1
|
Seko A. Biosynthesis of Sulfated Glycans and Their Change in Colon Cancer. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1919.2sj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Akira Seko
- Japan Agency for Medicaal Research and Development (AMED)
| |
Collapse
|
2
|
Seko A. Biosynthesis of Sulfated Glycans and Their Change in Colon Cancer. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1919.2se] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Akira Seko
- Japan Agency for Medicaal Research and Development (AMED)
| |
Collapse
|
3
|
Yu SY, Hsiao CT, Izawa M, Yusa A, Ishida H, Nakamura S, Yagi H, Kannagi R, Khoo KH. Distinct substrate specificities of human GlcNAc-6-sulfotransferases revealed by mass spectrometry-based sulfoglycomic analysis. J Biol Chem 2018; 293:15163-15177. [PMID: 30093410 PMCID: PMC6166739 DOI: 10.1074/jbc.ra118.001937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Sulfated glycans are known to be involved in several glycan-mediated cell adhesion and recognition pathways. Our mRNA transcript analyses on the genes involved in synthesizing GlcNAc-6-O-sulfated glycans in human colon cancer tissues indicated that GlcNAc6ST-2 (CHST4) is preferentially expressed in cancer cells compared with nonmalignant epithelial cells among the three known major GlcNAc-6-O-sulfotransferases. On the contrary, GlcNAc6ST-3 (CHST5) was only expressed in nonmalignant epithelial cells, whereas GlcNAc6ST-1 (CHST2) was expressed equally in both cancerous and nonmalignant epithelial cells. These results suggest that 6-O-sulfated glycans that are synthesized only by GlcNAc6ST-2 may be highly colon cancer-specific, as supported by immunohistochemical staining of cancer cells using the MECA-79 antibody known to be relatively specific to the enzymatic reaction products of GlcNAc6ST-2. By more precise MS-based sulfoglycomic analyses, we sought to further infer the substrate specificities of GlcNAc6STs via a definitive mapping of various sulfo-glycotopes and O-glycan structures expressed in response to overexpression of transfected GlcNAc6STs in the SW480 colon cancer cell line. By detailed MS/MS sequencing, GlcNAc6ST-3 was shown to preferentially add sulfate onto core 2-based O-glycan structures, but it does not act on extended core 1 structures, whereas GlcNAc6ST-1 prefers core 2-based O-glycans to extended core 1 structures. In contrast, GlcNAc6ST-2 could efficiently add sulfate onto both extended core 1- and core 2-based O-glycans, leading to the production of unique sulfated extended core 1 structures such as R-GlcNAc(6-SO3-)β1-3Galβ1-4GlcNAc(6-SO3-)β1-3Galβ1-3GalNAcα, which are good candidates to be targeted as cancer-specific glycans.
Collapse
Affiliation(s)
- Shin-Yi Yu
- From the Institute of Biological Chemistry and
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | - Akiko Yusa
- the Department of Molecular Pathology and
| | - Hiroji Ishida
- Laboratory for Clinical Pathology, Aichi Cancer Center, Nagoya 464-8681, Japan, and
| | - Shigeo Nakamura
- Laboratory for Clinical Pathology, Aichi Cancer Center, Nagoya 464-8681, Japan, and
| | - Hirokazu Yagi
- the Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan,
- the Department of Molecular Pathology and
- Laboratory for Clinical Pathology, Aichi Cancer Center, Nagoya 464-8681, Japan, and
- the Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | | |
Collapse
|
4
|
Protein glycosylation in gastric and colorectal cancers: Toward cancer detection and targeted therapeutics. Cancer Lett 2017; 387:32-45. [DOI: 10.1016/j.canlet.2016.01.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 12/25/2022]
|
5
|
Moriwaki K, Miyoshi E. Fucosylation and gastrointestinal cancer. World J Hepatol 2010; 2:151-161. [PMID: 21160988 PMCID: PMC2999278 DOI: 10.4254/wjh.v2.i4.151] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 04/08/2010] [Accepted: 04/15/2010] [Indexed: 02/06/2023] Open
Abstract
Fucose (6-deoxy-L-galactose) is a monosaccharide that is found on glycoproteins and glycolipids in verte-brates, invertebrates, plants, and bacteria. Fucosylation, which comprises the transfer of a fucose residue to oligosaccharides and proteins, is regulated by many kinds of molecules, including fucosyltransferases, GDP-fucose synthetic enzymes, and GDP-fucose transporter(s). Dramatic changes in the expression of fucosylated oligosaccharides have been observed in cancer and inflammation. Thus, monoclonal antibodies and lectins recognizing cancer-associated fucosylated oligosaccharides have been clinically used as tumor markers for the last few decades. Recent advanced glycomic approaches allow us to identify novel fucosylation-related tumor markers. Moreover, a growing body of evidence supports the functional significance of fucosylation at various pathophysiological steps of carcinogenesis and tumor progression. This review highlights the biological and medical significance of fucosylation in gastrointestinal cancer.
Collapse
Affiliation(s)
- Kenta Moriwaki
- Kenta Moriwaki, Eiji Miyoshi, Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | |
Collapse
|
6
|
Polyoxometalates as effective inhibitors for sialyl- and sulfotransferases. J Inorg Biochem 2009; 103:1061-6. [PMID: 19508952 DOI: 10.1016/j.jinorgbio.2009.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/14/2009] [Accepted: 05/06/2009] [Indexed: 11/22/2022]
Abstract
Sialylated and/or sulfated carbohydrate chains in glycoproteins and glycolipids play important roles in infection by microorganisms and diseases including cancer. Inhibitors of sialyl/sulfotransferases, responsible for the biosynthesis of these carbohydrate chains, could be medical agents against such infections and diseases. Polyoxometalates (PMs) are inorganic polyanionic molecules that have been shown to exhibit activity against tumors and infectious microorganisms; however, the effects of PMs on carbohydrate biosynthesis have never been investigated. Here, we found that some types of PMs can inhibit the enzymatic activities of specific sialyl/sulfotransferases. Several tungstate-type PMs inhibited Gal: alpha2,3-sialyltransferase-I (ST3Gal-I) activity at sub-nanomolar levels. The half-inhibitory concentration of the best inhibitors was 0.2 nM and the inhibition was non-competitive for both donor and acceptor substrates (Ki values approximately 0.5 nM). By certain vanadate-type PMs, ST3Gal-I and Gal 3-O-sulfotransferase-2 (Gal3ST-2) were specifically inhibited at nanomolar levels. The inhibitory effect of a tungstate-type PM on ST3Gal-I was reversible and electrostatic. A ST3Gal-I mutant protein which was converted (335)Arg residue in the C-terminal region to Glu, was rather insensitive to the PM, suggesting that specific C-terminal basic amino acid of ST3Gal-I is involved in the binding to PMs. Collectively, PMs are novel inhibitors of specific sialyl/sulfotransferases.
Collapse
|
7
|
Karibe T, Fukui H, Sekikawa A, Shiratori K, Fujimori T. EXTL3 promoter methylation down-regulates EXTL3 and heparan sulphate expression in mucinous colorectal cancers. J Pathol 2008; 216:32-42. [PMID: 18543267 DOI: 10.1002/path.2377] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Exostoses like-3 (EXTL3) is a putative tumour suppressor gene but its involvement in colorectal cancer (CRC) is unclear. We have investigated the role of methylation of the EXTL3 promoter as a mechanism for EXTL3 regulation and tested the hypothesis that loss of EXTL3 expression is associated with mucinous differentiation and alteration of glycoprotein expression in CRC cells. The methylation status of the EXTL3 gene promoter was analysed by methylation-specific PCR following bisulphite modification in CRC cell lines and microdissected primary CRC tissues and their corresponding adjacent normal colorectal mucosa. EXTL3 promoter methylation was detected in seven of 11 mucinous CRCs (63.6%) but in none of 26 non-mucinous CRCs examined. EXTL3 promoter methylation was also detected in the normal colonic mucosa of three patients with mucinous CRC but not in the normal colonic mucosa of any patients with non-mucinous CRC. The presence of EXTL3 methylation was significantly associated with the partial loss of HS expression in mucinous CRC lesions. The mucinous CRC cell lines, Colo201 and Colo205, showed EXTL3 promoter methylation and loss of EXTL3 mRNA expression. However 5-aza-2'-deoxycytidine treatment demethylated the EXTL3 gene promoter and restored its mRNA expression. Furthermore, the basal expression of HS in CRC cells was abolished by treatment with EXTL3-siRNA. We conclude that EXTL3 promoter methylation and its related loss of EXTL3 expression are involved in the loss of HS expression in mucinous CRCs.
Collapse
Affiliation(s)
- T Karibe
- Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, Mibu, Shimotsuga, Tochigi, Japan
| | | | | | | | | |
Collapse
|
8
|
Kanoh A, Seko A, Ideo H, Yoshida M, Nomoto M, Yonezawa S, Sakamoto M, Kannagi R, Yamashita K. Ectopic expression of N-acetylglucosamine 6-O-sulfotransferase 2 in chemotherapy-resistant ovarian adenocarcinomas. Glycoconj J 2006; 23:453-60. [PMID: 16897186 DOI: 10.1007/s10719-006-6979-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/26/2005] [Accepted: 12/29/2005] [Indexed: 12/01/2022]
Abstract
Mucinous and clear cell adenocarcinomas are the major histological types of ovarian epithelial cancer and are associated with a poor prognosis due to their resistance to chemotherapy. A novel tumor marker specific for ovarian mucinous and clear cell adenocarcinomas would be helpful for overcoming these serious diseases. We showed previously by enzymological characterization and RT-PCR that colonic mucinous adenocarcinoma tissues ectopically express GlcNAc6ST-2, a member of the carbohydrate 6-O-sulfotransferase family (Seko, A. et al. (2002) Glycobiology 12, 379-388). Here, we prepared a GlcNAc6ST-2-specific polyclonal antibody for immunohistochemical analysis and found that GlcNAc6ST-2 is ectopically expressed by not only colonic mucinous adenocarcinomas but also ovarian mucinous, clear cell and papillary serous adenocarcinomas. In contrast, solid serous adenocarcinomas, endometrioid adenocarcinomas, and mucinous adenomas expressed GlcNAc6ST-2 much less frequently or not at all. RT-PCR analysis confirmed that GlcNAc6ST-2 transcripts are expressed in ovarian mucinous adenocarcinomas but not in mucinous adenomas. In addition, immunohistochemical analysis using sulfated glycan-specific monoclonal antibodies showed that ovarian adenocarcinoma cells express GlcNAc 6-O-sulfated glycans, including an L-selectin ligand and its related glycans. These results indicate that GlcNAc6ST-2 would be a novel tumor antigen that is specifically expressed in ovarian mucinous, clear cell and papillary serous adenocarcinomas.
Collapse
Affiliation(s)
- Akira Kanoh
- Hanno Discovery Center, TAIHCO Pharmaceutical Co. Ltd., Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kamiyama S, Sasaki N, Goda E, Ui-Tei K, Saigo K, Narimatsu H, Jigami Y, Kannagi R, Irimura T, Nishihara S. Molecular Cloning and Characterization of a Novel 3′-Phosphoadenosine 5′-Phosphosulfate Transporter, PAPST2. J Biol Chem 2006; 281:10945-53. [PMID: 16492677 DOI: 10.1074/jbc.m508991200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfation is an important posttranslational modification associated with a variety of molecules. It requires the involvement of the high energy form of the universal sulfate donor, 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Recently, we identified a PAPS transporter gene in both humans and Drosophila. Although human colonic epithelial tissues express many sulfated glycoconjugates, PAPST1 expression in the colon is trace. In the present study, we identified a novel human PAPS transporter gene that is closely related to human PAPST1. This gene, called PAPST2, is predominantly expressed in human colon tissues. The PAPST2 protein is localized on the Golgi apparatus in a manner similar to the PAPST1 protein. By using yeast expression studies, PAPST2 protein was shown to have PAPS transport activity with an apparent Km value of 2.2 microM, which is comparable with that of PAPST1 (0.8 microM). Overexpression of either the PAPST1 or PAPST2 gene increased PAPS transport activity in human colon cancer HCT116 cells. The RNA interference of the PAPST2 gene in the HCT116 cells significantly reduced the reactivity of G72 antibody directed against the sialyl 6-sulfo N-acetyllactosamine epitope and total sulfate incorporation into cellular proteins. These findings indicate that PAPST2 is a PAPS transporter gene involved in the synthesis of sulfated glycoconjugates in the colon.
Collapse
Affiliation(s)
- Shin Kamiyama
- Laboratory of Cell Biology, Department of Bioinformatics, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Josic D, Brown MK, Huang F, Callanan H, Rucević M, Nicoletti A, Clifton J, Hixson DC. Use of selective extraction and fast chromatographic separation combined with electrophoretic methods for mapping of membrane proteins. Electrophoresis 2005; 26:2809-22. [PMID: 15966017 DOI: 10.1002/elps.200500060] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A model system for selective solubilization and fast separation of proteins from the rat liver membrane fraction and purified rat liver plasma membranes for their further proteomic analysis is presented. For selective solubilization, high-pH solutions and a concentrated urea solution, combined with different detergents, are used. After extraction, proteins are separated by anion-exchange chromatography or a combination of anion- and cation-exchange chromatography with convective interaction monolithic supports. This separation method enables fast and effective prefractionation of membrane proteins based on their hydrophobicity and charge prior to one-dimensional (1-D) and 2-D electrophoresis and mass spectrometry. By use of this sample preparation method, the less-abundant proteins can be detected and identified.
Collapse
Affiliation(s)
- Djuro Josic
- Proteomics Core, COBRE Center for Cancer Research Development, Rhode Island Hospital, The CORO Center, Providence, RI 02903, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Seko A, Sumiya JI, Yamashita K. Porcine, mouse and human galactose 3-O-sulphotransferase-2 enzymes have different substrate specificities; the porcine enzyme requires basic compounds for its catalytic activity. Biochem J 2005; 391:77-85. [PMID: 15926885 PMCID: PMC1237141 DOI: 10.1042/bj20050362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 05/19/2005] [Accepted: 05/31/2005] [Indexed: 11/17/2022]
Abstract
Sulphation of galactose at the C-3 position is one of the major post-translational modifications of colorectal mucin. Thus we partially purified a Gal 3-O-sulphotransferase from porcine colonic mucosa (pGal3ST) and studied its enzymatic characteristics. The enzyme was purified 48500-fold by sequential chromatographies on hydroxyapatite, Con A (concanavalin A)-Sepharose, porcine colonic mucin-Sepharose, Cu2+-chelating Sepharose and AMP-agarose. Interestingly, the purified pGal3ST required submillimolar concentrations of spermine or basic lipids, such as D-sphingosine and N,N-dimethylsphingosine, for enzymatic activity. pGal3ST recognized Galbeta1-->3GalNAc (core 1) as an optimal substrate, and had weaker activity for Galbeta1-->3GlcNAc (type 1) and Galbeta1-->4GlcNAc (type 2). Substrate competition experiments proved that a single enzyme catalyses sulphation of all three oligosaccharides. Among the four human Gal3STs cloned to date, the substrate specificity of pGal3ST is most similar to that of human Gal3ST-2, which is also strongly expressed in colonic mucosa, although the kinetics of pGal3ST and human Gal3ST-2 were rather different. To determine whether pGal3ST is the orthologue of human Gal3ST-2, a cDNA encoding porcine Gal3ST-2 was isolated and the enzyme was expressed in COS-7 cells for analysis of substrate specificity. This revealed that porcine Gal3ST-2 has the same specificity as pGal3ST, indicating that pGal3ST is indeed the porcine equivalent of Gal3ST-2. The substrate specificity of mouse Gal3ST-2 was also different from those of human and porcine Gal3ST-2 enzymes. Mouse Gal3ST-2 preferred core 1 and type 2 glycans to type 1, and the K(m) values were much higher than those of human Gal3ST-2. These results suggest that porcine Gal3ST-2 requires basic compounds for catalytic activity and that human, mouse and porcine Gal3ST-2 orthologues have diverse substrate specificities.
Collapse
Key Words
- colonic mucosa
- mucin
- spermine
- sphingosine
- sulphotransferase
- bigp, galβ1→4glcnacβ1→2manα1→3(galβ1→4glcnacβ1→2manα1→6)manβ1→4glcnacβ1→4glcnac
- bn, benzyl
- con a, concanavalin a
- core 1, galβ1→3galnacα1→
- core 2, galβ1→3(glcnacβ1→6)galnacα1→
- dtt, dithiothreitol
- galcer, galactosylceramide
- galdg, galactosyldiacylglycerol
- gal3st, gal 3-o-sulphotransferase
- laccer, lactosylceramide
- lnt, galβ1→3glcnacβ1→3galβ1→4glc
- monogp, galβ1→4glcnacβ1→2manα1→3/6manβ1→4glcnac
- paps, adenosine 3′-phosphate 5′-phosphosulphate
- pgal3st, porcine gal3st
- pna, peanut agglutinin
- pnp, p-nitrophenyl
- race, rapid amplification of cdna ends
- sult, sulphotransferase
- type 1, galβ1→3glcnac (lacto-n-biose i)
- type 2, galβ1→4glcnac (n-acetyllactosamine)
Collapse
Affiliation(s)
- Akira Seko
- *Department of Biochemistry, Sasaki Institute, 2-2, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062
- †CREST, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | - Jun-ichi Sumiya
- *Department of Biochemistry, Sasaki Institute, 2-2, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062
| | - Katsuko Yamashita
- *Department of Biochemistry, Sasaki Institute, 2-2, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062
| |
Collapse
|
12
|
Kannagi R. Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression-The Warburg effect revisited. Glycoconj J 2005; 20:353-64. [PMID: 15229399 DOI: 10.1023/b:glyc.0000033631.35357.41] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell adhesion mediated by selectins and their carbohydrate ligands, sialyl Lewis X and sialyl Lewis A, figures heavily in cancer metastasis. Expression of these carbohydrate determinants is markedly enhanced in cancer cells, but the molecular mechanism that leads to cancer-associated expression of sialyl Lewis X/A has not been well understood. Results of recent studies indicated involvement of two principal mechanisms in the accelerated expression of sialyl Lewis X/A in cancers; 'incomplete synthesis' and ' neo synthesis.' As to 'incomplete synthesis,' we have recently found further modified forms of sialyl Lewis X and sialyl Lewis A in non-malignant colonic epithelium, which have additional 6-sulfation or 2 --> 6 sialylation. The impairment of GlcNAc 6-sulfation and 2 --> 6 sialylation upon malignant transformation leads to accumulation of sialyl Lewis X/A in colon cancer cells. Epigenetic changes such as DNA methylation and/or histone deacetylation are suggested to lie behind such incomplete synthesis. As to the mechanism called ' neo synthesis,' recent studies have indicated that cancer-associated alterations in the sugar transportation and intermediate carbohydrate metabolism play important roles. Cancer cells are known to exhibit a metabolic shift from oxidative to elevated anaerobic glycolysis (Warburg effect), which is correlated with the increased gene expression of sugar transporters and glycolytic enzymes induced by common cancer-specific genetic alterations. The increased sialyl Lewis X/A expression in cancer is a link in the chains of these events because our recent results indicated that these events accompany transcriptional induction of a set of genes closely related to its expression.
Collapse
Affiliation(s)
- Reiji Kannagi
- Molecular Pathology, Aichi Cancer Center, Chikusaku, Nagoya 464-8681, Japan
| |
Collapse
|
13
|
Brockhausen I. Glycodynamics of Mucin Biosynthesis in Gastrointestinal Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 535:163-88. [PMID: 14714895 DOI: 10.1007/978-1-4615-0065-0_11] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycoproteins found in the secretions and on the surfaces of cancer cells include mucins and mucin-like glycoproteins. These molecules have been shown to carry antigens that are characteristically expressed on cancer cells, including Tn and T antigens and Lewis epitopes. The structures of O-glycans are often abnormal in gastrointestinal tumors, or else are present in abnormal amounts, and these structures greatly contribute to the phenotype and biology of cancer cells. It has been shown that glycans of cancer cells have functional importance in cell adhesion, invasion and metastasis. The possible mechanisms leading to these cancer-specific changes in carbohydrate structures (termed glycodynamics) involve altered mRNA expression and catalytic activities of glycosyltransferases and sulfotransferases found in tissues and cells of gastrointestinal tumors. In a number of cases it has been possible to correlate enzyme changes with oligosaccharide structures. Different mechanisms have been suggested leading to the synthesis of cancer-specific Lewis, T and Tn antigens, but the regulation of cancer mucin antigens generally appears to be very complex and is poorly understood. The expression levels of specific mucin antigens and enzymes in gastro-intestinal tumors have diagnostic as well as prognostic value. These antigens also have potential for cancer immunotherapy. However, we first need to unravel the complexity of the control of glycosylation in cancer cells. Most importantly, studies of the functional implications of the glycodynamics in cancer cells, as related to cell adhesion and impact on the immune system will provide promising directions for future research.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Medicine, and Human Mobility Research Centre, Queen's University, Kingston, Ontario, K7L 3N6 Canada
| |
Collapse
|
14
|
Seko A, Nagata K, Yonezawa S, Yamashita K. Ectopic expression of a GlcNAc 6-O-sulfotransferase, GlcNAc6ST-2, in colonic mucinous adenocarcinoma. Glycobiology 2002; 12:379-88. [PMID: 12107080 DOI: 10.1093/glycob/12.6.379] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The content of sulfated glycans having 6-O-sulfated GlcNAc residues alters in the course of colonic carcinogenesis. We previously characterized two GlcNAc 6-O-sulfotransferases (SulTs), SulT-a and -b, expressed in colonic normal tissues and adenocarcinomas [Seko et al. (2000) Glycobiology, 10, 919-929]. Levels of the enzymatic activities of SulT-a in normal colonic mucosa are higher than those in colonic adenocarcinomas, and the enzymatic activities of SulT-b are detected only in mucinous adenocarcinomas. To determine which GlcNAc 6-O-SulTs cloned so far correspond to SulT-a and -b, we expressed seven enzymes of a Gal/GalNAc/GlcNAc 6-O-SulT family in COS-7 cells and examined their substrate specificities in comparison with those of SulT-a and -b. GlcNAc6ST-2 (HEC-GlcNAc6ST, LSST, or GST-3) can recognize GlcNAcbeta1-->3GalNAcalpha1-O-pNP as a good acceptor as well as other O-linked- and N-linked-type oligosaccharides, and its substrate specificity was similar to that of SulT-b. GlcNAc6ST-3(I-GlcNAc6ST or GST-4alpha) preferred Galbeta1-->3(GlcNAcbeta1-->6)GalNAcalpha1-O-pNP as an acceptor to the other oligosaccharides examined, and its specificity was similar to that of SulT-a. To confirm these correspondences, we further performed quantitative analyses of transcripts for GlcNAc6ST-2 and -3 genes by competitive RT-PCR. As a result, GlcNAc6ST-2 gene was expressed in almost all the mucinous adenocarcinomas examined and hardly expressed in normal colonic mucosa and nonmucinous adenocarcinoma. Expression levels of transcript for GlcNAc6ST-3 in normal mucosa were significantly higher than those in adenocarcinomas. From these results, it was indicated that GlcNAc6ST-2 corresponds to mucinous adenocarcinoma-specific SulT-b and that expression of GlcNAc6ST-3 is down-regulated in colonic adenocarcinomas.
Collapse
Affiliation(s)
- Akira Seko
- Department of Biochemistry, Sasaki Institute, 2-2, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | |
Collapse
|
15
|
Seko A, Nagata K, Yonezawa S, Yamashita K. Down-regulation of Gal 3-O-sulfotransferase-2 (Gal3ST-2) expression in human colonic non-mucinous adenocarcinoma. Jpn J Cancer Res 2002; 93:507-15. [PMID: 12036446 PMCID: PMC5927024 DOI: 10.1111/j.1349-7006.2002.tb01285.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Expression levels of sulfomucin in human colonic adenocarcinomas are lower than those in normal colonic mucosa; this should be in part caused by down-regulation of expression of sulfotransferases, but it remains unclear which Gal 3-O-sulfotransferase (Gal3ST) is responsible for the biosynthesis of sulfomucin. In this study, we first examined the substrate specificities of four Gal3STs cloned so far, and found that Galbeta1 3GlcNAcbeta1 3Galbeta1 4Glc (LNT) can be utilized only by Gal3ST-2 as an acceptor substrate. The substrate specificity of Gal3ST-2 is closely similar to those of Gal3ST activities present in human normal mucosa and adenocarcinomas, suggesting that Gal3ST-2 is the dominant Gal3ST in colon and colonic cancer. Secondly, using LNT as a substrate, we comparatively analyzed levels of Gal3ST-2 activities in non-mucinous adenocarcinoma, mucinous adenocarcinomas, and the adjacent normal mucosa. We found that levels of Gal3ST-2 activities in non-mucinous adenocarcinoma are significantly lower than those in the adjacent normal mucosa, while those in mucinous adenocarcinomas are not significantly different from those in the adjacent normal mucosa. Moreover, we showed by a competitive RT-PCR method that expression levels of transcript for Gal3ST-2 in non-mucinous adenocarcinoma are lower than those in normal mucosa. These results suggest that Gal3ST-2 is one of the enzymes responsible for biosynthesis of sulfomucin, and that expression levels of Gal3ST-2 are down-regulated in non-mucinous adenocarcinoma.
Collapse
Affiliation(s)
- Akira Seko
- Department of Biochemistry, Sasaki Institute, Chiyoda-ku, Tokyo 101-0062
| | | | | | | |
Collapse
|
16
|
Uchimura K, El-Fasakhany FM, Hori M, Hemmerich S, Blink SE, Kansas GS, Kanamori A, Kumamoto K, Kannagi R, Muramatsu T. Specificities of N-acetylglucosamine-6-O-sulfotransferases in relation to L-selectin ligand synthesis and tumor-associated enzyme expression. J Biol Chem 2002; 277:3979-84. [PMID: 11726653 DOI: 10.1074/jbc.m106587200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST) catalyzes the transfer of sulfate from adenosine 3'-phosphate,5'-phosphosulfate to the C-6 position of the non-reducing GlcNAc. Three human GlcNAc6STs, namely GlcNAc6ST-1, GlcNAc6ST-2 (HEC-GlcNAc6ST), and GlcNAc6ST-3 (I-GlcNAc6ST), were produced as fusion proteins to protein A, and their substrate specificities as well as their enzymological properties were determined. Both GlcNAc6ST-1 and GlcNAc6ST-2 efficiently utilized the following oligosaccharide structures as acceptors: GlcNAcbeta1-6[Galbeta1-3]GalNAc-pNP (core 2), GlcNAcbeta1-6ManOMe, and GlcNAcbeta1-2Man. The ratios of activities to these substrates were not significantly different between the two enzymes. However, GlcNAc6ST-2 but not GlcNAc6ST-1 acted on core 3 of GlcNAcbeta1-3GalNAc-pNP. GlcNAc6ST-3 used only the core 2 structure among the above mentioned oligosaccharide structures. The ability of GlcNAc6ST-1 to sulfate core 2 structure as efficiently as GlcNAc6ST-2 is consistent with the view that GlcNAc6ST-1 is also involved in the synthesis of l-selectin ligand. Indeed, cells doubly transfected with GlcNAc6ST-1 and fucosyltransferase VII cDNAs supported the rolling of L-selectin-expressing cells. The activity of GlcNAc6ST-2 on core 3 and its expression in mucinous adenocarcinoma suggested that this enzyme corresponds to the sulfotransferase, which is specifically expressed in mucinous adenocarcinoma (Seko, A., Sumiya, J., Yonezawa, S., Nagata, K., and Yamashita, K. (2000) Glycobiology 10, 919-929).
Collapse
Affiliation(s)
- Kenji Uchimura
- Department of Biochemistry, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Seko A, Hara-Kuge S, Yamashita K. Molecular cloning and characterization of a novel human galactose 3-O-sulfotransferase that transfers sulfate to gal beta 1-->3galNAc residue in O-glycans. J Biol Chem 2001; 276:25697-704. [PMID: 11333265 DOI: 10.1074/jbc.m101558200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel galactose 3-O-sulfotransferase, termed Gal3ST-4, by analysis of an expression sequence tag using the amino acid sequence of human cerebroside 3'-sulfotransferase (Gal3ST-1). The isolated cDNA contains a single open reading frame coding for a protein of 486 amino acids with a type II transmembrane topology. The amino acid sequence of Gal3ST-4 revealed 33%, 39%, and 30% identity to human Gal3ST-1, Gal beta 1-->3/4GlcNAc:-->3'-sulfotransferase (Gal3ST-2) and Gal beta 1-->4GlcNAc:-->3'-sulfotransferase (Gal3ST-3), respectively. The Gal3ST-4 gene comprised at least four exons and was located on human chromosome 7q22. Expression of Gal3ST-4 in COS-7 cells produced a sulfotransferase activity that catalyzes the transfer of [(35)S]sulfate to the C-3' position of Gal beta 1-->3GalNAc alpha 1-O-Bn. Gal3ST-4 recognizes Gal beta 1-->3GalNAc and Gal beta 1-->3(GlcNAc beta 1-->6)GalNAc as good substrates, but not Gal beta 1-->3GalNAc(OH) or Gal beta 1-->3/4GlcNAc. Asialofetuin is also a good substrate, and the sulfation was found exclusively in O-linked glycans that consist of the Gal beta 1-->3GalNAc moiety, suggesting that the enzyme is specific for O-linked glycans. Northern blot analysis revealed that 2.5-kilobase mRNA for the enzyme is expressed extensively in various tissues. These results suggest that Gal3ST-4 is the fourth member of a Gal:-->3-sulfotransferase family and that the four members, Gal3ST-1, Gal3ST-2, Gal3ST-3, and Gal3ST-4, are responsible for sulfation of different acceptor substrates.
Collapse
Affiliation(s)
- A Seko
- Department of Biochemistry, Sasaki Institute, 2-2, Kanda-Surugadai, 2-3, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | |
Collapse
|