1
|
Béraud E, Collignon A, Franceschi C, Olive D, Lombardo D, Mas E. Investigation of a new tumor-associated glycosylated antigen as target for dendritic cell vaccination in pancreatic cancer. Oncoimmunology 2021; 1:56-61. [PMID: 22720212 PMCID: PMC3376954 DOI: 10.4161/onci.1.1.18459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glycoproteins, as valuable targets for dendritic cell (DC)-vaccination in cancers, remain an open question. Glycosylated structures, which are aberrantly modified during cancerisation, impact positively or negatively on glycoprotein immunogenicity. Here is presented an oncofetal glycovariant of bile-salt-dependent-lipase, expressed on human tumoral pancreas and efficiently processed by DC's, inducing T-lymphocyte activation.
Collapse
Affiliation(s)
- Evelyne Béraud
- INSERM; Marseille, France; Aix-Marseille Univ ; Centre de Recherche en Oncologie biologique et Oncopharmacologie; Marseille, France
| | | | | | | | | | | |
Collapse
|
2
|
Lombardo D, Silvy F, Crenon I, Martinez E, Collignon A, Beraud E, Mas E. Pancreatic adenocarcinoma, chronic pancreatitis, and MODY-8 diabetes: is bile salt-dependent lipase (or carboxyl ester lipase) at the crossroads of pancreatic pathologies? Oncotarget 2018; 9:12513-12533. [PMID: 29552330 PMCID: PMC5844766 DOI: 10.18632/oncotarget.23619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Pancreatic adenocarcinomas and diabetes mellitus are responsible for the deaths of around two million people each year worldwide. Patients with chronic pancreatitis do not die directly of this disease, except where the pathology is hereditary. Much current literature supports the involvement of bile salt-dependent lipase (BSDL), also known as carboxyl ester lipase (CEL), in the pathophysiology of these pancreatic diseases. The purpose of this review is to shed light on connections between chronic pancreatitis, diabetes, and pancreatic adenocarcinomas by gaining an insight into BSDL and its variants. This enzyme is normally secreted by the exocrine pancreas, and is diverted within the intestinal lumen to participate in the hydrolysis of dietary lipids. However, BSDL is also expressed by other cells and tissues, where it participates in lipid homeostasis. Variants of BSDL resulting from germline and/or somatic mutations (nucleotide insertion/deletion or nonallelic homologous recombination) are expressed in the pancreas of patients with pancreatic pathologies such as chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We discuss the possible link between the expression of BSDL variants and these dramatic pancreatic pathologies, putting forward the suggestion that BSDL and its variants are implicated in the cell lipid metabolism/reprogramming that leads to the dyslipidemia observed in chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We also propose potential strategies for translation to therapeutic applications.
Collapse
Affiliation(s)
- Dominique Lombardo
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Françoise Silvy
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Isabelle Crenon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Emmanuelle Martinez
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Aurélie Collignon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Evelyne Beraud
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Eric Mas
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| |
Collapse
|
3
|
Collignon A, Perles-Barbacaru AT, Robert S, Silvy F, Martinez E, Crenon I, Germain S, Garcia S, Viola A, Lombardo D, Mas E, Béraud E. A pancreatic tumor-specific biomarker characterized in humans and mice as an immunogenic onco-glycoprotein is efficient in dendritic cell vaccination. Oncotarget 2016; 6:23462-79. [PMID: 26405163 PMCID: PMC4695130 DOI: 10.18632/oncotarget.4359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/30/2015] [Indexed: 01/01/2023] Open
Abstract
Oncofetal fucose-rich glycovariants of the pathological bile salt-dependent lipase (pBSDL) appear during human pancreatic oncogenesis and are detected by themonoclonal antibody J28 (mAbJ28). We aimed to identify murine counterparts onpancreatic ductal adenocarcinoma (PDAC) cells and tissue and investigate the potential of dendritic cells (DC) loaded with this unique pancreatic tumor antigen to promote immunotherapy in preclinical trials. Pathological BSDLs purified from pancreatic juices of patients with PDAC were cleaved to generate glycosylated C-terminal moieties (C-ter) containing mAbJ28-reactive glycoepitopes. Immunoreactivity of the murine PDAC line Panc02 and tumor tissue to mAbJ28 was detected by immunohistochemistry and flow cytometry. C-ter-J28+ immunization promoted Th1-dominated immune responses. In vitro C-ter-J28+-loaded DCskewed CD3+ T-cells toward Th1 polarization. C-ter-J28+-DC-vaccinations selectively enhanced cell immunoreactivity to Panc02, as demonstrated by CD4+- and CD8+-T-cell activation, increased percentages of CD4+- and CD8+-T-cells and NK1.1+ cells expressing granzyme B, and T-cell cytotoxicity. Prophylactic and therapeutic C-ter-J28+-DC-vaccinations reduced ectopic Panc02-tumor growth, provided long-lasting protection from Panc02-tumor development in 100% of micebut not from melanoma, and attenuated progression of orthotopic tumors as revealed by MRI. Thusmurine DC loaded with pancreatic tumor-specific glycoepitope C-ter-J28+ induce efficient anticancer adaptive immunity and represent a potential adjuvant therapy for patients afflicted with PDAC.
Collapse
Affiliation(s)
- Aurélie Collignon
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Adriana Teodora Perles-Barbacaru
- Aix-Marseille UniversiteÌ, CNRS, CRMBM, Centre de ReÌsonance MagneÌtique Biologique et MeÌdicale, UMR 7339, Marseille, France
| | - Stéphane Robert
- Aix-Marseille Université, VRCM, Vascular Research Center of Marseilles, Marseille, France.,Inserm, UMR_S_1076, Marseille, France
| | - Françoise Silvy
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Emmanuelle Martinez
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Isabelle Crenon
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Sébastien Germain
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Stéphane Garcia
- APHM, Hôpital Nord, Laboratoire d'Anatomie-Pathologie, Marseille, France.,Aix-Marseille Université, Marseille, France
| | - Angèle Viola
- Aix-Marseille UniversiteÌ, CNRS, CRMBM, Centre de ReÌsonance MagneÌtique Biologique et MeÌdicale, UMR 7339, Marseille, France
| | - Dominique Lombardo
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Eric Mas
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Evelyne Béraud
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| |
Collapse
|
4
|
Franceschi C, Collignon A, Isnardon D, Benkoel L, Vérine A, Silvy F, Bernard JP, Lombardo D, Beraud E, Olive D, Mas E. A novel tumor-associated pancreatic glycoprotein is internalized by human dendritic cells and induces their maturation. THE JOURNAL OF IMMUNOLOGY 2011; 186:4067-77. [PMID: 21346236 DOI: 10.4049/jimmunol.1000408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aberrant glycosylation or overexpression of cell-surface glycosylated tumor-associated Ags (TAA) distinguish neoplastic from normal cells. Interactions of TAA MUC1 and HER2/neu with dendritic cells (DC) preclude efficient processing, which impairs immune responses. It is thus important to define the mechanisms of interactions between DC and glycosylated TAA and their trafficking and processing for further T cell activation. In this work, we study interactions between DC and the oncofetal fucose-rich glycovariants of bile salt-dependent lipase (BSDL), expressed in pancreatic cancer tissues and referred to as pathological BSDL carrying the fucosylated J28 glycotope (pBSDL-J28) because it is characterized by the mAb J28. The expression of pBSDL-J28 was assessed by immunohistochemistry and quantified by confocal microscopy. Nontumoral pancreatic tissues and cells do not express pBSDL-J28. Using multidisciplinary approaches and functional studies, we provide the first evidence, to our knowledge, that this tumoral glycoprotein is rapidly internalized by human DC through macropinocytosis and endocytosis via mannose receptors and then transported to late endosomes for processing. Interestingly, pBSDL-J28 per se induced DC maturation with increased expression of costimulatory and CD83 molecules associated with cytokine secretion (IL-8 and IL-6). Surprisingly, DC retained their full ability to internalize Ags, making this maturation atypical. Finally, the allogeneic pBSDL-J28-treated DC stimulated lymphocyte proliferation. Besides, pulsing DC with pBSDL-J28 C-terminal glycopolypeptide and maturation with CD40L triggered CD4(+) and CD8(+) T cell proliferation. Therefore, interactions of pBSDL-J28, expressed on tumoral pancreatic tissue, with DC may lead to adequate Ag trafficking and processing and result in T cell activation.
Collapse
Affiliation(s)
- Cécile Franceschi
- INSERM Unité Mixte de Recherche 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, F-13005 Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Benkoël L, Bernard JP, Payan-Defais MJ, Crescence L, Franceschi C, Delmas M, Ouaissi M, Sastre B, Sahel J, Benoliel AM, Bongrand P, Silvy F, Gauthier L, Romagné F, Lombardo D, Mas E. Monoclonal antibody 16D10 to the COOH-terminal domain of the feto-acinar pancreatic protein targets pancreatic neoplastic tissues. Mol Cancer Ther 2009; 8:282-91. [DOI: 10.1158/1535-7163.mct-08-0471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Abstract
OBJECTIVES The major histocompatibility complex class II chaperone invariant chain (Ii) is widely used as a carrier for inserted antigenic sequences and their introduction into the class II processing pathway. The tumor-associated antigen core 2beta 1,6 N-acetylglucosaminyltransferase (C2GnT), a glycosyltransferase present in human pancreatic tumor cells, is not expressed by normal pancreatic tissues. METHODS A set of expression vectors was engineered where the class II binding region of Ii was replaced by C2GnT-derived sequences. We investigated in vitro whether dendritic cells transfected with Ii-C2GnT constructs were capable to stimulate proliferation of CD4 T cells. We also tested whether vaccination with Ii-C2GnT would protect mice from tumor development. RESULTS Invariant chain-C2GnT fusion proteins bind to human DR1, DR3, DR4 and to mouse I-A molecules. Our results demonstrate that the plasmid DNA encoding the C2GnT epitope embedded in Ii induces tumor-specific T-cell responses. Mice immunized with the Ii constructs showed reduced growth of Panc02 pancreatic tumor cells. CONCLUSIONS Therefore, Ii clipped with the tumor-associated antigen C2GnT shows promise for the treatment of pancreatic cancer.
Collapse
|
7
|
Sadoulet MO, Franceschi C, Aubert M, Silvy F, Bernard JP, Lombardo D, Mas E. Glycoengineering of alphaGal xenoantigen on recombinant peptide bearing the J28 pancreatic oncofetal glycotope. Glycobiology 2007; 17:620-30. [PMID: 17374617 DOI: 10.1093/glycob/cwm028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In human pancreatic adenocarcinoma, alterations of glycosylation processes leads to the expression of tumor-associated carbohydrate antigens, representing potential targets for cancer immunotherapy. Among these pancreatic tumor-associated carbohydrate antigens, the J28 glycotope located within the O-glycosylated mucin-like C-terminal domain of the fetoacinar pancreatic protein (FAPP) and expressed at the surface of human tumoral tissues, can be a good target for anticancer therapeutic vaccines. However, the oncodevelopmental self character of the J28 glycotope associated with the low immunogenicity of tumor-associated carbohydrate antigens may be a major obstacle to effective anti-tumor vaccine therapy. In this study, we have investigated a method to increase the immunogenicity of the recombinant pancreatic oncofetal J28 glycotope by glycoengineering Galalpha1,3Galss1,4GlcNAc-R (alphaGal epitope) which may be recognized by natural anti-alphaGal antibody present in humans. For this purpose, we have developed a stable Chinese hamster ovary cell clone expressing the alphaGal epitope by transfecting the cDNA encoding the alpha1,3galactosyltransferase. These cells have been previously equipped to produce the recombinant O-glycosylated C-terminal domain of FAPP carrying the J28 glycotope. As a consequence, the C-terminal domain of FAPP produced by these cells carries the alphaGal epitope on oligosaccharide structures associated with the J28 glycotope. Furthermore, we show that this recombinant "alpha1,3galactosyl and J28 glycotope" may not only be targeted by human natural anti-alphaGal antibodies but also by the mAbJ28, suggesting that the J28 glycotope remains accessible to the immune system as vaccinating agent. This approach may be used for many identified tumor-associated carbohydrate antigens which can be glycoengineered to carry a alphaGal epitope to increase their immunogenicity and to develop therapeutic vaccines.
Collapse
MESH Headings
- Adenocarcinoma/chemistry
- Adenocarcinoma/enzymology
- Adenocarcinoma/immunology
- Animals
- Antibodies, Monoclonal/immunology
- Antigens, Heterophile/chemistry
- Antigens, Heterophile/genetics
- Antigens, Heterophile/immunology
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/immunology
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Antigens, Tumor-Associated, Carbohydrate/immunology
- CHO Cells
- Clone Cells
- Cricetinae
- Cricetulus
- DNA, Complementary
- Epitopes/chemistry
- Epitopes/immunology
- Galactosyltransferases/genetics
- Galactosyltransferases/immunology
- Glycoproteins/chemistry
- Humans
- Pancreatic Neoplasms/chemistry
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/immunology
- Protein Engineering
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Transfection
Collapse
Affiliation(s)
- Marie-Odile Sadoulet
- INSERM UMR-777, Faculté de Médecine-Timone, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Comte B, Franceschi C, Sadoulet MO, Silvy F, Lafitte D, Benkoel L, Nganga A, Daniel L, Bernard JP, Lombardo D, Mas E. Detection of bile salt-dependent lipase, a 110 kDa pancreatic protein, in urines of healthy subjects. Kidney Int 2006; 69:1048-55. [PMID: 16528254 DOI: 10.1038/sj.ki.5000133] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bile salt-dependent lipase (BSDL), a 110 kDa glycoprotein secreted by the pancreatic acinar cells, participates in the duodenal hydrolysis of dietary lipid esters. Recent in vitro and in vivo studies demonstrated that the BSDL reaches the blood via a transcytosis motion through enterocytes, suggesting that this enzyme may play a role in vascular biology. Once in the blood, BSDL should be eliminated. We address the hypothesis that BSDL may be filtered by the glomerulus and eliminated in urines. Immunological methods and proteomic were used to detect and to characterize BSDL in urine. The immunoreactive form of BSDL was detected in urines of 36 male subjects devoid of renal failure. Proteomic demonstrated that the immunoreactive protein is BSDL. Experiments using a monoclonal antibody to the oncofetal glycoform of pancreatic BSDL suggested that the protein is not expressed by renal cells but originates from the pancreas via circulation. We demonstrate that under normal physiological conditions, BSDL, a high-molecular weight blood glycoprotein, can be filtered by the renal glomerulus to be eliminated in urines.
Collapse
Affiliation(s)
- B Comte
- INSERM U-559 and Faculté de Médecine, Univ de la Méditerranée, Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Panicot-Dubois L, Aubert M, Franceschi C, Mas E, Silvy F, Crotte C, Bernard JP, Lombardo D, Sadoulet MO. Monoclonal antibody 16D10 to the C-terminal domain of the feto-acinar pancreatic protein binds to membrane of human pancreatic tumoral SOJ-6 cells and inhibits the growth of tumor xenografts. Neoplasia 2005; 6:713-24. [PMID: 15720797 PMCID: PMC1531675 DOI: 10.1593/neo.04298] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Feto-acinar pancreatic protein (FAPP) characterized by mAbJ28 reactivity is a specific component associated with ontogenesis and behaves as an oncodevelopment-associated antigen. We attempted to determine whether pancreatic tumoral SOJ-6 cells are expressed at their surface FAPP antigens and to examine if specific antibodies directed against these FAPP epitopes could decrease the growth of pancreatic tumors in a mice model. For this purpose, we used specific antibodies against either the whole FAPP, the O-glycosylated C-terminal domain, or the N-terminal domain of the protein. Our results indicate that SOJ-6 cells expressed at their surface a 32-kDa peptide corresponding to the C-terminal domain of the FAPP. Furthermore, we show, by using endoproteinase Lys-C or geldanamycin, a drug able to impair the FAPP secretion, that this 32-kDa peptide expressed on the SOJ-6 cell surface comes from the degradation of the FAPP. Finally, an in vivo prospective study using a preventative tumor model in nude mice indicates that targeting this peptide by the use of mAb16D10 inhibits the growth of SOJ-6 xenografts. The specificity of mAb16D10 for pancreatic tumors and the possibility to obtain recombinant structures of mucin-like peptides recognized by mAb16D10 and mAbJ28 are promising tools in immunologic approaches to cure pancreatic cancers.
Collapse
Affiliation(s)
- Laurence Panicot-Dubois
- Institut National de la Santé et de la Recherche Médicale Unité 559 and EA 3289, Faculté de Médecine-Timone, Université de la Méditerranée, Marseilles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Aubert-Jousset E, Garmy N, Sbarra V, Fantini J, Sadoulet MO, Lombardo D. The Combinatorial Extension Method Reveals a Sphingolipid Binding Domain on Pancreatic Bile Salt-Dependent Lipase. Structure 2004; 12:1437-47. [PMID: 15296737 DOI: 10.1016/j.str.2004.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 05/13/2004] [Accepted: 05/14/2004] [Indexed: 02/02/2023]
Abstract
Structure similarity searches using a combinatorial extension approach revealed that a protein fold structurally related to the sphingolipid binding domain (SBD) of HIV-1 gp120 (V3 loop) is present on pancreatic bile salt-dependent lipase (BSDL). A synthetic peptide derived from the predicted V3-like domain of BSDL interacted with reconstituted monolayers of sphingolipids such as GalCer and GlcCer. Using Chinese hamster ovary cells stably transfected with the cDNA encoding the rat BSDL (CHO-3B clone) or pancreatic SOJ-6 cells expressing the human BSDL as models, we showed that the enzyme cofractionates with caveolin-1. The secretion of BSDL by CHO-3B cells was inhibited by permeable drugs affecting rafts structure (D609, PDMP, and filipin). Data suggest that the functional interaction between the BSDL SBD and lipid rafts is physiologically relevant and could be essential for sensing the BSDL folding prior to secretion. A tentative model accounting for the phosphorylation-induced dissociation of BSDL from rafts is presented.
Collapse
Affiliation(s)
- Emeline Aubert-Jousset
- INSERM U-559, EA-3289, and IPHM, Faculté de Médecine, Timone, 27 Bld Jean Moulin, 13385 Marseille 05, France
| | | | | | | | | | | |
Collapse
|
11
|
Lombardo D. Bile salt-dependent lipase: its pathophysiological implications. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1533:1-28. [PMID: 11514232 DOI: 10.1016/s1388-1981(01)00130-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- D Lombardo
- INSERM Unité 559, Faculté de Médecine-Timone, 27 Blv Jean Moulin, 13385 Cedex 05, Marseille, France.
| |
Collapse
|
12
|
Caillol N, Pasqualini E, Lloubes R, Lombardo D. Impairment of bile salt-dependent lipase secretion in human pancreatic tumoral SOJ-6 cells. J Cell Biochem 2000; 79:628-47. [PMID: 10996854 DOI: 10.1002/1097-4644(20001215)79:4<628::aid-jcb120>3.0.co;2-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bile salt-dependent lipase (BSDL) was detected in human SOJ-6 and rat AR4-2J pancreatic cells. Whereas AR4-2J cells actively secreted the enzyme, BSDL was retained within the Golgi compartment of SOJ-6 cells. Because Rab6 is involved in vesicle transport in the Golgi apparatus and the trans-Golgi network, we confirmed the presence of Rab6 in these cells. In rat AR4-2J cells, Rab6 as well as Rab1A/B and Rab2, partitioned between the cytosol and microsomes. In SOJ-6 cells Rab1A/B and Rab2 also partitioned between the cytosol and microsomes, but Rab6 was strictly associated with microsome membranes, suggesting a specific defect of Rab6 cycling in human SOJ-6 cells. The apparent defect of cycling in these cells is not due to the expression of a defective Rab6 since its correct sequence was confirmed. We further demonstrated that AR4-2J and SOJ-6 cells express the Rab-GDIbeta and Rab-GDIalpha isoforms, respectively. However, the sequence of Rab-GDIbeta, which may be the main form expressed by SOJ-6 cells, identified a few substitutions located in regions that are essential for Rab-GDI function. We conclude that the deficient secretion of BSDL by SOJ-6 cells could be due to the expression of defective Rab-GDIbeta. In spite of the alterations in Rab-GDIbeta, membrane proteins such as CD71 and NHE3 were correctly localized to the cell plasma membrane of SOJ-6 cells, suggesting that two functional distinct secretory pathway coexist in pancreatic cells.
Collapse
Affiliation(s)
- N Caillol
- INSERM Unité 260-Faculté de Médecine-Timone, 27 bld Jean Moulin, 13385 Marseille cedex 05 France
| | | | | | | |
Collapse
|
13
|
Pasqualini E, Caillol N, Panicot L, Valette A, Lombardo D. Expression of a 70-kDa immunoreactive form of bile salt-dependent lipase by human pancreatic tumoral mia PaCa-2 cells. Arch Biochem Biophys 2000; 375:90-100. [PMID: 10683253 DOI: 10.1006/abbi.1999.1634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This work describes the characterization of an immunoreactive form of bile salt-dependent lipase (BSDL) expressed by the human pancreatic tumoral Mia PaCa-2 cell line. This BSDL-related protein, which has an M(r) of 70 kDa, is enzymatically active and poorly secreted. Furthermore, a protein with the same electrophoretic migration can also be immunoprecipitated with polyclonal antibodies specific for the human pancreatic BSDL after in vitro translation of RNA isolated from Mia PaCa-2 cells. These data indicated that this BSDL-related protein might be poorly, or not, glycosylated. Reverse transcription and amplification of RNA extracted from Mia PaCa-2 cells using primers able to specifically amplify the full-length mRNA of the human BSDL resulted in a detectable 1.8-kb cDNA product, shorter than that of BSDL (2.2 kb). The sequence of this transcript corresponds to the mRNA sequence that codes for the mature human pancreatic BSDL. However, a deletion of 330 bp is located within the 3'-domain of this cDNA. Therefore data allowed us to conclude that the 70-kDa BSDL-related protein is a 612 amino acid length protein and represents a truncated form of BSDL. The deletion of 110 amino acids occurs in the C-terminal region of the protein, which encompasses 6 tandemly repeated sequences instead of the 16 normally present in the sequence of BSDL. Because feto-acinar pancreatic protein (FAPP), which is the oncofetal counterpart of BSDL, is a C-terminally truncated isoform of BSDL, it is suggested that the 70-kDa BSDL-related protein expressed in MiaPaCa-2 cells could be representative of the protein moiety of FAPP.
Collapse
Affiliation(s)
- E Pasqualini
- Faculté de Médecine-Timone, INSERM U260, 27 Blvd. Jean Moulin, Marseille Cedex 05, 13385, France
| | | | | | | | | |
Collapse
|