1
|
Courage C, Oliver KL, Park EJ, Cameron JM, Grabińska KA, Muona M, Canafoglia L, Gambardella A, Said E, Afawi Z, Baykan B, Brandt C, di Bonaventura C, Chew HB, Criscuolo C, Dibbens LM, Castellotti B, Riguzzi P, Labate A, Filla A, Giallonardo AT, Berecki G, Jackson CB, Joensuu T, Damiano JA, Kivity S, Korczyn A, Palotie A, Striano P, Uccellini D, Giuliano L, Andermann E, Scheffer IE, Michelucci R, Bahlo M, Franceschetti S, Sessa WC, Berkovic SF, Lehesjoki AE. Progressive myoclonus epilepsies-Residual unsolved cases have marked genetic heterogeneity including dolichol-dependent protein glycosylation pathway genes. Am J Hum Genet 2021; 108:722-738. [PMID: 33798445 DOI: 10.1016/j.ajhg.2021.03.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/05/2021] [Indexed: 02/04/2023] Open
Abstract
Progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous rare diseases. Over 70% of PME cases can now be molecularly solved. Known PME genes encode a variety of proteins, many involved in lysosomal and endosomal function. We performed whole-exome sequencing (WES) in 84 (78 unrelated) unsolved PME-affected individuals, with or without additional family members, to discover novel causes. We identified likely disease-causing variants in 24 out of 78 (31%) unrelated individuals, despite previous genetic analyses. The diagnostic yield was significantly higher for individuals studied as trios or families (14/28) versus singletons (10/50) (OR = 3.9, p value = 0.01, Fisher's exact test). The 24 likely solved cases of PME involved 18 genes. First, we found and functionally validated five heterozygous variants in NUS1 and DHDDS and a homozygous variant in ALG10, with no previous disease associations. All three genes are involved in dolichol-dependent protein glycosylation, a pathway not previously implicated in PME. Second, we independently validate SEMA6B as a dominant PME gene in two unrelated individuals. Third, in five families, we identified variants in established PME genes; three with intronic or copy-number changes (CLN6, GBA, NEU1) and two very rare causes (ASAH1, CERS1). Fourth, we found a group of genes usually associated with developmental and epileptic encephalopathies, but here, remarkably, presenting as PME, with or without prior developmental delay. Our systematic analysis of these cases suggests that the small residuum of unsolved cases will most likely be a collection of very rare, genetically heterogeneous etiologies.
Collapse
Affiliation(s)
- Carolina Courage
- Folkhälsan Research Center, Helsinki 00290, Finland; Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki 00290, Finland
| | - Karen L Oliver
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia; Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, the University of Melbourne, Melbourne, VIC 3010, Australia
| | - Eon Joo Park
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Jillian M Cameron
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Kariona A Grabińska
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Mikko Muona
- Folkhälsan Research Center, Helsinki 00290, Finland; Blueprint Genetics, Espoo 02150, Finland
| | - Laura Canafoglia
- Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | | | - Edith Said
- Section of Medical Genetics, Mater dei Hospital, Msida MSD2090, Malta; Department of Anatomy and Cell Biology, University of Malta, Msida MSD2090, Malta
| | - Zaid Afawi
- Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva 8410402, Israel
| | - Betul Baykan
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Turkey
| | | | - Carlo di Bonaventura
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy
| | - Hui Bein Chew
- Genetics Department, Kuala Lumpur Hospital, Ministry of Health Malaysia, Jalan Pahang, 50586 Kuala Lumpur, Malaysia
| | - Chiara Criscuolo
- Department of Neuroscience, Reproductive, and Odontostomatological Sciences, University of Naples Federico II, Naples 80138, Italy
| | - Leanne M Dibbens
- Epilepsy Research Group, Australian Centre for Precision Health, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Barbara Castellotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Istituto Neurologico Carlo Besta Milan 20133, Italy
| | - Patrizia Riguzzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Unit of Neurology, Bellaria Hospital, Bologna 40139, Italy
| | - Angelo Labate
- Institute of Neurology, University Magna Græcia, Catanzaro 88100, Italy
| | - Alessandro Filla
- Department of Neuroscience, Reproductive, and Odontostomatological Sciences, University of Naples Federico II, Naples 80138, Italy
| | - Anna T Giallonardo
- Neurology Unit, Human Neurosciences Department, Sapienza University, Rome 00185, Italy
| | - Geza Berecki
- Ion Channels and Disease Group, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Christopher B Jackson
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | | | - John A Damiano
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Sara Kivity
- Epilepsy Unit, Schneider Children's Medical Center of Israel, Petah Tiqvah 4922297, Israel
| | - Amos Korczyn
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 60198, Israel
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki 00290, Finland; Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry Massachusetts General Hospital, Boston, MA 02114, USA; The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Boston, MA 02142, USA
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "G. Gaslini," Genova 16147, Italy
| | - Davide Uccellini
- Neurology - Neurophysiology Unit, ASST dei Sette Laghi, Galmarini Tradate Hospital, Tradate 21049, Italy
| | - Loretta Giuliano
- Dipartimento "G.F. Ingrassia," Università degli Studi di Catania, Catania 95131, Italy
| | - Eva Andermann
- Neurogenetics Unit and Epilepsy Research Group, Montreal Neurological Hospital and Institute, Montreal, QC H3A 2B4, Canada; Departments of Neurology & Neurosurgery and Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia; The Florey Institute, Parkville, VIC 3052, Australia
| | - Roberto Michelucci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Unit of Neurology, Bellaria Hospital, Bologna 40139, Italy
| | - Melanie Bahlo
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, the University of Melbourne, Melbourne, VIC 3010, Australia
| | - Silvana Franceschetti
- Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - William C Sessa
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia.
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Helsinki 00290, Finland; Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki 00290, Finland.
| |
Collapse
|
2
|
Van Gelder K, Rea KA, Virta LKA, Whitnell KL, Osborn M, Vatta M, Khozin A, Skorupinska-Tudek K, Surmacz L, Akhtar TA. Medium-Chain Polyprenols Influence Chloroplast Membrane Dynamics in Solanum lycopersicum. PLANT & CELL PHYSIOLOGY 2018; 59:2350-2365. [PMID: 30192960 DOI: 10.1093/pcp/pcy157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
The widespread occurrence of polyprenols throughout the plant kingdom is well documented, yet their functional role is poorly understood. These lipophilic compounds are known to be assembled from isoprenoid precursors by a class of enzymes designated as cis-prenyltransferases (CPTs), which are encoded by small CPT gene families in plants. In this study, we report that RNA interference (RNAi)-mediated knockdown of one member of the tomato CPT family (SlCPT5) reduced polyprenols in leaves by about 70%. Assays with recombinant SlCPT5 produced in Escherichia coli determined that the enzyme synthesizes polyprenols of approximately 50-55 carbons (Pren-10, Pren-11) in length and accommodates a variety of trans-prenyldiphosphate precursors as substrates. Introduction of SlCPT5 into the polyprenol-deficient yeast Δrer2 mutant resulted in the accumulation of Pren-11 in yeast cells, restored proper protein N-glycosylation and rescued the temperature-sensitive growth phenotype that is associated with its polyprenol deficiency. Subcellular fractionation studies together with in vivo localization of SlCPT5 fluorescent protein fusions demonstrated that SlCPT5 resides in the chloroplast stroma and that its enzymatic products accumulate in both thylakoid and envelope membranes. Transmission electron microscopy images of polyprenol-deficient leaves revealed alterations in chloroplast ultrastructure, and anisotropy measurements revealed a more disordered state of their envelope membranes. In polyprenol-deficient leaves, CO2 assimilation was hindered and their thylakoid membranes exhibited lower phase transition temperatures and calorimetric enthalpies, which coincided with a decreased photosynthetic electron transport rate. Taken together, these results uncover a role for polyprenols in governing chloroplast membrane dynamics.
Collapse
Affiliation(s)
- Kristen Van Gelder
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Kevin A Rea
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Lilia K A Virta
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Kenna L Whitnell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Michael Osborn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Maritza Vatta
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Alexandra Khozin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | | | - Liliana Surmacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Poland
| | - Tariq A Akhtar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| |
Collapse
|
3
|
Nguyen NQ, Lee SC, Tae-Jin Yang, Lee OR. cis-Prenyltransferase interacts with a Nogo-B receptor homolog for dolichol biosynthesis in Panax ginseng Meyer. J Ginseng Res 2017; 41:403-410. [PMID: 28701884 PMCID: PMC5489763 DOI: 10.1016/j.jgr.2017.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/23/2017] [Indexed: 11/24/2022] Open
Abstract
Background Prenyltransferases catalyze the sequential addition of isopentenyl diphosphate units to allylic prenyl diphosphate acceptors and are classified as either trans-prenyltransferases (TPTs) or cis-prenyltransferases (CPTs). The functions of CPTs have been well characterized in bacteria, yeast, and mammals compared to plants. The characterization of CPTs also has been less studied than TPTs. In the present study, molecular cloning and functional characterization of a CPT from a medicinal plant, Panax ginseng Mayer were addressed. Methods Gene expression patterns of PgCPT1 were analyzed by quantitative reverse transcription polymerase chain reaction. In planta transformation was generated by floral dipping using Agrobacterium tumefaciens. Yeast transformation was performed by lithium acetate and heat-shock for rer2Δ complementation and yeast-two-hybrid assay. Results The ginseng genome contains at least one family of three putative CPT genes. PgCPT1 is expressed in all organs, but more predominantly in the leaves. Overexpression of PgCPT1 did not show any plant growth defect, and its protein can complement yeast mutant rer2Δ via possible protein–protein interaction with PgCPTL2. Conclusion Partial complementation of the yeast dolichol biosynthesis mutant rer2Δ suggested that PgCPT1 is involved in dolichol biosynthesis. Direct protein interaction between PgCPT1 and a human Nogo-B receptor homolog suggests that PgCPT1 requires an accessory component for proper function.
Collapse
Affiliation(s)
- Ngoc Quy Nguyen
- Department of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ok Ran Lee
- Department of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Akhtar TA, Surowiecki P, Siekierska H, Kania M, Van Gelder K, Rea KA, Virta LKA, Vatta M, Gawarecka K, Wojcik J, Danikiewicz W, Buszewicz D, Swiezewska E, Surmacz L. Polyprenols Are Synthesized by a Plastidial cis-Prenyltransferase and Influence Photosynthetic Performance. THE PLANT CELL 2017; 29:1709-1725. [PMID: 28655749 PMCID: PMC5559739 DOI: 10.1105/tpc.16.00796] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/18/2017] [Accepted: 06/24/2017] [Indexed: 05/22/2023]
Abstract
Plants accumulate a family of hydrophobic polymers known as polyprenols, yet how they are synthesized, where they reside in the cell, and what role they serve is largely unknown. Using Arabidopsis thaliana as a model, we present evidence for the involvement of a plastidial cis-prenyltransferase (AtCPT7) in polyprenol synthesis. Gene inactivation and RNAi-mediated knockdown of AtCPT7 eliminated leaf polyprenols, while its overexpression increased their content. Complementation tests in the polyprenol-deficient yeast ∆rer2 mutant and enzyme assays with recombinant AtCPT7 confirmed that the enzyme synthesizes polyprenols of ∼55 carbons in length using geranylgeranyl diphosphate (GGPP) and isopentenyl diphosphate as substrates. Immunodetection and in vivo localization of AtCPT7 fluorescent protein fusions showed that AtCPT7 resides in the stroma of mesophyll chloroplasts. The enzymatic products of AtCPT7 accumulate in thylakoid membranes, and in their absence, thylakoids adopt an increasingly "fluid membrane" state. Chlorophyll fluorescence measurements from the leaves of polyprenol-deficient plants revealed impaired photosystem II operating efficiency, and their thylakoids exhibited a decreased rate of electron transport. These results establish that (1) plastidial AtCPT7 extends the length of GGPP to ∼55 carbons, which then accumulate in thylakoid membranes; and (2) these polyprenols influence photosynthetic performance through their modulation of thylakoid membrane dynamics.
Collapse
Affiliation(s)
- Tariq A Akhtar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Przemysław Surowiecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Hanna Siekierska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Magdalena Kania
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Kristen Van Gelder
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kevin A Rea
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Lilia K A Virta
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Maritza Vatta
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Katarzyna Gawarecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Jacek Wojcik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Witold Danikiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Daniel Buszewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Liliana Surmacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
5
|
Brasher MI, Surmacz L, Leong B, Pitcher J, Swiezewska E, Pichersky E, Akhtar TA. A two-component enzyme complex is required for dolichol biosynthesis in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:903-914. [PMID: 25899081 DOI: 10.1111/tpj.12859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 05/22/2023]
Abstract
Dolichol plays an indispensable role in the N-glycosylation of eukaryotic proteins. As proteins enter the secretory pathway they are decorated by a 'glycan', which is preassembled onto a membrane-anchored dolichol molecule embedded within the endoplasmic reticulum (ER). Genetic and biochemical evidence in yeast and animals indicate that a cis-prenyltransferase (CPT) is required for dolichol synthesis, but also point to other factor(s) that could be involved. In this study, RNAi-mediated suppression of one member of the tomato CPT family (SlCPT3) resulted in a ~60% decrease in dolichol content. We further show that the involvement of SlCPT3 in dolichol biosynthesis requires the participation of a distantly related partner protein, designated as CPT-binding protein (SlCPTBP), which is a close homolog of the human Nogo-B receptor. Yeast two-hybrid and co-immunoprecipitation assays demonstrate that SlCPT3 and its partner protein interact in vivo and that both SlCPT3 and SlCPTBP are required to complement the growth defects and dolichol deficiency of the yeast dolichol mutant, rer2∆. Co-expression of SlCPT3 and SlCPTBP in yeast and in E. coli confirmed that dolichol synthase activity strictly requires both proteins. Finally, organelle isolation and in vivo localization of fluorescent protein fusions showed that both SlCPT3 and SlCPTBP localize to the ER, the site of dolichol accumulation and synthesis in eukaryotes.
Collapse
Affiliation(s)
- Megan I Brasher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Liliana Surmacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego Street, 02-106, Warsaw, Poland
| | - Bryan Leong
- Department of Molecular and Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jocelyn Pitcher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego Street, 02-106, Warsaw, Poland
| | - Eran Pichersky
- Department of Molecular and Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tariq A Akhtar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
6
|
Park EJ, Grabińska KA, Guan Z, Stránecký V, Hartmannová H, Hodaňová K, Barešová V, Sovová J, Jozsef L, Ondrušková N, Hansíková H, Honzík T, Zeman J, Hůlková H, Wen R, Kmoch S, Sessa WC. Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab 2014; 20:448-57. [PMID: 25066056 PMCID: PMC4161961 DOI: 10.1016/j.cmet.2014.06.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/28/2014] [Accepted: 06/14/2014] [Indexed: 11/20/2022]
Abstract
Dolichol is an obligate carrier of glycans for N-linked protein glycosylation, O-mannosylation, and GPI anchor biosynthesis. cis-prenyltransferase (cis-PTase) is the first enzyme committed to the synthesis of dolichol. However, the proteins responsible for mammalian cis-PTase activity have not been delineated. Here we show that Nogo-B receptor (NgBR) is a subunit required for dolichol synthesis in yeast, mice, and man. Moreover, we describe a family with a congenital disorder of glycosylation caused by a loss of function mutation in the conserved C terminus of NgBR-R290H and show that fibroblasts isolated from patients exhibit reduced dolichol profiles and enhanced accumulation of free cholesterol identically to fibroblasts from mice lacking NgBR. Mutation of NgBR-R290H in man and orthologs in yeast proves the importance of this evolutionarily conserved residue for mammalian cis-PTase activity and function. Thus, these data provide a genetic basis for the essential role of NgBR in dolichol synthesis and protein glycosylation.
Collapse
Affiliation(s)
- Eon Joo Park
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Kariona A Grabińska
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, DUMC 2927, Durham, NC 27710, USA
| | - Viktor Stránecký
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Hana Hartmannová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Kateřina Hodaňová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Veronika Barešová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Jana Sovová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Levente Jozsef
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Nina Ondrušková
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Hana Hansíková
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Tomáš Honzík
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Jiří Zeman
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Helena Hůlková
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, 900 NW 17th Street, Miami, FL 33136, USA
| | - Stanislav Kmoch
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic.
| | - William C Sessa
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
Surmacz L, Plochocka D, Kania M, Danikiewicz W, Swiezewska E. cis-Prenyltransferase atCPT6 produces a family of very short-chain polyisoprenoids in planta. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:240-50. [PMID: 24291644 DOI: 10.1016/j.bbalip.2013.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/13/2013] [Accepted: 11/22/2013] [Indexed: 11/28/2022]
Abstract
cis-Prenyltransferases (CPTs) comprise numerous enzymes synthesizing isoprenoid hydrocarbon skeleton with isoprenoid units in the cis (Z) configuration. The chain-length specificity of a particular plant CPT is in most cases unknown despite thecomposition of the accumulated isoprenoids in the tissue of interest being well established. In this report AtCPT6, one of the nine Arabidopsis thaliana CPTs, is shown to catalyze the synthesis of a family of very short-chain polyisoprenoid alcohols of six, seven, and eight isoprenoid units, those of seven units dominating The product specificity of AtCPT6 was established in vivo following its expression in the heterologous system of the yeast Saccharomyces cerevisiae and was confirmed by the absence of specific products in AtCPT6 T-DNA insertion mutants and their overaccumulation in AtCPT6-overexpressing plants. These observations are additionally validated in silico using an AtCPT6 model obtained by homology modeling. AtCPT6 only partially complements the function of the yeast homologue of CPT-Rer2 since it restores the growth but not protein glycosylation in rer2delta yeast.This is the first in planta characterization of specific products of a plant CPT producing polyisoprenoids. Their distribution suggests that a joint activity of several CPTs is required to produce the complex mixture of polyisoprenoid alcohols found in Arabidopsis roots.
Collapse
|
8
|
Wen R, Lam BL, Guan Z. Aberrant dolichol chain lengths as biomarkers for retinitis pigmentosa caused by impaired dolichol biosynthesis. J Lipid Res 2013; 54:3516-22. [PMID: 24078709 DOI: 10.1194/jlr.m043232] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We observed a characteristic shortening of plasma and urinary dolichols in retinitis pigmentosa (RP) patients carrying K42E and T206A mutations in the dehydrodolichol diphosphate synthase (DHDDS) gene, using liquid chromatography-mass spectrometry. Dolichol-18 (D18) became the dominant dolichol species in patients instead of dolichol-19 (D19) in normal individuals. The D18/D19 ratio was calculated and used as an index of dolichol length distribution. K42E/K42E and K42E/T206A patients have significantly higher plasma and urinary D18/D19 ratios than K42E and T206A carriers. The ratios of carriers are significantly higher than normal individuals. Receiver operating characteristic (ROC) analysis shows that plasma and urinary D18/D19 ratios can unambiguously discriminate patients from carriers, and carriers from normal individuals. Dolichol analysis also provides evidence that the T206A mutation is RP-causative. The methodologies and procedures used for dolichol profiling are reliable, high throughput, and cost effective. Dolichol profiling, complementary to genotyping, can be readily adapted as a test in the clinic not only for the diagnosis of patients but also for identification of carriers with DHDDS or other genetic mutations that may impair dolichol biosynthesis.
Collapse
Affiliation(s)
- Rong Wen
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136
| | | | | |
Collapse
|
9
|
Akhtar TA, Matsuba Y, Schauvinhold I, Yu G, Lees HA, Klein SE, Pichersky E. The tomato cis-prenyltransferase gene family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:640-52. [PMID: 23134568 DOI: 10.1111/tpj.12063] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 05/22/2023]
Abstract
cis-prenyltransferases (CPTs) are predicted to be involved in the synthesis of long-chain polyisoprenoids, all with five or more isoprene (C5) units. Recently, we identified a short-chain CPT, neryl diphosphate synthase (NDPS1), in tomato (Solanum lycopersicum). Here, we searched the tomato genome and identified and characterized its entire CPT gene family, which comprises seven members (SlCPT1-7, with NDPS1 designated as SlCPT1). Six of the SlCPT genes encode proteins with N-terminal targeting sequences, which, when fused to GFP, mediated GFP transport to the plastids of Arabidopsis protoplasts. The SlCPT3-GFP fusion protein was localized to the cytosol. Enzymatic characterization of recombinant SlCPT proteins demonstrated that SlCPT6 produces Z,Z-FPP, and SlCPT2 catalyzes the formation of nerylneryl diphosphate while SlCPT4, SlCPT5 and SlCPT7 synthesize longer-chain products (C25-C55). Although no in vitro activity was demonstrated for SlCPT3, its expression in the Saccharomyces cerevisiae dolichol biosynthesis mutant (rer2) complemented the temperature-sensitive growth defect. Transcripts of SlCPT2, SlCPT4, SlCPT5 and SlCPT7 are present at low levels in multiple tissues, SlCPT6 is exclusively expressed in red fruit and roots, and SlCPT1, SlCPT3 and SlCPT7 are highly expressed in trichomes. RNAi-mediated suppression of NDPS1 led to a large decrease in β-phellandrene (which is produced from neryl diphosphate), with greater reductions achieved with the general 35S promoter compared to the trichome-specific MKS1 promoter. Phylogenetic analysis revealed CPT gene families in both eudicots and monocots, and showed that all the short-chain CPT genes from tomato (SlCPT1, SlCPT2 and SlCPT6) are closely linked to terpene synthase gene clusters.
Collapse
Affiliation(s)
- Tariq A Akhtar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Cantagrel V, Lefeber DJ. From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases. J Inherit Metab Dis 2011; 34:859-67. [PMID: 21384228 PMCID: PMC3137772 DOI: 10.1007/s10545-011-9301-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/08/2011] [Accepted: 02/11/2011] [Indexed: 11/22/2022]
Abstract
Polyisoprenoid alcohols are membrane lipids that are present in every cell, conserved from archaea to higher eukaryotes. The most common form, alpha-saturated polyprenol or dolichol is present in all tissues and most organelle membranes of eukaryotic cells. Dolichol has a well defined role as a lipid carrier for the glycan precursor in the early stages of N-linked protein glycosylation, which is assembled in the endoplasmic reticulum of all eukaryotic cells. Other glycosylation processes including C- and O-mannosylation, GPI-anchor biosynthesis and O-glucosylation also depend on dolichol biosynthesis via the availability of dolichol-P-mannose and dolichol-P-glucose in the ER. The ubiquity of dolichol in cellular compartments that are not involved in glycosylation raises the possibility of additional functions independent of these protein post-translational modifications. The molecular basis of several steps involved in the synthesis and the recycling of dolichol and its derivatives is still unknown, which hampers further research into this direction. In this review, we summarize the current knowledge on structural and functional aspects of dolichol metabolites. We will describe the metabolic disorders with a defect in known steps of dolichol biosynthesis and recycling in human and discuss their pathogenic mechanisms. Exploration of the developmental, cellular and biochemical defects associated with these disorders will provide a better understanding of the functions of this lipid class in human.
Collapse
Affiliation(s)
- Vincent Cantagrel
- Department of Neurosciences, Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA USA
| | - Dirk J. Lefeber
- Department of Neurology, Department of Laboratory Medicine, Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Guan Z, Eichler J. Liquid chromatography/tandem mass spectrometry of dolichols and polyprenols, lipid sugar carriers across evolution. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:800-6. [PMID: 21570481 DOI: 10.1016/j.bbalip.2011.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/12/2011] [Accepted: 04/24/2011] [Indexed: 10/18/2022]
Abstract
Across evolution, dolichols and polyprenols serve as sugar carriers in biosynthetic processes that include protein glycosylation and lipopolysaccharide biogenesis. Liquid chromatography coupled with electrospray ionization mass spectrometry offers a powerful tool for studying dolichols and polyprenols in their alcohol or glycan-modified forms in members of all three domains of life. In the following, recent examples of the how different versions of this analytical approach, namely reverse phase liquid chromatography-multiple reaction monitoring, normal phase liquid chromatography/tandem mass spectrometry and normal phase liquid chromatography-precursor ion scan detection have respectively served to address novel aspects of dolichol or polyprenol biology in Eukarya, Archaea and Bacteria.
Collapse
Affiliation(s)
- Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|