1
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Goswami P, Banks CA, Thornton J, Bengs BD, Sardiu ME, Florens L, Washburn MP. Distinct Regions within SAP25 Recruit O-Linked Glycosylation, DNA Demethylation, and Ubiquitin Ligase and Hydrolase Activities to the Sin3/HDAC Complex. J Proteome Res 2024; 23:5016-5029. [PMID: 39435885 PMCID: PMC12051219 DOI: 10.1021/acs.jproteome.4c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Sin3 is an evolutionarily conserved repressor protein complex mainly associated with histone deacetylase (HDAC) activity. Many proteins are part of Sin3/HDAC complexes, and the function of most of these members remains poorly understood. SAP25, a previously identified Sin3A associated protein of 25 kDa, has been proposed to participate in regulating gene expression programs involved in the immune response but the exact mechanism of this regulation is unclear. SAP25 is not expressed in HEK293 cells, which hence serve as a natural knockout system to decipher the molecular functions uniquely carried out by this Sin3/HDAC subunit. Using molecular, proteomic, protein engineering, and interaction network approaches, we show that SAP25 interacts with distinct enzymatic and regulatory protein complexes in addition to Sin3/HDAC. Additional proteins uniquely recovered from the Halo-SAP25 pull-downs included the SCF E3 ubiquitin ligase complex SKP1/FBXO3/CUL1 and the ubiquitin carboxyl-terminal hydrolase 11 (USP11). Furthermore, mutational analysis demonstrates that distinct regions of SAP25 participate in its interaction with USP11, OGT/TETs, and SCF(FBXO3). These results suggest that SAP25 may function as an adaptor protein to coordinate the assembly of different enzymatic complexes to control Sin3/HDAC-mediated gene expression. The data were deposited with the MASSIVE repository with the identifiers MSV000093576 and MSV000093553.
Collapse
Affiliation(s)
- Pratik Goswami
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Charles A.S. Banks
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Janet Thornton
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Bethany D. Bengs
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mihaela E. Sardiu
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
3
|
Zhuang S, Liu Z, Wu J, Yao Y, Li Z, Shen Y, Yu B, Wu D. Can O-GIcNAc Transferase (OGT) Complex Be Used as a Target for the Treatment of Hematological Malignancies? Pharmaceuticals (Basel) 2024; 17:664. [PMID: 38931332 PMCID: PMC11206344 DOI: 10.3390/ph17060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 06/28/2024] Open
Abstract
The circulatory system is a closed conduit system throughout the body and consists of two parts as follows: the cardiovascular system and the lymphatic system. Hematological malignancies usually grow and multiply in the circulatory system, directly or indirectly affecting its function. These malignancies include multiple myeloma, leukemia, and lymphoma. O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) regulates the function and stability of substrate proteins through O-GlcNAc modification. Abnormally expressed OGT is strongly associated with tumorigenesis, including hematological malignancies, colorectal cancer, liver cancer, breast cancer, and prostate cancer. In cells, OGT can assemble with a variety of proteins to form complexes to exercise related biological functions, such as OGT/HCF-1, OGT/TET, NSL, and then regulate glucose metabolism, gene transcription, cell proliferation, and other biological processes, thus affecting the development of hematological malignancies. This review summarizes the complexes involved in the assembly of OGT in cells and the role of related OGT complexes in hematological malignancies. Unraveling the complex network regulated by the OGT complex will facilitate a better understanding of hematologic malignancy development and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donglu Wu
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (S.Z.); (Z.L.); (J.W.); (Y.Y.); (Z.L.); (Y.S.); (B.Y.)
| |
Collapse
|
4
|
Vang S, Helton ES, Guo Y, Burpee B, Rose E, Easter M, Bollenbecker S, Hirsch MJ, Matthews EL, Jones LI, Howze PH, Rajasekaran V, Denson R, Cochran P, Attah IK, Olson H, Clair G, Melkani G, Krick S, Barnes JW. O-GlcNAc transferase regulates collagen deposition and fibrosis resolution in idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1387197. [PMID: 38665916 PMCID: PMC11043510 DOI: 10.3389/fimmu.2024.1387197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary disease that is characterized by an excessive accumulation of extracellular matrix (ECM) proteins (e.g. collagens) in the parenchyma, which ultimately leads to respiratory failure and death. While current therapies exist to slow the progression, no therapies are available to resolve fibrosis. Methods We characterized the O-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT)/O-GlcNAc axis in IPF using single-cell RNA-sequencing (scRNA-seq) data and human lung sections and isolated fibroblasts from IPF and non-IPF donors. The underlying mechanism(s) of IPF were further investigated using multiple experimental models to modulate collagen expression and accumulation by genetically and pharmacologically targeting OGT. Furthermore, we hone in on the transforming growth factor-beta (TGF-β) effector molecule, Smad3, by co-expressing it with OGT to determine if it is modified and its subsequent effect on Smad3 activation. Results We found that OGT and O-GlcNAc levels are upregulated in patients with IPF compared to non-IPF. We report that the OGT regulates collagen deposition and fibrosis resolution, which is an evolutionarily conserved process demonstrated across multiple species. Co-expression of OGT and Smad3 showed that Smad3 is O-GlcNAc modified. Blocking OGT activity resulted in decreased phosphorylation at Ser-423/425 of Smad3 attenuating the effects of TGF-β1 induced collagen expression/deposition. Conclusion OGT inhibition or knockdown successfully blocked and reversed collagen expression and accumulation, respectively. Smad3 is discovered to be a substrate of OGT and its O-GlcNAc modification(s) directly affects its phosphorylation state. These data identify OGT as a potential target in pulmonary fibrosis resolution, as well as other diseases that might have aberrant ECM/collagen accumulation.
Collapse
Affiliation(s)
- Shia Vang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eric Scott Helton
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yiming Guo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bailey Burpee
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elex Rose
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Molly Easter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Seth Bollenbecker
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Meghan June Hirsch
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Emma Lea Matthews
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Luke Isaac Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Patrick Henry Howze
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vasanthi Rajasekaran
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rebecca Denson
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Phillip Cochran
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Isaac Kwame Attah
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Heather Olson
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Girish Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stefanie Krick
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jarrod Wesley Barnes
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Goswami P, Banks CA, Thornton J, Bengs B, Sardiu ME, Florens L, Washburn MP. Distinct regions within SAP25 recruit O-linked glycosylation, DNA demethylation, and ubiquitin ligase and hydrolase activities to the Sin3/HDAC complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583553. [PMID: 38496433 PMCID: PMC10942353 DOI: 10.1101/2024.03.05.583553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Epigenetic control of gene expression is crucial for maintaining gene regulation. Sin3 is an evolutionarily conserved repressor protein complex mainly associated with histone deacetylase (HDAC) activity. A large number of proteins are part of Sin3/HDAC complexes, and the function of most of these members remains poorly understood. SAP25, a previously identified Sin3A associated protein of 25 kDa, has been proposed to participate in regulating gene expression programs involved in the immune response but the exact mechanism of this regulation is unclear. SAP25 is not expressed in HEK293 cells, which hence serve as a natural knockout system to decipher the molecular functions uniquely carried out by this Sin3/HDAC subunit. Using molecular, proteomic, protein engineering, and interaction network approaches, we show that SAP25 interacts with distinct enzymatic and regulatory protein complexes in addition to Sin3/HDAC. While the O-GlcNAc transferase (OGT) and the TET1 /TET2/TET3 methylcytosine dioxygenases have been previously linked to Sin3/HDAC, in HEK293 cells, these interactions were only observed in the affinity purification in which an exogenously expressed SAP25 was the bait. Additional proteins uniquely recovered from the Halo-SAP25 pull-downs included the SCF E3 ubiquitin ligase complex SKP1/FBXO3/CUL1 and the ubiquitin carboxyl-terminal hydrolase 11 (USP11), which have not been previously associated with Sin3/HDAC. Finally, we use mutational analysis to demonstrate that distinct regions of SAP25 participate in its interaction with USP11, OGT/TETs, and SCF(FBXO3).) These results suggest that SAP25 may function as an adaptor protein to coordinate the assembly of different enzymatic complexes to control Sin3/HDAC-mediated gene expression.
Collapse
Affiliation(s)
- Pratik Goswami
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Charles A.S. Banks
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Janet Thornton
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bethany Bengs
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mihaela E. Sardiu
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Michael P. Washburn
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
6
|
Liu X, Cai YD, Chiu JC. Regulation of protein O-GlcNAcylation by circadian, metabolic, and cellular signals. J Biol Chem 2024; 300:105616. [PMID: 38159854 PMCID: PMC10810748 DOI: 10.1016/j.jbc.2023.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a dynamic post-translational modification that regulates thousands of proteins and almost all cellular processes. Aberrant O-GlcNAcylation has been associated with numerous diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and type 2 diabetes. O-GlcNAcylation is highly nutrient-sensitive since it is dependent on UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway (HBP). We previously observed daily rhythmicity of protein O-GlcNAcylation in a Drosophila model that is sensitive to the timing of food consumption. We showed that the circadian clock is pivotal in regulating daily O-GlcNAcylation rhythms given its control of the feeding-fasting cycle and hence nutrient availability. Interestingly, we reported that the circadian clock also modulates daily O-GlcNAcylation rhythm by regulating molecular mechanisms beyond the regulation of food consumption time. A large body of work now indicates that O-GlcNAcylation is likely a generalized cellular status effector as it responds to various cellular signals and conditions, such as ER stress, apoptosis, and infection. In this review, we summarize the metabolic regulation of protein O-GlcNAcylation through nutrient availability, HBP enzymes, and O-GlcNAc processing enzymes. We discuss the emerging roles of circadian clocks in regulating daily O-GlcNAcylation rhythm. Finally, we provide an overview of other cellular signals or conditions that impact O-GlcNAcylation. Many of these cellular pathways are themselves regulated by the clock and/or metabolism. Our review highlights the importance of maintaining optimal O-GlcNAc rhythm by restricting eating activity to the active period under physiological conditions and provides insights into potential therapeutic targets of O-GlcNAc homeostasis under pathological conditions.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA.
| |
Collapse
|
7
|
Ye L, Ding W, Xiao D, Jia Y, Zhao Z, Ao X, Wang J. O-GlcNAcylation: cellular physiology and therapeutic target for human diseases. MedComm (Beijing) 2023; 4:e456. [PMID: 38116061 PMCID: PMC10728774 DOI: 10.1002/mco2.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAcylation) is a distinctive posttranslational protein modification involving the coordinated action of O-GlcNAc transferase and O-GlcNAcase, primarily targeting serine or threonine residues in various proteins. This modification impacts protein functionality, influencing stability, protein-protein interactions, and localization. Its interaction with other modifications such as phosphorylation and ubiquitination is becoming increasingly evident. Dysregulation of O-GlcNAcylation is associated with numerous human diseases, including diabetes, nervous system degeneration, and cancers. This review extensively explores the regulatory mechanisms of O-GlcNAcylation, its effects on cellular physiology, and its role in the pathogenesis of diseases. It examines the implications of aberrant O-GlcNAcylation in diabetes and tumorigenesis, highlighting novel insights into its potential role in cardiovascular diseases. The review also discusses the interplay of O-GlcNAcylation with other protein modifications and its impact on cell growth and metabolism. By synthesizing current research, this review elucidates the multifaceted roles of O-GlcNAcylation, providing a comprehensive reference for future studies. It underscores the potential of targeting the O-GlcNAcylation cycle in developing novel therapeutic strategies for various pathologies.
Collapse
Affiliation(s)
- Lin Ye
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Wei Ding
- The Affiliated Hospital of Qingdao UniversityQingdao Medical CollegeQingdao UniversityQingdaoChina
| | - Dandan Xiao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Yi Jia
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Zhonghao Zhao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Xiang Ao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Jianxun Wang
- School of Basic MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
8
|
Lu P, Liu Y, He M, Cao T, Yang M, Qi S, Yu H, Gao H. Cryo-EM structure of human O-GlcNAcylation enzyme pair OGT-OGA complex. Nat Commun 2023; 14:6952. [PMID: 37907462 PMCID: PMC10618255 DOI: 10.1038/s41467-023-42427-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
O-GlcNAcylation is a conserved post-translational modification that attaches N-acetyl glucosamine (GlcNAc) to myriad cellular proteins. In response to nutritional and hormonal signals, O-GlcNAcylation regulates diverse cellular processes by modulating the stability, structure, and function of target proteins. Dysregulation of O-GlcNAcylation has been implicated in the pathogenesis of cancer, diabetes, and neurodegeneration. A single pair of enzymes, the O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), catalyzes the addition and removal of O-GlcNAc on over 3,000 proteins in the human proteome. However, how OGT selects its native substrates and maintains the homeostatic control of O-GlcNAcylation of so many substrates against OGA is not fully understood. Here, we present the cryo-electron microscopy (cryo-EM) structures of human OGT and the OGT-OGA complex. Our studies reveal that OGT forms a functionally important scissor-shaped dimer. Within the OGT-OGA complex structure, a long flexible OGA segment occupies the extended substrate-binding groove of OGT and positions a serine for O-GlcNAcylation, thus preventing OGT from modifying other substrates. Conversely, OGT disrupts the functional dimerization of OGA and occludes its active site, resulting in the blocking of access by other substrates. This mutual inhibition between OGT and OGA may limit the futile O-GlcNAcylation cycles and help to maintain O-GlcNAc homeostasis.
Collapse
Affiliation(s)
- Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Yusong Liu
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Maozhou He
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Ting Cao
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Mengquan Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Shutao Qi
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Hongtao Yu
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Haishan Gao
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
10
|
Protein O-GlcNAcylation and the regulation of energy homeostasis: lessons from knock-out mouse models. J Biomed Sci 2022; 29:64. [PMID: 36058931 PMCID: PMC9443036 DOI: 10.1186/s12929-022-00851-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
O-GlcNAcylation corresponds to the addition of N-Acetylglucosamine (GlcNAc) on serine or threonine residues of cytosolic, nuclear and mitochondrial proteins. This reversible modification is catalysed by a unique couple of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). OGT uses UDP-GlcNAc produced in the hexosamine biosynthesis pathway, to modify proteins. UDP-GlcNAc is at the cross-roads of several cellular metabolisms, including glucose, amino acids and fatty acids. Therefore, OGT is considered as a metabolic sensor that post-translationally modifies proteins according to nutrient availability. O-GlcNAcylation can modulate protein–protein interactions and regulate protein enzymatic activities, stability or subcellular localization. In addition, it can compete with phosphorylation on the same serine or threonine residues, or regulate positively or negatively the phosphorylation of adjacent residues. As such, O-GlcNAcylation is a major actor in the regulation of cell signaling and has been implicated in numerous physiological and pathological processes. A large body of evidence have indicated that increased O-GlcNAcylation participates in the deleterious effects of glucose (glucotoxicity) in metabolic diseases. However, recent studies using mice models with OGT or OGA knock-out in different tissues have shown that O-GlcNAcylation protects against various cellular stresses, and indicate that both increase and decrease in O-GlcNAcylation have deleterious effects on the regulation of energy homeostasis.
Collapse
|
11
|
Sun L, Lv S, Song T. O-GlcNAcylation links oncogenic signals and cancer epigenetics. Discov Oncol 2021; 12:54. [PMID: 35201498 PMCID: PMC8777512 DOI: 10.1007/s12672-021-00450-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Prevalent dysregulation of epigenetic modifications plays a pivotal role in cancer. Targeting epigenetic abnormality is a new strategy for cancer therapy. Understanding how conventional oncogenic factors cause epigenetic abnormality is of great basic and translational value. O-GlcNAcylation is a protein modification which affects physiology and pathophysiology. In mammals, O-GlcNAcylation is catalyzed by one single enzyme OGT and removed by one single enzyme OGA. O-GlcNAcylation is affected by the availability of the donor, UDP-GlcNAc, generated by the serial enzymatic reactions in the hexoamine biogenesis pathway (HBP). O-GlcNAcylation regulates a wide spectrum of substrates including many proteins involved in epigenetic modification. Like epigenetic modifications, abnormality of O-GlcNAcylation is also common in cancer. Studies have revealed substantial impact on HBP enzymes and OGT/OGA by oncogenic signals. In this review, we will first summarize how oncogenic signals regulate HBP enzymes, OGT and OGA in cancer. We will then integrate this knowledge with the up to date understanding how O-GlcNAcylation regulates epigenetic machinery. With this, we propose a signal axis from oncogenic signals through O-GlcNAcylation dysregulation to epigenetic abnormality in cancer. Further elucidation of this axis will not only advance our understanding of cancer biology but also provide new revenues towards cancer therapy.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
12
|
Lee JB, Pyo KH, Kim HR. Role and Function of O-GlcNAcylation in Cancer. Cancers (Basel) 2021; 13:cancers13215365. [PMID: 34771527 PMCID: PMC8582477 DOI: 10.3390/cancers13215365] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Despite the rapid advancement in immunotherapy and targeted agents, many patients diagnosed with cancer have poor prognosis with dismal overall survival. One of the key hallmarks of cancer is the ability of cancer cells to reprogram their energy metabolism. O-GlcNAcylation is an emerging potential mechanism for cancer cells to induce proliferation and progression of tumor cells and resistance to chemotherapy. This review summarizes the mechanism behind O-GlcNAcylation and discusses the role of O-GlcNAcylation, including its function with receptor tyrosine kinase and chemo-resistance in cancer, and immune response to cancer and as a prognostic factor. Further pre-clinical studies on O-GlcNAcylation are warranted to assess the clinical efficacy of agents targeting O-GlcNAcylation. Abstract Cancer cells are able to reprogram their glucose metabolism and retain energy via glycolysis even under aerobic conditions. They activate the hexosamine biosynthetic pathway (HBP), and the complex interplay of O-linked N-acetylglucosaminylation (O-GlcNAcylation) via deprivation of nutrients or increase in cellular stress results in the proliferation, progression, and metastasis of cancer cells. Notably, cancer is one of the emerging diseases associated with O-GlcNAcylation. In this review, we summarize studies that delineate the role of O-GlcNAcylation in cancer, including its modulation in metastasis, function with receptor tyrosine kinases, and resistance to chemotherapeutic agents, such as cisplatin. In addition, we discuss the function of O-GlcNAcylation in eliciting immune responses associated with immune surveillance in the tumor microenvironment. O-GlcNAcylation is increasingly accepted as one of the key players involved in the activation and differentiation of T cells and macrophages. Finally, we discuss the prognostic role of O-GlcNAcylation and potential therapeutic agents such as O-linked β-N-acetylglucosamine-transferase inhibitors, which may help overcome the resistance mechanism associated with the reprogramming of glucose metabolism.
Collapse
Affiliation(s)
- Jii Bum Lee
- Division of Hemato-Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Kyoung-Ho Pyo
- Department of Medical Science, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: (K.-H.P.); (H.R.K.); Tel.: +82-2228-0869 (K.-H.P.); +82-2228-8125 (H.R.K.)
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: (K.-H.P.); (H.R.K.); Tel.: +82-2228-0869 (K.-H.P.); +82-2228-8125 (H.R.K.)
| |
Collapse
|
13
|
Stephen HM, Adams TM, Wells L. Regulating the Regulators: Mechanisms of Substrate Selection of the O-GlcNAc Cycling Enzymes OGT and OGA. Glycobiology 2021; 31:724-733. [PMID: 33498085 PMCID: PMC8351506 DOI: 10.1093/glycob/cwab005] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
Thousands of nuclear and cytosolic proteins are modified with a single β-N-acetylglucosamine on serine and threonine residues in mammals, a modification termed O-GlcNAc. This modification is essential for normal development and plays important roles in virtually all intracellular processes. Additionally, O-GlcNAc is involved in many disease states, including cancer, diabetes, and X-linked intellectual disability. Given the myriad of functions of the O-GlcNAc modification, it is therefore somewhat surprising that O-GlcNAc cycling is mediated by only two enzymes: the O-GlcNAc transferase (OGT), which adds O-GlcNAc, and the O-GlcNAcase (OGA), which removes it. A significant outstanding question in the O-GlcNAc field is how do only two enzymes mediate such an abundant and dynamic modification. In this review, we explore the current understanding of mechanisms for substrate selection for the O-GlcNAc cycling enzymes. These mechanisms include direct substrate interaction with specific domains of OGT or OGA, selection of interactors via partner proteins, posttranslational modification of OGT or OGA, nutrient sensing, and localization alteration. Altogether, current research paints a picture of an exquisitely regulated and complex system by which OGT and OGA select substrates. We also make recommendations for future work, toward the goal of identifying interaction mechanisms for specific substrates that may be able to be exploited for various research and medical treatment goals.
Collapse
Affiliation(s)
- Hannah M Stephen
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens 30602, GA, USA
| | - Trevor M Adams
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens 30602, GA, USA
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens 30602, GA, USA
| |
Collapse
|
14
|
Chen LL, Huang JQ, Wu YY, Chen LB, Li SP, Zhang X, Wu S, Ren FZ, Lei XG. Loss of Selenov predisposes mice to extra fat accumulation and attenuated energy expenditure. Redox Biol 2021; 45:102048. [PMID: 34167027 PMCID: PMC8227834 DOI: 10.1016/j.redox.2021.102048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Selenoprotein V (SELENOV) is a new and the least conserved member of the selenoprotein family. Herein we generated Selenov knockout (KO) mice to determine its in vivo function. The KO led to 16-19% increases (P < 0.05) in body weight that were largely due to 54% higher (P < 0.05) fat mass accumulation, compared with the wild-type (WT) controls. The extra fat accumulation in the KO mice was mediated by up-regulations of genes and proteins involved in lipogenesis (Acc, Fas, Dgat, and Lpl; up by 40%-1.1-fold) and down-regulations of lipolysis (Atgl, Hsl, Ces1d, and Cpt1a; down by 36-89%) in the adipose tissues. The KO also decreased (P < 0.05) VO2 consumption (14-21%), VCO2 production (14-16%), and energy expenditure (14-23%), compared with the WT controls. SELENOV and O-GlcNAc transferase (OGT) exhibited a novel protein-protein interaction that explained the KO-induced decreases (P < 0.05) of OGT protein (15-29%), activity (33%), and function (O-GlcNAcylation, 10-21%) in the adipose tissues. A potential cascade of SELENOV-OGT-AMP-activated protein kinase might serve as a central mechanism to link the biochemical and molecular responses to the KO. Overall, our data revealed a novel in vivo function and mechanism of SELENOV as a new inhibitor of body fat accumulation, activator of energy expenditure, regulator of O-GlcNAcylation, and therapeutic target of such related disorders.
Collapse
Affiliation(s)
- Ling-Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Yuan-Yuan Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Liang-Bing Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Life Science and Agriculture Department, Zhoukou Normal University, Zhoukou, Henan, 466001, China
| | - Shu-Ping Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Xu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| | - Xin-Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
15
|
Nutrient regulation of the flow of genetic information by O-GlcNAcylation. Biochem Soc Trans 2021; 49:867-880. [PMID: 33769449 DOI: 10.1042/bst20200769] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 01/10/2023]
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification (PTM) that is actively added to and removed from thousands of intracellular proteins. As a PTM, O-GlcNAcylation tunes the functions of a protein in various ways, such as enzymatic activity, transcriptional activity, subcellular localization, intermolecular interactions, and degradation. Its regulatory roles often interplay with the phosphorylation of the same protein. Governed by 'the Central Dogma', the flow of genetic information is central to all cellular activities. Many proteins regulating this flow are O-GlcNAc modified, and their functions are tuned by the cycling sugar. Herein, we review the regulatory roles of O-GlcNAcylation on the epigenome, in DNA replication and repair, in transcription and in RNA processing, in protein translation and in protein turnover.
Collapse
|
16
|
Joiner CM, Hammel FA, Janetzko J, Walker S. Protein Substrates Engage the Lumen of O-GlcNAc Transferase's Tetratricopeptide Repeat Domain in Different Ways. Biochemistry 2021; 60:847-853. [PMID: 33709700 PMCID: PMC8040631 DOI: 10.1021/acs.biochem.0c00981] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycosylation of nuclear and cytoplasmic proteins is an essential post-translational modification in mammals. O-GlcNAc transferase (OGT), the sole enzyme responsible for this modification, glycosylates more than 1000 unique nuclear and cytoplasmic substrates. How OGT selects its substrates is a fundamental question that must be answered to understand OGT's unusual biology. OGT contains a long tetratricopeptide repeat (TPR) domain that has been implicated in substrate selection, but there is almost no information about how changes to this domain affect glycosylation of individual substrates. By profiling O-GlcNAc in cell extracts and probing glycosylation of purified substrates, we show here that ladders of asparagines and aspartates that extend the full length of OGT's TPR lumen control substrate glycosylation. Different substrates are sensitive to changes in different regions of OGT's TPR lumen. We also found that substrates with glycosylation sites close to the C-terminus bypass lumenal binding. Our findings demonstrate that substrates can engage OGT in a variety of different ways for glycosylation.
Collapse
Affiliation(s)
- Cassandra M. Joiner
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston MA 02115, USA
| | - Forrest A. Hammel
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston MA 02115, USA
- Program in Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - John Janetzko
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston MA 02115, USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston MA 02115, USA
| |
Collapse
|
17
|
Mueller T, Ouyang X, Johnson MS, Qian WJ, Chatham JC, Darley-Usmar V, Zhang J. New Insights Into the Biology of Protein O-GlcNAcylation: Approaches and Observations. FRONTIERS IN AGING 2021; 1:620382. [PMID: 35822169 PMCID: PMC9261361 DOI: 10.3389/fragi.2020.620382] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
O-GlcNAcylation is a protein posttranslational modification that results in the addition of O-GlcNAc to Ser/Thr residues. Since its discovery in the 1980s, it has been shown to play an important role in a broad range of cellular functions by modifying nuclear, cytosolic, and mitochondrial proteins. The addition of O-GlcNAc is catalyzed by O-GlcNAc transferase (OGT), and its removal is catalyzed by O-GlcNAcase (OGA). Levels of protein O-GlcNAcylation change in response to nutrient availability and metabolic, oxidative, and proteotoxic stress. OGT and OGA levels, activity, and target engagement are also regulated. Together, this results in adaptive and, on occasions, detrimental responses that affect cellular function and survival, which impact a broad range of pathologies and aging. Over the past several decades, approaches and tools to aid the investigation of the regulation and consequences of protein O-GlcNAcylation have been developed and enhanced. This review is divided into two sections: 1) We will first focus on current standard and advanced technical approaches for assessing enzymatic activities of OGT and OGT, assessing the global and specific protein O-GlcNAcylation and 2) we will summarize in vivo findings of functional consequences of changing protein O-GlcNAcylation, using genetic and pharmacological approaches.
Collapse
Affiliation(s)
- Toni Mueller
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xiaosen Ouyang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michelle S. Johnson
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - John C. Chatham
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor Darley-Usmar
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Liu Y, Yao RZ, Lian S, Liu P, Hu YJ, Shi HZ, Lv HM, Yang YY, Xu B, Li SZ. O-GlcNAcylation: the "stress and nutrition receptor" in cell stress response. Cell Stress Chaperones 2021; 26:297-309. [PMID: 33159661 PMCID: PMC7925768 DOI: 10.1007/s12192-020-01177-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is an atypical, reversible, and dynamic glycosylation that plays a critical role in maintaining the normal physiological functions of cells by regulating various biological processes such as signal transduction, proteasome activity, apoptosis, autophagy, transcription, and translation. It can also respond to environmental changes and physiological signals to play the role of "stress receptor" and "nutrition sensor" in a variety of stress responses and biological processes. Even, a homeostatic disorder of O-GlcNAcylation may cause many diseases. Therefore, O-GlcNAcylation and its regulatory role in stress response are reviewed in this paper.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Rui-Zhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, People's Republic of China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Ya-Jie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Zhao Shi
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Ming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yu-Ying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| |
Collapse
|
19
|
Shin EM, Huynh VT, Neja SA, Liu CY, Raju A, Tan K, Tan NS, Gunaratne J, Bi X, Iyer LM, Aravind L, Tergaonkar V. GREB1: An evolutionarily conserved protein with a glycosyltransferase domain links ERα glycosylation and stability to cancer. SCIENCE ADVANCES 2021; 7:7/12/eabe2470. [PMID: 33731348 PMCID: PMC7968844 DOI: 10.1126/sciadv.abe2470] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/29/2021] [Indexed: 05/03/2023]
Abstract
What covalent modifications control the temporal ubiquitination of ERα and hence the duration of its transcriptional activity remain poorly understood. We show that GREB1, an ERα-inducible enzyme, catalyzes O-GlcNAcylation of ERα at residues T553/S554, which stabilizes ERα protein by inhibiting association with the ubiquitin ligase ZNF598. Loss of GREB1-mediated glycosylation of ERα results in reduced cellular ERα levels and insensitivity to estrogen. Higher GREB1 expression in ERα+ve breast cancer is associated with greater survival in response to tamoxifen, an ERα agonist. Mice lacking Greb1 exhibit growth and fertility defects reminiscent of phenotypes in ERα-null mice. In summary, this study identifies GREB1, a protein with an evolutionarily conserved domain related to DNA-modifying glycosyltransferases of bacteriophages and kinetoplastids, as the first inducible and the only other (apart from OGT) O-GlcNAc glycosyltransferase in mammalian cytoplasm and ERα as its first substrate.
Collapse
Affiliation(s)
- Eun Myoung Shin
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Vinh Thang Huynh
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sultan Abda Neja
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Chia Yi Liu
- Bioprocessing Technology Institute (BTI), A*STAR, Singapore, Singapore
| | - Anandhkumar Raju
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Kelly Tan
- Bioprocessing Technology Institute (BTI), A*STAR, Singapore, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive,, Singapore 637551, Singapore
| | - Jayantha Gunaratne
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117594, Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute (BTI), A*STAR, Singapore, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| |
Collapse
|
20
|
Kositzke A, Fan D, Wang A, Li H, Worth M, Jiang J. Elucidating the protein substrate recognition of O-GlcNAc transferase (OGT) toward O-GlcNAcase (OGA) using a GlcNAc electrophilic probe. Int J Biol Macromol 2021; 169:51-59. [PMID: 33333092 PMCID: PMC7856287 DOI: 10.1016/j.ijbiomac.2020.12.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The essential human O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is the sole enzyme responsible for modifying thousands of intracellular proteins with the monosaccharide O-GlcNAc. This unique modification plays crucial roles in human health and disease, but the substrate recognition of OGT remains poorly understood. Intriguingly, the only human enzyme reported to remove this modification, O-GlcNAcase (OGA), is O-GlcNAc modified. Here, we exploited a GlcNAc electrophilic probe (GEP1A) to rapidly screen OGT mutants in a fluorescence assay that can discriminate between altered OGT-sugar and -protein substrate binding to help elucidate the binding mode of OGT toward OGA protein substrate. Since OGT tetratricopeptide repeat (TPR) domain plays a key role in OGT-OGA binding, we screened 30 OGT TPR mutants, which revealed 15 "ladder like" asparagine or aspartate residues spanning TPRs 3-7 and 10-13.5 that affect OGA O-GlcNAcylation. By applying a truncated OGA construct, we found that OGA's N-terminal region or pseudo histone acetyltransferase domain is not required for its O-GlcNAcylation, suggesting OGT functionally interacts with OGA through its catalytic and/or stalk domains. This work represents the first effort to systemically investigate each OGT TPR and our findings will facilitate the development of new strategies to investigate the role of substrate-specific O-GlcNAcylation.
Collapse
Affiliation(s)
- Adam Kositzke
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dacheng Fan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ao Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthew Worth
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
21
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
22
|
Su L, Zhao T, Li H, Li H, Su X, Ba X, Zhang Y, Huang B, Lu J, Li X. ELT-2 promotes O-GlcNAc transferase OGT-1 expression to modulate Caenorhabditis elegans lifespan. J Cell Biochem 2020; 121:4898-4907. [PMID: 32628333 DOI: 10.1002/jcb.29817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 11/12/2022]
Abstract
O-GlcNAc transferase (OGT) is the enzyme catalyzing protein O-GlcNAcylation by addition of a single O-linked-β-N-acetylglucosamine molecule (O-GlcNAc) to nuclear and cytoplasmic targets, and it uses uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) as a donor. As UDP-GlcNAc is the final product of the nutrient-sensing hexosamine signaling pathway, overexpression or knockout of ogt in mammals or invertebrate models influences cellular nutrient-response signals and increases susceptibility to chronic diseases of aging. Evidence shows that OGT expression levels decrease in tissues of older mice and rats. However, how OGT expression is modulated in the aging process remains poorly understood. In Caenorhabditis elegans, the exclusive mammalian OGT ortholog OGT-1 is crucial for lifespan control. Here, we observe that worm OGT-1 expression gradually reduces during aging. By combining prediction via the "MATCH" algorithm and luciferase reporter assays, GATA factor ELT-2, the homolog of human GATA4, is identified as a transcriptional factor driving OGT-1 expression. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assays show ELT-2 directly binds to and activates the ogt-1 promoter. Knockdown of elt-2 decreases the global O-GlcNAc modification level and reduces the lifespan of wild-type worms. The reduction in lifespan caused by elt-2 RNA interference is abrogated by the loss of ogt-1. These results imply that GATA factors are able to activate OGT expression, which could be beneficial for longevity and the development of therapeutic treatment for aging-related diseases.
Collapse
Affiliation(s)
- Liangping Su
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tingting Zhao
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Hongyuan Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Hongmei Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Xin Su
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Yu Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaoxue Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
23
|
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev 2020; 101:427-493. [PMID: 32730113 DOI: 10.1152/physrev.00043.2019] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the mid-1980s, the identification of serine and threonine residues on nuclear and cytoplasmic proteins modified by a N-acetylglucosamine moiety (O-GlcNAc) via an O-linkage overturned the widely held assumption that glycosylation only occurred in the endoplasmic reticulum, Golgi apparatus, and secretory pathways. In contrast to traditional glycosylation, the O-GlcNAc modification does not lead to complex, branched glycan structures and is rapidly cycled on and off proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular functions, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. Dysregulation in O-GlcNAc cycling has been implicated in the progression of a wide range of diseases, such as diabetes, diabetic complications, cancer, cardiovascular, and neurodegenerative diseases. This review will outline our current understanding of the processes involved in regulating O-GlcNAc turnover, the role of O-GlcNAcylation in regulating cellular physiology, and how dysregulation in O-GlcNAc cycling contributes to pathophysiological processes.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
24
|
Abstract
O-Linked N-acetyl glucosamine (O-GlcNAc) is a protein modification found on thousands of nuclear, cytosolic, and mitochondrial proteins. Many O-GlcNAc sites occur in proximity to protein sites that are likewise modified by phosphorylation. While several studies have uncovered crosstalk between these two signaling modifications on individual proteins and pathways, an understanding of the role of O-GlcNAc in regulating kinases, the enzymes that install the phosphate modification, is still emerging. Here we review recent methods to profile the O-GlcNAc modification on a global scale that have revealed more than 100 kinases are modified by O-GlcNAc and highlight existing studies about regulation of these kinases by O-GlcNAc. Continuing efforts to profile the O-GlcNAc proteome and understand the role of O-GlcNAc on kinases will reveal new mechanisms of regulation and potential avenues for manipulation of the signaling mechanisms at the intersection of O-GlcNAc and phosphorylation.
Collapse
Affiliation(s)
- Paul A. Schwein
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
25
|
Esch N, Jo S, Moore M, Alejandro EU. Nutrient Sensor mTOR and OGT: Orchestrators of Organelle Homeostasis in Pancreatic β-Cells. J Diabetes Res 2020; 2020:8872639. [PMID: 33457426 PMCID: PMC7787834 DOI: 10.1155/2020/8872639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
The purpose of this review is to integrate the role of nutrient-sensing pathways into β-cell organelle dysfunction prompted by nutrient excess during type 2 diabetes (T2D). T2D encompasses chronic hyperglycemia, hyperlipidemia, and inflammation, which each contribute to β-cell failure. These factors can disrupt the function of critical β-cell organelles, namely, the ER, mitochondria, lysosomes, and autophagosomes. Dysfunctional organelles cause defects in insulin synthesis and secretion and activate apoptotic pathways if homeostasis is not restored. In this review, we will focus on mTORC1 and OGT, two major anabolic nutrient sensors with important roles in β-cell physiology. Though acute stimulation of these sensors frequently improves β-cell function and promotes adaptation to cell stress, chronic and sustained activity disturbs organelle homeostasis. mTORC1 and OGT regulate organelle function by influencing the expression and activities of key proteins, enzymes, and transcription factors, as well as by modulating autophagy to influence clearance of defective organelles. In addition, mTORC1 and OGT activity influence islet inflammation during T2D, which can further disrupt organelle and β-cell function. Therapies for T2D that fine-tune the activity of these nutrient sensors have yet to be developed, but the important role of mTORC1 and OGT in organelle homeostasis makes them promising targets to improve β-cell function and survival.
Collapse
Affiliation(s)
- Nicholas Esch
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Seokwon Jo
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mackenzie Moore
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Surgery, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emilyn U. Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
26
|
Singh JP, Qian K, Lee JS, Zhou J, Han X, Zhang B, Ong Q, Ni W, Jiang M, Ruan HB, Li MD, Zhang K, Ding Z, Lee P, Singh K, Wu J, Herzog RI, Kaech S, Wendel HG, Yates JR, Han W, Sherwin RS, Nie Y, Yang X. O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth. Oncogene 2020; 39:560-573. [PMID: 31501520 PMCID: PMC7107572 DOI: 10.1038/s41388-019-0975-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 05/12/2019] [Accepted: 06/18/2019] [Indexed: 01/24/2023]
Abstract
Cancer cells are known to adopt aerobic glycolysis in order to fuel tumor growth, but the molecular basis of this metabolic shift remains largely undefined. O-GlcNAcase (OGA) is an enzyme harboring O-linked β-N-acetylglucosamine (O-GlcNAc) hydrolase and cryptic lysine acetyltransferase activities. Here, we report that OGA is upregulated in a wide range of human cancers and drives aerobic glycolysis and tumor growth by inhibiting pyruvate kinase M2 (PKM2). PKM2 is dynamically O-GlcNAcylated in response to changes in glucose availability. Under high glucose conditions, PKM2 is a target of OGA-associated acetyltransferase activity, which facilitates O-GlcNAcylation of PKM2 by O-GlcNAc transferase (OGT). O-GlcNAcylation inhibits PKM2 catalytic activity and thereby promotes aerobic glycolysis and tumor growth. These studies define a causative role for OGA in tumor progression and reveal PKM2 O-GlcNAcylation as a metabolic rheostat that mediates exquisite control of aerobic glycolysis.
Collapse
Affiliation(s)
- Jay Prakash Singh
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Kevin Qian
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Jeong-Sang Lee
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Jinfeng Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Bichen Zhang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Qunxiang Ong
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Singapore Bioimaging Consortium, Singapore, Singapore
| | - Weiming Ni
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Mingzuo Jiang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Min-Dian Li
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Kaisi Zhang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Zhaobing Ding
- Singapore Bioimaging Consortium, Singapore, Singapore
| | - Philip Lee
- Singapore Bioimaging Consortium, Singapore, Singapore
| | - Kamini Singh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jing Wu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Raimund I Herzog
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Susan Kaech
- Department of Immunobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Weiping Han
- Singapore Bioimaging Consortium, Singapore, Singapore
| | - Robert S Sherwin
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA.
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA.
| |
Collapse
|
27
|
Gorelik A, Bartual SG, Borodkin VS, Varghese J, Ferenbach AT, van Aalten DMF. Genetic recoding to dissect the roles of site-specific protein O-GlcNAcylation. Nat Struct Mol Biol 2019; 26:1071-1077. [PMID: 31695185 PMCID: PMC6858883 DOI: 10.1038/s41594-019-0325-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
Modification of specific Ser and Thr residues of nucleocytoplasmic proteins with O-GlcNAc, catalyzed by O-GlcNAc transferase (OGT), is an abundant posttranslational event essential for proper animal development and is dysregulated in various diseases. Due to the rapid concurrent removal by the single O-GlcNAcase (OGA), precise functional dissection of site-specific O-GlcNAc modification in vivo is currently not possible without affecting the entire O-GlcNAc proteome. Exploiting the fortuitous promiscuity of OGT, we show that S-GlcNAc is a hydrolytically stable and accurate structural mimic of O-GlcNAc that can be encoded in mammalian systems with CRISPR-Cas9 in an otherwise unperturbed O-GlcNAcome. Using this approach, we target an elusive Ser 405 O-GlcNAc site on OGA, showing that this site-specific modification affects OGA stability.
Collapse
Affiliation(s)
- Andrii Gorelik
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Sergio Galan Bartual
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Vladimir S Borodkin
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Joby Varghese
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
28
|
Sullivan MR, Mattaini KR, Dennstedt EA, Nguyen AA, Sivanand S, Reilly MF, Meeth K, Muir A, Darnell AM, Bosenberg MW, Lewis CA, Vander Heiden MG. Increased Serine Synthesis Provides an Advantage for Tumors Arising in Tissues Where Serine Levels Are Limiting. Cell Metab 2019; 29:1410-1421.e4. [PMID: 30905671 PMCID: PMC6551255 DOI: 10.1016/j.cmet.2019.02.015] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/28/2019] [Accepted: 02/25/2019] [Indexed: 02/03/2023]
Abstract
Tumors exhibit altered metabolism compared to normal tissues. Many cancers upregulate expression of serine synthesis pathway enzymes, and some tumors exhibit copy-number gain of the gene encoding the first enzyme in the pathway, phosphoglycerate dehydrogenase (PHGDH). However, whether increased serine synthesis promotes tumor growth and how serine synthesis benefits tumors is controversial. Here, we demonstrate that increased PHGDH expression promotes tumor progression in mouse models of melanoma and breast cancer, human tumor types that exhibit PHGDH copy-number gain. We measure circulating serine levels and find that PHGDH expression is necessary to support cell proliferation at lower physiological serine concentrations. Increased dietary serine or high PHGDH expression is sufficient to increase intracellular serine levels and support faster tumor growth. Together, these data suggest that physiological serine availability restrains tumor growth and argue that tumors arising in serine-limited environments acquire a fitness advantage by upregulating serine synthesis pathway enzymes.
Collapse
Affiliation(s)
- Mark R Sullivan
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Katherine R Mattaini
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily A Dennstedt
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna A Nguyen
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sharanya Sivanand
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Montana F Reilly
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Katrina Meeth
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Alexander Muir
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcus W Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
29
|
Gao J, Yang Y, Qiu R, Zhang K, Teng X, Liu R, Wang Y. Proteomic analysis of the OGT interactome: novel links to epithelial-mesenchymal transition and metastasis of cervical cancer. Carcinogenesis 2019; 39:1222-1234. [PMID: 30052810 PMCID: PMC6175026 DOI: 10.1093/carcin/bgy097] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/22/2018] [Indexed: 12/19/2022] Open
Abstract
The role of O-GlcNAc transferase (OGT) in gene regulation and tumor invasion is poorly understood. Here, we have identified several previously undiscovered OGT-interacting proteins, including the PRMT5/WDR77 complex, the PRC2 complex, the ten-eleven translocation (TET) family, the CRL4B complex and the nucleosome remodeling and deacetylase (NuRD) complex. Genome-wide analysis of target genes responsive to OGT resulted in identification of a cohort of genes including SNAI1 and ING4 that are critically involved in cell epithelial–mesenchymal transition and invasion/metastasis. We have demonstrated that OGT promotes carcinogenesis and metastasis of cervical cancer cells. OGT’s expression is significantly upregulated in cervical cancer, and low OGT level is correlated with improved prognosis. Our study has thus revealed a mechanistic link between OGT and tumor progression, providing potential prognostic indicators and targets for cancer therapy.
Collapse
Affiliation(s)
- Jie Gao
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xu Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ruiqiong Liu
- Cancer Center, The Second Hospital of Shandong University, Jinan, China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Gao Y, Liu J, Bai Z, Sink S, Zhao C, Lorenzo FR, McClain DA. Iron down-regulates leptin by suppressing protein O-GlcNAc modification in adipocytes, resulting in decreased levels of O-glycosylated CREB. J Biol Chem 2019; 294:5487-5495. [PMID: 30709903 DOI: 10.1074/jbc.ra118.005183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/28/2019] [Indexed: 11/06/2022] Open
Abstract
We previously reported that iron down-regulates transcription of the leptin gene by increasing occupancy of phosphorylated cAMP response element-binding protein (pCREB) at two sites in the leptin gene promoter. Several nutrient-sensing pathways including O-GlcNAcylation also regulate leptin. We therefore investigated whether O-glycosylation plays a role in iron- and CREB-mediated regulation of leptin. We found that high iron decreases protein O-GlcNAcylation both in cultured 3T3-L1 adipocytes and in mice fed high-iron diets and down-regulates leptin mRNA and protein levels. Glucosamine treatment, which bypasses the rate-limiting step in the synthesis of substrate for glycosylation, increased both O-GlcNAc and leptin, whereas inhibition of O-glycosyltransferase (OGT) decreased O-GlcNAc and leptin. The increased leptin levels induced by glucosamine were susceptible to the inhibition by iron, but in the case of OGT inhibition, iron did not further decrease leptin. Mice with deletion of the O-GlcNAcase gene, either via whole-body heterozygous deletion or through adipocyte-targeted homozygous deletion, exhibited increased O-GlcNAc levels in adipose tissue and increased leptin levels that were inhibited by iron. Of note, iron increased the occupancy of pCREB and decreased the occupancy of O-GlcNAcylated CREB on the leptin promoter. These patterns observed in our experimental models suggest that iron exerts its effects on leptin by decreasing O-glycosylation and not by increasing protein deglycosylation and that neither O-GlcNAcase nor OGT mRNA and protein levels are affected by iron. We conclude that iron down-regulates leptin by decreasing CREB glycosylation, resulting in increased CREB phosphorylation and leptin promoter occupancy by pCREB.
Collapse
Affiliation(s)
- Yan Gao
- From the Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 and
| | - Jingfang Liu
- From the Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 and
| | - Zhenzhong Bai
- From the Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 and
| | - Sandy Sink
- From the Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 and
| | - Chengyu Zhao
- From the Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 and
| | - Felipe Ramos Lorenzo
- From the Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 and
| | - Donald A McClain
- From the Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 and .,the W. G. Hefner Veterans Affairs Medical Center, Salisbury, North Carolina 28144
| |
Collapse
|
31
|
Masclef L, Dehennaut V, Mortuaire M, Schulz C, Leturcq M, Lefebvre T, Vercoutter-Edouart AS. Cyclin D1 Stability Is Partly Controlled by O-GlcNAcylation. Front Endocrinol (Lausanne) 2019; 10:106. [PMID: 30853938 PMCID: PMC6395391 DOI: 10.3389/fendo.2019.00106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/05/2019] [Indexed: 01/27/2023] Open
Abstract
Cyclin D1 is the regulatory partner of the cyclin-dependent kinases (CDKs) CDK4 or CDK6. Once associated and activated, the cyclin D1/CDK complexes drive the cell cycle entry and G1 phase progression in response to extracellular signals. To ensure their timely and accurate activation during cell cycle progression, cyclin D1 turnover is finely controlled by phosphorylation and ubiquitination. Here we show that the dynamic and reversible O-linked β-N-Acetyl-glucosaminylation (O-GlcNAcylation) regulates also cyclin D1 half-life. High O-GlcNAc levels increase the stability of cyclin D1, while reduction of O-GlcNAcylation strongly decreases it. Moreover, elevation of O-GlcNAc levels through O-GlcNAcase (OGA) inhibition significantly slows down the ubiquitination of cyclin D1. Finally, biochemical and cell imaging experiments in human cancer cells reveal that the O-GlcNAc transferase (OGT) binds to and glycosylates cyclin D1. We conclude that O-GlcNAcylation promotes the stability of cyclin D1 through modulating its ubiquitination.
Collapse
Affiliation(s)
- Louis Masclef
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Vanessa Dehennaut
- Institut Pasteur de Lille, Université de Lille, CNRS, UMR 8161, M3T: Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Marlène Mortuaire
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Céline Schulz
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Maïté Leturcq
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Tony Lefebvre
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Anne-Sophie Vercoutter-Edouart
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- *Correspondence: Anne-Sophie Vercoutter-Edouart
| |
Collapse
|
32
|
Zachara NE. Critical observations that shaped our understanding of the function(s) of intracellular glycosylation (O-GlcNAc). FEBS Lett 2018; 592:3950-3975. [PMID: 30414174 DOI: 10.1002/1873-3468.13286] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022]
Abstract
Almost 100 years after the first descriptions of proteins conjugated to carbohydrates (mucins), several studies suggested that glycoproteins were not restricted to the serum, extracellular matrix, cell surface, or endomembrane system. In the 1980s, key data emerged demonstrating that intracellular proteins were modified by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc). Subsequently, this modification was identified on thousands of proteins that regulate cellular processes as diverse as protein aggregation, localization, post-translational modifications, activity, and interactions. In this Review, we will highlight critical discoveries that shaped our understanding of the molecular events underpinning the impact of O-GlcNAc on protein function, the role that O-GlcNAc plays in maintaining cellular homeostasis, and our understanding of the mechanisms that regulate O-GlcNAc-cycling.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Lagerlöf O. O-GlcNAc cycling in the developing, adult and geriatric brain. J Bioenerg Biomembr 2018; 50:241-261. [PMID: 29790000 PMCID: PMC5984647 DOI: 10.1007/s10863-018-9760-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Hundreds of proteins in the nervous system are modified by the monosaccharide O-GlcNAc. A single protein is often O-GlcNAcylated on several amino acids and the modification of a single site can play a crucial role for the function of the protein. Despite its complexity, only two enzymes add and remove O-GlcNAc from proteins, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Global and local regulation of these enzymes make it possible for O-GlcNAc to coordinate multiple cellular functions at the same time as regulating specific pathways independently from each other. If O-GlcNAcylation is disrupted, metabolic disorder or intellectual disability may ensue, depending on what neurons are affected. O-GlcNAc's promise as a clinical target for developing drugs against neurodegenerative diseases has been recognized for many years. Recent literature puts O-GlcNAc in the forefront among mechanisms that can help us better understand how neuronal circuits integrate diverse incoming stimuli such as fluctuations in nutrient supply, metabolic hormones, neuronal activity and cellular stress. Here the functions of O-GlcNAc in the nervous system are reviewed.
Collapse
Affiliation(s)
- Olof Lagerlöf
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
34
|
Denson KE, Mussell AL, Shen H, Truskinovsky A, Yang N, Parashurama N, Chen Y, Frangou C, Yang F, Zhang J. The Hippo Signaling Transducer TAZ Regulates Mammary Gland Morphogenesis and Carcinogen-induced Mammary Tumorigenesis. Sci Rep 2018; 8:6449. [PMID: 29691438 PMCID: PMC5915420 DOI: 10.1038/s41598-018-24712-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/04/2018] [Indexed: 01/10/2023] Open
Abstract
Hippo signaling pathway is an evolutionarily conserved pathway that controls organ size by regulating cell proliferation, apoptosis and stem cell self-renewal. TAZ (transcriptional coactivator with the PDZ-binding motif) is a key downstream effector of the mammalian Hippo pathway. Here, using a transgenic mouse model with mammary-gland-specific expression of constitutively active TAZ, we found that TAZ induction in mammary epithelial cells was associated with an increase in mammary glandular size, which probably resulted from adipocyte hypertrophy. Consistent with its known oncogenic potential, we observed tumor formation in TAZ transgenic mice after administration of the carcinogen 7,12-dimethylbenzanthracene (DMBA) and demonstrated that tumorigenesis was reliant on the presence of TAZ. Our findings establish a previously unknown roles of TAZ in regulating both mammary gland morphogenesis as well as carcinogen-induced mammary tumor formation.
Collapse
Affiliation(s)
- Kayla E Denson
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Ashley L Mussell
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - He Shen
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | | | - Nuo Yang
- Department of Anesthesiology, University at Buffalo, The State University of New York, NY, 14214, USA
| | - Natesh Parashurama
- Department of Chemical & Biological Engineering, University at Buffalo, The State University of New York, NY, 14214, USA
| | - Yanmin Chen
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Costa Frangou
- Harvard TH Chan School of Public Health, Molecular and Integrative Physiological Sciences, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Fajun Yang
- Departments of Medicine, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jianmin Zhang
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.
| |
Collapse
|
35
|
Ma X, Li H, He Y, Hao J. The emerging link between O-GlcNAcylation and neurological disorders. Cell Mol Life Sci 2017; 74:3667-3686. [PMID: 28534084 PMCID: PMC11107615 DOI: 10.1007/s00018-017-2542-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/23/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022]
Abstract
O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is involved in the regulation of many cellular cascades and neurological diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. In the brain, the expression of O-GlcNAcylation is notably heightened, as is that of O-linked N-acetylglucosaminyltransferase (OGT) and β-N-acetylglucosaminidase (OGA), the presence of which is prominent in many regions of neurological importance. Most importantly, O-GlcNAcylation is believed to contribute to the normal functioning of neurons; conversely, its dysregulation participates in the pathogenesis of neurological disorders. In neurodegenerative diseases, O-GlcNAcylation of the brain's key proteins, such as tau and amyloid-β, interacts with their phosphorylation, thereby triggering the formation of neurofibrillary tangles and amyloid plaques. An increase of O-GlcNAcylation by pharmacological intervention prevents neuronal loss. Additionally, O-GlcNAcylation is stress sensitive, and its elevation is cytoprotective. Increased O-GlcNAcylation ameliorated brain damage in victims of both trauma-hemorrhage and stroke. In this review, we summarize the current understanding of O-GlcNAcylation's physiological and pathological roles in the nervous system and provide a foundation for development of a therapeutic strategy for neurological disorders.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - He Li
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yating He
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junwei Hao
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
36
|
Groussaud D, Khair M, Tollenaere AI, Waast L, Kuo MS, Mangeney M, Martella C, Fardini Y, Coste S, Souidi M, Benit L, Pique C, Issad T. Hijacking of the O-GlcNAcZYME complex by the HTLV-1 Tax oncoprotein facilitates viral transcription. PLoS Pathog 2017; 13:e1006518. [PMID: 28742148 PMCID: PMC5542696 DOI: 10.1371/journal.ppat.1006518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/03/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
The viral Tax oncoprotein plays a key role in both Human T-cell lymphotropic virus type 1 (HTLV-1)-replication and HTLV-1-associated pathologies, notably adult T-cell leukemia. Tax governs the transcription from the viral 5'LTR, enhancing thereby its own expression, via the recruitment of dimers of phosphorylated CREB to cAMP-response elements located within the U3 region (vCRE). In addition to phosphorylation, CREB is also the target of O-GlcNAcylation, another reversible post-translational modification involved in a wide range of diseases, including cancers. O-GlcNAcylation consists in the addition of O-linked-N-acetylglucosamine (O-GlcNAc) on Serine or Threonine residues, a process controlled by two enzymes: O-GlcNAc transferase (OGT), which transfers O-GlcNAc on proteins, and O-GlcNAcase (OGA), which removes it. In this study, we investigated the status of O-GlcNAcylation enzymes in HTLV-1-transformed T cells. We found that OGA mRNA and protein expression levels are increased in HTLV-1-transformed T cells as compared to control T cell lines while OGT expression is unchanged. However, higher OGA production coincides with a reduction in OGA specific activity, showing that HTLV-1-transformed T cells produce high level of a less active form of OGA. Introducing Tax into HEK-293T cells or Tax-negative HTLV-1-transformed TL-om1 T cells is sufficient to inhibit OGA activity and increase total O-GlcNAcylation, without any change in OGT activity. Furthermore, Tax interacts with the OGT/OGA complex and inhibits the activity of OGT-bound OGA. Pharmacological inhibition of OGA increases CREB O-GlcNAcylation as well as HTLV-1-LTR transactivation by Tax and CREB recruitment to the LTR. Moreover, overexpression of wild-type CREB but not a CREB protein mutated on a previously described O-GlcNAcylation site enhances Tax-mediated LTR transactivation. Finally, both OGT and OGA are recruited to the LTR. These findings reveal the interplay between Tax and the O-GlcNAcylation pathway and identify new key molecular actors involved in the assembly of the Tax-dependent transactivation complex.
Collapse
Affiliation(s)
- Damien Groussaud
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mostafa Khair
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Armelle I. Tollenaere
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laetitia Waast
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mei-Shiue Kuo
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marianne Mangeney
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christophe Martella
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Yann Fardini
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Solène Coste
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mouloud Souidi
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laurence Benit
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claudine Pique
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail: (CP); (TI)
| | - Tarik Issad
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail: (CP); (TI)
| |
Collapse
|
37
|
Abstract
O-GlcNAcylation - the attachment of O-linked N-acetylglucosamine (O-GlcNAc) moieties to cytoplasmic, nuclear and mitochondrial proteins - is a post-translational modification that regulates fundamental cellular processes in metazoans. A single pair of enzymes - O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) - controls the dynamic cycling of this protein modification in a nutrient- and stress-responsive manner. Recent years have seen remarkable advances in our understanding of O-GlcNAcylation at levels that range from structural and molecular biology to cell signalling and gene regulation to physiology and disease. New mechanisms and functions of O-GlcNAcylation that are emerging from these recent developments enable us to begin constructing a unified conceptual framework through which the significance of this modification in cellular and organismal physiology can be understood.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Kevin Qian
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
38
|
Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol 2017. [PMID: 28488703 DOI: 10.1038/nrm.2017.22,+10.1038/nrn.2017.89,+10.1038/nrn.2017.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
O-GlcNAcylation - the attachment of O-linked N-acetylglucosamine (O-GlcNAc) moieties to cytoplasmic, nuclear and mitochondrial proteins - is a post-translational modification that regulates fundamental cellular processes in metazoans. A single pair of enzymes - O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) - controls the dynamic cycling of this protein modification in a nutrient- and stress-responsive manner. Recent years have seen remarkable advances in our understanding of O-GlcNAcylation at levels that range from structural and molecular biology to cell signalling and gene regulation to physiology and disease. New mechanisms and functions of O-GlcNAcylation that are emerging from these recent developments enable us to begin constructing a unified conceptual framework through which the significance of this modification in cellular and organismal physiology can be understood.
Collapse
|
39
|
Abstract
O-GlcNAcylation - the attachment of O-linked N-acetylglucosamine (O-GlcNAc) moieties to cytoplasmic, nuclear and mitochondrial proteins - is a post-translational modification that regulates fundamental cellular processes in metazoans. A single pair of enzymes - O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) - controls the dynamic cycling of this protein modification in a nutrient- and stress-responsive manner. Recent years have seen remarkable advances in our understanding of O-GlcNAcylation at levels that range from structural and molecular biology to cell signalling and gene regulation to physiology and disease. New mechanisms and functions of O-GlcNAcylation that are emerging from these recent developments enable us to begin constructing a unified conceptual framework through which the significance of this modification in cellular and organismal physiology can be understood.
Collapse
|
40
|
O-GlcNAcylation and chromatin remodeling in mammals: an up-to-date overview. Biochem Soc Trans 2017; 45:323-338. [PMID: 28408473 DOI: 10.1042/bst20160388] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/30/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Post-translational modifications of histones and the dynamic DNA methylation cycle are finely regulated by a myriad of chromatin-binding factors and chromatin-modifying enzymes. Epigenetic modifications ensure local changes in the architecture of chromatin, thus controlling in fine the accessibility of the machinery of transcription, replication or DNA repair to the chromatin. Over the past decade, the nutrient-sensor enzyme O-GlcNAc transferase (OGT) has emerged as a modulator of chromatin remodeling. In mammals, OGT acts either directly through dynamic and reversible O-GlcNAcylation of histones and chromatin effectors, or in an indirect manner through its recruitment into chromatin-bound multiprotein complexes. In particular, there is an increasing amount of evidence of a cross-talk between OGT and the DNA dioxygenase ten-eleven translocation proteins that catalyze active DNA demethylation. Conversely, the stability of OGT itself can be controlled by the histone lysine-specific demethylase 2 (LSD2). Finally, a few studies have explored the role of O-GlcNAcase (OGA) in chromatin remodeling. In this review, we summarize the recent findings on the link between OGT, OGA and chromatin regulators in mammalian cellular models, and discuss their relevance in physiological and pathological conditions.
Collapse
|
41
|
Yeast cells as an assay system for in vivo O -GlcNAc modification. Biochim Biophys Acta Gen Subj 2017; 1861:1159-1167. [DOI: 10.1016/j.bbagen.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 12/28/2022]
|
42
|
Groves JA, Maduka AO, O'Meally RN, Cole RN, Zachara NE. Fatty acid synthase inhibits the O-GlcNAcase during oxidative stress. J Biol Chem 2017; 292:6493-6511. [PMID: 28232487 DOI: 10.1074/jbc.m116.760785] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
The dynamic post-translational modification O-linked β-N-acetylglucosamine (O-GlcNAc) regulates thousands of nuclear, cytoplasmic, and mitochondrial proteins. Cellular stress, including oxidative stress, results in increased O-GlcNAcylation of numerous proteins, and this increase is thought to promote cell survival. The mechanisms by which the O-GlcNAc transferase (OGT) and the O-GlcNAcase (OGA), the enzymes that add and remove O-GlcNAc, respectively, are regulated during oxidative stress to alter O-GlcNAcylation are not fully characterized. Here, we demonstrate that oxidative stress leads to elevated O-GlcNAc levels in U2OS cells but has little impact on the activity of OGT. In contrast, the expression and activity of OGA are enhanced. We hypothesized that this seeming paradox could be explained by proteins that bind to and control the local activity or substrate targeting of OGA, thereby resulting in the observed stress-induced elevations of O-GlcNAc. To identify potential protein partners, we utilized BioID proximity biotinylation in combination with stable isotopic labeling of amino acids in cell culture (SILAC). This analysis revealed 90 OGA-interacting partners, many of which exhibited increased binding to OGA upon stress. The associations of OGA with fatty acid synthase (FAS), filamin-A, heat shock cognate 70-kDa protein, and OGT were confirmed by co-immunoprecipitation. The pool of OGA bound to FAS demonstrated a substantial (∼85%) reduction in specific activity, suggesting that FAS inhibits OGA. Consistent with this observation, FAS overexpression augmented stress-induced O-GlcNAcylation. Although the mechanism by which FAS sequesters OGA remains unknown, these data suggest that FAS fine-tunes the cell's response to stress and injury by remodeling cellular O-GlcNAcylation.
Collapse
Affiliation(s)
- Jennifer A Groves
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | - Austin O Maduka
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185.,the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, and
| | - Robert N O'Meally
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185.,the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert N Cole
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185.,the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Natasha E Zachara
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185,
| |
Collapse
|
43
|
Hauri S, Comoglio F, Seimiya M, Gerstung M, Glatter T, Hansen K, Aebersold R, Paro R, Gstaiger M, Beisel C. A High-Density Map for Navigating the Human Polycomb Complexome. Cell Rep 2016; 17:583-595. [PMID: 27705803 DOI: 10.1016/j.celrep.2016.08.096] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022] Open
Abstract
Polycomb group (PcG) proteins are major determinants of gene silencing and epigenetic memory in higher eukaryotes. Here, we systematically mapped the human PcG complexome using a robust affinity purification mass spectrometry approach. Our high-density protein interaction network uncovered a diverse range of PcG complexes. Moreover, our analysis identified PcG interactors linking them to the PcG system, thus providing insight into the molecular function of PcG complexes and mechanisms of recruitment to target genes. We identified two human PRC2 complexes and two PR-DUB deubiquitination complexes, which contain the O-linked N-acetylglucosamine transferase OGT1 and several transcription factors. Finally, genome-wide profiling of PR-DUB components indicated that the human PR-DUB and PRC1 complexes bind distinct sets of target genes, suggesting differential impact on cellular processes in mammals.
Collapse
Affiliation(s)
- Simon Hauri
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Competence Center Personalized Medicine UZH/ETH, 8044 Zürich, Switzerland
| | - Federico Comoglio
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Makiko Seimiya
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Moritz Gerstung
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Timo Glatter
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Hansen
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Faculty of Science, University of Zürich, 8057 Zürich, Switzerland
| | - Renato Paro
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Competence Center Personalized Medicine UZH/ETH, 8044 Zürich, Switzerland.
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.
| |
Collapse
|
44
|
Abstract
Unlike the complex glycans decorating the cell surface, the O-linked β-N-acetyl glucosamine (O-GlcNAc) modification is a simple intracellular Ser/Thr-linked monosaccharide that is important for disease-relevant signaling and enzyme regulation. O-GlcNAcylation requires uridine diphosphate-GlcNAc, a precursor responsive to nutrient status and other environmental cues. Alternative splicing of the genes encoding the O-GlcNAc cycling enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) yields isoforms targeted to discrete sites in the nucleus, cytoplasm, and mitochondria. OGT and OGA also partner with cellular effectors and act in tandem with other posttranslational modifications. The enzymes of O-GlcNAc cycling act preferentially on intrinsically disordered domains of target proteins impacting transcription, metabolism, apoptosis, organelle biogenesis, and transport.
Collapse
|
45
|
Kim EJ, Bond MR, Love DC, Hanover JA. Chemical tools to explore nutrient-driven O-GlcNAc cycling. Crit Rev Biochem Mol Biol 2015; 49:327-42. [PMID: 25039763 DOI: 10.3109/10409238.2014.931338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Posttranslational modifications (PTM) including glycosylation, phosphorylation, acetylation, methylation and ubiquitination dynamically alter the proteome. The evolutionarily conserved enzymes O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and O-GlcNAcase are responsible for the addition and removal, respectively, of the nutrient-sensitive PTM of protein serine and threonine residues with O-GlcNAc. Indeed, the O-GlcNAc modification acts at every step in the "central dogma" of molecular biology and alters signaling pathways leading to amplified or blunted biological responses. The cellular roles of OGT and the dynamic PTM O-GlcNAc have been clarified with recently developed chemical tools including high-throughput assays, structural and mechanistic studies and potent enzyme inhibitors. These evolving chemical tools complement genetic and biochemical approaches for exposing the underlying biological information conferred by O-GlcNAc cycling.
Collapse
Affiliation(s)
- Eun J Kim
- Department of Science Education-Chemistry Major, Daegu University , Daegu , S. Korea and
| | | | | | | |
Collapse
|
46
|
Pantaleon M. The Role of Hexosamine Biosynthesis and Signaling in Early Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:53-76. [DOI: 10.1007/978-1-4939-2480-6_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Nagel AK, Ball LE. Intracellular protein O-GlcNAc modification integrates nutrient status with transcriptional and metabolic regulation. Adv Cancer Res 2015; 126:137-66. [PMID: 25727147 DOI: 10.1016/bs.acr.2014.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inducible, nutrient-sensitive posttranslational modification of protein Ser/Thr residues with O-linked β-N-acetylglucosamine (O-GlcNAc) occurs on histones, transcriptional regulators, metabolic enzymes, oncogenes, tumor suppressors, and many critical intermediates of growth factor signaling. Cycling of O-GlcNAc modification on and off of protein substrates is catalyzed by the actions of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. To date, there are less than 150 publications addressing the role of O-GlcNAc modification in cancer and over half were published in the last 2 years. These studies have clearly established that increased expression of OGT and hyper-O-GlcNAcylation is common to human cancers of breast, prostate, colon, lung, and pancreas. Furthermore, attenuating OGT activity reduces tumor growth in vitro and metastasis in vivo. This chapter discusses the structure and function of the O-GlcNAc cycling enzymes, mechanisms by which protein O-GlcNAc modification sense changes in nutrient status, the influence of O-GlcNAc cycling enzymes on glucose metabolism, and provides an overview of recent observations regarding the role of O-GlcNAcylation in cancer.
Collapse
|
48
|
Peternelj TT, Marsh SA, Strobel NA, Matsumoto A, Briskey D, Dalbo VJ, Tucker PS, Coombes JS. Glutathione depletion and acute exercise increase O-GlcNAc protein modification in rat skeletal muscle. Mol Cell Biochem 2014; 400:265-75. [PMID: 25416863 DOI: 10.1007/s11010-014-2283-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/15/2014] [Indexed: 01/20/2023]
Abstract
Post-translational modification of intracellular proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) profoundly affects protein structure, function, and metabolism. Although many skeletal muscle proteins are O-GlcNAcylated, the modification has not been extensively studied in this tissue, especially in the context of exercise. This study investigated the effects of glutathione depletion and acute exercise on O-GlcNAc protein modification in rat skeletal muscle. Diethyl maleate (DEM) was used to deplete intracellular glutathione and rats were subjected to a treadmill run. White gastrocnemius and soleus muscles were analyzed for glutathione status, O-GlcNAc and O-GlcNAc transferase (OGT) protein levels, and mRNA expression of OGT, O-GlcNAcase and glutamine:fructose-6-phosphate amidotransferase. DEM and exercise both reduced intracellular glutathione and increased O-GlcNAc. DEM upregulated OGT protein expression. The effects of the interventions were significant 4 h after exercise (P < 0.05). The changes in the mRNA levels of O-GlcNAc enzymes were different in the two muscles, potentially resulting from different rates of oxidative stress and metabolic demands between the muscle types. These findings indicate that oxidative environment promotes O-GlcNAcylation in skeletal muscle and suggest an interrelationship between cellular redox state and O-GlcNAc protein modification. This could represent one mechanism underlying cellular adaptation to oxidative stress and health benefits of exercise.
Collapse
Affiliation(s)
- Tina Tinkara Peternelj
- Antioxidant Research Group, School of Human Movement Studies, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia,
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Cieniewski-Bernard C, Lambert M, Dupont E, Montel V, Stevens L, Bastide B. O-GlcNAcylation, contractile protein modifications and calcium affinity in skeletal muscle. Front Physiol 2014; 5:421. [PMID: 25400587 PMCID: PMC4214218 DOI: 10.3389/fphys.2014.00421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/11/2014] [Indexed: 12/02/2022] Open
Abstract
O-GlcNAcylation, a generally undermined atypical protein glycosylation process, is involved in a dynamic and highly regulated interplay with phosphorylation. Akin to phosphorylation, O-GlcNAcylation is also involved in the physiopathology of several acquired diseases, such as muscle insulin resistance or muscle atrophy. Recent data underline that the interplay between phosphorylation and O-GlcNAcylation acts as a modulator of skeletal muscle contractile activity. In particular, the O-GlcNAcylation level of the phosphoprotein myosin light chain 2 seems to be crucial in the modulation of the calcium activation properties, and should be responsible for changes in calcium properties observed in functional atrophy. Moreover, since several key structural proteins are O-GlcNAc-modified, and because of the localization of the enzymes involved in the O-GlcNAcylation/de-O-GlcNAcylation process to the nodal Z disk, a role of O-GlcNAcylation in the modulation of the sarcomeric structure should be considered.
Collapse
Affiliation(s)
| | - Matthias Lambert
- Université Lille Lille, France ; EA4488, APMS, URePsss, Université de Lille 1 Villeneuve d'Ascq, France
| | - Erwan Dupont
- Université Lille Lille, France ; EA4488, APMS, URePsss, Université de Lille 1 Villeneuve d'Ascq, France
| | - Valérie Montel
- Université Lille Lille, France ; EA4488, APMS, URePsss, Université de Lille 1 Villeneuve d'Ascq, France
| | - Laurence Stevens
- Université Lille Lille, France ; EA4488, APMS, URePsss, Université de Lille 1 Villeneuve d'Ascq, France
| | - Bruno Bastide
- Université Lille Lille, France ; EA4488, APMS, URePsss, Université de Lille 1 Villeneuve d'Ascq, France
| |
Collapse
|
50
|
Hwang SY, Hwang JS, Kim SY, Han IO. O-GlcNAcylation and p50/p105 binding of c-Rel are dynamically regulated by LPS and glucosamine in BV2 microglia cells. Br J Pharmacol 2014; 169:1551-60. [PMID: 23646894 DOI: 10.1111/bph.12223] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/02/2013] [Accepted: 03/28/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Previously, we demonstrated that glucosamine (GlcN) exerts a suppressive effect on LPS-induced inducible NOS (iNOS) through the inhibition of NF-κB activation in BV2 mouse microglial cells. The purpose of the present study was to examine the mechanisms by which GlcN inhibits NF-κB activation. EXPERIMENTAL APPROACH BV2 cells were stimulated with LPS with or without GlcN. NF-κB/c-Rel activities were studied by EMSA, nuclear translocation, reporter assay or chromatin immunoprecipitation. Wheat germ agglutinin precipitation or galactosyltransferase assay were used to measure O-linked N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) of c-Rel. Protein-protein interactions were examined by co-immunoprecipitation. KEY RESULTS LPS stimulated the activation of c-Rel, increased the O-GlcNAcylation of c-Rel and enhanced the binding of c-Rel to the NF-κB site in the iNOS promoter; GlcN attenuated these effects of LPS. O-GlcNAcylation of both nuclear and cytosolic forms of c-Rel was increased by LPS and reduced by GlcN. LPS increased the interaction of c-Rel with O-GlcNAc transferase (OGT) and p50/p105, and GlcN suppressed these interactions. Knockdown of OGT reduced the c-Rel O-GlcNAcylation and c-Rel-p50 interaction in response to LPS, but did not affect either the binding of c-Rel to the iNOS promoter or the transcriptional activity of c-Rel. CONCLUSIONS AND IMPLICATIONS In BV2 microglial cells, the anti-inflammatory effect of GlcN is mediated by prevention of the prolonged activation of transcription factors, c-Rel and NF-κB. Further clarification of the mechanism by which GlcN exerts this effect will facilitate the development of pharmacological strategies for preventing excessive NO formation when targeting inflammatory diseases of the periphery or CNS.
Collapse
Affiliation(s)
- So-Young Hwang
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | | | | | | |
Collapse
|