1
|
Wu Y, Yuan X, Zhang Y, Ma F, Zhao W, Sun X, Ma X, Chen Y. Sialidase NEU3 silencing inhibits angiogenesis of EA.hy926 cells by regulating Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2025; 742:151098. [PMID: 39672004 DOI: 10.1016/j.bbrc.2024.151098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/15/2024]
Abstract
Angiogenesis significantly drives tumor progression, and the functions of vascular endothelial cells are influenced by various factors. Tumor cells are characterized by abnormal sialylation, and their dynamic balance depends on sialyltransferases and sialidases. NEU3 is a plasma membrane-associated sialidase, vital for the regulation of cell surface sialylation. Our study revealed that, NEU3 is the most abundantly expressed among the four sialidase subtypes in EA.hy926 cells. Silencing NEU3 expression resulted in cell apoptosis and reduced proliferation, highlighting its crucial function in the regulation of cell activity. Subsequent experiments using transwell and tube formation assays demonstrated that the inhibition of NEU3 expression suppressed cell migration and angiogenesis. RNA sequencing analysis further elucidated that altering NEU3 expression in EA.hy926 cells impacts the Wnt/β-Catenin signaling pathway and c-Myc levels, thereby modulating cellular survival and migration capacity and exerting a regulatory effect on angiogenesis. These findings suggest that targeting NEU3 in the vascular endothelium may represent a promising strategy for anti-angiogenic therapy in tumors.
Collapse
Affiliation(s)
- Yilun Wu
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Yuan
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wei Zhao
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 637000, China
| | - Xinrui Sun
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xue Ma
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yingjiao Chen
- Office for West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610021, China.
| |
Collapse
|
2
|
Lillehoj EP, Yu Y, Verceles AC, Imamura A, Ishida H, Piepenbrink KH, Goldblum SE. Stenotrophomonas maltophilia provokes NEU1-mediated release of a flagellin-binding decoy receptor that protects against lethal infection. iScience 2024; 27:110866. [PMID: 39314239 PMCID: PMC11418149 DOI: 10.1016/j.isci.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/03/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Stenotrophomonas maltophilia (Sm), a multidrug-resistant pathogen often isolated from immunocompromised individuals, presents its flagellin to multimeric tandem repeats within the ectodomain of mucin-1 (MUC1-ED), expressed on airway epithelia. Flagellated Sm increases neuraminidase-1 (NEU1) sialidase association with and desialylation of MUC1-ED. This NEU1-mediated MUC1-ED desialylation unmasks cryptic binding sites for Sm flagellin, increasing flagellin and Sm binding to airway epithelia. MUC1 overexpression increases receptor number whereas NEU1 overexpression elevates receptor binding affinity. Silencing of either MUC1 or NEU1 reduces the flagellin-MUC1 interaction. Sm/flagellin provokes MUC1-ED autoproteolysis at a juxtamembranous glycine-serine peptide bond. MUC1-ED shedding from the epithelium not only occurs in vitro, but in the bronchoalveolar compartments of Sm/flagellin-challenged mice and patients with ventilator-associated Sm pneumonia. Finally, the soluble flagellin-targeting, MUC1-ED decoy receptor dose-dependently inhibits multiple Sm flagellin-driven pathogenic processes, in vitro, including motility, biofilm formation, adhesion, and proinflammatory cytokine production, and protects against lethal Sm lung infection, in vivo.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
| | - Avelino C. Verceles
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Akihiro Imamura
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Hideharu Ishida
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Kurt H. Piepenbrink
- Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - Simeon E. Goldblum
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Du J, Shui H, Chen R, Dong Y, Xiao C, Hu Y, Wong NK. Neuraminidase-1 (NEU1): Biological Roles and Therapeutic Relevance in Human Disease. Curr Issues Mol Biol 2024; 46:8031-8052. [PMID: 39194692 DOI: 10.3390/cimb46080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Neuraminidases catalyze the desialylation of cell-surface glycoconjugates and play crucial roles in the development and function of tissues and organs. In both physiological and pathophysiological contexts, neuraminidases mediate diverse biological activities via the catalytic hydrolysis of terminal neuraminic, or sialic acid residues in glycolipid and glycoprotein substrates. The selective modulation of neuraminidase activity constitutes a promising strategy for treating a broad spectrum of human pathologies, including sialidosis and galactosialidosis, neurodegenerative disorders, cancer, cardiovascular diseases, diabetes, and pulmonary disorders. Structurally distinct as a large family of mammalian proteins, neuraminidases (NEU1 through NEU4) possess dissimilar yet overlapping profiles of tissue expression, cellular/subcellular localization, and substrate specificity. NEU1 is well characterized for its lysosomal catabolic functions, with ubiquitous and abundant expression across such tissues as the kidney, pancreas, skeletal muscle, liver, lungs, placenta, and brain. NEU1 also exhibits a broad substrate range on the cell surface, where it plays hitherto underappreciated roles in modulating the structure and function of cellular receptors, providing a basis for it to be a potential drug target in various human diseases. This review seeks to summarize the recent progress in the research on NEU1-associated diseases and highlight the mechanistic implications of NEU1 in disease pathogenesis. An improved understanding of NEU1-associated diseases should help accelerate translational initiatives to develop novel or better therapeutics.
Collapse
Affiliation(s)
- Jingxia Du
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Hanqi Shui
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Rongjun Chen
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yibo Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengyao Xiao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
4
|
Muchowicz A, Bartoszewicz A, Zaslona Z. The Exploitation of the Glycosylation Pattern in Asthma: How We Alter Ancestral Pathways to Develop New Treatments. Biomolecules 2024; 14:513. [PMID: 38785919 PMCID: PMC11117584 DOI: 10.3390/biom14050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Asthma has reached epidemic levels, yet progress in developing specific therapies is slow. One of the main reasons for this is the fact that asthma is an umbrella term for various distinct subsets. Due to its high heterogeneity, it is difficult to establish biomarkers for each subset of asthma and to propose endotype-specific treatments. This review focuses on protein glycosylation as a process activated in asthma and ways to utilize it to develop novel biomarkers and treatments. We discuss known and relevant glycoproteins whose functions control disease development. The key role of glycoproteins in processes integral to asthma, such as inflammation, tissue remodeling, and repair, justifies our interest and research in the field of glycobiology. Altering the glycosylation states of proteins contributing to asthma can change the pathological processes that we previously failed to inhibit. Special emphasis is placed on chitotriosidase 1 (CHIT1), an enzyme capable of modifying LacNAc- and LacdiNAc-containing glycans. The expression and activity of CHIT1 are induced in human diseased lungs, and its pathological role has been demonstrated by both genetic and pharmacological approaches. We propose that studying the glycosylation pattern and enzymes involved in glycosylation in asthma can help in patient stratification and in developing personalized treatment.
Collapse
Affiliation(s)
| | | | - Zbigniew Zaslona
- Molecure S.A., Zwirki i Wigury 101, 02-089 Warszawa, Poland; (A.M.); (A.B.)
| |
Collapse
|
5
|
Mei S, Li D, Wang A, Zhu G, Zhou B, Li N, Qin Y, Zhang Y, Jiang S. The role of sialidase Neu1 in respiratory diseases. Respir Res 2024; 25:134. [PMID: 38500102 PMCID: PMC10949680 DOI: 10.1186/s12931-024-02763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
Neu1 is a sialidase enzyme that plays a crucial role in the regulation of glycosylation in a variety of cellular processes, including cellular signaling and inflammation. In recent years, numerous evidence has suggested that human NEU1 is also involved in the pathogenesis of various respiratory diseases, including lung infection, chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis. This review paper aims to provide an overview of the current research on human NEU1 and respiratory diseases.
Collapse
Affiliation(s)
- Shiran Mei
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Dingding Li
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Aoyi Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Bingwen Zhou
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Nian Li
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Qin
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanliang Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China.
| | - Shujun Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Xie X, Kong S, Cao W. Targeting protein glycosylation to regulate inflammation in the respiratory tract: novel diagnostic and therapeutic candidates for chronic respiratory diseases. Front Immunol 2023; 14:1168023. [PMID: 37256139 PMCID: PMC10225578 DOI: 10.3389/fimmu.2023.1168023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Protein glycosylation is a widespread posttranslational modification that can impact the function of proteins. Dysregulated protein glycosylation has been linked to several diseases, including chronic respiratory diseases (CRDs). CRDs pose a significant public health threat globally, affecting the airways and other lung structures. Emerging researches suggest that glycosylation plays a significant role in regulating inflammation associated with CRDs. This review offers an overview of the abnormal glycoenzyme activity and corresponding glycosylation changes involved in various CRDs, including chronic obstructive pulmonary disease, asthma, cystic fibrosis, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, non-cystic fibrosis bronchiectasis, and lung cancer. Additionally, this review summarizes recent advances in glycomics and glycoproteomics-based protein glycosylation analysis of CRDs. The potential of glycoenzymes and glycoproteins for clinical use in the diagnosis and treatment of CRDs is also discussed.
Collapse
Affiliation(s)
- Xiaofeng Xie
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Siyuan Kong
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Weiqian Cao
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Chen QQ, Liu K, Shi N, Ma G, Wang P, Xie HM, Jin SJ, Wei TT, Yu XY, Wang Y, Zhang JY, Li P, Qi LW, Zhang L. Neuraminidase 1 promotes renal fibrosis development in male mice. Nat Commun 2023; 14:1713. [PMID: 36973294 PMCID: PMC10043283 DOI: 10.1038/s41467-023-37450-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
The functions of the influenza virus neuraminidase has been well documented but those of the mammalian neuraminidases remain less explored. Here, we characterize the role of neuraminidase 1 (NEU1) in unilateral ureteral obstruction (UUO) and folic acid (FA)-induced renal fibrosis mouse models. We find that NEU1 is significantly upregulated in the fibrotic kidneys of patients and mice. Functionally, tubular epithelial cell-specific NEU1 knockout inhibits epithelial-to-mesenchymal transition, inflammatory cytokines production, and collagen deposition in mice. Conversely, NEU1 overexpression exacerbates progressive renal fibrosis. Mechanistically, NEU1 interacts with TGFβ type I receptor ALK5 at the 160-200aa region and stabilizes ALK5 leading to SMAD2/3 activation. Salvianolic acid B, a component of Salvia miltiorrhiza, is found to strongly bind to NEU1 and effectively protect mice from renal fibrosis in a NEU1-dependent manner. Collectively, this study characterizes a promotor role for NEU1 in renal fibrosis and suggests a potential avenue of targeting NEU1 to treat kidney diseases.
Collapse
Affiliation(s)
- Qian-Qian Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kang Liu
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ning Shi
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Gaoxiang Ma
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Peipei Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Hua-Mei Xie
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Si-Jia Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ting-Ting Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiang-Yu Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Wang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun-Yuan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
8
|
Pilling D, Sahlberg K, Chen W, Gomer RH. Changes in lung sialidases in male and female mice after bleomycin aspiration. Exp Lung Res 2022; 48:291-304. [PMID: 36382835 PMCID: PMC10084762 DOI: 10.1080/01902148.2022.2144548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
Aim of the study: Sialidases, also called neuraminidases, are enzymes that cleave terminal sialic acids from glycoconjugates. In humans and mice, lung fibrosis is associated with desialylation of glycoconjugates and upregulation of sialidases. There are four mammalian sialidases, and it is unclear when the four mammalian sialidases are elevated over the course of inflammatory and fibrotic responses, whether tissue resident and inflammatory cells express different sialidases, and if sialidases are differentially expressed in male and females. Materials and Methods: To determine the time course of sialidase expression and the identity of sialidase expressing cells, we used the bleomycin model of pulmonary fibrosis in mice to examine levels of sialidases during inflammation (days 3 - 10) and fibrosis (days 10 - 21). Results: Bleomycin aspiration increased sialidase NEU1 at days 14 and 21 in male mice and day 10 in female mice. NEU2 levels increased at day 7 in male and day 10 in female mice. NEU3 appears to have a biphasic response in male mice with increased levels at day 7 and then at days 14 and 21, whereas in female mice NEU3 levels increased over 21 days. In control mice, the sialidases were mainly expressed by EpCAM positive epithelial cells, but after bleomycin, epithelial cells, CD45 positive immune cells, and alveolar cells expressed NEU1, NEU2, and NEU3. Sialidase expression was higher in male compared to female mice. There was little expression of NEU4 in murine lung tissue. Conclusions: These results suggest that sialidases are dynamically expressed following bleomycin, that sialidases are differentially expressed in male and females, and that of the four sialidases only NEU3 upregulation is associated with fibrosis in both male and female mice.
Collapse
|
9
|
Keil J, Rafn GR, Turan IM, Aljohani MA, Sahebjam-Atabaki R, Sun XL. Sialidase Inhibitors with Different Mechanisms. J Med Chem 2022; 65:13574-13593. [PMID: 36252951 PMCID: PMC9620260 DOI: 10.1021/acs.jmedchem.2c01258] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Sialidases, or neuraminidases, are enzymes that catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly removal of the terminal Sia (desialylation). By desialylation, sialidase can modulate the functionality of the target compound and is thus often involved in biological pathways. Inhibition of sialidases with inhibitors is an important approach for understanding sialidase function and the underlying mechanisms and could serve as a therapeutic approach as well. Transition-state analogues, such as anti-influenza drugs oseltamivir and zanamivir, are major sialidase inhibitors. In addition, difluoro-sialic acids were developed as mechanism-based sialidase inhibitors. Further, fluorinated quinone methide-based suicide substrates were reported. Sialidase product analogue inhibitors were also explored. Finally, natural products have shown competitive inhibiton against viral, bacterial, and human sialidases. This Perspective describes sialidase inhibitors with different mechanisms and their activities and future potential, which include transition-state analogue inhibitors, mechanism-based inhibitors, suicide substrate inhibitors, product analogue inhibitors, and natural product inhibitors.
Collapse
Affiliation(s)
- Joseph
M. Keil
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Garrett R. Rafn
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Isaac M. Turan
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Majdi A. Aljohani
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Reza Sahebjam-Atabaki
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Xue-Long Sun
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| |
Collapse
|
10
|
Pilling D, Sahlberg K, Karhadkar TR, Chen W, Gomer RH. The sialidase NEU3 promotes pulmonary fibrosis in mice. Respir Res 2022; 23:215. [PMID: 35999554 PMCID: PMC9400331 DOI: 10.1186/s12931-022-02146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sialic acid is often the distal sugar on glycoconjugates, and sialidases are enzymes that remove this sugar. In fibrotic lesions in human and mouse lungs, there is extensive desialylation of glycoconjugates, and upregulation of sialidases including the extracellular sialidase NEU3. In the bleomycin model of pulmonary fibrosis, mice lacking NEU3 (Neu3-/-) showed strongly attenuated bleomycin-induced weight loss, lung damage, inflammation, and fibrosis. This indicates that NEU3 is necessary for the full spectrum of bleomycin-induced pulmonary fibrosis. METHODS To determine if NEU3 is sufficient to induce pulmonary fibrosis, recombinant murine NEU3 and a mutated inactive recombinant murine NEU3 protein were produced. Mice were given recombinant NEU3 proteins by oropharyngeal aspiration, either alone or 10 days after bleomycin challenge. Over the course of 21 days, mice were assessed for weight change, and after euthanasia, bronchoalveolar lavage fluid cells and lung tissue were assessed for inflammation and fibrosis. RESULTS Aspiration of recombinant murine NEU3 caused inflammation and fibrosis in the lungs, while inactive NEU3 caused inflammation but not fibrosis. Mice were also treated with recombinant murine NEU3 starting 10 days after bleomycin. In male but not female mice, recombinant murine NEU3 increased inflammation and fibrosis. Inactive NEU3 did not enhance bleomycin-induced lung fibrosis. CONCLUSION These results suggest that NEU3 is sufficient to induce fibrosis in the lungs, that aspiration of NEU3 has a greater effect on male mice, and that this effect is mediated by NEU3's enzymic activity.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, TX, 77843-3474, USA.
| | - Kyle Sahlberg
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, TX, 77843-3474, USA
| | - Tejas R Karhadkar
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, TX, 77843-3474, USA
| | - Wensheng Chen
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, TX, 77843-3474, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, TX, 77843-3474, USA.
| |
Collapse
|
11
|
Hyun SW, Feng C, Liu A, Lillehoj EP, Trotta R, Kingsbury TJ, Passaniti A, Lugkey KN, Chauhan S, Cipollo JF, Luzina IG, Atamas SP, Cross AS, Goldblum SE. Altered sialidase expression in human myeloid cells undergoing apoptosis and differentiation. Sci Rep 2022; 12:14173. [PMID: 35986080 PMCID: PMC9390117 DOI: 10.1038/s41598-022-18448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
To gain insight into sialic acid biology and sialidase/neuraminidase (NEU) expression in mature human neutrophil (PMN)s, we studied NEU activity and expression in PMNs and the HL60 promyelocytic leukemic cell line, and changes that might occur in PMNs undergoing apoptosis and HL60 cells during their differentiation into PMN-like cells. Mature human PMNs contained NEU activity and expressed NEU2, but not NEU1, the NEU1 chaperone, protective protein/cathepsin A(PPCA), NEU3, and NEU4 proteins. In proapoptotic PMNs, NEU2 protein expression increased > 30.0-fold. Granulocyte colony-stimulating factor protected against NEU2 protein upregulation, PMN surface desialylation and apoptosis. In response to 3 distinct differentiating agents, dimethylformamide, dimethylsulfoxide, and retinoic acid, total NEU activity in differentiated HL60 (dHL60) cells was dramatically reduced compared to that of nondifferentiated cells. With differentiation, NEU1 protein levels decreased > 85%, PPCA and NEU2 proteins increased > 12.0-fold, and 3.0-fold, respectively, NEU3 remained unchanged, and NEU4 increased 1.7-fold by day 3, and then returned to baseline. In dHL60 cells, lectin blotting revealed decreased α2,3-linked and increased α2,6-linked sialylation. dHL60 cells displayed increased adhesion to and migration across human bone marrow-derived endothelium and increased bacterial phagocytosis. Therefore, myeloid apoptosis and differentiation provoke changes in NEU catalytic activity and protein expression, surface sialylation, and functional responsiveness.
Collapse
|
12
|
Thirty-Five-Year History of Desialylated Lipoproteins Discovered by Vladimir Tertov. Biomedicines 2022; 10:biomedicines10051174. [PMID: 35625910 PMCID: PMC9138341 DOI: 10.3390/biomedicines10051174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is one of the leading causes of death in developed and developing countries. The atherogenicity phenomenon cannot be separated from the role of modified low-density lipoproteins (LDL) in atherosclerosis development. Among the multiple modifications of LDL, desialylation deserves to be discussed separately, since its atherogenic effects and contribution to atherogenicity are often underestimated or, simply, forgotten. Vladimir Tertov is linked to the origin of the research related to desialylated lipoproteins, including the association of modified LDL with atherogenicity, autoimmune nature of atherosclerosis, and discovery of sialidase activity in blood plasma. The review will briefly discuss all the above-mentioned information, with a description of the current situation in the research.
Collapse
|
13
|
Lillehoj EP, Luzina IG, Atamas SP. Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Front Immunol 2022; 13:883079. [PMID: 35479093 PMCID: PMC9035539 DOI: 10.3389/fimmu.2022.883079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of glycolipids and glycoproteins. A rapidly growing body of literature indicates that in addition to their metabolic functions, NEUs also regulate the activity of their glycoprotein targets. The simple post-translational modification of NEU protein targets-removal of the highly electronegative sialic acid-affects protein folding, alters protein interactions with their ligands, and exposes or covers proteolytic sites. Through such effects, NEUs regulate the downstream processes in which their glycoprotein targets participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-translational modification contributes to regulation of disease processes. In this review, we focus on the regulatory roles of NEU-modified MUCs as coordinators of disease pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special attention is placed on the most abundant and best studied NEU1, and its recently discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in disease pathogenesis is discussed, along with regulatory contributions from other MUCs and other pathophysiologically important NEU targets.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Irina G. Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Baltimore Veterans Affairs (VA) Medical Center, Baltimore, MD, United States
| | - Sergei P. Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Almahayni K, Spiekermann M, Fiore A, Yu G, Pedram K, Möckl L. Small molecule inhibitors of mammalian glycosylation. Matrix Biol Plus 2022; 16:100108. [PMID: 36467541 PMCID: PMC9713294 DOI: 10.1016/j.mbplus.2022.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023] Open
Abstract
Glycans are one of the fundamental biopolymers encountered in living systems. Compared to polynucleotide and polypeptide biosynthesis, polysaccharide biosynthesis is a uniquely combinatorial process to which interdependent enzymes with seemingly broad specificities contribute. The resulting intracellular cell surface, and secreted glycans play key roles in health and disease, from embryogenesis to cancer progression. The study and modulation of glycans in cell and organismal biology is aided by small molecule inhibitors of the enzymes involved in glycan biosynthesis. In this review, we survey the arsenal of currently available inhibitors, focusing on agents which have been independently validated in diverse systems. We highlight the utility of these inhibitors and drawbacks to their use, emphasizing the need for innovation for basic research as well as for therapeutic applications.
Collapse
Affiliation(s)
- Karim Almahayni
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Malte Spiekermann
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Antonio Fiore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Guoqiang Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA,Corresponding authors.
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany,Corresponding authors.
| |
Collapse
|
15
|
Bourguet E, Figurska S, Fra Czek MM. Human Neuraminidases: Structures and Stereoselective Inhibitors. J Med Chem 2022; 65:3002-3025. [PMID: 35170942 DOI: 10.1021/acs.jmedchem.1c01612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This Perspective describes the classification, structures, substrates, mechanisms of action, and implications of human neuraminidases (hNEUs) in various pathologies. Some inhibitors have been developed for each isoform, leading to more precise interactions with hNEUs. Although crystal structure data are available for NEU2, most of the findings are based on NEU1 inhibition, and limited information is available for other hNEUs. Therefore, the synthesis of new compounds would facilitate the enrichment of the arsenal of inhibitors to better understand the roles of hNEUs and their mechanisms of action. Nevertheless, due to the already known inhibitors of human neuraminidase enzymes, a structure-activity relationship is presented along with different approaches to inhibit these enzymes for the development of potent and selective inhibitors. Among the different emerging strategies, one is the inhibition of the dimerization of NEU1 or NEU3, and the second is the inhibition of certain receptors located close to hNEU.
Collapse
Affiliation(s)
- Erika Bourguet
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, 51097 Reims, France
| | - Sylwia Figurska
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, 51097 Reims, France.,Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Manuela Maria Fra Czek
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, 51097 Reims, France.,Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
16
|
Tembely D, Henry A, Vanalderwiert L, Toussaint K, Bennasroune A, Blaise S, Sartelet H, Jaisson S, Galés C, Martiny L, Duca L, Romier-Crouzet B, Maurice P. The Elastin Receptor Complex: An Emerging Therapeutic Target Against Age-Related Vascular Diseases. Front Endocrinol (Lausanne) 2022; 13:815356. [PMID: 35222273 PMCID: PMC8873114 DOI: 10.3389/fendo.2022.815356] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
The incidence of cardiovascular diseases is increasing worldwide with the growing aging of the population. Biological aging has major influence on the vascular tree and is associated with critical changes in the morphology and function of the arterial wall together with an extensive remodeling of the vascular extracellular matrix. Elastic fibers fragmentation and release of elastin degradation products, also known as elastin-derived peptides (EDPs), are typical hallmarks of aged conduit arteries. Along with the direct consequences of elastin fragmentation on the mechanical properties of arteries, the release of EDPs has been shown to modulate the development and/or progression of diverse vascular and metabolic diseases including atherosclerosis, thrombosis, type 2 diabetes and nonalcoholic steatohepatitis. Most of the biological effects mediated by these bioactive peptides are due to a peculiar membrane receptor called elastin receptor complex (ERC). This heterotrimeric receptor contains a peripheral protein called elastin-binding protein, the protective protein/cathepsin A, and a transmembrane sialidase, the neuraminidase-1 (NEU1). In this review, after an introductive part on the consequences of aging on the vasculature and the release of EDPs, we describe the composition of the ERC, the signaling pathways triggered by this receptor, and the current pharmacological strategies targeting ERC activation. Finally, we present and discuss new regulatory functions that have emerged over the last few years for the ERC through desialylation of membrane glycoproteins by NEU1, and its potential implication in receptor transactivation.
Collapse
Affiliation(s)
- Dignê Tembely
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Aubéri Henry
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Laetitia Vanalderwiert
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Kevin Toussaint
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Amar Bennasroune
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Sébastien Blaise
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Hervé Sartelet
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, Toulouse, France
| | - Laurent Martiny
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Béatrice Romier-Crouzet
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
- *Correspondence: Pascal Maurice, ; orcid.org0000-0003-2167-4808
| |
Collapse
|
17
|
Hyun SW, Imamura A, Ishida H, Piepenbrink KH, Goldblum SE, Lillehoj EP. The sialidase NEU1 directly interacts with the juxtamembranous segment of the cytoplasmic domain of mucin-1 to inhibit downstream PI3K-Akt signaling. J Biol Chem 2021; 297:101337. [PMID: 34688655 PMCID: PMC8591358 DOI: 10.1016/j.jbc.2021.101337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/04/2022] Open
Abstract
The extracellular domain (ED) of the membrane-spanning sialoglycoprotein, mucin-1 (MUC1), is an in vivo substrate for the lysosomal sialidase, neuraminidase-1 (NEU1). Engagement of the MUC1-ED by its cognate ligand, Pseudomonas aeruginosa-expressed flagellin, increases NEU1-MUC1 association and NEU1-mediated MUC1-ED desialylation to unmask cryptic binding sites for its ligand. However, the mechanism(s) through which intracellular NEU1 might physically interact with its surface-expressed MUC1-ED substrate are unclear. Using reciprocal coimmunoprecipitation and in vitro binding assays in a human airway epithelial cell system, we show here that NEU1 associates with the MUC1-cytoplasmic domain (CD) but not with the MUC1-ED. Prior pharmacologic inhibition of the NEU1 catalytic activity using the NEU1-selective sialidase inhibitor, C9-butyl amide-2-deoxy-2,3-dehydro-N-acetylneuraminic acid, did not diminish NEU1-MUC1-CD association. In addition, glutathione-S-transferase (GST) pull-down assays using the deletion mutants of the MUC1-CD mapped the NEU1-binding site to the membrane-proximal 36 aa of the MUC1-CD. In a cell-free system, we found that the purified NEU1 interacted with the immobilized GST-MUC1-CD and the purified MUC1-CD associated with the immobilized 6XHis-NEU1, indicating that the NEU1-MUC1-CD interaction was direct and independent of its chaperone protein, protective protein/cathepsin A. However, the NEU1-MUC1-CD interaction was not required for the NEU1-mediated MUC1-ED desialylation. Finally, we demonstrated that overexpression of either WT NEU1 or a catalytically dead NEU1 G68V mutant diminished the association of the established MUC1-CD binding partner, PI3K, to MUC1-CD and reduced downstream Akt kinase phosphorylation. These results indicate that NEU1 associates with the juxtamembranous region of the MUC1-CD to inhibit PI3K-Akt signaling independent of NEU1 catalytic activity.
Collapse
Affiliation(s)
- Sang W Hyun
- US Department of Veterans Affairs, Veterans Affairs Medical Center, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Akihiro Imamura
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu, Japan
| | - Hideharu Ishida
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu, Japan
| | - Kurt H Piepenbrink
- Food Science and Technology Department, University of Nebraska, Lincoln, Nebraska, USA
| | - Simeon E Goldblum
- US Department of Veterans Affairs, Veterans Affairs Medical Center, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Erik P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
18
|
Sobenin IA, Markin AM, Glanz VY, Markina YV, Wu WK, Myasoedova VA, Orekhov AN. Prospects for the Use of Sialidase Inhibitors in Anti-atherosclerotic Therapy. Curr Med Chem 2021; 28:2438-2450. [PMID: 32867633 DOI: 10.2174/0929867327666200831133912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 11/22/2022]
Abstract
The most typical feature of atherogenesis in humans at its early stage is the formation of foam cells in subendothelial arterial intima, which occurs as the consequence of intracellular cholesterol deposition. The main source of lipids accumulating in the arterial wall is circulating low-density lipoprotein (LDL). However, LDL particles should undergo proatherogenic modification to acquire atherogenic properties. One of the known types of atherogenic modification of LDL is enzymatic deglycosilation, namely, desialylation, which is the earliest change in the cascade of following multiple LDL modifications. The accumulating data make sialidases an intriguing and plausible therapeutic target, since pharmacological modulation of activity of these enzymes may have beneficial effects in several pathologies, including atherosclerosis. The hypothesis exists that decreasing LDL enzymatic desialylation may result in the prevention of lipid accumulation in arterial wall, thus breaking down one of the key players in atherogenesis at the cellular level. Several drugs acting as glycomimetics and inhibiting sialidase enzymatic activity already exist, but the concept of sialidase inhibition as an anti-atherosclerosis strategy remains unexplored to date. This review is focused on the potential possibilities of the repurposing of sialidase inhibitors for pathogenetic anti-atherosclerotic therapy.
Collapse
Affiliation(s)
- Igor A Sobenin
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Alexander M Markin
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Victor Y Glanz
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Yuliya V Markina
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Bei- Hu Branch, Taipei, Taiwan
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
19
|
Albrecht C, Akissi ZLE, Yao-Kouassi PA, Alabdul Magid A, Maurice P, Duca L, Voutquenne-Nazabadioko L, Bennasroune A. Identification and Evaluation of New Potential Inhibitors of Human Neuraminidase 1 Extracted from Olyra latifolia L.: A Preliminary Study. Biomedicines 2021; 9:biomedicines9040411. [PMID: 33920466 PMCID: PMC8070403 DOI: 10.3390/biomedicines9040411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/02/2022] Open
Abstract
Sialidases, also called neuraminidases, are involved in several human pathologies such as neurodegenerative disorders, cancers, as well as infectious and cardiovascular diseases. Several studies have shown that neuraminidases, such as neuraminidase 1 (NEU-1), may be promising pharmacological targets. Therefore, the discovery of new selective inhibitors of NEU-1 are necessary to better understand the biological functions of this sialidase. In the present study, we describe the isolation and characterization of nine known compounds from Olyra latifolia L. leaves. This plant, known to have several therapeutic properties, belongs to the family of Poaceae and is found in the neotropics and in tropical Africa and Madagascar. Among the purified compounds, feddeiketone B, 2,3-dihydroxy-1-(4-hydroxy-3,5-diméthoxyphényl)-l-propanone, and syringylglycerol were shown to present structural analogy with DANA, and their effects on membrane NEU-1 sialidase activity were evaluated. Our results show that they possess inhibitory effects against NEU-1-mediated sialidase activity at the plasma membrane. In conclusion, we identified new natural bioactive molecules extracted from Olyra latifolia as inhibitors of human NEU-1 of strong interest to elucidate the biological functions of this sialidase and to target this protein involved in several pathophysiological contexts.
Collapse
Affiliation(s)
- Camille Albrecht
- UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, CNRS, Université de Reims Champagne-Ardenne, 51097 Reims, France; (C.A.); (P.M.); (L.D.)
| | - Zachée Louis Evariste Akissi
- UMR 7312, Institut de Chimie Moléculaire de Reims (ICMR), UFR Sciences Exactes et Naturelles, CNRS, Université de Reims Champagne-Ardenne, 51097 Reims, France; (Z.L.E.A.); (A.A.M.)
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et de Technologie, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan, Cote D’Ivoire;
| | - Philomène Akoua Yao-Kouassi
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et de Technologie, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan, Cote D’Ivoire;
| | - Abdulmagid Alabdul Magid
- UMR 7312, Institut de Chimie Moléculaire de Reims (ICMR), UFR Sciences Exactes et Naturelles, CNRS, Université de Reims Champagne-Ardenne, 51097 Reims, France; (Z.L.E.A.); (A.A.M.)
| | - Pascal Maurice
- UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, CNRS, Université de Reims Champagne-Ardenne, 51097 Reims, France; (C.A.); (P.M.); (L.D.)
| | - Laurent Duca
- UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, CNRS, Université de Reims Champagne-Ardenne, 51097 Reims, France; (C.A.); (P.M.); (L.D.)
| | - Laurence Voutquenne-Nazabadioko
- UMR 7312, Institut de Chimie Moléculaire de Reims (ICMR), UFR Sciences Exactes et Naturelles, CNRS, Université de Reims Champagne-Ardenne, 51097 Reims, France; (Z.L.E.A.); (A.A.M.)
- Correspondence: (L.V.-N.); (A.B.)
| | - Amar Bennasroune
- UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, CNRS, Université de Reims Champagne-Ardenne, 51097 Reims, France; (C.A.); (P.M.); (L.D.)
- Correspondence: (L.V.-N.); (A.B.)
| |
Collapse
|
20
|
Zhang JY, Chen QQ, Li J, Zhang L, Qi LW. Neuraminidase 1 and its Inhibitors from Chinese Herbal Medicines: An Emerging Role for Cardiovascular Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:843-862. [PMID: 33827385 DOI: 10.1142/s0192415x21500403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuraminidase, also known as sialidase, is ubiquitous in animals and microorganisms. It is predominantly distributed in the cell membrane, cytoplasmic vesicles, and lysosomes. Neuraminidase generally recognizes the sialic acid glycosidic bonds at the ends of glycoproteins or glycolipids and enzymatically removes sialic acid. There are four types of neuraminidases, named as Neu1, Neu2, Neu3, and Neu4. Among them, Neu1 is the most abundant in mammals. Recent studies have revealed the involvement of Neu1 in several diseases, including cardiovascular diseases, diabetes, cancers, and neurological disorders. In this review, we center the attention to the role of Neu1 in cardiovascular diseases, including atherosclerosis, ischemic myocardial injury, cerebrovascular disease, congenital heart disease, and pulmonary embolism. We also summarize inhibitors from Chinese herbal medicines (CHMs) in inhibiting virus neuraminidase or human Neu1. Many Chinese herbs and Chinese herb preparations, such as Lonicerae Japonicae Flos, Scutellariae Radix, Yupingfeng San, and Huanglian Jiedu Decoction, have neuraminidase inhibitory activity. We hope to highlight the emerging role of Neu1 in humans and potentially titillate interest for further studies in this area.
Collapse
Affiliation(s)
- Jun-Yuan Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qian-Qian Chen
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jia Li
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China.,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
21
|
Luzina IG, Lillehoj EP, Lockatell V, Hyun SW, Lugkey KN, Imamura A, Ishida H, Cairo CW, Atamas SP, Goldblum SE. Therapeutic Effect of Neuraminidase-1-Selective Inhibition in Mouse Models of Bleomycin-Induced Pulmonary Inflammation and Fibrosis. J Pharmacol Exp Ther 2021; 376:136-146. [PMID: 33139318 PMCID: PMC7788353 DOI: 10.1124/jpet.120.000223] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022] Open
Abstract
Pulmonary fibrosis remains a serious biomedical problem with no cure and an urgent need for better therapies. Neuraminidases (NEUs), including NEU1, have been recently implicated in the mechanism of pulmonary fibrosis by us and others. We now have tested the ability of a broad-spectrum neuraminidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA), to modulate the in vivo response to acute intratracheal bleomycin challenge as an experimental model of pulmonary fibrosis. A marked alleviation of bleomycin-induced body weight loss and notable declines in accumulation of pulmonary lymphocytes and collagen deposition were observed. Real-time polymerase chain reaction analyses of human and mouse lung tissues and primary human lung fibroblast cultures were also performed. A predominant expression and pronounced elevation in the levels of NEU1 mRNA were observed in patients with idiopathic pulmonary fibrosis and bleomycin-challenged mice compared with their corresponding controls, whereas NEU2, NEU3, and NEU4 were expressed at far lower levels. The levels of mRNA for the NEU1 chaperone, protective protein/cathepsin A (PPCA), were also elevated by bleomycin. Western blotting analyses demonstrated bleomycin-induced elevations in protein expression of both NEU1 and PPCA in mouse lungs. Two known selective NEU1 inhibitors, C9-pentyl-amide-DANA (C9-BA-DANA) and C5-hexanamido-C9-acetamido-DANA, dramatically reduced bleomycin-induced loss of body weight, accumulation of pulmonary lymphocytes, and deposition of collagen. Importantly, C9-BA-DANA was therapeutic in the chronic bleomycin exposure model with no toxic effects observed within the experimental timeframe. Moreover, in the acute bleomycin model, C9-BA-DANA attenuated NEU1-mediated desialylation and shedding of the mucin-1 ectodomain. These data indicate that NEU1-selective inhibition offers a potential therapeutic intervention for pulmonary fibrotic diseases. SIGNIFICANCE STATEMENT: Neuraminidase-1-selective therapeutic targeting in the acute and chronic bleomycin models of pulmonary fibrosis reverses pulmonary collagen deposition, accumulation of lymphocytes in the lungs, and the disease-associated loss of body weight-all without observable toxic effects. Such therapy is as efficacious as nonspecific inhibition of all neuraminidases in these models, thus indicating the central role of neuraminidase-1 as well as offering a potential innovative, specifically targeted, and safe approach to treating human patients with a severe malady: pulmonary fibrosis.
Collapse
Affiliation(s)
- Irina G Luzina
- Departments of Medicine (I.G.L., V.L., S.W.H., K.N.L., S.P.A., S.E.G.) and Pediatrics (E.P.L.), University of Maryland School of Medicine, Baltimore, Maryland; Research Service, Baltimore VA Medical Center, Baltimore, Maryland (I.G.L., S.W.H., S.P.A., S.E.G.); Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan (A.I., H.I.); and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (C.W.C.)
| | - Erik P Lillehoj
- Departments of Medicine (I.G.L., V.L., S.W.H., K.N.L., S.P.A., S.E.G.) and Pediatrics (E.P.L.), University of Maryland School of Medicine, Baltimore, Maryland; Research Service, Baltimore VA Medical Center, Baltimore, Maryland (I.G.L., S.W.H., S.P.A., S.E.G.); Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan (A.I., H.I.); and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (C.W.C.)
| | - Virginia Lockatell
- Departments of Medicine (I.G.L., V.L., S.W.H., K.N.L., S.P.A., S.E.G.) and Pediatrics (E.P.L.), University of Maryland School of Medicine, Baltimore, Maryland; Research Service, Baltimore VA Medical Center, Baltimore, Maryland (I.G.L., S.W.H., S.P.A., S.E.G.); Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan (A.I., H.I.); and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (C.W.C.)
| | - Sang W Hyun
- Departments of Medicine (I.G.L., V.L., S.W.H., K.N.L., S.P.A., S.E.G.) and Pediatrics (E.P.L.), University of Maryland School of Medicine, Baltimore, Maryland; Research Service, Baltimore VA Medical Center, Baltimore, Maryland (I.G.L., S.W.H., S.P.A., S.E.G.); Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan (A.I., H.I.); and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (C.W.C.)
| | - Katerina N Lugkey
- Departments of Medicine (I.G.L., V.L., S.W.H., K.N.L., S.P.A., S.E.G.) and Pediatrics (E.P.L.), University of Maryland School of Medicine, Baltimore, Maryland; Research Service, Baltimore VA Medical Center, Baltimore, Maryland (I.G.L., S.W.H., S.P.A., S.E.G.); Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan (A.I., H.I.); and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (C.W.C.)
| | - Akihiro Imamura
- Departments of Medicine (I.G.L., V.L., S.W.H., K.N.L., S.P.A., S.E.G.) and Pediatrics (E.P.L.), University of Maryland School of Medicine, Baltimore, Maryland; Research Service, Baltimore VA Medical Center, Baltimore, Maryland (I.G.L., S.W.H., S.P.A., S.E.G.); Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan (A.I., H.I.); and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (C.W.C.)
| | - Hideharu Ishida
- Departments of Medicine (I.G.L., V.L., S.W.H., K.N.L., S.P.A., S.E.G.) and Pediatrics (E.P.L.), University of Maryland School of Medicine, Baltimore, Maryland; Research Service, Baltimore VA Medical Center, Baltimore, Maryland (I.G.L., S.W.H., S.P.A., S.E.G.); Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan (A.I., H.I.); and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (C.W.C.)
| | - Christopher W Cairo
- Departments of Medicine (I.G.L., V.L., S.W.H., K.N.L., S.P.A., S.E.G.) and Pediatrics (E.P.L.), University of Maryland School of Medicine, Baltimore, Maryland; Research Service, Baltimore VA Medical Center, Baltimore, Maryland (I.G.L., S.W.H., S.P.A., S.E.G.); Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan (A.I., H.I.); and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (C.W.C.)
| | - Sergei P Atamas
- Departments of Medicine (I.G.L., V.L., S.W.H., K.N.L., S.P.A., S.E.G.) and Pediatrics (E.P.L.), University of Maryland School of Medicine, Baltimore, Maryland; Research Service, Baltimore VA Medical Center, Baltimore, Maryland (I.G.L., S.W.H., S.P.A., S.E.G.); Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan (A.I., H.I.); and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (C.W.C.)
| | - Simeon E Goldblum
- Departments of Medicine (I.G.L., V.L., S.W.H., K.N.L., S.P.A., S.E.G.) and Pediatrics (E.P.L.), University of Maryland School of Medicine, Baltimore, Maryland; Research Service, Baltimore VA Medical Center, Baltimore, Maryland (I.G.L., S.W.H., S.P.A., S.E.G.); Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan (A.I., H.I.); and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (C.W.C.)
| |
Collapse
|
22
|
Albrecht C, Kuznetsov AS, Appert-Collin A, Dhaideh Z, Callewaert M, Bershatsky YV, Urban AS, Bocharov EV, Bagnard D, Baud S, Blaise S, Romier-Crouzet B, Efremov RG, Dauchez M, Duca L, Gueroult M, Maurice P, Bennasroune A. Transmembrane Peptides as a New Strategy to Inhibit Neuraminidase-1 Activation. Front Cell Dev Biol 2020; 8:611121. [PMID: 33392200 PMCID: PMC7772355 DOI: 10.3389/fcell.2020.611121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022] Open
Abstract
Sialidases, or neuraminidases, are involved in several human disorders such as neurodegenerative, infectious and cardiovascular diseases, and cancers. Accumulative data have shown that inhibition of neuraminidases, such as NEU1 sialidase, may be a promising pharmacological target, and selective inhibitors of NEU1 are therefore needed to better understand the biological functions of this sialidase. In the present study, we designed interfering peptides (IntPep) that target a transmembrane dimerization interface previously identified in human NEU1 that controls its membrane dimerization and sialidase activity. Two complementary strategies were used to deliver the IntPep into cells, either flanked to a TAT sequence or non-tagged for solubilization in detergent micelles. Combined with molecular dynamics simulations and heteronuclear nuclear magnetic resonance (NMR) studies in membrane-mimicking environments, our results show that these IntPep are able to interact with the dimerization interface of human NEU1, to disrupt membrane NEU1 dimerization and to strongly decrease its sialidase activity at the plasma membrane. In conclusion, we report here new selective inhibitors of human NEU1 of strong interest to elucidate the biological functions of this sialidase.
Collapse
Affiliation(s)
- Camille Albrecht
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France
| | - Andrey S Kuznetsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Higher School of Economics, Moscow, Russia.,Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Aline Appert-Collin
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France
| | - Zineb Dhaideh
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France
| | - Maïté Callewaert
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7312, Institut de Chimie Moléculaire de Reims, Reims, France
| | - Yaroslav V Bershatsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Anatoly S Urban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Dominique Bagnard
- Université de Strasbourg, Strasbourg, France.,INSERM U1119 Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France
| | - Sébastien Blaise
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France
| | - Béatrice Romier-Crouzet
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Higher School of Economics, Moscow, Russia.,Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Manuel Dauchez
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France.,Plateau de Modélisation Moléculaire Multi-échelle, Reims, France
| | - Laurent Duca
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France
| | - Marc Gueroult
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France
| | - Pascal Maurice
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France
| | - Amar Bennasroune
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France
| |
Collapse
|
23
|
Lv T, Lv H, Fei J, Xie Y, Lian D, Hu J, Tang L, Shi X, Wang J, Zhang S, Li F, Jiang X, Yi Y. p53-R273H promotes cancer cell migration via upregulation of neuraminidase-1. J Cancer 2020; 11:6874-6882. [PMID: 33123278 PMCID: PMC7591995 DOI: 10.7150/jca.44718] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates that hotspot p53 mutants have gain-of-function in promoting cell migration and tumor metastasis. However, the molecular mechanisms are not completely understood. Here, we show that a hotspot mutation, p53-R273H, promotes non-small cell lung cancer (NSCLC) cell migration and upregulates the mRNA and protein expression of neuraminidase-1 (NEU1), a sialidase involved in cell proliferation, cell migration and tumorigenesis. Silencing of NEU1 leads to upregulation of integrin β4 which significantly inhibits NSCLC cell migration induced by p53-R273H. Mechanistically, p53-R273H promotes NEU1 transcription via activation of AKT signaling. Importantly, NEU1 expression is upregulated in human NSCLC samples harboring mutant p53 and is associated with poor clinical outcome. Overall, this study highlights an important role of NEU1 in p53-R273H-induced NSCLC cell migration and provides a potential target for NSCLC diagnosis and treatment.
Collapse
Affiliation(s)
- Tao Lv
- Center for Yunnan Plateau Biological Resources Protection Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Hong Lv
- Hematology Department, The First People's Hospital of Qujing, Qujing, Yunnan, China 655000
| | - Junjie Fei
- Center of Growth, Metabolism and Aging, and Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China 610064
| | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, China 400016
| | - Daqing Lian
- Center for Yunnan Plateau Biological Resources Protection Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jiang Hu
- Center for Yunnan Plateau Biological Resources Protection Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Lizhou Tang
- Center for Yunnan Plateau Biological Resources Protection Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Xiaodong Shi
- Center for Yunnan Plateau Biological Resources Protection Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jianling Wang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Shibo Zhang
- Hematology Department, The First People's Hospital of Qujing, Qujing, Yunnan, China 655000
| | - Fengtian Li
- Center of Growth, Metabolism and Aging, and Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China 610064
| | - Xianjie Jiang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, and Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China 610064
| |
Collapse
|
24
|
Heimerl M, Sieve I, Ricke-Hoch M, Erschow S, Battmer K, Scherr M, Hilfiker-Kleiner D. Neuraminidase-1 promotes heart failure after ischemia/reperfusion injury by affecting cardiomyocytes and invading monocytes/macrophages. Basic Res Cardiol 2020; 115:62. [PMID: 32975669 PMCID: PMC7519006 DOI: 10.1007/s00395-020-00821-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
Neuraminidase (NEU)1 forms a multienzyme complex with beta-galactosidase (β-GAL) and protective-protein/cathepsin (PPC) A, which cleaves sialic-acids from cell surface glycoconjugates. We investigated the role of NEU1 in the myocardium after ischemia/reperfusion (I/R). Three days after inducing I/R, left ventricles (LV) of male mice (3 months-old) displayed upregulated neuraminidase activity and increased NEU1, β-GAL and PPCA expression. Mice hypomorphic for neu1 (hNEU1) had less neuraminidase activity, fewer pro-inflammatory (Lin−CD11b+F4/80+Ly-6Chigh), and more anti-inflammatory macrophages (Lin−CD11b+F4/80+Ly-6Clow) 3 days after I/R, and less LV dysfunction 14 days after I/R. WT mice transplanted with hNEU1-bone marrow (BM) and hNEU1 mice with WT-BM showed significantly better LV function 14 days after I/R compared with WT mice with WT-BM. Mice with a cardiomyocyte-specific NEU1 overexpression displayed no difference in inflammation 3 days after I/R, but showed increased cardiomyocyte hypertrophy, reduced expression and mislocalization of Connexin-43 in gap junctions, and LV dysfunction despite a similar infarct scar size to WT mice 14 days after I/R. The upregulation of NEU1 after I/R contributes to heart failure by promoting inflammation in invading monocytes/macrophages, enhancing cardiomyocyte hypertrophy, and impairing gap junction function, suggesting that systemic NEU1 inhibition may reduce heart failure after I/R.
Collapse
Affiliation(s)
- Maren Heimerl
- Molecular Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Irina Sieve
- Molecular Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Melanie Ricke-Hoch
- Molecular Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Sergej Erschow
- Molecular Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Karin Battmer
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Molecular Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
25
|
Howlader MA, Guo T, Chakraberty R, Cairo CW. Isoenzyme-Selective Inhibitors of Human Neuraminidases Reveal Distinct Effects on Cell Migration. ACS Chem Biol 2020; 15:1328-1339. [PMID: 32310634 DOI: 10.1021/acschembio.9b00975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The human neuraminidase enzymes (NEU1, NEU2, NEU3, and NEU4) are a class of enzymes implicated in pathologies including cancer and diabetes. Several reports have linked neuraminidase activity to the regulation of cell migration in cancer cells. Using an in vitro cell migration assay on fibronectin (FN) coated surfaces, we have investigated the role of these enzymes in integrin-mediated cell migration. We observed that neuraminidase inhibition caused significant retardation of cell migration in breast cancer (MDA-MB-231) and prostate cancer (PC-3) cell lines when using inhibitors of NEU3 and NEU4. In contrast, inhibition of NEU1 caused a significant increase in cell migration for the same cell lines. We concluded that the blockade of human neuraminidase enzymes with isoenzyme-selective inhibitors can lead to disparate results and has significant potential in the development of anticancer or wound healing therapeutics.
Collapse
Affiliation(s)
- Md. Amran Howlader
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Radhika Chakraberty
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
26
|
Wang YH. Sialidases From Clostridium perfringens and Their Inhibitors. Front Cell Infect Microbiol 2020; 9:462. [PMID: 31998664 PMCID: PMC6966327 DOI: 10.3389/fcimb.2019.00462] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/16/2019] [Indexed: 12/27/2022] Open
Abstract
Clostridium perfringens is an important human and animal pathogen that is the primary causative agent of necrotizing enteritis and enterotoxemia in many types of animals; it causes traumatic gas gangrene in humans and animals and is associated with cases of food poisoning in humans. C. perfringens produces a variety of toxins as well as many enzymes, including three sialidases, NanH, NanI, and NanJ. Sialidases could be important virulence factors that promote the pathogenesis of C. perfringens. Among them, NanI promotes the colonization of C. perfringens in the intestinal tract and enhances the cytotoxic activity and association of several major C. perfringens toxins with host cells. In recent years, studies on the structure and functions of sialidases have yielded interesting results, and the functions of sialic acid and sialidases in bacterial pathogenesis have become a hot research topic. An in-depth understanding and additional studies of sialidases will further elucidate mechanisms of C. perfringens pathogenesis and could promote the development and clinical applications of sialidase inhibitors. This article reviews the structural characteristics, expression regulation, roles of sialidases in C. perfringens pathogenesis, and effects of their inhibitors.
Collapse
Affiliation(s)
- Yan-Hua Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
27
|
Wei M, Wang PG. Desialylation in physiological and pathological processes: New target for diagnostic and therapeutic development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:25-57. [PMID: 30905454 DOI: 10.1016/bs.pmbts.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Desialylation is a pivotal part of sialic acid metabolism, which initiates the catabolism of glycans by removing the terminal sialic acid residues on glycans, thereby modulating the structure and functions of glycans, glycoproteins, or glycolipids. The functions of sialic acids have been well recognized, whereas the function of desialylation process is underappreciated or largely ignored. However, accumulating evidence demonstrates that desialylation plays an important role in a variety of physiological and pathological processes. This chapter summarizes the current knowledge pertaining to desialylation in a variety of physiological and pathological processes, with a focus on the underlying molecular mechanisms. The potential of targeting desialylation process for diagnostic and therapeutic development is also discussed.
Collapse
Affiliation(s)
- Mohui Wei
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Peng George Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
28
|
Guo T, Héon-Roberts R, Zou C, Zheng R, Pshezhetsky AV, Cairo CW. Selective Inhibitors of Human Neuraminidase 1 (NEU1). J Med Chem 2018; 61:11261-11279. [PMID: 30457869 DOI: 10.1021/acs.jmedchem.8b01411] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inhibitors of human neuraminidase enzymes (NEU) are recognized as important tools for the study of the biological functions of NEU and will be potent tools for elucidating the role of these enzymes in regulating the repertoire of cellular glycans. Here we report the discovery of selective inhibitors of the human neuraminidase 1 (NEU1) and neuraminidase 2 (NEU2) enzymes with exceptional potency. A library of modified 2-deoxy-2,3-didehydro- N-acetylneuraminic acid (DANA) analogues, with variability in the C5- or C9-position, were synthesized and evaluated against four human neuraminidase isoenyzmes (NEU1-4). Hydrophobic groups with an amide linker at the C5 and C9 positions were well accommodated by NEU1, and a hexanamido group was found to give the best potency at both positions. While the C5-hexanamido-C9-hexanamido-DANA analogue did not show synergistic improvements for combined modification, an extended alkylamide at an individual position combined with a smaller group at the second gave increased potency. The best NEU1 inhibitor identified was a C5-hexanamido-C9-acetamido-DANA that had a Ki of 53 ± 5 nM and 340-fold selectivity over other isoenzymes. Additionally, we demonstrated that C5-modifications combined with a C4-guandino group provided the most potent NEU2 inhibitor reported, with a Ki of 1.3 ± 0.2 μM and 7-fold selectivity over other NEU isoenzymes.
Collapse
Affiliation(s)
- Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Rachel Héon-Roberts
- Division of Medical Genetics , Sainte-Justine University Hospital Research Center, University of Montreal , Montréal , H3T 1C5 , Canada
| | - Chunxia Zou
- Alberta Glycomics Centre, Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Ruixiang Zheng
- Alberta Glycomics Centre, Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Alexey V Pshezhetsky
- Division of Medical Genetics , Sainte-Justine University Hospital Research Center, University of Montreal , Montréal , H3T 1C5 , Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre, Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| |
Collapse
|
29
|
Lillehoj EP, Guang W, Hyun SW, Liu A, Hegerle N, Simon R, Cross AS, Ishida H, Luzina IG, Atamas SP, Goldblum SE. Neuraminidase 1-mediated desialylation of the mucin 1 ectodomain releases a decoy receptor that protects against Pseudomonas aeruginosa lung infection. J Biol Chem 2018; 294:662-678. [PMID: 30429216 DOI: 10.1074/jbc.ra118.006022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/13/2018] [Indexed: 01/19/2023] Open
Abstract
Pseudomonas aeruginosa (Pa) expresses an adhesin, flagellin, that engages the mucin 1 (MUC1) ectodomain (ED) expressed on airway epithelia, increasing association of MUC1-ED with neuraminidase 1 (NEU1) and MUC1-ED desialylation. The MUC1-ED desialylation unmasks both cryptic binding sites for Pa and a protease recognition site, permitting its proteolytic release as a hyperadhesive decoy receptor for Pa. We found here that intranasal administration of Pa strain K (PAK) to BALB/c mice increases MUC1-ED shedding into the bronchoalveolar compartment. MUC1-ED levels increased as early as 12 h, peaked at 24-48 h with a 7.8-fold increase, and decreased by 72 h. The a-type flagellin-expressing PAK strain and the b-type flagellin-expressing PAO1 strain stimulated comparable levels of MUC1-ED shedding. A flagellin-deficient PAK mutant provoked dramatically reduced MUC1-ED shedding compared with the WT strain, and purified flagellin recapitulated the WT effect. In lung tissues, Pa increased association of NEU1 and protective protein/cathepsin A with MUC1-ED in reciprocal co-immunoprecipitation assays and stimulated MUC1-ED desialylation. NEU1-selective sialidase inhibition protected against Pa-induced MUC1-ED desialylation and shedding. In Pa-challenged mice, MUC1-ED-enriched bronchoalveolar lavage fluid (BALF) inhibited flagellin binding and Pa adhesion to human airway epithelia by up to 44% and flagellin-driven motility by >30%. Finally, Pa co-administration with recombinant human MUC1-ED dramatically diminished lung and BALF bacterial burden, proinflammatory cytokine levels, and pulmonary leukostasis and increased 5-day survival from 0% to 75%. We conclude that Pa flagellin provokes NEU1-mediated airway shedding of MUC1-ED, which functions as a decoy receptor protecting against lethal Pa lung infection.
Collapse
Affiliation(s)
| | | | - Sang W Hyun
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Anguo Liu
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Nicolas Hegerle
- Medicine, and.,Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland 20201
| | - Raphael Simon
- Medicine, and.,Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland 20201
| | - Alan S Cross
- Medicine, and.,Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland 20201
| | - Hideharu Ishida
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu 501-1193 Japan
| | - Irina G Luzina
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Sergei P Atamas
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Simeon E Goldblum
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and.,Pathology and
| |
Collapse
|
30
|
Glanz VY, Myasoedova VA, Grechko AV, Orekhov AN. Inhibition of sialidase activity as a therapeutic approach. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3431-3437. [PMID: 30349196 PMCID: PMC6186905 DOI: 10.2147/dddt.s176220] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The demand for novel anti-influenza drugs persists, which is highlighted by the recent pandemics of influenza affecting thousands of people across the globe. One of the approaches to block the virus spreading is inhibiting viral sialidase (neuraminidase). This enzyme cleaves the sialic acid link between the newly formed virions and the host cell surface liberating the virions from the cell and maintaining the cycle of infection. Viral neuraminidases appear therefore as attractive therapeutic targets for preventing further spread of influenza infection. Compared to ion channel blockers that were the first approved anti-influenza drugs, neuraminidase inhibitors are well tolerated and target both influenza A and B viruses. Moreover, neuraminidase/sialidase inhibitors may be useful for managing some other human pathologies, such as cancer. In this review, we discuss the available knowledge on neuraminidase or sialidase inhibitors, their design, clinical application, and the current challenges.
Collapse
Affiliation(s)
- Victor Yu Glanz
- Department of Genetics, Cytology and Bioengineering, Faculty of Biology and Medicine, Voronezh State University, Voronezh, Russia
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia,
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia, .,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia,
| |
Collapse
|
31
|
Kijimoto-Ochiai S, Matsumoto-Mizuno T, Kamimura D, Murakami M, Kobayashi M, Matsuoka I, Ochiai H, Ishida H, Kiso M, Kamimura K, Koda T. Existence of NEU1 sialidase on mouse thymocytes whose natural substrate is CD5. Glycobiology 2018; 28:306-317. [PMID: 29897583 DOI: 10.1093/glycob/cwy009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/26/2018] [Indexed: 12/17/2022] Open
Abstract
Membrane-bound sialidases in the mouse thymus are unique and mysterious because their activity at pH 6.5 is equal to or higher than that in the acidic region. The pH curve like this has never been reported in membrane-bound form. To clarify this enzyme, we studied the sialidase activities of crude membrane fractions from immature-T, mature-T and non-T cells from C57BL/6 mice and from SM/J mice, a strain with a defect in NEU1 activity. Non-T cells from C57BL/6 mice had high activity at pH 6.5, but those from SM/J mice did not. Neu1 and Neu3 mRNA was shown by real-time PCR to be expressed in T cells and also in non-T cells, whereas Neu2 was expressed mainly in non-T cells and Neu4 was scarcely expressed. However, the in situ hybridization study on the localization of four sialidases in the thymus showed that Neu4 was clearly expressed. We then focused on a sialidase on the thymocyte surface because the possibility of the existence of a sialidase on thymocytes was suggested by peanut agglutinin (PNA) staining after incubation of the cells alone in PBS. This activity was inhibited by NEU1-selective sialidase inhibitor C9-butyl-amide-2-deoxy-2,3-dehydro-N-acetylneuraminic acid. The natural substrate for the cell surface sialidase was identified as clustered differentiation 5 (CD5) by PNA-blot analysis of anti-CD5 immunoprecipitate. We conclude that NEU1 exists on the cell surface of mouse thymocytes and CD5 is a natural substrate for it. Although this is not the main reaction of the membrane-bound thymus-sialidases, it must be important for the thymus.
Collapse
Affiliation(s)
| | | | - Daisuke Kamimura
- Institute for Genetic Medicine, Division of Molecular Psychoimmunology
| | - Masaaki Murakami
- Institute for Genetic Medicine, Division of Molecular Psychoimmunology
| | | | | | - Hiroshi Ochiai
- Faculty of Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Hideharu Ishida
- Faculty of Applied Biological Sciences and Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN)
| | - Makoto Kiso
- Organization for Research and Community development, Gifu University, Gifu 501-1193, Japan
| | - Keiko Kamimura
- Faculty of Advanced Life Science, Hokkaido University, N21 W11, Sapporo 001-0021, Japan
| | - Toshiaki Koda
- Faculty of Advanced Life Science, Hokkaido University, N21 W11, Sapporo 001-0021, Japan
| |
Collapse
|
32
|
Guo T, Dätwyler P, Demina E, Richards MR, Ge P, Zou C, Zheng R, Fougerat A, Pshezhetsky AV, Ernst B, Cairo CW. Selective Inhibitors of Human Neuraminidase 3. J Med Chem 2018; 61:1990-2008. [PMID: 29425031 DOI: 10.1021/acs.jmedchem.7b01574] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human neuraminidases (NEU) are associated with human diseases including cancer, atherosclerosis, and diabetes. To obtain small molecule inhibitors as research tools for the study of their biological functions, we designed a library of 2-deoxy-2,3-didehydro- N-acetylneuraminic acid (DANA) analogues with modifications at C4 and C9 positions. This library allowed us to discover selective inhibitors targeting the human NEU3 isoenzyme. Our most selective inhibitor for NEU3 has a Ki of 320 ± 40 nM and a 15-fold selectivity over other human neuraminidase isoenzymes. This inhibitor blocks glycolipid processing by NEU3 in vitro. To improve their pharmacokinetic properties, various esters of the best inhibitors were synthesized and evaluated. Finally, we confirmed that our best compounds exhibited selective inhibition of NEU orthologues from murine brain.
Collapse
Affiliation(s)
- Tianlin Guo
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Philipp Dätwyler
- Department of Pharmaceutical Sciences, Pharmacenter , University of Basel , Klingelbergstrasse 50 , CH-4056 Basel , Switzerland
| | - Ekaterina Demina
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center , University of Montreal , Montréal , Quebec H3T 1C5 , Canada
| | - Michele R Richards
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Peng Ge
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Chunxia Zou
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Ruixiang Zheng
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Anne Fougerat
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center , University of Montreal , Montréal , Quebec H3T 1C5 , Canada
| | - Alexey V Pshezhetsky
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center , University of Montreal , Montréal , Quebec H3T 1C5 , Canada
| | - Beat Ernst
- Department of Pharmaceutical Sciences, Pharmacenter , University of Basel , Klingelbergstrasse 50 , CH-4056 Basel , Switzerland
| | - Christopher W Cairo
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| |
Collapse
|
33
|
Antibody against Microbial Neuraminidases Recognizes Human Sialidase 3 (NEU3): the Neuraminidase/Sialidase Superfamily Revisited. mBio 2017; 8:mBio.00078-17. [PMID: 28655817 PMCID: PMC5487728 DOI: 10.1128/mbio.00078-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neuraminidases (NAs) are critical virulence factors for several microbial pathogens. With a highly conserved catalytic domain, a microbial NA "superfamily" has been proposed. We previously reported that murine polymorphonuclear leukocyte (PMN) sialidase activity was important in leukocyte trafficking to inflamed sites and that antibodies to Clostridium perfringens NA recognized a cell surface molecule(s), presumed to be a sialidase of eukaryotic origin on interleukin-8-stimulated human and murine PMNs. These antibodies also inhibited cell sialidase activity both in vitro and, in the latter instance, in vivo We therefore hypothesized that mammalian sialidases share structural homology and epitopes with microbial NAs. We now report that antibodies to one of the isoforms of C. perfringens NA, as well as anti-influenza virus NA serum, recognize human NEU3 but not NEU1 and that antibodies to C. perfringens NA inhibit NEU3 enzymatic activity. We conclude that the previously described microbial NA superfamily extends to human sialidases. Strategies designed to therapeutically inhibit microbial NA may need to consider potential compromising effects on human sialidases, particularly those expressed in cells of the immune system.IMPORTANCE We previously reported that sialidase activity of human neutrophils plays a critical role in the host inflammatory response. Since the catalytic domains of microbial neuraminidases are highly conserved, we hypothesized that antibodies against Clostridium perfringens neuraminidase might inhibit mammalian sialidase activity. Before the recognition of four mammalian sialidase (Neu) isoforms, we demonstrated that anti-C. perfringens neuraminidase antibodies inhibited human and murine sialidase activity in vivo and in vitro We now show that the antibodies to microbial neuraminidase (C. perfringens and influenza virus) recognize human NEU3, which is important for neural development and cell signaling. Since many microbes that infect mucosal surfaces express neuraminidase, it is possible that the use of sialidase inhibitors (e.g., zanamivir), might also compromise human sialidase activity critical to the human immune response. Alternatively, sialidase inhibitors may prove useful in the treatment of hyperinflammatory conditions.
Collapse
|