1
|
Roy R. Cancer cells and viruses share common glycoepitopes: exciting opportunities toward combined treatments. Front Immunol 2024; 15:1292588. [PMID: 38495885 PMCID: PMC10940920 DOI: 10.3389/fimmu.2024.1292588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Aberrant glycosylation patterns of glycoproteins and glycolipids have long been recognized as one the major hallmarks of cancer cells that has led to numerous glycoconjugate vaccine attempts. These abnormal glycosylation profiles mostly originate from the lack of key glycosyltransferases activities, mutations, over expressions, or modifications of the requisite chaperone for functional folding. Due to their relative structural simplicity, O-linked glycans of the altered mucin family of glycoproteins have been particularly attractive in the design of tumor associated carbohydrate-based vaccines. Several such glycoconjugate vaccine formulations have generated potent monoclonal anti-carbohydrate antibodies useful as diagnostic and immunotherapies in the fight against cancer. Paradoxically, glycoproteins related to enveloped viruses also express analogous N- and O-linked glycosylation patterns. However, due to the fact that viruses are not equipped with the appropriate glycosyl enzyme machinery, they need to hijack that of the infected host cells. Although the resulting N-linked glycans are very similar to those of normal cells, some of their O-linked glycan patterns often share the common structural simplicity to those identified on tumor cells. Consequently, given that both cancer cells and viral glycoproteins share both common N- and O-linked glycoepitopes, glycoconjugate vaccines could be highly attractive to generate potent immune responses to target both conditions.
Collapse
Affiliation(s)
- René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Cioce A, Calle B, Rizou T, Lowery SC, Bridgeman VL, Mahoney KE, Marchesi A, Bineva-Todd G, Flynn H, Li Z, Tastan OY, Roustan C, Soro-Barrio P, Rafiee MR, Garza-Garcia A, Antonopoulos A, Wood TM, Keenan T, Both P, Huang K, Parmeggian F, Snijders AP, Skehel M, Kjær S, Fascione MA, Bertozzi CR, Haslam SM, Flitsch SL, Malaker SA, Malanchi I, Schumann B. Cell-specific bioorthogonal tagging of glycoproteins. Nat Commun 2022; 13:6237. [PMID: 36284108 PMCID: PMC9596482 DOI: 10.1038/s41467-022-33854-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Altered glycoprotein expression is an undisputed corollary of cancer development. Understanding these alterations is paramount but hampered by limitations underlying cellular model systems. For instance, the intricate interactions between tumour and host cannot be adequately recapitulated in monoculture of tumour-derived cell lines. More complex co-culture models usually rely on sorting procedures for proteome analyses and rarely capture the details of protein glycosylation. Here, we report a strategy termed Bio-Orthogonal Cell line-specific Tagging of Glycoproteins (BOCTAG). Cells are equipped by transfection with an artificial biosynthetic pathway that transforms bioorthogonally tagged sugars into the corresponding nucleotide-sugars. Only transfected cells incorporate bioorthogonal tags into glycoproteins in the presence of non-transfected cells. We employ BOCTAG as an imaging technique and to annotate cell-specific glycosylation sites in mass spectrometry-glycoproteomics. We demonstrate application in co-culture and mouse models, allowing for profiling of the glycoproteome as an important modulator of cellular function.
Collapse
Affiliation(s)
- Anna Cioce
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Beatriz Calle
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Tatiana Rizou
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sarah C Lowery
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Victoria L Bridgeman
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Keira E Mahoney
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Andrea Marchesi
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ganka Bineva-Todd
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Helen Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Zhen Li
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Omur Y Tastan
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Pablo Soro-Barrio
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Acely Garza-Garcia
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Thomas M Wood
- Sarafan ChEM-H, Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tessa Keenan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Peter Both
- School of Chemistry & Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
- R&D Department, Axxence Slovakia s.r.o., 81107, Bratislava, Slovakia
| | - Kun Huang
- School of Chemistry & Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Fabio Parmeggian
- School of Chemistry & Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milano, Italy
| | - Ambrosius P Snijders
- Proteomics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Carolyn R Bertozzi
- Sarafan ChEM-H, Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Sabine L Flitsch
- School of Chemistry & Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Benjamin Schumann
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK.
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
4
|
Li J, Zhang J, Xu M, Yang Z, Yue S, Zhou W, Gui C, Zhang H, Li S, Wang PG, Yang S. Advances in glycopeptide enrichment methods for the analysis of protein glycosylation over the past decade. J Sep Sci 2022; 45:3169-3186. [PMID: 35816156 DOI: 10.1002/jssc.202200292] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022]
Abstract
Advances in bioanalytical technology have accelerated the analysis of complex protein glycosylation, which is beneficial to understanding glycosylation in drug discovery and disease diagnosis. Due to its biological uniqueness in the course of disease occurrence and development, disease-specific glycosylation requires quantitative characterization of protein glycosylation. We provide a comprehensive review of recent advances in glycosylation analysis, including workflows for glycoprotein digestion, glycopeptide separation and enrichment, and mass-spectrometry sequencing. We specifically focus on different strategies for glycopeptide enrichment through physical interaction, chemical oxidation, or metabolic labeling of intact glycopeptides. The recent advances and challenges of O-glycosylation analysis are presented, and the development of improved enrichment methods combining different proteases to analyze O-glycosylation is also proposed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiajia Li
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Jie Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Zeren Yang
- AstraZeneca, Medimmune Ct, Frederick, MD, 21703, USA
| | - Shuang Yue
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Wanlong Zhou
- U.S. Food and Drug Administration, Forensic Chemistry Center, Cincinnati, OH, 45237, USA
| | - Chunshan Gui
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Haiyang Zhang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Shuwei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu, 210033, China
| | - Perry G Wang
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, 20740, USA
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.,Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| |
Collapse
|
5
|
Konstantinidi A, Nason R, Čaval T, Sun L, Sørensen DM, Furukawa S, Ye Z, Vincentelli R, Narimatsu Y, Vakhrushev SY, Clausen H. Exploring the glycosylation of mucins by use of O-glycodomain reporters recombinantly expressed in glycoengineered HEK293 cells. J Biol Chem 2022; 298:101784. [PMID: 35247390 PMCID: PMC8980628 DOI: 10.1016/j.jbc.2022.101784] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/18/2022] Open
Abstract
Mucins and glycoproteins with mucin-like regions contain densely O-glycosylated domains often found in tandem repeat (TR) sequences. These O-glycodomains have traditionally been difficult to characterize because of their resistance to proteolytic digestion, and knowledge of the precise positions of O-glycans is particularly limited for these regions. Here, we took advantage of a recently developed glycoengineered cell-based platform for the display and production of mucin TR reporters with custom-designed O-glycosylation to characterize O-glycodomains derived from mucins and mucin-like glycoproteins. We combined intact mass and bottom-up site-specific analysis for mapping O-glycosites in the mucins, MUC2, MUC20, MUC21, protein P-selectin-glycoprotein ligand 1, and proteoglycan syndecan-3. We found that all the potential Ser/Thr positions in these O-glycodomains were O-glycosylated when expressed in human embryonic kidney 293 SimpleCells (Tn-glycoform). Interestingly, we found that all potential Ser/Thr O-glycosites in TRs derived from secreted mucins and most glycosites from transmembrane mucins were almost fully occupied, whereas TRs from a subset of transmembrane mucins were less efficiently processed. We further used the mucin TR reporters to characterize cleavage sites of glycoproteases StcE (secreted protease of C1 esterase inhibitor from EHEC) and BT4244, revealing more restricted substrate specificities than previously reported. Finally, we conducted a bottom-up analysis of isolated ovine submaxillary mucin, which supported our findings that mucin TRs in general are efficiently O-glycosylated at all potential glycosites. This study provides insight into O-glycosylation of mucins and mucin-like domains, and the strategies developed open the field for wider analysis of native mucins.
Collapse
Affiliation(s)
- Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca Nason
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tomislav Čaval
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lingbo Sun
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel M Sørensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Mariethoz J, Alocci D, Karlsson NG, Packer NH, Lisacek F. An Interactive View of Glycosylation. Methods Mol Biol 2022; 2370:41-65. [PMID: 34611864 DOI: 10.1007/978-1-0716-1685-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present chapter focuses on the interactive and explorative aspects of bioinformatics resources that have been recently released in glycobiology. The comparative analysis of data in a field where knowledge is scattered, incomplete, and disconnected from main biology requires efficient visualization, integration, and interactive tools that are currently only partially implemented. This overview highlights converging efforts toward building a consistent picture of protein glycosylation.
Collapse
Affiliation(s)
- Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
- Computer Science Department, University of Geneva, Geneva, Switzerland
| | - Davide Alocci
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nicolle H Packer
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Gutierrez-Reyes CD, Jiang P, Atashi M, Bennett A, Yu A, Peng W, Zhong J, Mechref Y. Advances in mass spectrometry-based glycoproteomics: An update covering the period 2017-2021. Electrophoresis 2021; 43:370-387. [PMID: 34614238 DOI: 10.1002/elps.202100188] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
Protein glycosylation is one of the most common posttranslational modifications, and plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, host-pathogen interaction, and protein stability. Glycoproteomics is a proteomics subfield dedicated to identifying and characterizing the glycans and glycoproteins in a given cell or tissue. Aberrant glycosylation has been associated with various diseases such as Alzheimer's disease, viral infections, inflammation, immune deficiencies, congenital disorders, and cancers. However, glycoproteomic analysis remains challenging because of the low abundance, site-specific heterogeneity, and poor ionization efficiency of glycopeptides during LC-MS analyses. Therefore, the development of sensitive and accurate approaches to efficiently characterize protein glycosylation is crucial. Methods such as metabolic labeling, enrichment, and derivatization of glycopeptides, coupled with different mass spectrometry techniques and bioinformatics tools, have been developed to achieve sophisticated levels of quantitative and qualitative analyses of glycoproteins. This review attempts to update the recent developments in the field of glycoproteomics reported between 2017 and 2021.
Collapse
Affiliation(s)
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Andrew Bennett
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
8
|
Matsumoto Y, Kudelka MR, Hanes MS, Lehoux S, Dutta S, Jones MB, Stackhouse KA, Cervoni GE, Heimburg-Molinaro J, Smith DF, Ju T, Chaikof EL, Cummings RD. Identification of Tn antigen O-GalNAc-expressing glycoproteins in human carcinomas using novel anti-Tn recombinant antibodies. Glycobiology 2020; 30:282-300. [PMID: 31742337 DOI: 10.1093/glycob/cwz095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 11/02/2019] [Indexed: 12/14/2022] Open
Abstract
The Tn antigen is a neoantigen abnormally expressed in many human carcinomas and expression correlates with metastasis and poor survival. To explore its biomarker potential, new antibodies are needed that specifically recognize this antigen in tumors. Here we generated two recombinant antibodies to the Tn antigen, Remab6 as a chimeric human IgG1 antibody and ReBaGs6 as a murine IgM antibody and characterized their specificities using multiple biochemical and biological approaches. Both Remab6 and ReBaGs6 recognize clustered Tn structures, but most importantly do not recognize glycoforms of human IgA1 that contain potential cross-reactive Tn antigen structures. In flow cytometry and immunofluorescence analyses, Remab6 recognizes human cancer cell lines expressing the Tn antigen, but not their Tn-negative counterparts. In immunohistochemistry (IHC), Remab6 stains many human cancers in tissue array format but rarely stains normal tissues and then mostly intracellularly. We used these antibodies to identify several unique Tn-containing glycoproteins in Tn-positive Colo205 cells, indicating their utility for glycoproteomics in future biomarker studies. Thus, recombinant Remab6 and ReBaGs6 are useful for biochemical characterization of cancer cells and IHC of tumors and represent promising tools for Tn biomarker discovery independently of recognition of IgA1.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Matthew R Kudelka
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA.,Department of Biochemistry, Emory University School of Medicine, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Melinda S Hanes
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Sucharita Dutta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Mark B Jones
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Kathryn A Stackhouse
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Gabrielle E Cervoni
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, 1518 Clifton Rd, Atlanta, GA 30322, USA.,Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bldg 52/72, Room 2120, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA.,Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087, 3 Blackfan Circle, Boston, MA 02115, USA
| |
Collapse
|
9
|
Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol 2020; 21:729-749. [PMID: 33087899 DOI: 10.1038/s41580-020-00294-x] [Citation(s) in RCA: 728] [Impact Index Per Article: 145.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Glycosylation is the most abundant and diverse form of post-translational modification of proteins that is common to all eukaryotic cells. Enzymatic glycosylation of proteins involves a complex metabolic network and different types of glycosylation pathways that orchestrate enormous amplification of the proteome in producing diversity of proteoforms and its biological functions. The tremendous structural diversity of glycans attached to proteins poses analytical challenges that limit exploration of specific functions of glycosylation. Major advances in quantitative transcriptomics, proteomics and nuclease-based gene editing are now opening new global ways to explore protein glycosylation through analysing and targeting enzymes involved in glycosylation processes. In silico models predicting cellular glycosylation capacities and glycosylation outcomes are emerging, and refined maps of the glycosylation pathways facilitate genetic approaches to address functions of the vast glycoproteome. These approaches apply commonly available cell biology tools, and we predict that use of (single-cell) transcriptomics, genetic screens, genetic engineering of cellular glycosylation capacities and custom design of glycoprotein therapeutics are advancements that will ignite wider integration of glycosylation in general cell biology.
Collapse
|
10
|
Tüshaus J, Müller SA, Kataka ES, Zaucha J, Sebastian Monasor L, Su M, Güner G, Jocher G, Tahirovic S, Frishman D, Simons M, Lichtenthaler SF. An optimized quantitative proteomics method establishes the cell type-resolved mouse brain secretome. EMBO J 2020; 39:e105693. [PMID: 32954517 PMCID: PMC7560198 DOI: 10.15252/embj.2020105693] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the "high-performance secretome protein enrichment with click sugars" (hiSPECS) method. To demonstrate its broad utility, hiSPECS was used to identify the secretory response of brain slices upon LPS-induced neuroinflammation and to establish the cell type-resolved mouse brain secretome resource using primary astrocytes, microglia, neurons, and oligodendrocytes. This resource allowed mapping the cellular origin of CSF proteins and revealed that an unexpectedly high number of secreted proteins in vitro and in vivo are proteolytically cleaved membrane protein ectodomains. Two examples are neuronally secreted ADAM22 and CD200, which we identified as substrates of the Alzheimer-linked protease BACE1. hiSPECS and the brain secretome resource can be widely exploited to systematically study protein secretion and brain function and to identify cell type-specific biomarkers for CNS diseases.
Collapse
Affiliation(s)
- Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- NeuroproteomicsSchool of MedicineKlinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- NeuroproteomicsSchool of MedicineKlinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Evans Sioma Kataka
- Department of BioinformaticsWissenschaftszentrum WeihenstephanTechnical University of MunichFreisingGermany
| | - Jan Zaucha
- Department of BioinformaticsWissenschaftszentrum WeihenstephanTechnical University of MunichFreisingGermany
| | | | - Minhui Su
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Institute of Neuronal Cell BiologyTechnical University MunichMunichGermany
| | - Gökhan Güner
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- NeuroproteomicsSchool of MedicineKlinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Georg Jocher
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- NeuroproteomicsSchool of MedicineKlinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Dmitrij Frishman
- Department of BioinformaticsWissenschaftszentrum WeihenstephanTechnical University of MunichFreisingGermany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Institute of Neuronal Cell BiologyTechnical University MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- NeuroproteomicsSchool of MedicineKlinikum rechts der IsarTechnical University of MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
11
|
CRISPR-Cas9 Genome Editing Tool for the Production of Industrial Biopharmaceuticals. Mol Biotechnol 2020; 62:401-411. [PMID: 32749657 DOI: 10.1007/s12033-020-00265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
A broad range of cell lines with characteristic features are used as bio-factories to produce recombinant proteins for basic research and therapeutic purposes. Genetic engineering strategies have been used to manipulate the genome of mammalian cells, insects, and yeasts for heterologous expression. One reason is that the glycosylation pattern of the expression hosts differs somehow from mammalian cells, which may cause immunogenic reactions upon administration in humans. CRISPR-Cas9 is a simple, efficient, and versatile genome engineering tool that can be programmed to precisely make double-stranded breaks at the desired loci. Compared to the classical genome editing methods, a CRISPR-Cas9 system is an ideal tool, providing the opportunity to integrate or delete genes from the target organisms. Besides broadened applications, limited studies have used CRISPR-Cas9 for editing the endogenous pathways in expression systems for biopharmaceutical applications. In the present review, we discuss the use of CRISPR-Cas9 in expression systems to improve host cell lines, increase product yield, and humanize glycosylation pathways by targeting intrinsic genes.
Collapse
|
12
|
Bagdonaite I, Pallesen EM, Ye Z, Vakhrushev SY, Marinova IN, Nielsen MI, Kramer SH, Pedersen SF, Joshi HJ, Bennett EP, Dabelsteen S, Wandall HH. O-glycan initiation directs distinct biological pathways and controls epithelial differentiation. EMBO Rep 2020; 21:e48885. [PMID: 32329196 PMCID: PMC7271655 DOI: 10.15252/embr.201948885] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Post-translational modifications (PTMs) greatly expand the function and potential for regulation of protein activity, and O-glycosylation is among the most abundant and diverse PTMs. Initiation of O-GalNAc glycosylation is regulated by 20 distinct GalNAc-transferases (GalNAc-Ts), and deficiencies in individual GalNAc-Ts are associated with human disease, causing subtle but distinct phenotypes in model organisms. Here, we generate a set of isogenic keratinocyte cell lines lacking either of the three dominant and differentially expressed GalNAc-Ts. Through the ability of keratinocytes to form epithelia, we investigate the phenotypic consequences of the loss of individual GalNAc-Ts. Moreover, we probe the cellular responses through global transcriptomic, differential glycoproteomic, and differential phosphoproteomic analyses. We demonstrate that loss of individual GalNAc-T isoforms causes distinct epithelial phenotypes through their effect on specific biological pathways; GalNAc-T1 targets are associated with components of the endomembrane system, GalNAc-T2 targets with cell-ECM adhesion, and GalNAc-T3 targets with epithelial differentiation. Thus, GalNAc-T isoforms serve specific roles during human epithelial tissue formation.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Emil Mh Pallesen
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Irina N Marinova
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mathias I Nielsen
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Signe H Kramer
- Cell Biology and Physiology, Department of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Cell Biology and Physiology, Department of Science, University of Copenhagen, Copenhagen, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Abrahams JL, Taherzadeh G, Jarvas G, Guttman A, Zhou Y, Campbell MP. Recent advances in glycoinformatic platforms for glycomics and glycoproteomics. Curr Opin Struct Biol 2019; 62:56-69. [PMID: 31874386 DOI: 10.1016/j.sbi.2019.11.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
Protein glycosylation is the most complex and prevalent post-translation modification in terms of the number of proteins modified and the diversity generated. To understand the functional roles of glycoproteins it is important to gain an insight into the repertoire of oligosaccharides present. The comparison and relative quantitation of glycoforms combined with site-specific identification and occupancy are necessary steps in this direction. Computational platforms have continued to mature assisting researchers with the interpretation of such glycomics and glycoproteomics data sets, but frequently support dedicated workflows and users rely on the manual interpretation of data to gain insights into the glycoproteome. The growth of site-specific knowledge has also led to the implementation of machine-learning algorithms to predict glycosylation which is now being integrated into glycoproteomics pipelines. This short review describes commercial and open-access databases and software with an emphasis on those that are actively maintained and designed to support current analytical workflows.
Collapse
Affiliation(s)
- Jodie L Abrahams
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ghazaleh Taherzadeh
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Gabor Jarvas
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary; Horváth Csaba Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andras Guttman
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary; Horváth Csaba Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; SCIEX, Brea, CA, USA
| | - Yaoqi Zhou
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Matthew P Campbell
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
14
|
Steentoft C, Yang Z, Wang S, Ju T, Vester-Christensen MB, Festari MF, King SL, Moremen K, Larsen ISB, Goth CK, Schjoldager KT, Hansen L, Bennett EP, Mandel U, Narimatsu Y. A validated collection of mouse monoclonal antibodies to human glycosyltransferases functioning in mucin-type O-glycosylation. Glycobiology 2019; 29:645-656. [PMID: 31172184 PMCID: PMC6704369 DOI: 10.1093/glycob/cwz041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 01/09/2023] Open
Abstract
Complex carbohydrates serve a wide range of biological functions in cells and tissues, and their biosynthesis involves more than 200 distinct glycosyltransferases (GTfs) in human cells. The kinetic properties, cellular expression patterns and subcellular topology of the GTfs direct the glycosylation capacity of a cell. Most GTfs are ER or Golgi resident enzymes, and their specific subcellular localization is believed to be distributed in the secretory pathway according to their sequential role in the glycosylation process, although detailed knowledge for individual enzymes is still highly fragmented. Progress in quantitative transcriptome and proteome analyses has greatly advanced our understanding of the cellular expression of this class of enzymes, but availability of appropriate antibodies for in situ monitoring of expression and subcellular topology have generally been limited. We have previously used catalytically active GTfs produced as recombinant truncated secreted proteins in insect cells for generation of mouse monoclonal antibodies (mAbs) to human enzymes primarily involved in mucin-type O-glycosylation. These mAbs can be used to probe subcellular topology of active GTfs in cells and tissues as well as their presence in body fluids. Here, we present several new mAbs to human GTfs and provide a summary of our entire collection of mAbs, available to the community. Moreover, we present validation of specificity for many of our mAbs using human cell lines with CRISPR/Cas9 or zinc finger nuclease (ZFN) knockout and knockin of relevant GTfs.
Collapse
Affiliation(s)
- Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Shengjun Wang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Malene B Vester-Christensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Mammalian Expression, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark
| | - María F Festari
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Avenida Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Sarah L King
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Kelley Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, B122 Life Sciences Bldg., Athens, GA, 30602, USA
| | - Ida S B Larsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
15
|
Hansen LH, Madsen TD, Goth CK, Clausen H, Chen Y, Dzhoyashvili N, Iyer SR, Sangaralingham SJ, Burnett JC, Rehfeld JF, Vakhrushev SY, Schjoldager KT, Goetze JP. Discovery of O-glycans on atrial natriuretic peptide (ANP) that affect both its proteolytic degradation and potency at its cognate receptor. J Biol Chem 2019; 294:12567-12578. [PMID: 31186350 DOI: 10.1074/jbc.ra119.008102] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is a peptide hormone that in response to atrial stretch is secreted from atrial myocytes into the circulation, where it stimulates vasodilatation and natriuresis. ANP is an important biomarker of heart failure where low plasma concentrations exclude cardiac dysfunction. ANP is a member of the natriuretic peptide (NP) family, which also includes the B-type natriuretic peptide (BNP) and the C-type natriuretic peptide. The proforms of these hormones undergo processing to mature peptides, and for proBNP, this process has previously been demonstrated to be regulated by O-glycosylation. It has been suggested that proANP also may undergo post-translational modifications. Here, we conducted a targeted O-glycoproteomics approach to characterize O-glycans on NPs and demonstrate that all NP members can carry O-glycans. We identified four O-glycosites in proANP in the porcine heart, and surprisingly, two of these were located on the mature bioactive ANP itself. We found that one of these glycans is located within a conserved sequence motif of the receptor-binding region, suggesting that O-glycans may serve a function beyond intracellular processing and maturation. We also identified an O-glycoform of proANP naturally occurring in human circulation. We demonstrated that site-specific O-glycosylation shields bioactive ANP from proteolytic degradation and modifies potency at its cognate receptor in vitro Furthermore, we showed that ANP O-glycosylation attenuates acute renal and cardiovascular ANP actions in vivo The discovery of novel glycosylated ANP proteoforms reported here significantly improves our understanding of cardiac endocrinology and provides important insight into the etiology of heart failure.
Collapse
Affiliation(s)
- Lasse H Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen, Denmark,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Daugbjerg Madsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Nina Dzhoyashvili
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen, Denmark .,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, 2200 Copenhagen, Denmark
| |
Collapse
|
16
|
Advances toward mapping the full extent of protein site-specific O-GalNAc glycosylation that better reflects underlying glycomic complexity. Curr Opin Struct Biol 2019; 56:146-154. [DOI: 10.1016/j.sbi.2019.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 01/01/2023]
|
17
|
Pirro M, Schoof E, van Vliet SJ, Rombouts Y, Stella A, de Ru A, Mohammed Y, Wuhrer M, van Veelen PA, Hensbergen PJ. Glycoproteomic Analysis of MGL-Binding Proteins on Acute T-Cell Leukemia Cells. J Proteome Res 2019; 18:1125-1132. [PMID: 30582698 PMCID: PMC6399673 DOI: 10.1021/acs.jproteome.8b00796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
C-type lectins are
a diverse group of proteins involved in many
human physiological and pathological processes. Most C-type lectins
are glycan-binding proteins, some of which are pivotal for innate
immune responses against pathogens. Other C-type lectins, such as
the macrophage galactose-type lectin (MGL), have been shown to induce
immunosuppressive responses upon the recognition of aberrant glycosylation
on cancer cells. MGL is known to recognize terminal N-acetylgalactosamine (GalNAc), such as the Tn antigen, which is commonly
found on malignant cells. Even though this glycan specificity of MGL
is well described, there is a lack of understanding of the actual
glycoproteins that bind MGL. We present a glycoproteomic workflow
for the identification of MGL-binding proteins, which we applied to
study MGL ligands on the human Jurkat leukemia cell line. In addition
to the known MGL ligands and Tn antigen-carrying proteins CD43 and
CD45 on these cells, we have identified a set of novel cell-surface
ligands for MGL. Importantly, for several of these, O-glycosylation
has hitherto not been described. Altogether, our data provide new
insight into the identification and structure of novel MGL ligands
that presumably act as modulatory molecules in cancer immune responses.
Collapse
Affiliation(s)
- Martina Pirro
- Center for Proteomics and Metabolomics , Leiden University Medical Center , 2300 RC Leiden , The Netherlands
| | - Esmee Schoof
- Center for Proteomics and Metabolomics , Leiden University Medical Center , 2300 RC Leiden , The Netherlands
| | - Sandra J van Vliet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, 1007 MB Amsterdam , The Netherlands
| | - Yoann Rombouts
- Institut de Pharmacologie et de Biologie Structurale , Université de Toulouse, CNRS, UPS , Toulouse 31062 , France
| | - Alexandre Stella
- Institut de Pharmacologie et de Biologie Structurale , Université de Toulouse, CNRS, UPS , Toulouse 31062 , France
| | - Arnoud de Ru
- Center for Proteomics and Metabolomics , Leiden University Medical Center , 2300 RC Leiden , The Netherlands
| | - Yassene Mohammed
- Center for Proteomics and Metabolomics , Leiden University Medical Center , 2300 RC Leiden , The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics , Leiden University Medical Center , 2300 RC Leiden , The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics , Leiden University Medical Center , 2300 RC Leiden , The Netherlands
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics , Leiden University Medical Center , 2300 RC Leiden , The Netherlands
| |
Collapse
|
18
|
Alocci D, Mariethoz J, Gastaldello A, Gasteiger E, Karlsson NG, Kolarich D, Packer NH, Lisacek F. GlyConnect: Glycoproteomics Goes Visual, Interactive, and Analytical. J Proteome Res 2018; 18:664-677. [DOI: 10.1021/acs.jproteome.8b00766] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Davide Alocci
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Alessandra Gastaldello
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Elisabeth Gasteiger
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland
| | - Niclas G. Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Southport, Queensland 4215, Australia
- ARC Centre for Nanoscale BioPhotonics, Macquarie University and Griffith University, Sydney, New South Wales 2109, Australia
| | - Nicolle H. Packer
- Institute for Glycomics, Griffith University, Southport, Queensland 4215, Australia
- ARC Centre for Nanoscale BioPhotonics, Macquarie University and Griffith University, Sydney, New South Wales 2109, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
- Section of Biology, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
19
|
King SL, Goth CK, Eckhard U, Joshi HJ, Haue AD, Vakhrushev SY, Schjoldager KT, Overall CM, Wandall HH. TAILS N-terminomics and proteomics reveal complex regulation of proteolytic cleavage by O-glycosylation. J Biol Chem 2018; 293:7629-7644. [PMID: 29593093 PMCID: PMC5961060 DOI: 10.1074/jbc.ra118.001978] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/27/2018] [Indexed: 12/31/2022] Open
Abstract
Proteolytic processing is an irreversible post-translational modification functioning as a ubiquitous regulator of cellular activity. Protease activity is tightly regulated via control of gene expression, enzyme and substrate compartmentalization, zymogen activation, enzyme inactivation, and substrate availability. Emerging evidence suggests that proteolysis can also be regulated by substrate glycosylation and that glycosylation of individual sites on a substrate can decrease or, in rare cases, increase its sensitivity to proteolysis. Here, we investigated the relationship between site-specific, mucin-type (or GalNAc-type) O-glycosylation and proteolytic cleavage of extracellular proteins. Using in silico analysis, we found that O-glycosylation and cleavage sites are significantly associated with each other. We then used a positional proteomic strategy, terminal amine isotopic labeling of substrates (TAILS), to map the in vivo cleavage sites in HepG2 SimpleCells with and without one of the key initiating GalNAc transferases, GalNAc-T2, and after treatment with exogenous matrix metalloproteinase 9 (MMP9) or neutrophil elastase. Surprisingly, we found that loss of GalNAc-T2 not only increased cleavage, but also decreased cleavage across a broad range of other substrates, including key regulators of the protease network. We also found altered processing of several central regulators of lipid homeostasis, including apolipoprotein B and the phospholipid transfer protein, providing new clues to the previously reported link between GALNT2 and lipid homeostasis. In summary, we show that loss of GalNAc-T2 O-glycosylation leads to a general decrease in cleavage and that GalNAc-T2 O-glycosylation affects key regulators of the cellular proteolytic network, including multiple members of the serpin family.
Collapse
Affiliation(s)
- Sarah L King
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Christoffer K Goth
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Ulrich Eckhard
- the Centre for Blood Research, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Hiren J Joshi
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Amalie D Haue
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Sergey Y Vakhrushev
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Katrine T Schjoldager
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Christopher M Overall
- the Centre for Blood Research, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Hans H Wandall
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| |
Collapse
|