1
|
Kang Y, Zhang Q, Xu S, Yu Y. The alteration and role of glycoconjugates in Alzheimer's disease. Front Aging Neurosci 2024; 16:1398641. [PMID: 38946780 PMCID: PMC11212478 DOI: 10.3389/fnagi.2024.1398641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by abnormal protein deposition. With an alarming 30 million people affected worldwide, AD poses a significant public health concern. While inhibiting key enzymes such as β-site amyloid precursor protein-cleaving enzyme 1 and γ-secretase or enhancing amyloid-β clearance, has been considered the reasonable strategy for AD treatment, their efficacy has been compromised by ineffectiveness. Furthermore, our understanding of AD pathogenesis remains incomplete. Normal aging is associated with a decline in glucose uptake in the brain, a process exacerbated in patients with AD, leading to significant impairment of a critical post-translational modification: glycosylation. Glycosylation, a finely regulated mechanism of intracellular secondary protein processing, plays a pivotal role in regulating essential functions such as synaptogenesis, neurogenesis, axon guidance, as well as learning and memory within the central nervous system. Advanced glycomic analysis has unveiled that abnormal glycosylation of key AD-related proteins closely correlates with the onset and progression of the disease. In this context, we aimed to delve into the intricate role and underlying mechanisms of glycosylation in the etiopathology and pathogenesis of AD. By highlighting the potential of targeting glycosylation as a promising and alternative therapeutic avenue for managing AD, we strive to contribute to the advancement of treatment strategies for this debilitating condition.
Collapse
Affiliation(s)
- Yue Kang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qian Zhang
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Silu Xu
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Yu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Schengrund CL. Sphingolipids: Less Enigmatic but Still Many Questions about the Role(s) of Ceramide in the Synthesis/Function of the Ganglioside Class of Glycosphingolipids. Int J Mol Sci 2024; 25:6312. [PMID: 38928016 PMCID: PMC11203820 DOI: 10.3390/ijms25126312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
While much has been learned about sphingolipids, originally named for their sphinx-like enigmatic properties, there are still many unanswered questions about the possible effect(s) of the composition of ceramide on the synthesis and/or behavior of a glycosphingolipid (GSL). Over time, studies of their ceramide component, the sphingoid base containing the lipid moiety of GSLs, were frequently distinct from those performed to ascertain the roles of the carbohydrate moieties. Due to the number of classes of GSLs that can be derived from ceramide, this review focuses on the possible role(s) of ceramide in the synthesis/function of just one GSL class, derived from glucosylceramide (Glc-Cer), namely sialylated ganglio derivatives, initially characterized and named gangliosides (GGs) due to their presence in ganglion cells. While much is known about their synthesis and function, much is still being learned. For example, it is only within the last 15-20 years or so that the mechanism by which the fatty acyl component of ceramide affected its transport to different sites in the Golgi, where it is used for the synthesis of Glu- or galactosyl-Cer (Gal-Cer) and more complex GSLs, was defined. Still to be fully addressed are questions such as (1) whether ceramide composition affects the transport of partially glycosylated GSLs to sites where their carbohydrate chain can be elongated or affects the activity of glycosyl transferases catalyzing that elongation; (2) what controls the differences seen in the ceramide composition of GGs that have identical carbohydrate compositions but vary in that of their ceramide and vice versa; (3) how alterations in ceramide composition affect the function of membrane GGs; and (4) how this knowledge might be applied to the development of therapies for treating diseases that correlate with abnormal expression of GGs. The availability of an updatable data bank of complete structures for individual classes of GSLs found in normal tissues as well as those associated with disease would facilitate research in this area.
Collapse
Affiliation(s)
- Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
3
|
Hein V, Baeza-Kallee N, Bertucci A, Colin C, Tchoghandjian A, Figarella-Branger D, Tabouret E. GD3 ganglioside is a promising therapeutic target for glioma patients. Neurooncol Adv 2024; 6:vdae038. [PMID: 38590763 PMCID: PMC11000324 DOI: 10.1093/noajnl/vdae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Glioblastoma is the most frequent and aggressive primary brain tumor in adults. Currently, no curative treatment is available. Despite first-line treatment composed by the association of surgery, radiotherapy, and chemotherapy, relapse remains inevitable in a median delay of 6 to 10 months. Improving patient management and developing new therapeutic strategies are therefore a critical medical need in neuro-oncology. Gangliosides are sialic acid-containing glycosphingolipids, the most abundant in the nervous system, representing attractive therapeutic targets. The ganglioside GD3 is highly expressed in neuroectoderm-derived tumors such as melanoma and neuroblastoma, but also in gliomas. Moreover, interesting results, including our own, have reported the involvement of GD3 in the stemness of glioblastoma cells. In this review, we will first describe the characteristics of the ganglioside GD3 and its enzyme, the GD3 synthase (GD3S), including their biosynthesis and metabolism. Then, we will detail their expression and role in gliomas. Finally, we will summarize the current knowledge regarding the therapeutic development opportunities against GD3 and GD3S.
Collapse
Affiliation(s)
- Victoria Hein
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
| | - Nathalie Baeza-Kallee
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- Aix-Marseille Univ, Réseau Préclinique et Translationnel de Recherche en Neuro-oncologie PETRA, Plateforme PETRA“TECH” and Plateforme PE”TRANSLA,”Marseille, France
| | - Alexandre Bertucci
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- APHM, CHU Timone, Service de Neuro-Oncologie, MarseilleFrance
| | - Carole Colin
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- Aix-Marseille Univ, Réseau Préclinique et Translationnel de Recherche en Neuro-oncologie PETRA, Plateforme PETRA“TECH” and Plateforme PE”TRANSLA,”Marseille, France
| | - Aurélie Tchoghandjian
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- Aix-Marseille Univ, Réseau Préclinique et Translationnel de Recherche en Neuro-oncologie PETRA, Plateforme PETRA“TECH” and Plateforme PE”TRANSLA,”Marseille, France
| | | | - Emeline Tabouret
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- APHM, CHU Timone, Service de Neuro-Oncologie, MarseilleFrance
- Aix-Marseille Univ, Réseau Préclinique et Translationnel de Recherche en Neuro-oncologie PETRA, Plateforme PETRA“TECH” and Plateforme PE”TRANSLA,”Marseille, France
| |
Collapse
|
4
|
Fuchigami T, Itokazu Y, Yu RK. Ganglioside GD3 regulates neural stem cell quiescence and controls postnatal neurogenesis. Glia 2024; 72:167-183. [PMID: 37667994 PMCID: PMC10840680 DOI: 10.1002/glia.24468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
The postnatal neural stem cell (NSC) pool hosts quiescent and activated radial glia-like NSCs contributing to neurogenesis throughout adulthood. However, the underlying regulatory mechanism during the transition from quiescent NSCs to activated NSCs in the postnatal NSC niche is not fully understood. Lipid metabolism and lipid composition play important roles in regulating NSC fate determination. Biological lipid membranes define the individual cellular shape and help maintain cellular organization and are highly heterogeneous in structure and there exist diverse microdomains (also known as lipid rafts), which are enriched with sugar molecules, such as glycosphingolipids. An often overlooked but key aspect is that the functional activities of proteins and genes are highly dependent on their molecular environments. We previously reported that ganglioside GD3 is the predominant species in NSCs and that the reduced postnatal NSC pools are observed in global GD3-synthase knockout (GD3S-KO) mouse brains. The specific roles of GD3 in determining the stage and cell-lineage determination of NSCs remain unclear, since global GD3S-KO mice cannot distinguish if GD3 regulates postnatal neurogenesis or developmental impacts. Here, we show that inducible GD3 deletion in postnatal radial glia-like NSCs promotes NSC activation, resulting in the loss of the long-term maintenance of the adult NSC pools. The reduced neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of GD3S-conditional-knockout mice led to the impaired olfactory and memory functions. Thus, our results provide convincing evidence that postnatal GD3 maintains the quiescent state of radial glia-like NSCs in the adult NSC niche.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
5
|
Fuchigami T, Itokazu Y, Yu RK. Ganglioside GD3 regulates neural stem cell quiescence and controls postnatal neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532547. [PMID: 36993675 PMCID: PMC10055067 DOI: 10.1101/2023.03.14.532547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The postnatal neural stem cell (NSC) pool hosts quiescent and activated radial glia-like NSCs contributing to neurogenesis throughout adulthood. However, the underlying regulatory mechanism during the transition from quiescent NSCs to activated NSCs in the postnatal NSC niche is not fully understood. Lipid metabolism and lipid composition play important roles in regulating NSC fate determination. Biological lipid membranes define the individual cellular shape and help maintain cellular organization and are highly heterogenous in structure and there exist diverse microdomains (also known as lipid rafts), which are enriched with sugar molecules, such as glycosphingolipids. An often overlooked but key aspect is that the functional activities of proteins and genes are highly dependent upon their molecular environments. We previously reported that ganglioside GD3 is the predominant species in NSCs and that the reduced postnatal NSC pools are observed in global GD3-synthase knockout (GD3S-KO) mouse brains. The specific roles of GD3 in determining the stage and cell-lineage determination of NSCs remain unclear, since global GD3S-KO mice cannot distinguish if GD3 regulates postnatal neurogenesis or developmental impacts. Here we show that inducible GD3 deletion in postnatal radial glia-like NSCs promotes the NSC activation, resulting in the loss of the long-term maintenance of the adult NSC pools. The reduced neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of GD3S-conditional-knockout mice led to impaired olfactory and memory functions. Thus, our results provide convincing evidence that postnatal GD3 maintains the quiescent state of radial glia-like NSCs in the adult NSC niche.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Fuchigami T, Itokazu Y, Morgan JC, Yu RK. Restoration of Adult Neurogenesis by Intranasal Administration of Gangliosides GD3 and GM1 in The Olfactory Bulb of A53T Alpha-Synuclein-Expressing Parkinson's-Disease Model Mice. Mol Neurobiol 2023; 60:3329-3344. [PMID: 36849668 PMCID: PMC10140382 DOI: 10.1007/s12035-023-03282-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting the body and mind of millions of people in the world. As PD progresses, bradykinesia, rigidity, and tremor worsen. These motor symptoms are associated with the neurodegeneration of dopaminergic neurons in the substantia nigra. PD is also associated with non-motor symptoms, including loss of smell (hyposmia), sleep disturbances, depression, anxiety, and cognitive impairment. This broad spectrum of non-motor symptoms is in part due to olfactory and hippocampal dysfunctions. These non-motor functions are suggested to be linked with adult neurogenesis. We have reported that ganglioside GD3 is required to maintain the neural stem cell (NSC) pool in the subventricular zone (SVZ) of the lateral ventricles and the subgranular layer of the dentate gyrus (DG) in the hippocampus. In this study, we used nasal infusion of GD3 to restore impaired neurogenesis in A53T alpha-synuclein-expressing mice (A53T mice). Intriguingly, intranasal GD3 administration rescued the number of bromodeoxyuridine + (BrdU +)/Sox2 + NSCs in the SVZ. Furthermore, the administration of gangliosides GD3 and GM1 increases doublecortin (DCX)-expressing immature neurons in the olfactory bulb, and nasal ganglioside administration recovered the neuronal populations in the periglomerular layer of A53T mice. Given the relevance of decreased ganglioside on olfactory impairment, we discovered that GD3 has an essential role in olfactory functions. Our results demonstrated that intranasal GD3 infusion restored the self-renewal ability of the NSCs, and intranasal GM1 infusion promoted neurogenesis in the adult brain. Using a combination of GD3 and GM1 has the potential to slow down disease progression and rescue dysfunctional neurons in neurodegenerative brains.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - John C Morgan
- Movement Disorders Program, Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
7
|
Nezvedová M, Jha D, Váňová T, Gadara D, Klímová H, Raška J, Opálka L, Bohačiaková D, Spáčil Z. Single Cerebral Organoid Mass Spectrometry of Cell-Specific Protein and Glycosphingolipid Traits. Anal Chem 2023; 95:3160-3167. [PMID: 36724094 PMCID: PMC10016744 DOI: 10.1021/acs.analchem.2c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cerebral organoids are a prolific research topic and an emerging model system for neurological diseases in human neurobiology. However, the batch-to-batch reproducibility of current cultivation protocols is challenging and thus requires a high-throughput methodology to comprehensively characterize cerebral organoid cytoarchitecture and neural development. We report a mass spectrometry-based protocol to quantify neural tissue cell markers, cell surface lipids, and housekeeping proteins in a single organoid. Profiled traits probe the development of neural stem cells, radial glial cells, neurons, and astrocytes. We assessed the cell population heterogeneity in individually profiled organoids in the early and late neurogenesis stages. Here, we present a unifying view of cell-type specificity of profiled protein and lipid traits in neural tissue. Our workflow characterizes the cytoarchitecture, differentiation stage, and batch cultivation variation on an individual cerebral organoid level.
Collapse
Affiliation(s)
- Markéta Nezvedová
- RECETOX, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Durga Jha
- RECETOX, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Tereza Váňová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno 656 91, Czech Republic
| | - Darshak Gadara
- RECETOX, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Hana Klímová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Jan Raška
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Lukáš Opálka
- Department of Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové 500 05, Czech Republic
| | - Dáša Bohačiaková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno 656 91, Czech Republic
| | - Zdeněk Spáčil
- RECETOX, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
8
|
Itokazu Y, Fuchigami T, Yu RK. Functional Impairment of the Nervous System with Glycolipid Deficiencies. ADVANCES IN NEUROBIOLOGY 2023; 29:419-448. [PMID: 36255683 PMCID: PMC9793801 DOI: 10.1007/978-3-031-12390-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Patients with nervous system disorders suffer from impaired cognitive, sensory and motor functions that greatly inconvenience their daily life and usually burdens their family and society. It is difficult to achieve functional recovery for the damaged central nervous system (CNS) because of its limited ability to regenerate. Glycosphingolipids (GSLs) are abundant in the CNS and are known to play essential roles in cell-cell recognition, adhesion, signal transduction, and cellular migration, that are crucial in all phases of neurogenesis. Despite intense investigation of CNS regeneration, the roles of GSLs in neural regeneration remain unclear. Here we focus on the respective potentials of glycolipids to promote regeneration and repair of the CNS. Mice lacking glucosylceramide, lactosylceramide or gangliosides show lethal phenotypes. More importantly, patients with ganglioside deficiencies exhibit severe clinical phenotypes. Further, neurodegenerative diseases and mental health disorders are associated with altered GSL expression. Accumulating studies demonstrate that GSLs not only delimit physical regions but also play central roles in the maintenance of the biological functions of neurons and glia. We anticipate that the ability of GSLs to modulate behavior of a variety of molecules will enable them to ameliorate biochemical and neurobiological defects in patients. The use of GSLs to treat such defects in the human CNS will be a paradigm-shift in approach since GSL-replacement therapy has not yet been achieved in this manner clinically.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
9
|
Vasques J, de Jesus Gonçalves R, da Silva-Junior A, Martins R, Gubert F, Mendez-Otero R. Gangliosides in nervous system development, regeneration, and pathologies. Neural Regen Res 2023. [PMID: 35799513 PMCID: PMC9241395 DOI: 10.4103/1673-5374.343890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Itokazu Y, Yu RK. Ganglioside Microdomains on Cellular and Intracellular Membranes Regulate Neuronal Cell Fate Determination. ADVANCES IN NEUROBIOLOGY 2023; 29:281-304. [PMID: 36255679 PMCID: PMC9772537 DOI: 10.1007/978-3-031-12390-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gangliosides are sialylated glycosphingolipids (GSLs) with essential but enigmatic functions in brain activities and neural stem cell (NSC) maintenance. Our group has pioneered research on the importance of gangliosides for growth factor receptor signaling and epigenetic regulation of NSC activity and differentiation. The primary localization of gangliosides is on cell-surface microdomains and the drastic dose and composition changes during neural differentiation strongly suggest that they are not only important as biomarkers, but also are involved in modulating NSC fate determination. Ganglioside GD3 is the predominant species in NSCs and GD3-synthase knockout (GD3S-KO) revealed reduction of postnatal NSC pools with severe behavioral deficits. Exogenous administration of GD3 significantly restored the NSC pools and enhanced the stemness of NSCs with multipotency and self-renewal. Since morphological changes during neurogenesis require a huge amount of energy, mitochondrial functions are vital for neurogenesis. We discovered that a mitochondrial fission protein, the dynamin-related protein-1 (Drp1), as a novel GD3-binding protein, and GD3 regulates mitochondrial dynamics. Furthermore, we discovered that GM1 ganglioside promotes neuronal differentiation by an epigenetic regulatory mechanism. Nuclear GM1 binds with acetylated histones on the promoters of N-acetylgalactosaminyltransferase (GalNAcT; GM2 synthase) as well as on the NeuroD1 genes in differentiated neurons. In addition, epigenetic activation of the GalNAcT gene was detected as accompanied by an apparent induction of neuronal differentiation in NSCs responding to an exogenous supplement of GM1. GM1 is indeed localized in the nucleus where it can interact with transcriptionally active histones. Interestingly, GM1 could induce epigenetic activation of the tyrosine hydroxylase (TH) gene, with recruitment of nuclear receptor related 1 (Nurr1, also known as NR4A2), a dopaminergic neuron-associated transcription factor, to the TH promoter region. In this way, GM1 epigenetically regulates dopaminergic neuron specific gene expression. GM1 interacts with active chromatin via acetylated histones to recruit transcription factors at the nuclear periphery, resulting in changes in gene expression for neuronal differentiation. The significance is that multifunctional gangliosides modulate lipid microdomains to regulate functions of important molecules on multiple sites: the plasma membrane, mitochondrial membrane, and nuclear membrane. Versatile gangliosides could regulate functional neurons as well as sustain NSC functions via modulating protein and gene activities on ganglioside microdomains.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
11
|
Bieberich E. Synthesis, Processing, and Function of N-Glycans in N-Glycoproteins. ADVANCES IN NEUROBIOLOGY 2023; 29:65-93. [PMID: 36255672 DOI: 10.1007/978-3-031-12390-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Many membrane-resident and secreted proteins, including growth factors and their receptors are N-glycosylated. The initial N-glycan structure is synthesized in the endoplasmic reticulum (ER) as a branched structure on a lipid anchor (dolicholpyrophosphate) and then co-translationally, "en bloc" transferred and linked via N-acetylglucosamine to asparagine within a specific N-glycosylation acceptor sequence of the nascent recipient protein. In the ER and then the Golgi apparatus, the N-linked glycan structure is modified by hydrolytic removal of sugar residues ("trimming") followed by re-glycosylation with additional sugar residues ("processing") such as galactose, fucose or sialic acid to form complex N-glycoproteins. While the sequence of the reactions leading to biosynthesis, "en bloc" transfer and processing of N-glycans is well investigated, it is still not completely understood how N-glycans affect the biological fate and function of N-glycoproteins. This review will discuss the biology of N-glycoprotein synthesis, processing and function with specific reference to the physiology and pathophysiology of the immune and nervous system, as well as infectious diseases such as Covid-19.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA.
- Veteran Affairs Medical Center, Lexington, KY, USA.
| |
Collapse
|
12
|
Santilli F, Fabrizi J, Pulcini F, Santacroce C, Sorice M, Delle Monache S, Mattei V. Gangliosides and Their Role in Multilineage Differentiation of Mesenchymal Stem Cells. Biomedicines 2022; 10:biomedicines10123112. [PMID: 36551867 PMCID: PMC9775755 DOI: 10.3390/biomedicines10123112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Gangliosides (GGs) are a glycolipid class present on Mesenchymal Stem Cells (MSCs) surfaces with a critical appearance role in stem cell differentiation, even though their mechanistic role in signaling and differentiation remains largely unknown. This review aims to carry out a critical analysis of the predictive role of gangliosides as specific markers of the cellular state of undifferentiated and differentiated MSCs, towards the osteogenic, chondrogenic, neurogenic, and adipogenic lineage. For this reason, we analyzed the role of GGs during multilineage differentiation processes of several types of MSCs such as Umbilical Cord-derived MSCs (UC-MSCs), Bone Marrow-derived MSCs (BM-MSCs), Dental Pulp derived MSCs (DPSCs), and Adipose derived MSCs (ADSCs). Moreover, we examined the possible role of GGs as specific cell surface markers to identify or isolate specific stem cell isotypes and their potential use as additional markers for quality control of cell-based therapies.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Jessica Fabrizi
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
- Correspondence: (S.D.M.); (V.M.)
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Correspondence: (S.D.M.); (V.M.)
| |
Collapse
|
13
|
Demir R, Şahar U, Deveci R. Exploring the Candidate Terminal Glycan Profile in Neural Regeneration of the Sea Urchin Paracentrotus lividus, Using Lectin Blotting and Mass Spectrometry. THE BIOLOGICAL BULLETIN 2022; 242:118-126. [PMID: 35580027 DOI: 10.1086/718776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glycans are expressed as conjugates of glycoproteins, glycolipids, and proteoglycans. The huge diversity of glycans on glycoconjugates contributes to many biological processes, from glycan-based molecular recognition to developmental events, such as regeneration in the nervous system. Echinoderms, which have a close phylogenetic relationship with chordates, are an important group of marine invertebrates for body regeneration. Although many major roles of glycans on glycoconjugates are known, their role in the glycosylation profile of the nervous system in sea urchins is poorly understood. In this study, we aimed to determine the terminal glycan profile by lectin blotting and to quantify sialic acids by the capillary liquid chromatography electrospray ionization tandem mass spectrometry system in the nervous tissue of the sea urchin Paracentrotus lividus. We determined the N-acetyl-D-glucosamine, mannose, and sialic acids (mainly α2,3 linked) by lectin blotting and five types of sialic acids (N-glycolylneuraminic acid, N-acetylneuraminic acid, 9-O-acetyl-N-alycolylneuraminic acid, 5-N-acetyl-9-O-acetyl-N-acetylneuraminic acid, and di-O-acetylated-N-alycolylneuraminic acid) by capillary liquid chromatography electrospray ionization tandem mass spectrometry. This potential first description of the terminal glycan profile in the nervous system of the sea urchin is expected to help us understand its role in nervous system development and regeneration.
Collapse
|
14
|
Cho JH, Ju WS, Seo SY, Kim BH, Kim JS, Kim JG, Park SJ, Choo YK. The Potential Role of Human NME1 in Neuronal Differentiation of Porcine Mesenchymal Stem Cells: Application of NB-hNME1 as a Human NME1 Suppressor. Int J Mol Sci 2021; 22:ijms222212194. [PMID: 34830075 PMCID: PMC8619003 DOI: 10.3390/ijms222212194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the effects of the human macrophage (MP) secretome in cellular xenograft rejection. The role of human nucleoside diphosphate kinase A (hNME1), from the secretome of MPs involved in the neuronal differentiation of miniature pig adipose tissue-derived mesenchymal stem cells (mp AD-MSCs), was evaluated by proteomic analysis. Herein, we first demonstrate that hNME1 strongly binds to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (pST8SIA1), which is a ganglioside GD3 synthase. When hNME1 binds with pST8SIA1, it induces degradation of pST8SIA1 in mp AD-MSCs, thereby inhibiting the expression of ganglioside GD3 followed by decreased neuronal differentiation of mp AD-MSCs. Therefore, we produced nanobodies (NBs) named NB-hNME1 that bind to hNME1 specifically, and the inhibitory effect of NB-hNME1 was evaluated for blocking the binding between hNME1 and pST8SIA1. Consequently, NB-hNME1 effectively blocked the binding of hNME1 to pST8SIA1, thereby recovering the expression of ganglioside GD3 and neuronal differentiation of mp AD-MSCs. Our findings suggest that mp AD-MSCs could be a potential candidate for use as an additive, such as an immunosuppressant, in stem cell transplantation.
Collapse
Affiliation(s)
- Jin Hyoung Cho
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- GreenBio Corp. Central Research, 201-19, Bubaljungand-ro, Bubal-eup, Icheon-si 17321, Korea
| | - Won Seok Ju
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
| | - Sang Young Seo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Bo Hyun Kim
- CHA Fertility Center Bundang, 59, Yatap-ro, Bundang-gu, Seongnam-si 13496, Korea;
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology, 181, Ipsin-gil, Jeongeup-si 56216, Korea;
| | - Jong-Geol Kim
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Soon Ju Park
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
- Correspondence: ; Tel.: +82-63-850-6087; Fax: +82-63-857-8837
| |
Collapse
|
15
|
Itokazu Y, Fuchigami T, Morgan JC, Yu RK. Intranasal infusion of GD3 and GM1 gangliosides downregulates alpha-synuclein and controls tyrosine hydroxylase gene in a PD model mouse. Mol Ther 2021; 29:3059-3071. [PMID: 34111562 DOI: 10.1016/j.ymthe.2021.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is characterized by Lewy bodies (composed predominantly of alpha-synuclein [aSyn]) and loss of pigmented midbrain dopaminergic neurons comprising the nigrostriatal pathway. Most PD patients show significant deficiency of gangliosides, including GM1, in the brain, and GM1 ganglioside appears to keep dopaminergic neurons functioning properly. Thus, supplementation of GM1 could potentially provide some rescuing effects. In this study, we demonstrate that intranasal infusion of GD3 and GM1 gangliosides reduces intracellular aSyn levels. GM1 also significantly enhances expression of tyrosine hydroxylase (TH) in the substantia nigra pars compacta of the A53T aSyn overexpressing mouse, following restored nuclear expression of nuclear receptor related 1 (Nurr1, also known as NR4A2), an essential transcription factor for differentiation, maturation, and maintenance of midbrain dopaminergic neurons. GM1 induces epigenetic activation of the TH gene, including augmentation of acetylated histones and recruitment of Nurr1 to the TH promoter region. Our data indicate that intranasal administration of gangliosides could reduce neurotoxic proteins and restore functional neurons via modulating chromatin status by nuclear gangliosides.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - John C Morgan
- Movement Disorders Program, Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
16
|
Abstract
The traditional methods to study lipid rafts and their association with membrane proteins are based mainly on the isolation of a detergent-resistant membrane by biochemical fractionation. However, the use of detergents may induce lipid segregation and/or redistribution of membrane proteins during the process of sample preparation. Here, we describe a detergent-free method to study the glycolipid and growth factor receptor interaction and their association with lipid rafts. This method combines the biochemical and immunoblotting tools with confocal microscopic imaging, which allows for evaluation and verification of the membrane protein interaction and association with the lipid rafts components in a multifaceted manner.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
17
|
Itokazu Y, Li D, Yu RK. Intracerebroventricular Infusion of Gangliosides Augments the Adult Neural Stem Cell Pool in Mouse Brain. ASN Neuro 2020; 11:1759091419884859. [PMID: 31635474 PMCID: PMC6806120 DOI: 10.1177/1759091419884859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We previously reported that ganglioside GD3 is the predominant species in
neural stem cells (NSCs) and reduced postnatal NSC pools are observed
in both the subventricular zone and dentate gyrus (DG) of GD3-synthase
knockout (GD3S-KO) mouse brains. Specifically, deficiency of GD3 in
GD3S-KO animals revealed a dramatic reduction in cellularity in the DG
of the hippocampus of the developing mouse brain, resulting in severe
behavioral deficits in these animals. To further evaluate the
functional role of GD3 in postnatal brain, we performed rescue
experiments by intracerebroventricular infusion of ganglioside GD3 in
adult GD3S-KO animals and found that it could restore the NSC pools
and enhance the NSCs for self-renewal. Furthermore, 5xFAD mouse model
was utilized, and GD3 restored NSC numbers and GM1 promoted neuronal
differentiation. Our results thus demonstrate that exogenously
administered gangliosides are capable to restore the function of
postnatal NSCs. Since ganglioside expression profiles are associated
not only with normal brain development but also with pathogenic
mechanisms of diseases, such as Alzheimer’s disease, we anticipate
that the administration of exogenous gangliosides, such as GD3 and
GM1, may represent a novel and effective strategy for promoting adult
neurogenesis in damaged brain for disease treatment.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, GA, USA
| | - Dongpei Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, GA, USA
| |
Collapse
|
18
|
Takeuchi R, Kambe M, Miyata M, Jeyadevan U, Tajima O, Furukawa K, Furukawa K. TNFα-signal and cAMP-mediated signals oppositely regulate melanoma- associated ganglioside GD3 synthase gene in human melanocytes. Sci Rep 2019; 9:14740. [PMID: 31611597 PMCID: PMC6791844 DOI: 10.1038/s41598-019-51333-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
Analyses of expression and regulation of ganglioside synthases in melanocytes are important to understand roles of gangliosides in melanomagenesis. In this study, we analyzed the expression and regulatory mechanisms of glycosyltransferase genes responsible for ganglioside synthesis in normal melanocytes. We reported previously that culture supernatants of UVB-irradiated keratinocytes induced upregulation of ganglioside GD3 synthase gene in melanocytes, and mainly TNFα was responsible for it. Then, we found that elimination of dibutyryl cyclic AMP and IBMX from the medium also resulted in upregulation of the GD3 synthase gene. The addition of α-melanocyte-stimulating hormone which increases cAMP, to the medium led to a significant reduction in the GD3 synthase gene expression level, and a PKA inhibitor enhanced the GD3 synthase gene level. These results suggest that signals mediated via TNFα and cAMP oppositely regulate GD3 synthase gene expression in melanocytes. The results of an IKK inhibitor indicate the possibility that TNFα induces GD3 synthase gene expression via NF-κB signaling in melanocytes. When melanoma cells were treated by these factors, no fluctuation in the GD3 synthase gene expression level was observed, although an IKK inhibitor significantly suppressed it, suggesting that ganglioside synthase genes are regulated in distinct manners between melanocytes and melanomas.
Collapse
Affiliation(s)
- Rika Takeuchi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto 1200, Kasugai, Aichi, 487-8501, Japan
| | - Mariko Kambe
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto 1200, Kasugai, Aichi, 487-8501, Japan
| | - Maiko Miyata
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto 1200, Kasugai, Aichi, 487-8501, Japan
| | - Upul Jeyadevan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto 1200, Kasugai, Aichi, 487-8501, Japan
| | - Orie Tajima
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto 1200, Kasugai, Aichi, 487-8501, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto 1200, Kasugai, Aichi, 487-8501, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto 1200, Kasugai, Aichi, 487-8501, Japan.
| |
Collapse
|
19
|
Understanding cellular glycan surfaces in the central nervous system. Biochem Soc Trans 2018; 47:89-100. [PMID: 30559272 DOI: 10.1042/bst20180330] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/21/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Glycosylation, the enzymatic process by which glycans are attached to proteins and lipids, is the most abundant and functionally important type of post-translational modification associated with brain development, neurodegenerative disorders, psychopathologies and brain cancers. Glycan structures are diverse and complex; however, they have been detected and targeted in the central nervous system (CNS) by various immunohistochemical detection methods using glycan-binding proteins such as anti-glycan antibodies or lectins and/or characterized with analytical techniques such as chromatography and mass spectrometry. The glycan structures on glycoproteins and glycolipids expressed in neural stem cells play key roles in neural development, biological processes and CNS maintenance, such as cell adhesion, signal transduction, molecular trafficking and differentiation. This brief review will highlight some of the important findings on differential glycan expression across stages of CNS cell differentiation and in pathological disorders and diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, schizophrenia and brain cancer.
Collapse
|
20
|
Bottai D, Adami R, Ghidoni R. The crosstalk between glycosphingolipids and neural stem cells. J Neurochem 2018; 148:698-711. [PMID: 30269334 DOI: 10.1111/jnc.14600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 01/19/2023]
Abstract
Until a few years ago, the majority of cell functions were envisioned as the result of protein and DNA activity. The cell membranes were considered as a mere structure of support and/or separation. In the last years, the function of cell membranes has, however, received more attention and their components of lipid nature have also been depicted as important cell mediators and the membrane organization was described as an important determinant for membrane-anchored proteins activity. In particular, because of their high diversity, glycosphingolipids offer a wide possibility of regulation. Specifically, the role of glycosphingolipids, in the fine-tuning of neuron activity, has recently received deep attention. For their pivotal role in vertebrate and mammals neural development, neural stem cells regulation is of main interest especially concerning their further functions in neurological pathology progression and treatment. Glycosphingolipids expression present a developmental regulation. In this view, glycosphingolipids can hold an important role in neural stem cells features because of their heterogeneity and their consequent capacity for eclectic interaction with other cell components.
Collapse
Affiliation(s)
- Daniele Bottai
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Raffaella Adami
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Riccardo Ghidoni
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Nico D, Conde L, Rivera-Correa JL, Vasconcelos-Dos-Santos A, Mesentier-Louro L, Freire-de-Lima L, Arruda MB, Freire-de-Lima CG, Ferreira ODC, Lopes Moreira ME, Zin AA, Vasconcelos ZFM, Otero RM, Palatnik-de-Sousa CB, Tanuri A, Todeschini AR, Savino W, Rodriguez A, Morrot A. Prevalence of IgG Autoantibodies against GD3 Ganglioside in Acute Zika Virus Infection. Front Med (Lausanne) 2018; 5:25. [PMID: 29594116 PMCID: PMC5854646 DOI: 10.3389/fmed.2018.00025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/25/2018] [Indexed: 01/28/2023] Open
Abstract
Zika virus (ZIKV) disease has become a global health emergency with devastating effects on public health. Recent evidences implicate the virus as an emergent neuropathological agent promoting serious pathologies of the human nervous system, that include destructive and malformation consequences such as development of ocular and fetal brain lesions, microcephaly in neonates, and Guillain–Barré syndrome (GBS) in adults. These neurological disorders of both central and peripheral nervous systems are thought to be associated to the neurotropic properties of the virus that has ability to infect neural stem cells as well as peripheral neurons, a hallmark of its pathogenicity. The presence of autoantibodies against gangliosides plays a pivotal role in the etiogenesis of GBS and a variety of neurological disorders. Gangliosides are a class of galactose-containing cerebrosides mainly expressed in nervous system tissues playing a critical role in the physiology of neural cells and neurogenesis. Herein, our findings indicate that patients at acute phase of ZIKV infection without any neurological signs show increased levels of IgG autoantibody against GD3 gangliosides, a class of glycolipid found to be highly expressed in neural stem cell acting in the maintenance of their self-renewal cellular capacity. It is possible that a pathological threshold of these antibodies is only acquired in secondary or subsequent infections. In the light of these evidences, we propose that the target of GD3 by autoimmune responses may possibly has an effect in the neuropathy and neurogenesis disorder seen during ZIKV infection.
Collapse
Affiliation(s)
- Dirlei Nico
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Conde
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juan L Rivera-Correa
- Department of Microbiology, New York University School of Medicine, New York, NY, United States
| | | | - Louise Mesentier-Louro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Maria Elisabeth Lopes Moreira
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Unidade de Pesquisa Clínica, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Andrea Araújo Zin
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Unidade de Pesquisa Clínica, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Zilton Farias Meira Vasconcelos
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Unidade de Pesquisa Clínica, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Rosalia Mendez Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Amilcar Tanuri
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriane Regina Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wilson Savino
- Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY, United States
| | - Alexandre Morrot
- Faculdade de Medicina, Centro de Pesquisas em Tuberculose, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Oswaldo Cruz, Laboratório de Imunopatologia, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Itokazu Y, Wang J, Yu RK. Gangliosides in Nerve Cell Specification. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:241-263. [PMID: 29747816 DOI: 10.1016/bs.pmbts.2017.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The central nervous system is generated from progenitor cells that are recognized as neural stem cells (NSCs). NSCs are defined as undifferentiated neural cells that are characterized by the capacity for self-renewal and multipotency. Throughout neural development, NSCs undergo proliferation, migration, and cellular differentiation, and dynamic changes are observed in the composition of carbohydrate-rich molecules, including gangliosides. Gangliosides are sialic acid-containing glycosphingolipids with essential and multifaceted functions in brain development and NSC maintenance, which reflects the complexity of brain development. Our group has pioneered research on the importance of gangliosides for growth factor receptor signaling and epigenetic regulation of ganglioside biosynthesis in NSCs. We found that GD3 is the predominant ganglioside species in NSCs (>80%) and modulates NSC proliferation by interacting with epidermal growth factor receptor signaling. In postnatal brain, GD3 is required for long-term maintenance of NSCs. Deficiency in GD3 leads to developmental and behavioral deficits, such as depression. The synthesis of GD3 is switched to the synthesis of complex, brain-type gangliosides, namely, GM1, GD1a, GD1b, and GT1b, resulting in terminal differentiation and loss of "stemness" of NSCs. In this process, GM1 is augmented by a novel GM1-modulated epigenetic gene regulation mechanism of glycosyltransferases at a later differentiation stage. Consequently, our research suggests that stage-specific gangliosides play specific roles in maintaining NSC activities and in cell fate determination.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
23
|
CD60b: Enriching Neural Stem/Progenitor Cells from Rat Development into Adulthood. Stem Cells Int 2017; 2017:5759490. [PMID: 29270199 PMCID: PMC5705879 DOI: 10.1155/2017/5759490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/18/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
CD60b antigens are highly expressed during development in the rat nervous system, while in the adult their expression is restricted to a few regions, including the subventricular zone (SVZ) around the lateral ventricles—a neurogenic niche in the adult brain. For this reason, we investigated whether the expression of C60b is associated with neural stem/progenitor cells in the SVZ, from development into adulthood. We performed in vitro and in vivo analyses of CD60b expression at different stages and identified the presence of these antigens in neural stem/progenitor cells. We also observed that CD60b could be used to purify and enrich a population of neurosphere-forming cells from the developing and adult brain. We showed that CD60b antigens (mainly corresponding to ganglioside 9-O-acetyl GD3, a well-known molecule expressed during central nervous system development and mainly associated with neuronal migration) are also present in less mature cells and could be used to identify and isolate neural stem/progenitor cells during development and in the adult brain. A better understanding of molecules associated with neurogenesis may contribute not only to improve the knowledge about the physiology of the mammalian central nervous system, but also to find new treatments for regenerating tissue after disease or brain injury.
Collapse
|
24
|
Ryu JS, Ko K, Ko K, Kim JS, Kim SU, Chang KT, Choo YK. Roles of gangliosides in the differentiation of mouse pluripotent stem cells to neural stem cells and neural cells. Mol Med Rep 2017; 16:987-993. [DOI: 10.3892/mmr.2017.6719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/12/2017] [Indexed: 11/06/2022] Open
|
25
|
|
26
|
Itokazu Y, Tsai YT, Yu RK. Epigenetic regulation of ganglioside expression in neural stem cells and neuronal cells. Glycoconj J 2016; 34:749-756. [PMID: 27540730 DOI: 10.1007/s10719-016-9719-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/03/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
The structural diversity and localization of cell surface glycosphingolipids (GSLs), including gangliosides, in glycolipid-enriched microdomains (GEMs, also known as lipid rafts) render them ideally suited to play important roles in mediating intercellular recognition, interactions, adhesion, receptor function, and signaling. Gangliosides, sialic acid-containing GSLs, are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and these changes are mainly regulated through stage-specific expression of glycosyltransferase genes. We previously demonstrated for the first time that efficient histone acetylation of the glycosyltransferase genes in mouse brain contributes to the developmental alteration of ganglioside expression. We further demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase; B4galnt1) gene promoter resulted in recruitment of trans-activation factors. In addition, we showed that epigenetic activation of the GalNAcT gene was detected and accompanied by an apparent induction of neuronal differentiation of neural stem cells (NSCs) responding to an exogenous supplement of ganglioside GM1. Most recently, we found that nuclear GM1 binds with acetylated histones on the promoters of the GalNAcT as well as on the NeuroD1 genes in differentiated neurons. Here, we will introduce epigenetic regulation of ganglioside synthase genes in neural development and neuronal differentiation of NSCs.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Yi-Tzang Tsai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
27
|
Yagi H, Kato K. Functional roles of glycoconjugates in the maintenance of stemness and differentiation process of neural stem cells. Glycoconj J 2016; 34:757-763. [PMID: 27350557 DOI: 10.1007/s10719-016-9707-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 12/11/2022]
Abstract
Neural stem cells (NSCs) possess a high proliferative potential and capacity for self-renewal with retention of multipotency to differentiate into brain-forming cells. NSCs have gained a considerable attention because of their potential application in treatment strategies on the basis of transplantation for neurodegenerative disorders and nerve injuries. Although several signaling pathways have been reportedly involved in the fate determination process of NSCs, the molecular mechanisms underlying the maintenance of neural cell stemness and differentiation process remain largely unknown. Glycoconjugates expressed in the NSC niche in the brain offer markers of NSCs; moreover, they serve as cell regulators, which are actively involved in the modulation of signal transduction. The glycans function on NCS surfaces by recruiting growth factor receptors to specific microdomains as components of glycolipids, thereby mediating the ligand-receptor interactions both indirectly and directly as components of proteoglycans and interacting with specific lectin-type receptors as components of ligand glycoproteins. In this review, we outline current knowledge of the possible functional mechanisms of glycoconjugates to determine cell fates, which are associated with their expression pattern and structural characteristic features.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan. .,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama Myodaiji, Okazaki, 444-8787, Japan.
| |
Collapse
|
28
|
Glycolipid GD3 and GD3 synthase are key drivers for glioblastoma stem cells and tumorigenicity. Proc Natl Acad Sci U S A 2016; 113:5592-7. [PMID: 27143722 DOI: 10.1073/pnas.1604721113] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cancer stem cells (CSCs) of glioblastoma multiforme (GBM), a grade IV astrocytoma, have been enriched by the expressed marker CD133. However, recent studies have shown that CD133(-) cells also possess tumor-initiating potential. By analysis of gangliosides on various cells, we show that ganglioside D3 (GD3) is overexpressed on eight neurospheres and tumor cells; in combination with CD133, the sorted cells exhibit a higher expression of stemness genes and self-renewal potential; and as few as six cells will form neurospheres and 20-30 cells will grow tumor in mice. Furthermore, GD3 synthase (GD3S) is increased in neurospheres and human GBM tissues, but not in normal brain tissues, and suppression of GD3S results in decreased GBM stem cell (GSC)-associated properties. In addition, a GD3 antibody is shown to induce complement-dependent cytotoxicity against cells expressing GD3 and inhibition of GBM tumor growth in vivo. Our results demonstrate that GD3 and GD3S are highly expressed in GSCs, play a key role in glioblastoma tumorigenicity, and are potential therapeutic targets against GBM.
Collapse
|
29
|
Abstract
Immunomodulators regulate stem cell activity at all stages of development as well as during adulthood. Embryonic stem cell (ESC) proliferation as well as neurogenic processes during embryonic development are controlled by factors of the immune system. We review here immunophenotypic expression patterns of different stem cell types, including ESC, neural (NSC) and tissue-specific mesenchymal stem cells (MSC), and focus on immunodulatory properties of these cells. Immune and inflammatory responses, involving actions of cytokines as well as toll-like receptor (TLR) signaling are known to affect the differentiation capacity of NSC and MSC. Secretion of pro- and anti-inflammatory messengers by MSC have been observed as the consequence of TLR and cytokine activation and promotion of differentiation into specified phenotypes. As result of augmented differentiation capacity, stem cells secrete angiogenic factors including vascular endothelial growth factor, resulting in multifactorial actions in tissue repair. Immunoregulatory properties of tissue specific adult stem cells are put into the context of possible clinical applications.
Collapse
|
30
|
Yu YH, Narayanan G, Sankaran S, Ramasamy S, Chan SY, Lin S, Chen J, Yang H, Srivats H, Ahmed S. Purification, Visualization, and Molecular Signature of Neural Stem Cells. Stem Cells Dev 2015; 25:189-201. [PMID: 26464067 PMCID: PMC4770853 DOI: 10.1089/scd.2015.0190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neural stem cells (NSCs) are isolated from primary brain tissue and propagated as a heterogeneous mix of cells, including neural progenitors. To date, NSCs have not been purified in vitro to allow study of their biology and utility in regenerative medicine. In this study, we identify C1qR1 as a novel marker for NSCs and show that it can be used along with Lewis-X (LeX) to yield a highly purified population of NSCs. Using time-lapse microscopy, we are able to follow NSCs forming neurospheres, allowing their visualization. Finally, using single-cell polymerase chain reaction (PCR), we determine the molecular signature of NSCs. The single-cell PCR data suggest that along with the Notch and Shh pathways, the Hippo pathway plays an important role in NSC activity.
Collapse
Affiliation(s)
- Yuan Hong Yu
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Gunaseelan Narayanan
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Shvetha Sankaran
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Srinivas Ramasamy
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Shi Yu Chan
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Shuping Lin
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Jinmiao Chen
- 2 Bioinformatics Laboratory , Singapore Immunology Network, Singapore, Singapore
| | - Henry Yang
- 2 Bioinformatics Laboratory , Singapore Immunology Network, Singapore, Singapore
| | - Hariharan Srivats
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Sohail Ahmed
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| |
Collapse
|
31
|
Koon NA, Itokazu Y, Yu RK. Ganglioside-Dependent Neural Stem Cell Proliferation in Alzheimer's Disease Model Mice. ASN Neuro 2015; 7:1759091415618916. [PMID: 26699276 PMCID: PMC4710121 DOI: 10.1177/1759091415618916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aggregation and formation of amyloid plaques by amyloid β-peptides (Aβs) is believed to be one of the pathological hallmarks of Alzheimer's disease (AD). Intriguingly, Aβs have also been shown to possess proliferative effects on neural stem cells (NSCs). Many essential cellular processes in NSCs, such as fate determination and proliferation, are heavily influenced by cell surface glycoconjugates, including gangliosides. It has recently been shown that Aβ1-42 alters several key glycosyltransferases and glycosidases. To further define the effects of Aβs and to clarify the potential mechanisms of action of those peptides on NSCs, NSCs were cultured from embryonic brains of the double-transgenic mouse model of AD [B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J] coexpressing mutants of amyloid precursor protein (APPswe) and presenilin1 (PSEN1dE9). We found that Aβs not only promoted cell proliferation but also altered expression of several key glycogenes for glycoconjugate metabolism, such as sialyltransferases II and III (ST-II & -III) in AD NSCs. In addition, we found upregulation of epidermal growth factor receptor and Notch1 intracellular domain. Moreover, the increased expression of ST-II and -III coincided with the elevated levels of c-series gangliosides (A2B5+ antigens) in AD NSCs. Further, we revealed that epidermal growth factor signaling and gangliosides are necessary components on Aβ-stimulated NSC proliferation. Our present study has thus provided a novel mechanism for the upregulation of c-series ganglioside expression and increases in several NSC markers to account for the proliferative effect of Aβs on NSCs in AD mouse brain. These observations support the potential beneficial effects of Aβs and gangliosides in promoting neurogenesis in AD brain.
Collapse
Affiliation(s)
- Noah A. Koon
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Robert K. Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
32
|
Tsai YT, Itokazu Y, Yu RK. GM1 Ganglioside is Involved in Epigenetic Activation Loci of Neuronal Cells. Neurochem Res 2015; 41:107-15. [PMID: 26498762 DOI: 10.1007/s11064-015-1742-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/15/2015] [Accepted: 10/17/2015] [Indexed: 11/26/2022]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and are mainly regulated through stage-specific expression of glycosyltransferase (ganglioside synthase) genes. We previously demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase) gene promoter resulted in recruitment of trans-activation factors. In addition, we reported that epigenetic activation of the GalNAcT gene was also detected as accompanied by an apparent induction of neuronal differentiation in neural stem cells responding to an exogenous supplement of ganglioside GM1. Here, we present evidence supporting the concept that nuclear GM1 is associated with gene regulation in neuronal cells. We found that nuclear GM1 binds acetylated histones on the promoters of the GalNAcT and NeuroD1 genes in differentiated neurons. Our study demonstrates for the first time that GM1 interacts with chromatin via acetylated histones at the nuclear periphery of neuronal cells.
Collapse
Affiliation(s)
- Yi-Tzang Tsai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
33
|
Ganglioside GD3 is required for neurogenesis and long-term maintenance of neural stem cells in the postnatal mouse brain. J Neurosci 2015; 34:13790-800. [PMID: 25297105 DOI: 10.1523/jneurosci.2275-14.2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The maintenance of a neural stem cell (NSC) population in mammalian postnatal and adult life is crucial for continuous neurogenesis and neural repair. However, the molecular mechanism of how NSC populations are maintained remains unclear. Gangliosides are important cellular membrane components in the nervous system. We previously showed that ganglioside GD3 plays a crucial role in the maintenance of the self-renewal capacity of NSCs in vitro. Here, we investigated its role in postnatal and adult neurogenesis in GD3-synthase knock-out (GD3S-KO) and wild-type mice. GD3S-KO mice with deficiency in GD3 and the downstream b-series gangliosides showed a progressive loss of NSCs both at the SVZ and the DG of the hippocampus. The decrease of NSC populations in the GD3S-KO mice resulted in impaired neurogenesis at the granular cell layer of the olfactory bulb and the DG in the adult. In addition, defects of the self-renewal capacity and radial glia-like stem cell outgrowth of postnatal GD3S-KO NSCs could be rescued by restoration of GD3 expression in these cells. Our study demonstrates that the b-series gangliosides, especially GD3, play a crucial role in the long-term maintenance NSC populations in postnatal mouse brain. Moreover, the impaired neurogenesis in the adult GD3S-KO mice led to depression-like behaviors. Thus, our results provide convincing evidence linking b-series gangliosides deficiency and neurogenesis defects to behavioral deficits, and support a crucial role of gangliosides in the long-term maintenance of NSCs in adult mice.
Collapse
|
34
|
Azevedo-Pereira RL, Morrot A, Machado GS, Paredes BD, Rodrigues DDC, de Carvalho ACC, Mendez-Otero R. Expression of ganglioside 9-O acetyl GD3 in undifferentiated embryonic stem cells. Cell Biol Int 2015; 39:121-127. [PMID: 25045067 DOI: 10.1002/cbin.10335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023]
Abstract
Embryonic stem cells (ES cells) express a transient and heterogeneous pattern of molecules, which suggests a notable mechanism to control self-renewal avoid the differentiation into germ layers. We show that 9-O-acetyl GD3 (9OacGD3), a highly expressed b-series ganglioside in neural stem (NS) cells, is expressed in undifferentiated mouse ES cells in a heterogeneous fashion. After sorting, undifferentiated 9OacGD3(+) ES cell population had higher levels of nestin and Sox2 mRNA than the 9OacGD3(-) cells. Even with elevated expression of these neural transcription factors, 9OacGD3(+) cells did not give rise to more neural progenitors than 9OacGD3(-) cells. Expression of 9OacGD3 was recovered from 9OacGD3(-) cell population, demonstrating that expression of this ganglioside in mouse embryonic stem cells is transient, and does not reflect cell fate. Our findings show that the ganglioside 9OacGD3 is expressed heterogeneously and transiently in ES cells, and this expression corresponds to higher levels of Sox2 and Nestin transcripts.
Collapse
Affiliation(s)
- Ricardo Luiz Azevedo-Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Program Overview * Conference Program * Conference Posters * Conference Abstracts. Glycobiology 2014. [DOI: 10.1093/glycob/cwu087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
36
|
Nakatani Y, Tsuji M, Amano T, Miyagawa K, Miyagishi H, Saito A, Imai T, Takeda K, Ishii D, Takeda H. Neuroprotective effect of yokukansan against cytotoxicity induced by corticosterone on mouse hippocampal neurons. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1458-65. [PMID: 25022209 DOI: 10.1016/j.phymed.2014.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/17/2014] [Accepted: 06/09/2014] [Indexed: 05/26/2023]
Abstract
Yokukansan, a traditional Japanese herbal medicine, has been used for the management of neurodegenerative disorders and for the treatment of neurosis, insomnia, and behavioral and psychological symptoms of dementia. Recently, several studies have shown that yokukansan has a neuroprotective effect. The aim of this study was to examine the neuroprotective effect of yokukansan on hippocampal neurons from embryonic mouse brain against the effects of corticosterone, which is considered to be a stress hormone and to be cytotoxic toward neurons. The cell survival rates were measured by the WST-8 assay and LDH assay. Twenty-four hours after treatment with corticosterone, cell numbers were significantly decreased compared with the control or treatment with vehicle in a dose-dependent manner. When cells were treated with 30 μM corticosterone, the decrease in the number of cells was significantly recovered by treatment with yokukansan (100-1,000 μg/ml) in a dose-dependent manner. However, yokukansan did not suppress the decrease in cell numbers that was induced by treatment with 100 μM corticosterone. In the LDH assay, treatment with yokukansan at a high concentration (500-1,000 μg/ml) suppressed the LDH concentration induced by treatment with both 30 μM and 100 μM corticosterone compared to treatment with corticosterone alone, respectively. These results suggest that yokukansan protects against the cytotoxic effect of a low concentration of corticosterone on hippocampal neurons.
Collapse
Affiliation(s)
- Yoshihiko Nakatani
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Advanced Education and Research Center for Kampo Medicine, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Advanced Education and Research Center for Kampo Medicine, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Taku Amano
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Hiroko Miyagishi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Atsumi Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Taro Imai
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kotaro Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Daisuke Ishii
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Advanced Education and Research Center for Kampo Medicine, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| |
Collapse
|
37
|
Silvestri I, Testa F, Zappasodi R, Cairo CW, Zhang Y, Lupo B, Galli R, Di Nicola M, Venerando B, Tringali C. Sialidase NEU4 is involved in glioblastoma stem cell survival. Cell Death Dis 2014; 5:e1381. [PMID: 25144716 PMCID: PMC4454322 DOI: 10.1038/cddis.2014.349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/30/2023]
Abstract
The human sialidase, NEU4, has emerged as a possible regulator of neuronal differentiation and its overexpression has been demonstrated to promote the acquisition of a stem cell-like phenotype in neuroblastoma cells. In this paper, we demonstrated that glioblastoma stem cells (GSCs) isolated from glioblastoma multiforme (GBM) cell lines and patients' specimens as neurospheres are specifically marked by the upregulation of NEU4; in contrast, the expression of NEU4 is very low in non-neurosphere-differentiated GBM cells. We showed that NEU4 silencing by miRNA or a chemical inhibitor of its catalytic activity triggered key events in GSCs, including (a) the activation of the glycogen synthase kinase 3β, with the consequent inhibition of Sonic Hedgehog and Wnt/β-catenin signalling pathways; (b) the decrease of the stem cell-like gene expression and marker signatures, evidenced by the reduction of NANOG, OCT-4, SOX-2, CD133 expression, ganglioside GD3 synthesis, and an altered protein glycosylation profile; and (c) a significant decrease in GSCs survival. Consistent with this finding, increased NEU4 activity and expression induced in the more differentiated GBM cells by the NEU4 agonist thymoquinone increased the expression of OCT-4 and GLI-1. Thus, NEU4 expression and activity appeared to help to determine the molecular signature of GSCs and to be closely connected with their survival properties. Given the pivotal role played by GSCs in GBM lethality, our results strongly suggest that NEU4 inhibition could significantly improve current therapies against this tumour.
Collapse
Affiliation(s)
- I Silvestri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), Italy
| | - F Testa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), Italy
| | - R Zappasodi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | - C W Cairo
- Alberta Glycomics Center, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Y Zhang
- Alberta Glycomics Center, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - B Lupo
- Laboratory of Molecular Pharmacology, Institute for Cancer Research and Treatment (IRCC), Candiolo (Torino), Italy
| | - R Galli
- Neural Stem Cell Biology Unit, Division of Regenerative Medicine Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - M Di Nicola
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | - B Venerando
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), Italy
| | - C Tringali
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), Italy
| |
Collapse
|
38
|
Beck HC, Gosau M, Kristensen LP, Morsczeck C. A site-specific phosphorylation of the focal adhesion kinase controls the formation of spheroid cell clusters. Neurochem Res 2014; 39:1199-1205. [PMID: 24706070 DOI: 10.1007/s11064-014-1298-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/22/2014] [Accepted: 03/26/2014] [Indexed: 01/28/2023]
Abstract
Human dental follicle cells (DFCs) are ectomesenchymal multipotent stem cells that form spheroid cell clusters (SCCs) under serum free medium cell culture conditions (SFM). Until today, molecular mechanisms for the formation of SCCs are unknown. In this study a quantitative phosphoproteomics approach revealed regulated phosphorylated proteins in SCCs, which were derived from DFCs after 24 and 48 h in SFM. These regulated proteins were categorized using the Kyoto encyclopedia of genes and genomes program. Here, cellular processes and signaling pathway were identified such as the focal adhesion kinase (FAK) signaling pathway. In addition to the phosphoproteomics approach we showed that a specific phosphorylation of FAK (Y397) was required for the formation of SCCs. In conclusion, this study disclosed the phosphoproteome of SCCs for the first time and showed that the FAK signaling pathway is required for the formation of SCCs.
Collapse
Affiliation(s)
- Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Centre for Clinical Proteomics, Odense University Hospital, Sdr, Boulevard 29, 5000, Odense, Denmark
| | | | | | | |
Collapse
|
39
|
Itokazu Y, Yu RK. Amyloid β-peptide 1-42 modulates the proliferation of mouse neural stem cells: upregulation of fucosyltransferase IX and notch signaling. Mol Neurobiol 2014; 50:186-96. [PMID: 24436056 DOI: 10.1007/s12035-014-8634-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 01/02/2014] [Indexed: 12/15/2022]
Abstract
Amyloid β-peptides (Aβs) aggregate to form amyloid plaques, also known as senile plaques, which are a major pathological hallmark of Alzheimer's disease (AD). Aβs are reported to possess proliferation effects on neural stem cells (NSCs); however, this effect remains controversial. Thus, clarification of their physiological function is an important topic. We have systematically evaluated the effects of several putative bioactive Aβs (Aβ1-40, Aβ1-42, and Aβ25-35) on NSC proliferation. Treatment of NSCs with Aβ1-42 significantly increased the number of those cells (149 ± 10 %). This was not observed with Aβ1-40 which did not have any effects on the proliferative property of NSC. Aβ25-35, on the other hand, exhibited inhibitory effects on cellular proliferation. Since cell surface glycoconjugates, such as glycolipids, glycoproteins, and proteoglycans, are known to be important for maintaining cell fate determination, including cellular proliferation, in NSCs and they undergo dramatic changes during differentiation, we examined the effect of Aβs on a number of key glycoconjugate metabolizing enzymes. Significantly, we found for the first time that Aβ1-42 altered the expression of several key glycosyltransferases and glycosidases, including fucosyltransferase IX (FUT9), sialyltransferase III (ST-III), glucosylceramide ceramidase (GLCC), and mitochondrial sialidase (Neu4). FUT9 is a key enzyme for the synthesis of the Lewis X carbohydrate epitope, which is known to be expressed in stem cells. Aβ1-42 also stimulated the Notch1 intracellular domain (NICD) by upregulation of the expression of Musashi-1 and the paired box protein, Pax6. Thus, Aβ1-42 upregulates NSC proliferation by modulating the expression of several glycogenes involved in Notch signaling.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
| | | |
Collapse
|
40
|
Bieberich E. Synthesis, Processing, and Function of N-glycans in N-glycoproteins. ADVANCES IN NEUROBIOLOGY 2014; 9:47-70. [PMID: 25151374 DOI: 10.1007/978-1-4939-1154-7_3] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Many membrane-resident and secrected proteins, including growth factors and their receptors, are N-glycosylated. The initial N-glycan structure is synthesized in the endoplasmic reticulum (ER) as a branched structure on a lipid anchor (dolichol pyrophosphate) and then co-translationally, "en bloc" transferred and linked via N-acetylglucosamine to asparagine within a specific N-glycosylation acceptor sequence of the nascent recipient protein. In the ER and then the Golgi apparatus, the N-linked glycan structure is modified by hydrolytic removal of sugar residues ("trimming") followed by re-glycosylation with additional sugar residues ("processing") such as galactose, fucose, or sialic acid to form complex N-glycoproteins. While the sequence of the reactions leading to biosynthesis, "en bloc" transfer and processing of N-glycans is well investigated, it is still not completely understood how N-glycans affect the biological fate and function of N-glycoproteins. This review discusses the biology of N-glycoprotein synthesis, processing, and function with specific reference to the physiology and pathophysiology of the nervous system.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, 1120 15th Street Room CA4012, Augusta, GA, 30912, USA,
| |
Collapse
|
41
|
Glycolipid and Glycoprotein Expression During Neural Development. ADVANCES IN NEUROBIOLOGY 2014; 9:185-222. [DOI: 10.1007/978-1-4939-1154-7_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro. Proc Natl Acad Sci U S A 2013; 110:19137-42. [PMID: 24198336 DOI: 10.1073/pnas.1307224110] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mounting evidence supports the notion that gangliosides serve regulatory roles in neurogenesis; little is known, however, about how these glycosphingolipids function in neural stem cell (NSC) fate determination. We previously demonstrated that ganglioside GD3 is a major species in embryonic mouse brain: more than 80% of the NSCs obtained by the neurosphere method express GD3. To investigate the functional role of GD3 in neurogenesis, we compared the properties of NSCs from GD3-synthase knockout (GD3S-KO) mice with those from their wild-type littermates. NSCs from GD3S-KO mice showed decreased self-renewal ability compared with those from the wild-type animals, and that decreased ability was accompanied by reduced expression of EGF receptor (EGFR) and an increased degradation rate of EGFR and EGF-induced ERK signaling. We also showed that EGFR switched from the low-density lipid raft fractions in wild-type NSCs to the high-density layers in the GD3S-KO NSCs. Immunochemical staining revealed colocalization of EGFR and GD3, and EGFR could be immunoprecipitated from the NSC lysate with an anti-GD3 antibody from the wild-type, but not from the GD3S-KO, mice. Tracking the localization of endocytosed EGFR with endocytosis pathway markers indicated that more EGFR in GD3S-KO NSCs translocated through the endosomal-lysosomal degradative pathway, rather than through the recycling pathway. Those findings support the idea that GD3 interacts with EGFR in the NSCs and that the interaction is responsible for sustaining the expression of EGFR and its downstream signaling to maintain the self-renewal capability of NSCs.
Collapse
|
43
|
Itokazu Y, Kato-Negishi M, Nakatani Y, Ariga T, Yu RK. Effects of amyloid β-peptides and gangliosides on mouse neural stem cells. Neurochem Res 2013; 38:2019-27. [PMID: 23851714 DOI: 10.1007/s11064-013-1108-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/19/2013] [Accepted: 06/29/2013] [Indexed: 01/04/2023]
Abstract
The interaction of amyloid β-proteins (Aβs) with membrane lipids has been postulated as an early event in Aβ fibril formation in Alzheimer's disease. We evaluated the effects of several putative bioactive Aβs and gangliosides on neural stem cells (NSCs) isolated from embryonic mouse brains or the subventricular zone of adult mouse brains. Incubation of the isolated NSCs with soluble Aβ1-40 alone did not cause any change in the number of NSCs, but soluble Aβ1-42 increased their number. Aggregated Aβ1-40 and Aβ1-42 increased the number of NSCs but soluble and aggregated Aβ25-35 decreased the number. Soluble Aβ1-40 and Aβ1-42 did not affect the number of apoptotic cells but aggregated Aβ1-40 and Aβ1-42 did. When NSCs were treated with a combination of GM1 or GD3 and soluble Aβ1-42, cell proliferation was enhanced, indicating that both GM1 and GD3 as well as Aβs are involved in promoting cell proliferation and survival of NSCs. These observations suggest the potential of beneficial effects of using gangliosides and Aβs for promoting NSC proliferation.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Background: 3D matrices are widely used as cell growth supports in basic research, regenerative medicine or cell-based drug assays. In order to genetically manipulate cells cultured within 3D matrices, two novel non-viral transfection reagents allowing preparation of matrices for in situ cell transfection were evaluated. Results: Two lipidic formulations, 3D-Fect™ and 3D-FectIN™, were assessed for their ability to transfect cells cultured within 3D solid scaffolds and 3D hydrogels, respectively. These reagents showed good compatibility with the most widespread types of matrices and enabled transfection of a wide range of mammalian cells of various origins. Classical cell lines, primary cells and stem cells were thus genetically modified while colonizing their growth support. Importantly, this in situ strategy alleviated the need to manipulate cells before seeding them. Conclusion: Results presented here demonstrated that 3D-Fect and 3D-FectIN reagents for 3D transfection are totally compatible with cells and do not impair matrix properties. 3D-Fect and 3D-FectIN, therefore, provide valuable tools for achieving localized and sustained transgene expression and should find versatile applications in fundamental research, regenerative medicine and cell-based drug assays.
Collapse
|
45
|
Chaubey S, Wolfe JH. Transplantation of CD15-enriched murine neural stem cells increases total engraftment and shifts differentiation toward the oligodendrocyte lineage. Stem Cells Transl Med 2013; 2:444-54. [PMID: 23681951 PMCID: PMC3673756 DOI: 10.5966/sctm.2012-0105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 03/01/2013] [Indexed: 01/08/2023] Open
Abstract
Neural stem cell (NSC) transplantation is a promising therapeutic approach for neurological diseases. However, only a limited number of cells can be transplanted into the brain, resulting in relatively low levels of engraftment. This study investigated the potential of using a cell surface marker to enrich a primary NSC population to increase stable engraftment in the recipient brain. NSCs were enriched from the neonatal mouse forebrain using anti-CD15 (Lewis X antigen, or SSEA-1) in a "gentle" fluorescence-activated cell sorting protocol, which yielded >98% CD15-positive cells. The CD15-positive cells differentiated into neurons, astrocytes, and oligodendrocytes in vitro, after withdrawal of growth factors, demonstrating multipotentiality. CD15-positive cells were expanded in vitro and injected bilaterally into the ventricles of neonatal mice. Cells from enriched and unenriched donor populations were found throughout the neuraxis, in both neurogenic and non-neurogenic regions. Total engraftment was similar at 7 days postinjection, but by 28 days postinjection, after brain organogenesis was complete, the survival of donor cells was significantly increased in CD15-enriched grafts over the unenriched cell grafts. The engrafted cells were heterogeneous in morphology and differentiated into all three neural lineages. Furthermore, in the CD15-enriched grafts, there was a significant shift toward differentiation into oligodendrocytes. This strategy may allow better delivery of therapeutic cells to the developing central nervous system and may be particularly useful for treating diseases involving white matter lesions.
Collapse
Affiliation(s)
- Sushma Chaubey
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John H. Wolfe
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, and
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Gilbert ER, Eby JM, Hammer AM, Klarquist J, Christensen DG, Barfuss AJ, Boissy RE, Picken MM, Love RB, Dilling DF, Le Poole IC. Positioning ganglioside D3 as an immunotherapeutic target in lymphangioleiomyomatosis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:226-34. [PMID: 23665200 DOI: 10.1016/j.ajpath.2013.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 02/19/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
Tumors that develop in lymphangioleiomyomatosis (LAM) as a consequence of biallelic loss of TSC1 or TSC2 gene function express melanoma differentiation antigens. However, the percentage of LAM cells expressing these melanosomal antigens is limited. Here, we report the overexpression of ganglioside D3 (GD3) in LAM. GD3 is a tumor-associated antigen otherwise found in melanoma and neuroendocrine tumors; normal expression is largely restricted to neuronal cells in the brain. We also observed markedly reduced serum antibody titers to GD3, which may allow for a population of GD3-expressing LAM cells to expand within patients. This is supported by the demonstrated sensitivity of cultured LAM cells to complement mediated cytotoxicity via GD3 antibodies. GD3 can serve as a natural killer T (NKT) cell antigen when presented on CD1d molecules expressed on professional antigen-presenting cells. Although CD1d-expressing monocyte derivatives were present in situ, enhanced NKT-cell recruitment to LAM lung was not observed. Cultured LAM cells retained surface expression of GD3 over several passages and also expressed CD1d, implying that infiltrating NKT cells can be directly cytotoxic toward LAM lung lesions. Immunization with antibodies to GD3 may thus be therapeutic in LAM, and enhancement of existing NKT-cell infiltration may be effective to further improve antitumor responses. Overall, we hereby establish GD3 as a suitable target for immunotherapy of LAM.
Collapse
Affiliation(s)
- Emily R Gilbert
- Department of Medicine, Loyola University Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rosu-Myles M, McCully J, Fair J, Mehic J, Menendez P, Rodriguez R, Westwood C. The globoseries glycosphingolipid SSEA-4 is a marker of bone marrow-derived clonal multipotent stromal cells in vitro and in vivo. Stem Cells Dev 2013; 22:1387-97. [PMID: 23330736 DOI: 10.1089/scd.2012.0547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The therapeutic potential of multipotent stromal cells (MSC) may be enhanced by the identification of markers that allow their discrimination and enumeration both in vivo and in vitro. Here, we investigated the ability of embryonic stem cell-associated glycosphingolipids to isolate human MSC from both whole-bone-marrow (BM) and stromal cell cultures. Only SSEA-4 was consistently expressed on cells within the CD45loCD105hi marrow fraction and could be used to isolate cells with the capacity to give rise to stromal cultures containing MSC. Human stromal cultures, generated in either the presence or absence of serum, contained heterogeneous cell populations discriminated by the quantity of SSEA-4 epitopes detected on their surface. A low level of surface SSEA-4 (SSEA-4lo) correlated with undetectable levels of the α2,3-sialyltransferase-II enzyme required to synthesize SSEA-4; a reduced proliferative potential; and the loss of fat-, bone-, and cartilage-forming cells during long-term culture. In vitro, single cells with the capacity to generate multipotent stromal cultures were detected exclusively in the SSEA-4hi fraction. Our data demonstrate that a high level of surface epitopes for SSEA-4 provides a definitive marker of MSC from human BM.
Collapse
Affiliation(s)
- Michael Rosu-Myles
- Biologics and Genetic Therapies Directorate, Health Products and Food Branch , Health Canada, Ottawa, Canada.
| | | | | | | | | | | | | |
Collapse
|
48
|
Oliveira SLB, Pillat MM, Cheffer A, Lameu C, Schwindt TT, Ulrich H. Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry A 2012; 83:76-89. [PMID: 23044513 DOI: 10.1002/cyto.a.22161] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 07/23/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022]
Abstract
The identification and isolation of multipotent neural stem and progenitor cells in the brain, giving rise to neurons, astrocytes, and oligodendrocytes initiated many studies in order to understand basic mechanisms of endogenous neurogenesis and repair mechanisms of the nervous system and to develop novel therapeutic strategies for cellular regeneration therapies in brain disease. A previous review (Trujillo et al., Cytometry A 2009;75:38-53) focused on the importance of extrinsic factors, especially neurotransmitters, for directing migration and neurogenesis in the developing and adult brain. Here, we extend our review discussing the effects of the principal growth and neurotrophic factors as well as their intracellular signal transduction on neurogenesis, fate determination and neuroprotective mechanisms. Many of these mechanisms have been elucidated by in vitro studies for which neural stem cells were isolated, grown as neurospheres, induced to neural differentiation under desired experimental conditions, and analyzed for embryonic, progenitor, and neural marker expression by flow and imaging cytometry techniques. The better understanding of neural stem cells proliferation and differentiation is crucial for any therapeutic intervention aiming at neural stem cell transplantation and recruitment of endogenous repair mechanisms.
Collapse
Affiliation(s)
- Sophia L B Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Yagi H, Saito T, Yanagisawa M, Yu RK, Kato K. Lewis X-carrying N-glycans regulate the proliferation of mouse embryonic neural stem cells via the Notch signaling pathway. J Biol Chem 2012; 287:24356-64. [PMID: 22645129 DOI: 10.1074/jbc.m112.365643] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neural stem cells (NSCs) possess high proliferative potential and the capacity for self-renewal with retention of multipotency to differentiate into brain-forming cells. Several signaling pathways have been shown to be involved in the fate determination process of NSCs, but the molecular mechanisms underlying the maintenance of neural cell stemness remain largely unknown. Our previous study showed that human natural killer carbohydrate epitopes expressed specifically by mouse NSCs modulate the Ras-MAPK pathway, raising the possibility of regulatory roles of glycoprotein glycans in the specific signaling pathways involved in NSC fate determination. To address this issue, we performed comparative N-glycosylation profiling of NSCs before and after differentiation in a comprehensive and quantitative manner. We found that Lewis X-carrying N-glycans were specifically displayed on undifferentiated cells, whereas pauci-mannose-type N-glycans were predominantly expressed on differentiated cells. Furthermore, by knocking down a fucosyltransferase 9 with short interfering RNA, we demonstrated that the Lewis X-carrying N-glycans were actively involved in the proliferation of NSCs via modulation of the expression level of Musashi-1, which is an activator of the Notch signaling pathway. Our findings suggest that Lewis X carbohydrates, which have so far been characterized as undifferentiation markers, actually operate as activators of the Notch signaling pathway for the maintenance of NSC stemness during brain development.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Nagoya 467-8603, Japan
| | | | | | | | | |
Collapse
|
50
|
Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res 2012; 37:1230-44. [PMID: 22410735 DOI: 10.1007/s11064-012-0744-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 02/01/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nervous system. They are localized primarily in the outer leaflets of plasma membranes and participated in cell-cell recognition, adhesion, and signal transduction and are integral components of cell surface microdomains or lipid rafts along with proteins, sphingomyelin and cholesterol. Ganglioside-rich lipid rafts play an important role in signaling events affecting neural development and the pathogenesis of certain diseases. Disruption of gangloside synthase genes in mice induces developmental defects and neural degeneration. Targeting ganglioside metabolism may represent a novel therapeutic strategy for intervention in certain diseases. In this review, we focus on recent advances on metabolic and functional studies of gangliosides in normal brain development and in certain neurological disorders.
Collapse
|