052480 DOI: 10.1111/acel.12768] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2018] [Indexed: 12/21/2022] Open
Abstract
Gut microbiota can influence the aging process and may modulate aging‐related changes in cognitive function. Trimethylamine‐N‐oxide (TMAO), a metabolite of intestinal flora, has been shown to be closely associated with cardiovascular disease and other diseases. However, the relationship between TMAO and aging, especially brain aging, has not been fully elucidated. To explore the relationship between TMAO and brain aging, we analysed the plasma levels of TMAO in both humans and mice and administered exogenous TMAO to 24‐week‐old senescence‐accelerated prone mouse strain 8 (SAMP8) and age‐matched senescence‐accelerated mouse resistant 1 (SAMR1) mice for 16 weeks. We found that the plasma levels of TMAO increased in both the elderly and the aged mice. Compared with SAMR1‐control mice, SAMP8‐control mice exhibited a brain aging phenotype characterized by more senescent cells in the hippocampal CA3 region and cognitive dysfunction. Surprisingly, TMAO treatment increased the number of senescent cells, which were primarily neurons, and enhanced the mitochondrial impairments and superoxide production. Moreover, we observed that TMAO treatment increased synaptic damage and reduced the expression levels of synaptic plasticity‐related proteins by inhibiting the mTOR signalling pathway, which induces and aggravates aging‐related cognitive dysfunction in SAMR1 and SAMP8 mice, respectively. Our findings suggested that TMAO could induce brain aging and age‐related cognitive dysfunction in SAMR1 mice and aggravate the cerebral aging process of SAMP8 mice, which might provide new insight into the effects of intestinal microbiota on the brain aging process and help to delay senescence by regulating intestinal flora metabolites.
Collapse
Affiliation(s)
- Dang Li
- Department of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
| | - Yilang Ke
- Department of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
| | - Rui Zhan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine; School of Basic Medical Sciences; Peking University Health Science Center; Key Laboratory of Molecular Cardiovascular Science; Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health; Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| | - Changjie Liu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine; School of Basic Medical Sciences; Peking University Health Science Center; Key Laboratory of Molecular Cardiovascular Science; Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health; Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine; School of Basic Medical Sciences; Peking University Health Science Center; Key Laboratory of Molecular Cardiovascular Science; Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health; Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| | - Aiping Zeng
- Department of Cardiology; Fujian Medical University Union Hospital; Fuzhou China
| | - Xiaoyun Shi
- Department of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
| | - Liang Ji
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine; School of Basic Medical Sciences; Peking University Health Science Center; Key Laboratory of Molecular Cardiovascular Science; Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health; Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| | - Si Cheng
- China National Clinical Research Center for Neurological Diseases; Tiantan Hospital; The Capital Medical University; Beijing China
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine; School of Basic Medical Sciences; Peking University Health Science Center; Key Laboratory of Molecular Cardiovascular Science; Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health; Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine; School of Basic Medical Sciences; Peking University Health Science Center; Key Laboratory of Molecular Cardiovascular Science; Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health; Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
- Fujian Medical University Union Hospital; Fuzhou China
| | - Huashan Hong
- Department of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
| |
Collapse
|
27
|
Zhang X, Fan Z, Jin T. Crocin protects against cerebral- ischemia-induced damage in aged rats through maintaining the integrity of blood-brain barrier. Restor Neurol Neurosci 2018; 35:65-75. [PMID: 28059805 DOI: 10.3233/rnn-160696] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND A clear relationship exists between oxidative stress and disruption of blood-brain barrier (BBB) during cerebral ischemia, in which aging may exacerbate the extent of leakage. Here, we aim to examine the potential role of a water-soluble carotenoid-based antioxidant crocin on BBB damage in aged rats following cerebral ischemia. METHODS A two months oral administration of crocin was applied to 24-month-old rats followed by an induction of brain ischemia by middle cerebral artery occlusion (MCAO). Brain infarction volume, water content, and neurological behavior assessments were measured in these animals at 24 hours after MCAO as compared to vehicle-treated controls. Evans blue dye extravasation assay was used to evaluate the BBB integrity. The levels of tight junction proteins, oxidative stress, and MMP (matrix metalloproteinases) activities were also determined in the ipsilateral brains of the MCAO-treated rats. RESULTS MCAO-induced brain injury was alleviated by the pretreatment of crocin. Crocin-treated animals also showed the preserved BBB function in the presence of ischemic injury. The loss of tight junction proteins and enhanced NADPH oxidase in the ipsilateral brains of the MCAO-treated rats were both reduced by crocin. Finally, the induction of MMP-2 and MMP-9 by cerebral ischemia was partially blocked by crocin in aged rats. CONCLUSION These findings indicate that crocin or related antioxidants may protect against cerebral ischemia of elderly patients by maintaining the integrity of BBB in aged rats, an effect likely through repressing the activation of matrix metalloproteinase pathway.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China
| | - Zhixin Fan
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China
| | - Ting Jin
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China
| |
Collapse
|
28
|
Yang Y, Ren C, Zhang Y, Wu X. Ginseng: An Nonnegligible Natural Remedy for Healthy Aging. Aging Dis 2017; 8:708-720. [PMID: 29344412 PMCID: PMC5758347 DOI: 10.14336/ad.2017.0707] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an irreversible physiological process that affects all humans. Numerous theories have been proposed to regarding the process from a Western medicine perspective; however, ancient Chinese medicine practices and theories have increasingly gained attention, particularly ginseng, a grass that has been studied for the anti-aging properties of its active constituents. This review seeks to analyze current data on ginseng and its anti-aging properties. The plant species, characteristics, and active ingredients will be introduced. The main part of this review is focused on ginseng and its active components with regards to their effects on prolonging lifespan, the regulation of multiple organ systems including cardiovascular, nervous, immune, and skin, as well as the anti-oxidant and anti-inflammatory properties. The molecular mechanisms of these properties elucidated via various studies are summarized as further evidence of the anti-aging effects of ginseng.
Collapse
Affiliation(s)
- Yong Yang
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing, 100053, China
| | - Yuan Zhang
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - XiaoDan Wu
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
29
|
Ginsenoside Rg1 Ameliorates Behavioral Abnormalities and Modulates the Hippocampal Proteomic Change in Triple Transgenic Mice of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6473506. [PMID: 29204248 PMCID: PMC5674513 DOI: 10.1155/2017/6473506] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/07/2017] [Accepted: 08/24/2017] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, so far, there are no effective measures to prevent and cure this deadly condition. Ginsenoside Rg1 (Rg1) was shown to improve behavioral abnormalities in AD; however, the potential mechanisms remain unclear. In this study, we pretreated 7-month-old 3xTg-AD mice for 6 weeks with Rg1 and evaluated the effects of Rg1 on the behaviors and the protein expression of hippocampal tissues. The behavioral tests showed that Rg1 could improve the memory impairment and ameliorate the depression-like behaviors of 3xTg-AD mice. Proteomic results revealed a total of 28 differentially expressed hippocampal proteins between Rg1-treated and nontreated 3xTg-AD mice. Among these proteins, complexin-2 (CPLX2), synapsin-2 (SYN2), and synaptosomal-associated protein 25 (SNP25) were significantly downregulated in the hippocampus of 3xTg-AD mice compared with the WT mice, and the treatment of Rg1 modulated the expression of CPLX2 and SNP25 in the hippocampus of 3xTg-AD mice. The expression of CPLX2, SYN2, and SNP25 was further validated by Western blot analysis. Taken together, we concluded that Rg1 could be a potential candidate drug to improve the behavioral deficits in AD via modulating the expression of the proteins (i.e., CPLX2, SYN2, and SNP25).
Collapse
|
30
|
Xiao H, Deng M, Yang B, Tang J, Hu Z. Role of glycogen synthase kinase 3 in ischemia-induced blood-brain barrier disruption in aged female rats. J Neurochem 2017; 142:194-203. [PMID: 28440874 DOI: 10.1111/jnc.14051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 12/19/2022]
Abstract
Estrogen receptors have protective effects against ischemic brain injury. However, the molecular mechanisms underlying this phenomenon have yet to be well studied. Given that inhibition of glycogen synthase kinase (GSK3) can reduce cerebral ischemia/reperfusion injury, we hypothesized that estrogen receptors-mediated protective effects against ischemia-induced blood-brain barrier (BBB) disruption involve inhibition of GSK3. Thus, we evaluated GSK3 expression in the brain of ovariectomized female rats, and examined the effects of intracerebroventricular pre-treatments of SB216763, GSK3 inhibitor, on BBB permeability following middle cerebral artery occlusion (MCAO). We also examined the role of specific estrogen receptor subtype in regulation of GSK3 expression and BBB permeability after MCAO. We found that ovariectomized female rats exhibited increased mRNA levels of estrogen receptor α (ERα) and estrogen receptor β (ERβ), and increased protein levels of GSK3β but not GSK3α in brain cortical areas. Furthermore, intracerebroventricular pre-treatments of SB216763 dose-dependently attenuated brain infarction volume, brain water contents, neurological deficits, and BBB disruption, and increased tight junction protein ZO-1 and occludin expression at 24 h following MCAO. Finally, activation of ERβ but not ERα dose-dependently decreased GSK3β expression at 24 h following MCAO. This was associated with increased tight junction protein expression and improved neurological scores. Thus, our study suggested that activation of ERβ may protect against brain ischemia-induced BBB disruption by inhibiting GSK3β-mediated signaling.
Collapse
Affiliation(s)
- Han Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingyang Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Binbin Yang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianguang Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Wei Z, Chen XC, Song Y, Pan XD, Dai XM, Zhang J, Cui XL, Wu XL, Zhu YG. Amyloid β Protein Aggravates Neuronal Senescence and Cognitive Deficits in 5XFAD Mouse Model of Alzheimer's Disease. Chin Med J (Engl) 2017; 129:1835-44. [PMID: 27453234 PMCID: PMC4976573 DOI: 10.4103/0366-6999.186646] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Amyloid β (Aβ) has been established as a key factor for the pathological changes in the brains of patients with Alzheimer's disease (AD), and cellular senescence is closely associated with aging and cognitive impairment. However, it remains blurred whether, in the AD brains, Aβ accelerates the neuronal senescence and whether this senescence, in turn, impairs the cognitive function. This study aimed to explore the expression of senescence-associated genes in the hippocampal tissue from young to aged 5XFAD mice and their age-matched wild type (WT) mice to determine whether senescent neurons are present in the transgenic AD mouse model. METHODS The 5XFAD mice and age-matched wild type mice, both raised from 1 to 18 months, were enrolled in the study. The senescence-associated genes in the hippocampus were analyzed and differentially expressed genes (DEGs) were screened by quantitative real-time polymerase chain reaction. Cognitive performance of the mice was evaluated by Y-maze and Morris water maze tests. Oligomeric Aβ (oAβ) (1-42) was applied to culture primary neurons to simulate the in vivo manifestation. Aging-related proteins were detected by Western blotting analysis and immunofluorescence. RESULTS In 5XFAD mice, of all the DEGs, the senescence-associated marker p16 was most significantly increased, even at the early age. It was mainly localized in neurons, with a marginal expression in astrocytes (labeled as glutamine synthetase), nil expression in activated microglia (labeled as Iba1), and negatively correlated with the spatial cognitive impairments of 5XFAD mice. oAβ (1-42) induced the production of senescence-related protein p16, but not p53 in vitro, which was in line with the in vivo manifestation. CONCLUSIONS oAβ-accelerated neuronal senescence may be associated with the cognitive impairment in 5XFAD mice. Senescence-associated marker p16 can serve as an indicator to estimate the cognitive prognosis for AD population.
Collapse
Affiliation(s)
- Zhen Wei
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001; Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiao-Chun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001; Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Yue Song
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001; Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiao-Dong Pan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001; Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiao-Man Dai
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jing Zhang
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiao-Li Cui
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xi-Lin Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001; Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Yuan-Gui Zhu
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
32
|
Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 2017; 42:123-132. [PMID: 29719458 PMCID: PMC5926405 DOI: 10.1016/j.jgr.2017.01.008] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/16/2017] [Indexed: 11/02/2022] Open
Abstract
Ginseng has gained its popularity as an adaptogen since ancient days because of its triterpenoid saponins, known as ginsenosides. These triterpenoid saponins are unique and classified as protopanaxatriol and protopanaxadiol saponins based on their glycosylation patterns. They play many protective roles in humans and are under intense research as various groups continue to study their efficacy at the molecular level in various disorders. Ginsenosides Rb1 and Rg1 are the most abundant ginsenosides present in ginseng roots, and they confer the pharmacological properties of the plant, whereas ginsenoside Rg3 is abundantly present in Korean Red Ginseng preparation, which is highly known for its anticancer effects. These ginsenosides have a unique mode of action in modulating various signaling cascades and networks in different tissues. Their effect depends on the bioavailability and the physiological status of the cell. Mostly they amplify the response by stimulating phosphotidylinositol-4,5-bisphosphate 3-kinase/protein kinase B pathway, caspase-3/caspase-9-mediated apoptotic pathway, adenosine monophosphate-activated protein kinase, and nuclear factor kappa-light-chain-enhancer of activated B cells signaling. Furthermore, they trigger receptors such as estrogen receptor, glucocorticoid receptor, and N-methyl-d-aspartate receptor. This review critically evaluates the signaling pathways attenuated by ginsenosides Rb1, Rg1, and Rg3 in various tissues with emphasis on cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Padmanaban Mohanan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea
| | - Sathiyamoorthy Subramaniyam
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Suwon, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea.,Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Suwon, Republic of Korea
| |
Collapse
|
33
|
Xue W, Liu Y, Qi WY, Gao Y, Li M, Shi AX, Li KX. Pharmacokinetics of ginsenoside Rg1 in rat medial prefrontal cortex, hippocampus, and lateral ventricle after subcutaneous administration. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:587-595. [PMID: 27324597 DOI: 10.1080/10286020.2016.1177026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/06/2016] [Indexed: 06/06/2023]
Abstract
The present study aimed to investigate pharmacokinetics of Rg1 in rat medial prefrontal cortex (mPFC), hippocampus (HIP), and lateral ventricle (LV) after subcutaneous injection. For the first time, intracerebral pharmacokinetics of Rg1 was studied in freely moving rats by microdialysis technique. Rg1 concentrations in dialysates were detected by a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method and were revised using in vivo probe-recovery in HIP and LV. The pharmacokinetic parameters were then determined using non-compartmental models. Since the in vivo recoveries remained stable in HIP and LV during 9 h dialysis, average recoveries were used to revise dialysate concentrations. After dosing, Rg1 was soon detected in brain extracellular fluid (bECF) and cerebrospinal fluid (CSF). The elimination of Rg1 was significantly slower in mPFC than in HIP and LV, and significantly greater AUC was obtained in mPFC than in HIP. Rg1 kinetics in bECF and CSF indicate that Rg1 can go across the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB), and then immediately distribute to learning and memory-related regions in brain, which may lead to rapid pharmacological onset. There may be active transport and target-mediated disposition of Rg1 in the CNS, which need to be further clarified.
Collapse
Affiliation(s)
- Wei Xue
- a Beijing Key Laboratory of Drug Clinical Risk and Personalized Medication Evaluation, Department of Clinical Pharmacology , Beijing Hospital , Beijing 100730 , China
| | - Yang Liu
- b Department of Pharmacy , Peking University People's Hospital , Beijing 100044 , China
| | - Wen-Yuan Qi
- a Beijing Key Laboratory of Drug Clinical Risk and Personalized Medication Evaluation, Department of Clinical Pharmacology , Beijing Hospital , Beijing 100730 , China
| | - Yan Gao
- a Beijing Key Laboratory of Drug Clinical Risk and Personalized Medication Evaluation, Department of Clinical Pharmacology , Beijing Hospital , Beijing 100730 , China
| | - Min Li
- a Beijing Key Laboratory of Drug Clinical Risk and Personalized Medication Evaluation, Department of Clinical Pharmacology , Beijing Hospital , Beijing 100730 , China
| | - Ai-Xin Shi
- a Beijing Key Laboratory of Drug Clinical Risk and Personalized Medication Evaluation, Department of Clinical Pharmacology , Beijing Hospital , Beijing 100730 , China
| | - Ke-Xin Li
- a Beijing Key Laboratory of Drug Clinical Risk and Personalized Medication Evaluation, Department of Clinical Pharmacology , Beijing Hospital , Beijing 100730 , China
| |
Collapse
|
34
|
Cognitive-Enhancing Herbal Formulae in Korean Medicine: Identification of Candidates by Text Mining and Literature Review. J Altern Complement Med 2016; 22:413-8. [DOI: 10.1089/acm.2015.0257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
35
|
Qi L, Ke L, Liu X, Liao L, Ke S, Liu X, Wang Y, Lin X, Zhou Y, Wu L, Chen Z, Liu L. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced alzheimer disease mouse model. Eur J Pharmacol 2016; 783:23-32. [PMID: 27131827 DOI: 10.1016/j.ejphar.2016.04.052] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/18/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes mellitus is a risk factor for Alzheimer's disease (AD). The glucagon-like peptide-1 analog liraglutide, a novel long-lasting incretin hormone, has been used to treat type 2 diabetes mellitus. In addition, liraglutide has been shown to be neurotrophic and neuroprotective. Here, we investigated the effects of liraglutide on amyloid β protein (Aβ)-induced AD in mice and explored its mechanism of action. The results showed that subcutaneous administration of liraglutide (25nmol/day), once daily for 8 weeks, prevented memory impairments in the Y Maze and Morris Water Maze following Aβ1-42 intracerebroventricular injection, and alleviated the ultra-structural changes of pyramidal neurons and chemical synapses in the hippocampal CA1 region. Furthermore, liraglutide reduced Aβ1-42-induced tau phosphorylation via the protein kinase B and glycogen synthase kinase-3β pathways. Thus liraglutide may alleviate cognitive impairment in AD by at least decreasing the phosphorylation of tau.
Collapse
Affiliation(s)
- Liqin Qi
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Linfang Ke
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xiaohong Liu
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Lianming Liao
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Sujie Ke
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xiaoying Liu
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Yanping Wang
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xiaowei Lin
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Yu Zhou
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Lijuan Wu
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zhou Chen
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| | - Libin Liu
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
36
|
Li F, Wu X, Li J, Niu Q. Ginsenoside Rg1 ameliorates hippocampal long-term potentiation and memory in an Alzheimer's disease model. Mol Med Rep 2016; 13:4904-10. [PMID: 27082952 DOI: 10.3892/mmr.2016.5103] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 03/02/2016] [Indexed: 11/06/2022] Open
Abstract
The complex etiopathogenesis of Alzheimer's disease (AD) has limited progression in the identification of effective therapeutic agents. Amyloid precursor protein (APP) and presenilin‑1 (PS1) are always overexpressed in AD, and are considered to be the initiators of the formation of β‑amyloid plaques and the symptoms of AD. In the present study, a transgenic AD model, constructed via the overexpression of APP and PS1, was used to verify the protective effects of ginsenoside Rg1 on memory performance and synaptic plasticity. AD mice (6‑month‑old) were treated via intraperitoneal injection of 0.1‑10 mg/kg ginsenoside Rg1. Long‑term memory, synaptic plasticity, and the levels of AD‑associated and synaptic plasticity‑associated proteins were measured following treatment. Memory was measured using a fear conditioning task and protein expression levels were investigated using western blotting. All the data was analyzed by one-way analysis of variance or t‑test. Following 30 days of consecutive treatment, memory in the AD mouse model was ameliorated in the 10 mg/kg ginsenoside Rg1 treatment group. As demonstrated by biochemical experiments, ginsenoside Rg1 treatment reduced the accumulations of β‑amyloid 1‑42 and phosphorylated (p)‑Tau in the AD model. Additionally, brain-derived neurotrophic factor (BDNF) and p‑TrkB synaptic plasticity‑associated proteins were upregulated following ginsenoside Rg1 application. Correspondingly, long‑term potentiation (LTP) was restored following ginsenoside Rg1 application in the AD mice model. Taken together, ginsenoside Rg1 repaired hippocampal LTP and memory, likely through facilitating the clearance of AD‑associated proteins and through activation of the BDNF‑TrkB pathway. Therefore, ginsenoside Rg1 may be a candidate drug for the treatment of AD.
Collapse
Affiliation(s)
- Fengling Li
- Department of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xiqing Wu
- Medical Imaging Center, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P.R. China
| | - Jing Li
- Department of Orthopaedics Rehabilitation, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P.R. China
| | - Qingliang Niu
- Medical Imaging Center, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
37
|
Choi HS, Ahn JH, Park JH, Won MH, Lee CH. Age-dependent changes in the protein expression levels of Redd1 and mTOR in the gerbil hippocampus during normal aging. Mol Med Rep 2016; 13:2409-14. [PMID: 26846432 PMCID: PMC4768963 DOI: 10.3892/mmr.2016.4835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 12/30/2015] [Indexed: 11/30/2022] Open
Abstract
Redd1, also known as RTP801/Dig2/DDIT4, is a stress-induced protein and a negative regulator of mammalian target of rapamycin (mTOR). Redd1 is also closely associated with oxidative stress and DNA damage. In the present study, age-related changes in the protein expression levels of mTOR and Redd1 were investigated using immunohistochemistry and western blot in the gerbil hippocampus at postnatal month (PM) 3, 6, 12 and 24. No significant differences were identified in the levels of mTOR among the experimental groups, whereas, the levels of phosphorylated mTOR decreased with age. The protein expression levels of Redd1 were observed to gradually increase with age; in the PM 24 group, the level was significantly increased (~189.2%), compared with the PM 3 group. In addition, Redd1 immunoreactivity was significantly increased in the hippocampal principal neurons of the PM 24 group, including the pyramidal cells in the hippocampus proper and granule cells in the dentate gyrus, compared with the other experimental groups. These results demonstrated that the protein expression of Redd1 in the hippocampus was markedly increased during normal aging, indicating that the age-related increase in the expression of Redd1 may be closely associated with age-related hippocampal change.
Collapse
Affiliation(s)
- Hee-Soo Choi
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, South Chungcheong 31116, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, South Chungcheong 31116, Republic of Korea
| |
Collapse
|
38
|
Dong X, Zheng L, Lu S, Yang Y. Neuroprotective effects of pretreatment of ginsenoside Rb1 on severe cerebral ischemia-induced injuries in aged mice: Involvement of anti-oxidant signaling. Geriatr Gerontol Int 2015; 17:338-345. [PMID: 26712031 DOI: 10.1111/ggi.12699] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Xiao Dong
- Liaocheng Third People's Hospital; Liaocheng Shandong China
| | - Lei Zheng
- Liaocheng Third People's Hospital; Liaocheng Shandong China
| | - Shujing Lu
- Liaocheng Third People's Hospital; Liaocheng Shandong China
| | - Yanbei Yang
- Liaocheng Third People's Hospital; Liaocheng Shandong China
| |
Collapse
|
39
|
Ong WY, Farooqui T, Koh HL, Farooqui AA, Ling EA. Protective effects of ginseng on neurological disorders. Front Aging Neurosci 2015; 7:129. [PMID: 26236231 PMCID: PMC4503934 DOI: 10.3389/fnagi.2015.00129] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022] Open
Abstract
Ginseng (Order: Apiales, Family: Araliaceae, Genus: Panax) has been used as a traditional herbal medicine for over 2000 years, and is recorded to have antianxiety, antidepressant and cognition enhancing properties. The protective effects of ginseng on neurological disorders are discussed in this review. Ginseng species and ginsenosides, and their intestinal metabolism and bioavailability are briefly introduced. This is followed by molecular mechanisms of effects of ginseng on the brain, including glutamatergic transmission, monoamine transmission, estrogen signaling, nitric oxide (NO) production, the Keap1/Nrf2 adaptive cellular stress pathway, neuronal survival, apoptosis, neural stem cells and neuroregeneration, microglia, astrocytes, oligodendrocytes and cerebral microvessels. The molecular mechanisms of the neuroprotective effects of ginseng in Alzheimer’s disease (AD) including β-amyloid (Aβ) formation, tau hyperphosphorylation and oxidative stress, major depression, stroke, Parkinson’s disease and multiple sclerosis are presented. It is hoped that this discussion will stimulate more studies on the use of ginseng in neurological disorders.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, National University of Singapore Singapore, Singapore ; Neurobiology and Ageing Research Programme, National University of Singapore Singapore, Singapore
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University Columbus, OH, USA
| | - Hwee-Ling Koh
- Department of Pharmacy, National University of Singapore Singapore, Singapore
| | - Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University Columbus, OH, USA
| | - Eng-Ang Ling
- Department of Anatomy, National University of Singapore Singapore, Singapore
| |
Collapse
|
40
|
Zhu G, Wang Y, Li J, Wang J. Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice. Neuroscience 2015; 292:81-9. [DOI: 10.1016/j.neuroscience.2015.02.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/04/2015] [Accepted: 02/17/2015] [Indexed: 11/30/2022]
|
41
|
Yan WW, Chen GH, Wang F, Tong JJ, Tao F. Long-term acarbose administration alleviating the impairment of spatial learning and memory in the SAMP8 mice was associated with alleviated reduction of insulin system and acetylated H4K8. Brain Res 2015; 1603:22-31. [PMID: 25645154 DOI: 10.1016/j.brainres.2015.01.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 12/14/2022]
Abstract
Age-associated memory impairment (AAMI) not only reduces the quality of life for the elderly but also increases the costs of healthcare for society. Methods that can regulate glucose metabolism, insulin/insulin-like growth factor 1 (IGF-1) system and acetylated histone H4 lysine 8 (H4K8ac), one of the most well-researched facets of histone acetylation modification associating with cognition, tend to ameliorate the AAMI. Here, we used SAMP8 mice, the excellent animal model of aging and AAMI, to study the effect of long-term treatment with acarbose, an inhibitor of a-glucosidase, on AAMI and explore whether blood glucose, insulin/IGF-1 system and H4K8ac are associated with potential effects. The treatment group received acarbose (20mg/kg/d, dissolved in drinking water) at the age of 3-month until 9-month old before the behavioral test, and the controls only received water. Compared to the young controls (3-month-old, n=11), the old group (9-month-old, n=8) had declined abilities of spatial learning and memory and levels of serum insulin, hippocampal insulin receptors (InsRs) and H4K8ac. Interestingly, the acarbose group (9-month-old, n=9) showed better abilities of spatial learning and memory and higher levels of insulin, InsRs and H4K8ac relative to the old controls. Good performance of spatial learning and memory was positively correlated with the elevated insulin, InsRs and H4K8ac. All these results suggested that long-term administration of acarbose could alleviate the age-related impairment of spatial learning and memory in the SAMP8 mice, and the alleviated reduction of an insulin system and H4K8ac might be associated with the alleviation.
Collapse
Affiliation(s)
- Wen-Wen Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Gui-Hai Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China; Department of Neurology, The First People׳s Hospital of Chenzhou, Southern Medical University, Chenzhou 423000, Hunan Province, PR China.
| | - Fang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Jing-Jing Tong
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Fei Tao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| |
Collapse
|
42
|
Rastogi V, Santiago-Moreno J, Doré S. Ginseng: a promising neuroprotective strategy in stroke. Front Cell Neurosci 2015; 8:457. [PMID: 25653588 PMCID: PMC4299449 DOI: 10.3389/fncel.2014.00457] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/16/2014] [Indexed: 12/30/2022] Open
Abstract
Ginseng is one of the most widely used herbal medicines in the world. It has been used in the treatment of various ailments and to boost immunity for centuries; especially in Asian countries. The most common ginseng variant in traditional herbal medicine is ginseng, which is made from the peeled and dried root of Panax Ginseng. Ginseng has been suggested as an effective treatment for a vast array of neurological disorders, including stroke and other acute and chronic neurodegenerative disorders. Ginseng’s neuroprotective effects are focused on the maintenance of homeostasis. This review involves a comprehensive literature search that highlights aspects of ginseng’s putative neuroprotective effectiveness, focusing on stroke. Attenuation of inflammation through inhibition of various proinflammatory mediators, along with suppression of oxidative stress by various mechanisms, including activation of the cytoprotective transcriptional factor Nrf2, which results in decrease in reactive oxygen species, could account for its neuroprotective efficacy. It can also prevent neuronal death as a result of stroke, thus decreasing anatomical and functional stroke damage. Although there are diverse studies that have investigated the mechanisms involved in the efficacy of ginseng in treating disorders, there is still much that needs to be clarified. Both in vitro and in vivo studies including randomized controlled clinical trials are necessary to develop in-depth knowledge of ginseng and its practical applications.
Collapse
Affiliation(s)
- Vaibhav Rastogi
- Departments of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA ; Departments of Neurology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA
| | - Juan Santiago-Moreno
- Departments of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA
| | - Sylvain Doré
- Departments of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA ; Departments of Neurology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA ; Departments of Psychiatry, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA ; Departments of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA
| |
Collapse
|
43
|
Kumar D, Thakur MK. Age-related expression of Neurexin1 and Neuroligin3 is correlated with presynaptic density in the cerebral cortex and hippocampus of male mice. AGE (DORDRECHT, NETHERLANDS) 2015; 37:17. [PMID: 25693924 PMCID: PMC4332888 DOI: 10.1007/s11357-015-9752-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 01/26/2015] [Indexed: 05/19/2023]
Abstract
Neurexin1 (Nrxn1) and Neuroligin3 (Nlgn3) are cell adhesion proteins, which play an important role in synaptic plasticity that declines with advancing age. However, the expression of these proteins during aging has not been analyzed. In the present study, we have examined the age-related changes in the expression of these proteins in cerebral cortex and hippocampus of 10-, 30-, 50-, and 80-week-old male mice. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis indicated that messenger RNA (mRNA) level of Nrxn1 and Nlgn3 significantly increased from 10 to 30 weeks and then decreased at 50 weeks in both the regions. However, in 80-week-old mice, Nrxn1 and Nlgn3 were further downregulated in cerebral cortex while Nrxn1 was downregulated and Nlgn3 was upregulated in hippocampus. These findings were corroborated by immunoblotting and immunofluorescence results. When the expression of Nrxn1 and Nlgn3 was correlated with presynaptic density marker synaptophysin, it was found that synaptophysin protein expression in cerebral cortex was high at 10 weeks and decreased gradually up to 80 weeks, whereas in hippocampus, it decreased until 50 weeks and then increased remarkably at 80 weeks. Furthermore, Pearson's correlation analysis showed that synaptophysin had a strong relation with Nrxn1 and Nlgn3 in cerebral cortex and with Nlgn3 in hippocampus. Thus, these findings showed that Nrxn1 and Nlgn3 are differentially expressed in cerebral cortex and hippocampus which might be responsible for alterations in synaptic plasticity during aging.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| | - M. K. Thakur
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
44
|
González-Burgos E, Fernandez-Moriano C, Gómez-Serranillos MP. Potential Neuroprotective Activity of Ginseng in Parkinson’s Disease: A Review. J Neuroimmune Pharmacol 2014; 10:14-29. [DOI: 10.1007/s11481-014-9569-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/14/2014] [Indexed: 01/19/2023]
|
45
|
Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice. Exp Gerontol 2014; 58:256-68. [DOI: 10.1016/j.exger.2014.08.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/27/2014] [Accepted: 08/26/2014] [Indexed: 01/09/2023]
|
46
|
Smith I, Williamson EM, Putnam S, Farrimond J, Whalley BJ. Effects and mechanisms of ginseng and ginsenosides on cognition. Nutr Rev 2014; 72:319-33. [DOI: 10.1111/nure.12099] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Imogen Smith
- School of Chemistry; Food and Nutritional Sciences and Pharmacy; University of Reading; Reading Berkshire UK
| | - Elizabeth M Williamson
- School of Chemistry; Food and Nutritional Sciences and Pharmacy; University of Reading; Reading Berkshire UK
| | | | | | - Benjamin J Whalley
- School of Chemistry; Food and Nutritional Sciences and Pharmacy; University of Reading; Reading Berkshire UK
| |
Collapse
|