1
|
Tung YW, Yang ZS, Huang JY, Hsu YT, Tsui CI, Hemdan MS, Tadikamalla S, Baua AD, Assavalapsakul W, Thitithanyanont A, Chao DY, Liu FT, Wang SF. The Multifaceted Roles of Galectins in Host-Virus Interactions: A Comprehensive Overview. Glycobiology 2025; 35:cwaf026. [PMID: 40302013 DOI: 10.1093/glycob/cwaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/25/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025] Open
Abstract
Galectins are a family of β-galactosides-binding protein, crucial regulators of host-virus interactions. They achieve this by recognizing specific glycan patterns on viral surfaces or mediating interactions with intracellular viral or host proteins, subsequently influencing the critical phases of the viral life cycle, such as attachment, replication, immune evasion, and reactivation. Furthermore, galectins modulate host immune responses, shaping the progression and outcomes of viral infections. This review comprehensively examines the roles of both endogenous and exogenous galectins in viral infections, noting that only a few galectins, including Galectin-1, -3, -4, -7, -8, and -9, Have been identified as key players in viral infection. Notably, Galectin-1, -3, and -9 play diverse functions in both DNA and RNA viral infection. Emerging evidence highlights the potential of Galectin-4 and -8 as intracellular sensors and modulators of viral pathogenesis. Endogenous galectins, produced by host cells, act through both glycan-dependent and glycan-independent mechanisms, influencing viral processes and immune responses. Exogenous galectins, which are secreted by other cells or administered as recombinant proteins, can either enhance or counteract the actions of endogenous galectins. The functions of galectins are virus-specific and context-dependent, serving as either promoters or inhibitors of viral replication and reactivation. Dysregulation of galectin expression is often linked to disease progression, highlighting their potential as diagnostic and prognostic biomarkers, as well as therapeutic targets. The important and varied roles that galectins play in viral infections are highlighted in this review, which also provides fresh insights into host-pathogen interactions and the development of antiviral tactics. HIGHLIGHTS
Collapse
Affiliation(s)
- Ying-Wei Tung
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
| | - Jie-Yu Huang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
| | - Yun-Tzu Hsu
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
| | - Ching-I Tsui
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
| | - Mahmoud Salama Hemdan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
| | - Sneha Tadikamalla
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
| | - Albright Dew Baua
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 807, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 40227, Taiwan
| | - Fu-Tong Liu
- Department of Dermatology, Keck School of Medicine of USC, 1975 Zonal Ave, Los Angeles, CA 90033, United States
- Institute of Biomedical Sciences, Academia Sinica, 128 Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung 80756, Taiwan
| |
Collapse
|
2
|
Wang SF, Chen HL, Liu FT. Galectins and Host-Pathogen Interactions: The roles in viral infections. Semin Immunol 2024; 76:101911. [PMID: 39580998 DOI: 10.1016/j.smim.2024.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Galectins, a family of carbohydrate-binding proteins, play crucial roles in the host-virus interaction landscape. This review explores the multifaceted contributions of endogenous galectins to various stages of the viral lifecycle, including attachment, replication, assembly, and release of progeny virions. Recent studies have indicated that viral infections can induce the expression and secretion of specific galectins, with elucidated signaling pathways in some cases, enhancing our understanding of their regulatory mechanisms. While many studies have focused on the effects of exogenous recombinant galectins, there is growing interest in the intrinsic functions of endogenous galectins, particularly through genetic alterations in cellular models. This review highlights the need for further research to uncover the complex roles of galectins in modulating viral infections and emphasizes their potential as therapeutic targets in the fight against viral diseases. Understanding these interactions could pave the way for novel strategies to enhance host defense mechanisms and mitigate viral pathogenesis.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Hung-Lin Chen
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Fu-Tong Liu
- Department of Dermatology, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
3
|
Stojanovic BS, Stojanovic B, Milovanovic J, Arsenijević A, Dimitrijevic Stojanovic M, Arsenijevic N, Milovanovic M. The Pivotal Role of Galectin-3 in Viral Infection: A Multifaceted Player in Host-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24119617. [PMID: 37298569 DOI: 10.3390/ijms24119617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Galectin-3 (Gal-3), a beta-galactoside-binding lectin, plays a pivotal role in various cellular processes, including immune responses, inflammation, and cancer progression. This comprehensive review aims to elucidate the multifaceted functions of Gal-3, starting with its crucial involvement in viral entry through facilitating viral attachment and catalyzing internalization. Furthermore, Gal-3 assumes significant roles in modulating immune responses, encompassing the activation and recruitment of immune cells, regulation of immune signaling pathways, and orchestration of cellular processes such as apoptosis and autophagy. The impact of Gal-3 extends to the viral life cycle, encompassing critical phases such as replication, assembly, and release. Notably, Gal-3 also contributes to viral pathogenesis, demonstrating involvement in tissue damage, inflammation, and viral persistence and latency elements. A detailed examination of specific viral diseases, including SARS-CoV-2, HIV, and influenza A, underscores the intricate role of Gal-3 in modulating immune responses and facilitating viral adherence and entry. Moreover, the potential of Gal-3 as a biomarker for disease severity, particularly in COVID-19, is considered. Gaining further insight into the mechanisms and roles of Gal-3 in these infections could pave the way for the development of innovative treatment and prevention options for a wide range of viral diseases.
Collapse
Affiliation(s)
- Bojana S Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Histology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
4
|
Molecular Identification and mRNA Expression Profiles of Galectin-9 Gene in Red Sea Bream ( Pagrus major) Infected with Pathogens. Animals (Basel) 2021; 11:ani11010139. [PMID: 33440635 PMCID: PMC7827478 DOI: 10.3390/ani11010139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Galectin (Gal) is a member of a family of β-galactoside-binding lectin. The members of this family play important roles in the recognition of carbohydrate ligands and in various other biological processes. In this study, we identified the gene encoding Gal-9 in Pagrus major (PmGal-9) and analyzed its expression in various tissues after pathogen challenge. Alignment analysis revealed that the two galactose-binding lectin domains of the deduced protein were highly conserved among all the teleosts. Phylogenetic analysis revealed that PmGal-9 is most closely related to the Gal-9 gene of gilthead sea bream. PmGal-9 was ubiquitously expressed in all tissues analyzed but was predominantly expressed in the spleen, head kidney, and intestine. After challenges with major microbial pathogens (Edwardsiella piscicida, Streptococcus iniae, or red sea bream iridovirus) of red sea bream, PmGal-9 mRNA expression was significantly regulated in most immune-related tissues. These results suggested that PmGal-9 not only plays an important role in the immune system of red sea bream but is also a possible inflammatory marker for pathogenic diseases.
Collapse
|
5
|
Wang WH, Lin CY, Chang MR, Urbina AN, Assavalapsakul W, Thitithanyanont A, Chen YH, Liu FT, Wang SF. The role of galectins in virus infection - A systemic literature review. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:925-935. [PMID: 31630962 DOI: 10.1016/j.jmii.2019.09.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Galectins are β-Galactose binding lectins expressed in numerous cells and play multiple roles in various physiological and cellular functions. However, few information is available regarding the role of galectins in virus infections. Here, we conducted a systemic literature review to analyze the role of galectins in human virus infection. METHODS This study uses a systematic method to identify and select eligible articles according to the PRISMA guidelines. References were selected from PubMed, Web of Science and Google Scholar database covering publication dated from August 1995 to December 2018. RESULTS Results indicate that galectins play multiple roles in regulation of virus infections. Galectin-1 (Gal-1), galectin-3 (Gal-3), galectin-8 (Gal-8), and galectin-9 (Gal-9) were found as the most predominant galectins reported to participate in virus infection. The regulatory function of galectins occurs by extracellularly binding to viral glycosylated envelope proteins, interacting with ligands or receptors on immune cells, or acting intracellularly with viral or cellular components in the cytoplasm. Several galectins express either positive or negative regulatory role, while some had dual regulatory capabilities on virus propagation based on the conditions and their localization. However, limited information about the endogenous function of galectins were found. Therefore, the endogenous effects of galectins in host-virus regulation remains valuable to investigate. CONCLUSIONS This study offers information regarding the various roles galectins shown in viral infection and suggest that galectins can potentially be used as viral therapeutic targets or antagonists.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Max R Chang
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Aspiro Nayim Urbina
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, 80145, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, 300, Taiwan.
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
6
|
Machala EA, McSharry BP, Rouse BT, Abendroth A, Slobedman B. Gal power: the diverse roles of galectins in regulating viral infections. J Gen Virol 2019; 100:333-349. [PMID: 30648945 DOI: 10.1099/jgv.0.001208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses, as a class of pathogenic microbe, remain a significant health burden globally. Viral infections result in significant morbidity and mortality annually and many remain in need of novel vaccine and anti-viral strategies. The development of effective novel anti-viral therapeutics, in particular, requires detailed understanding of the mechanism of viral infection, and the host response, including the innate and adaptive arms of the immune system. In recent years, the role of glycans and lectins in pathogen-host interactions has become an increasingly relevant issue. This review focuses on the interactions between a specific lectin family, galectins, and the broad range of viral infections in which they play a role. Discussed are the diverse activities that galectins play in interacting directly with virions or the cells they infect, to promote or inhibit viral infection. In addition we describe how galectin expression is regulated both transcriptionally and post-transcriptionally by viral infections. We also compare the contribution of known galectin-mediated immune modulation, across a range of innate and adaptive immune anti-viral responses, to the outcome of viral infections.
Collapse
Affiliation(s)
- Emily A Machala
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Brian P McSharry
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Barry T Rouse
- 2Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Allison Abendroth
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Barry Slobedman
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
7
|
Croci DO, Salatino M, Rubinstein N, Cerliani JP, Cavallin LE, Leung HJ, Ouyang J, Ilarregui JM, Toscano MA, Domaica CI, Croci MC, Shipp MA, Mesri EA, Albini A, Rabinovich GA. Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma. ACTA ACUST UNITED AC 2012; 209:1985-2000. [PMID: 23027923 PMCID: PMC3478924 DOI: 10.1084/jem.20111665] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Disrupting Gal-1 interactions with N-glycans prevents hypoxia-driven angiogenesis to suppress tumorigenesis of Kaposi’s sarcoma Kaposi’s sarcoma (KS), a multifocal vascular neoplasm linked to human herpesvirus-8 (HHV-8/KS-associated herpesvirus [KSHV]) infection, is the most common AIDS-associated malignancy. Clinical management of KS has proven to be challenging because of its prevalence in immunosuppressed patients and its unique vascular and inflammatory nature that is sustained by viral and host-derived paracrine-acting factors primarily released under hypoxic conditions. We show that interactions between the regulatory lectin galectin-1 (Gal-1) and specific target N-glycans link tumor hypoxia to neovascularization as part of the pathogenesis of KS. Expression of Gal-1 is found to be a hallmark of human KS but not other vascular pathologies and is directly induced by both KSHV and hypoxia. Interestingly, hypoxia induced Gal-1 through mechanisms that are independent of hypoxia-inducible factor (HIF) 1α and HIF-2α but involved reactive oxygen species–dependent activation of the transcription factor nuclear factor κB. Targeted disruption of Gal-1–N-glycan interactions eliminated hypoxia-driven angiogenesis and suppressed tumorigenesis in vivo. Therapeutic administration of a Gal-1–specific neutralizing mAb attenuated abnormal angiogenesis and promoted tumor regression in mice bearing established KS tumors. Given the active search for HIF-independent mechanisms that serve to couple tumor hypoxia to pathological angiogenesis, our findings provide novel opportunities not only for treating KS patients but also for understanding and managing a variety of solid tumors.
Collapse
Affiliation(s)
- Diego O Croci
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Alcendor D, Knobel S. Identifying dysregulated genes induced by Kaposi's sarcoma-associated herpesvirus (KSHV). J Vis Exp 2010:2078. [PMID: 20864930 DOI: 10.3791/2078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Currently KS is the most predominant HIV/AIDS related malignancy in Southern Africa and hence the world. It is characterized as an angioproliferative tumor of vascular endothelial cells and produces rare B cell lymphoproliferative diseases in the form of pleural effusion lymphomas (PEL) and some forms of multicentric Castleman's disease. Only 1-5% of cells in KS lesions actively support lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent associated with KS, and it is clear that cellular factors must interact with viral factors in the process of oncogenesis and tumor progression. Identifying novel host-factor determinants which contribute to KS pathology is essential for developing prognostic markers for tumor progression and metastasis as well as for developing novel therapeutics for the treatment of KS. The accompanying video details the methods we use to identify host cell gene expression programs altered in dermal microvascular endothelial cells (DMVEC) after KSHV infection and in KS tumor tissue. Once dysregulated genes are identified by microarray analysis, changes in protein expression are confirmed by immunoblot and dual labeled immunofluorescence. Changes in transcriptional expression of dysregulated genes are confirmed in vitro by quantitative real-time polymerase chain reaction (qRT-PCR). Validation of in vitro findings using archival KS tumor tissue is also performed by dual labeled immunochemistry and tissue microarrays. Our approach to identifying dysregulated genes in the KS tumor tissue microenvironment will allow the development of in vitro and subsequently in vivo model systems for discovery and evaluation of potential novel therapeutic for the treatment of KS.
Collapse
Affiliation(s)
- Donald Alcendor
- Department of Microbiology & Immunology and the Center for AIDS Health Disparities Research, Meharry Medical College
| | | |
Collapse
|