1
|
Deng YY, Ma XY, He PF, Luo Z, Tian N, Dong SN, Zhang S, Pan J, Miao PW, Liu XJ, Chen C, Zhu PY, Pang B, Wang J, Zheng LY, Zhang XK, Zhang MY, Zhang MZ. Integrated UPLC-ESI-MS/MS, network pharmacology, and transcriptomics to reveal the material basis and mechanism of Schisandra chinensis Fruit Mixture against diabetic nephropathy. Front Immunol 2025; 15:1526465. [PMID: 40046619 PMCID: PMC11879837 DOI: 10.3389/fimmu.2024.1526465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/26/2024] [Indexed: 05/13/2025] Open
Abstract
Backgrounds It has been regarded as an essential treatment option for diabetic nephropathy (DN) in Traditional Chinese medicine. Previous studies have demonstrated the anti-DN efficacy of Schisandra chinensis Fruit Mixture (SM); however, a comprehensive chemical fingerprint is still uncertain, and its mechanism of action, especially the potential therapeutic targets of anti-DN, needs to be further elucidated. Objective Potential mechanisms of SM action on DN were explored through network pharmacology and experimental validation. Methods The chemical composition of SM was analyzed using UPLC-ESI-MS/MS technology. Active bioactive components and potential targets of SM were identified using TCMSP, SwissDrugDesign, and SymMap platforms. Differentially expressed genes were determined using microarray gene data from the GSE30528 dataset. Related genes for DN were obtained from online databases, which include GeneCards, OMIM and DisGeNET. PPI networks and compound-target-pathway networks were constructed using Cytoscape. Functional annotation was performed using R software for GO enrichment and KEGG pathway analysis. The DN model was built for experimental validation using a high-sugar and high-fat diet combined with STZ induction. Hub targets and critical signaling pathways were detected using qPCR, Western blotting and immunofluorescence. Results Utilizing the UPLC-ESI-MS/MS coupling technique, a comprehensive analysis identified 1281 chemical components of SM's ethanol extract, with 349 of these components recognized as potential bioactive compounds through network pharmacology. Through this analysis, 126 shared targets and 15 HUB targets were pinpointed. Of these, JAK2 is regarded as the most critical gene. Enrichment analysis revealed that SM primarily operates within the PI3K/AKT signaling pathway. In vivo experiments confirmed that SM improved pathological injury and renal function in rats with DN while improving mitochondrial morphology and function and modulating the expression of proteins linked to apoptosis (cleaved-caspase-3, Bax, and Bcl-2) and pro-inflammatory factors (IL-6 and TNF-α). Mechanistically, SM alleviates DN primarily by suppressing the PI3K/AKT/mTOR and JAK2/STAT3 signaling pathways to fulfill the energy needs of renal tissues. Furthermore, molecular docking analysis provided direct validation of these findings. Conclusion The findings of this study offer initial indications of the active component and robust anti-inflammatory and anti-apoptotic characteristics of SM in the mitigation of DN, along with its capacity to safeguard the integrity and functionality of mitochondria. This research unequivocally validates the favorable anti-DN effects of SM, indicating its potential as a viable pharmaceutical agent for the management of DN.
Collapse
Affiliation(s)
- Yuan-Yuan Deng
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Department of Nephrology, Dongfeng Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yu Ma
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Peng-Fei He
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Nephrology, Dongfeng Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Luo
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ni Tian
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Shao-Ning Dong
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Sai Zhang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Jian Pan
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Peng-Wei Miao
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Xiang-Jun Liu
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Cui Chen
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Peng-Yu Zhu
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Bo Pang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
- School of Clinical Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Wang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
- School of Clinical Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li-Yang Zheng
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
- School of Clinical Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin-Kun Zhang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | | | - Mian-Zhi Zhang
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Li D, Zhang Z, Zhang C, Guo Q, Chen C, Peng X. Unraveling the connection between Hashimoto's Thyroiditis and non-alcoholic fatty liver disease: exploring the role of CD4 +central memory T cells through integrated genetic approaches. Endocrine 2024; 85:751-765. [PMID: 38400881 DOI: 10.1007/s12020-024-03745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Exploring the connection between Hashimoto's thyroiditis (HT) and non-alcoholic fatty liver disease (NAFLD) through integrated genetic approaches. METHODS We utilized integrated genetic approaches, such as single-cell RNA sequencing (scRNA-seq) data analysis, Mendelian Randomization (MR), colocalization analysis, cell communication, and metabolic analyses, to investigate potential correlations between HT and NAFLD. RESULTS Through the integrated analysis of scRNA-seq data from individuals with HT, NAFLD, and healthy controls, we observed an upregulation in the proportion of CD4+central memory (CD4+CM) T cells among T cells in both diseases. A total of 63 differentially expressed genes (DEGs) were identified in the CD4+CM cells after the differential analysis. By using MR, 8 DEGs (MAGI3, CSGALNACT1, CAMK4, GRIP1, TRAT1, IL7R, ERN1, and MB21D2) were identified to have a causal relationship with HT, and 4 DEGs (MAGI3, RCAN3, DOCK10, and SAMD12) had a causal relationship with NAFLD. MAGI3 was found to be causally linked to both HT and NAFLD. Therefore, MAGI3 was designated as the marker gene. Reverse MR and Steiger filtering showed no evidence of reverse causality. Colocalization analyses further indicated close links between MAGI3 and HT as well as NAFLD. Finally, based on the expression levels of MAGI3, we stratified CD4+CM cells into two subsets: MAGI3+CD4+CM cells and MAGI3-CD4+CM cells. Functional analyses revealed significant differences between the two subsets, potentially related to the progression of the two diseases. CONCLUSION This study delves into the potential connections between HT and NAFLD through integrated genetic methods. Our research reveals an elevated proportion of CD4+CM cells within T cells in both HT and NAFLD. Through MR and colocalization analysis, we identify specific genes causally linked to HT and NAFLD, such as MAGI3. Ultimately, based on MAGI3 expression levels, we categorize CD4+CM cells into MAGI3+CD4+CM cells and MAGI3-CD4+CM cells, uncovering significant differences between them through functional analyses.
Collapse
Affiliation(s)
- Dairui Li
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zeji Zhang
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Cheng Zhang
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiannan Guo
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chen Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinzhi Peng
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
3
|
Peng QY, An Y, Jiang ZZ, Xu Y. The Role of Immune Cells in DKD: Mechanisms and Targeted Therapies. J Inflamm Res 2024; 17:2103-2118. [PMID: 38601771 PMCID: PMC11005934 DOI: 10.2147/jir.s457526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Diabetic kidney disease (DKD), is a common microvascular complication and a major cause of death in patients with diabetes. Disorders of immune cells and immune cytokines can accelerate DKD development of in a number of ways. As the kidney is composed of complex and highly differentiated cells, the interactions among different cell types and immune cells play important regulatory roles in disease development. Here, we summarize the latest research into the molecular mechanisms underlying the interactions among various immune and renal cells in DKD. In addition, we discuss the most recent studies related to single cell technology and bioinformatics analysis in the field of DKD. The aims of our review were to explore immune cells as potential therapeutic targets in DKD and provide some guidance for future clinical treatments.
Collapse
Affiliation(s)
- Qiu-Yue Peng
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Ying An
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
4
|
Xu HS, Chen Y, Patel A, Wang Z, McDonough C, Guo TL. Chronic exposure to nanocellulose altered depression-related behaviors in mice on a western diet: The role of immune modulation and the gut microbiome. Life Sci 2023; 335:122259. [PMID: 37949212 DOI: 10.1016/j.lfs.2023.122259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
AIMS To determine if cellulose nanofibrils (CNF) have potential applications as food additives. MATERIALS AND METHODS Male C57BL/6 mice on a Western diet were exposed to CNF for one month at a dose of 30 mg/kg by gavage. Male NOD mice, a model for type 1 diabetes (T1D), were used in a six-month study. KEY FINDINGS Sequencing analysis of 16S rRNA genes suggested significant changes in gut microbiome of male C57BL/6 mice exposed to CNF. Analysis of functional metagenomics indicated that many of the functional contents that might be altered following CNF ingestion were associated with lipid and carbohydrate processing. Further studies in NOD mice suggested that there were some decreases in the blood glucose levels during the insulin tolerance test and glucose tolerance test following CNF treatment. However, these small decreases were not considered biologically meaningful as there were no significant changes in either the area under the curve or the first-order rate constant for glucose disappearance. Moreover, serum concentrations of cytokines/chemokines including IL-3, IL-12(p70) and the keratinocyte chemoattractant were increased following chronic exposure to CNF. In addition, behavioral studies suggested that the percentage of immobility time during the tail-suspension test was significantly increased following six months of exposure to CNF in NOD mice, signifying an increase in depression-related behavior. SIGNIFICANCE Collectively, long-term CNF consumption was associated with changes in the ecology of the gut microbiome, immune homeostasis, and possibly energy metabolism and mental health in male NOD mice on a Western diet.
Collapse
Affiliation(s)
- Hannah Shibo Xu
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Yingjia Chen
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Avani Patel
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Zhiping Wang
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Callie McDonough
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Tai L Guo
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Ortiz-Soto ME, Baier M, Brenner D, Timm M, Seibel J. Single-mutations at the galactose-binding site of enzymes GalK, GalU, and LgtC enable the efficient synthesis of UDP-6-azido-6-deoxy-d-galactose and azido-functionalized Gb3 analogs. Glycobiology 2023; 33:651-660. [PMID: 37283491 DOI: 10.1093/glycob/cwad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023] Open
Abstract
Lysosomal accumulation of the glycosphingolipid globotriaosylceramide Gb3 is linked to the deficient activity of the α-galactosidase A in the Anderson-Fabry disease and an elevated level of deacylated Gb3 is a hallmark of this condition. Localization of Gb3 in the plasma membrane is critical for studying how the membrane organization and its dynamics are affected in this genetic disorder. Gb3 analogs containing a terminal 6-azido-functionalized galactose in its head group globotriose (αGal1, 4βGal1, and 4Glc) are attractive chemical reporters for bioimaging, as the azido-group may act as a chemical tag for bio-orthogonal click chemistry. We report here the production of azido-Gb3 analogs employing mutants of galactokinase, UTP-glucose-1-phosphate uridylyltransferase, and α-1,4-galactosyltransferase LgtC, which participate in the synthesis of the sugar motif globotriose. Variants of enzymes galactokinase/UTP-glucose-1-phosphate uridylyltransferase generate UDP-6-azido-6-deoxy-d-galactose, which is the galactosyl-donor used by LgtC for transferring the terminal galactose moiety to lactosyl-acceptors. Residues at the galactose-binding site of the 3 enzymes were modified to facilitate the accommodation of azido-functionalized substrates and variants outperforming the wild-type enzymes were characterized. Synthesis of 6-azido-6-deoxy-d-galactose-1-phosphate, UDP-6-azido-6-deoxy-d-galactose, and azido-Gb3 analogs by variants GalK-E37S, GalU-D133V, and LgtC-Q187S, respectively, is 3-6-fold that of their wild-type counterparts. Coupled reactions with these variants permit the production of the pricy, unnatural galactosyl-donor UDP-6-azido-6-deoxy-d-galactose with ~90% conversion yields, and products azido-globotriose and lyso-AzGb3 with substrate conversion of up to 70%. AzGb3 analogs could serve as precursors for the synthesis of other tagged glycosphingolipids of the globo-series.
Collapse
Affiliation(s)
- Maria E Ortiz-Soto
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Makarius Baier
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Daniela Brenner
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Malte Timm
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Jürgen Seibel
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
6
|
Aslan M, Oztas Y, Silva LC. Editorial: Bioactive sphingolipids in health and disease. Front Mol Biosci 2022; 9:1051449. [PMID: 36304920 PMCID: PMC9593311 DOI: 10.3389/fmolb.2022.1051449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- *Correspondence: Mutay Aslan,
| | - Yesim Oztas
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Liana C. Silva
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Niu H, Fan L, Zhao L, Yao R, He X, Lu B, Pang Z. The therapeutic mechanism of PuRenDan for the treatment of diabetic nephropathy: Network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115283. [PMID: 35427726 DOI: 10.1016/j.jep.2022.115283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Purendan (PRD), as a Chinese medicinal formula, behaves remarkable therapeutic effects on diabetes and complications in clinical and experimental research. However, the underlying pharmacological mechanism in the treatment of diabetic nephropathy (DN) is still unclear. AIMS To investigate the therapeutical effects of PRD on DN and to explore its pharmacological mechanisms using network pharmacology and experimental verification. MATERIALS AND METHODS The active compounds and putative targets in PRD, and disease-related targets of DN were extracted from public databases. The key targets were identified through the protein-protein interaction (PPI) network and module analysis. The GO and KEGG enrichment analysis were performed to discover potential pharmacological mechanisms. The expression of the key targets was detected in kidney tissue in Gene Expression Omnibus (GEO) dataset. The affinity between key proteins and corresponding compounds was evaluated by molecular docking and validated by the surface plasmon resonance (SPR) assay. The indicators on major pathways and hub genes were verified by in vivo experiments. RESULTS In network pharmacology, 137 common targets in PRD for DN treatment were screened. The key targets and main signaling pathways including AGE-RAGE and lipid pathways were identified. The statistical difference in the expression of the key targets was verified in GSE96804 database, confirming the association with DN. The docking scores obtained from molecular docking illustrated good binding force between hub proteins and active compounds. And the good component-protein affinities were validated by SPR assay. Furthermore, the results of animal experiment indicated that PRD could ameliorate the level of serum glucose and renal function in rat model. It could regulate the expression of hub targets (AKT1, MAPK3, and STAT3) and improve indicators related with oxidative stress and lipid metabolism. CONCLUSION The key targets and major signaling pathways in the treatment of PRD on DN were identified. The mechanism might relate to regulation of oxidative stress and lipid metabolism.
Collapse
Affiliation(s)
- Hongjuan Niu
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, 100081, Beijing, China
| | - Lu Fan
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, 100081, Beijing, China
| | - Linyi Zhao
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, 100081, Beijing, China
| | - Rongfei Yao
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, 100081, Beijing, China
| | - Xu He
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, 100081, Beijing, China
| | - Binan Lu
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, 100081, Beijing, China.
| | - Zongran Pang
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, 100081, Beijing, China.
| |
Collapse
|
8
|
Muralidharan S, Torta F, Lin MK, Olona A, Bagnati M, Moreno-Moral A, Ko JH, Ji S, Burla B, Wenk MR, Rodrigues HG, Petretto E, Behmoaras J. Immunolipidomics Reveals a Globoside Network During the Resolution of Pro-Inflammatory Response in Human Macrophages. Front Immunol 2022; 13:926220. [PMID: 35844525 PMCID: PMC9280915 DOI: 10.3389/fimmu.2022.926220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptor 4 (TLR4)-mediated changes in macrophages reshape intracellular lipid pools to coordinate an effective innate immune response. Although this has been previously well-studied in different model systems, it remains incompletely understood in primary human macrophages. Here we report time-dependent lipidomic and transcriptomic responses to lipopolysaccharide (LPS) in primary human macrophages from healthy donors. We grouped the variation of ~200 individual lipid species measured by LC-MS/MS into eight temporal clusters. Among all other lipids, glycosphingolipids (glycoSP) and cholesteryl esters (CE) showed a sharp increase during the resolution phase (between 8h or 16h post LPS). GlycoSP, belonging to the globoside family (Gb3 and Gb4), showed the greatest inter-individual variability among all lipids quantified. Integrative network analysis between GlycoSP/CE levels and genome-wide transcripts, identified Gb4 d18:1/16:0 and CE 20:4 association with subnetworks enriched for T cell receptor signaling (PDCD1, CD86, PTPRC, CD247, IFNG) and DC-SIGN signaling (RAF1, CD209), respectively. Our findings reveal Gb3 and Gb4 globosides as sphingolipids associated with the resolution phase of inflammatory response in human macrophages.
Collapse
Affiliation(s)
- Sneha Muralidharan
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore,Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore,Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,*Correspondence: Jacques Behmoaras, ; Federico Torta,
| | - Michelle K. Lin
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Antoni Olona
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore
| | - Marta Bagnati
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Aida Moreno-Moral
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore
| | - Jeong-Hun Ko
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Markus R. Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore,Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hosana G. Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Enrico Petretto
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore,MRC London Institute of Medical Sciences (LMC), Imperial College, London, United Kingdom,Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, China
| | - Jacques Behmoaras
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore,Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom,*Correspondence: Jacques Behmoaras, ; Federico Torta,
| |
Collapse
|
9
|
Inokuchi JI, Kanoh H. Pathophysiological Significance of GM3 Ganglioside Molecular Species With a Particular Attention to the Metabolic Syndrome Focusing on Toll-Like Receptor 4 Binding. Front Mol Biosci 2022; 9:918346. [PMID: 35712350 PMCID: PMC9196240 DOI: 10.3389/fmolb.2022.918346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
GM3 ganglioside, the first molecule in ganglioside family biosynthesis, is formed by transfer of sialic acid to lactosylceramide. Several dozen GM3 molecular species exist, based on diversity of ceramide structures. Among ceramide structures composed of sphingosine and fatty acids, there is a great diversity resulting from different combinations of chain length, hydroxylation, and unsaturation of fatty acid chains. Expression patterns of GM3 species in serum vary during pathogenesis of metabolic syndrome. Physiological activity of each species, and significance of the variability, are poorly understood. Our studies revealed that GM3 species with differing fatty acid structures act as pro- or anti-inflammatory endogenous Toll-like receptor 4 (TLR4) ligands. Very long-chain fatty acid (VLCFA) and α-hydroxyl VLCFA GM3 variants strongly enhanced TLR4 activation. In contrast, long-chain fatty acid (LCFA) and ω-9 unsaturated VLCFA GM3 variants suppressed TLR4 activation. GM3 interacted with extracellular TLR4/myeloid differentiation factor 2 (MD-2) complex, thereby promoting dimerization/oligomerization. In obesity and metabolic syndrome, VLCFA-variant GM3 species were elevated in serum and adipose tissue, whereas LCFA-variant species were reduced, and such imbalances were correlated with disease progression. Our findings summarized in this review demonstrate that GM3 molecular species are disease-related endogenous TLR4 ligands and modulate homeostatic and pathogenic innate immune responses.
Collapse
Affiliation(s)
- Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
- *Correspondence: Jin-ichi Inokuchi,
| | - Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
10
|
Kanoh H. [Homeostatic and Pathophysiological Regulation of Toll-like Receptor 4 Signaling by GM3 Ganglioside Molecular Species]. YAKUGAKU ZASSHI 2022; 142:195-203. [PMID: 35228371 DOI: 10.1248/yakushi.21-00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic inflammation plays an important role in the pathogenesis of obesity and metabolic disorders. In obesity, pattern-recognition receptors in innate immune system, such as Toll-like receptor 4 (TLR4), cause chronic inflammation through prolonged activation by various endogenous ligands, including fatty acids and its metabolites. Gangliosides and other glycosphingolipids are important metabolites of fatty acids and saccharides. GM3, the simplest ganglioside comprising α2,3-sialyllactose, is expressed in insulin-sensitive peripheral tissues such as liver and adipose tissue, and furthermore secreted abundantly into serum. It has been shown that GM3 regulates the signal transduction of insulin receptor in adipose tissue as a component of membrane microdomains, and elevation in GM3 level causes insulin resistance. However, the homeostatic and pathophysiological functions of extracellularly secreted GM3 are poorly understood. We recently reported that GM3 species with differing fatty acid structures act as pro- and anti-inflammatory endogenous TLR4 ligands. GM3 with very long-chain fatty acid (VLCFA) and α-hydroxyl VLCFA strongly enhanced TLR4 activation. Conversely, GM3 with long-chain fatty acid (LCFA) and ω-9 unsaturated VLCFA inhibited TLR4 activation, counteracting the VLCFA species. GM3 interacted with the extracellular complex of TLR4 and promoted dimerization/oligomerization. In obesity and metabolic disorders, VLCFA species were increased in serum and adipose tissue, whereas LCFA species was relatively decreased; their imbalances were correlated to disease progression. Our findings suggest that GM3 species are disease-related endogenous TLR4 ligands, and "glycosphingolipid sensing" by TLR4 controls the homeostatic and pathological roles of innate immune signaling.
Collapse
Affiliation(s)
- Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Department of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
11
|
Yokoyama N, Hanafusa K, Hotta T, Oshima E, Iwabuchi K, Nakayama H. Multiplicity of Glycosphingolipid-Enriched Microdomain-Driven Immune Signaling. Int J Mol Sci 2021; 22:9565. [PMID: 34502474 PMCID: PMC8430928 DOI: 10.3390/ijms22179565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Glycosphingolipids (GSLs), together with cholesterol, sphingomyelin (SM), and glycosylphosphatidylinositol (GPI)-anchored and membrane-associated signal transduction molecules, form GSL-enriched microdomains. These specialized microdomains interact in a cis manner with various immune receptors, affecting immune receptor-mediated signaling. This, in turn, results in the regulation of a broad range of immunological functions, including phagocytosis, cytokine production, antigen presentation and apoptosis. In addition, GSLs alone can regulate immunological functions by acting as ligands for immune receptors, and exogenous GSLs can alter the organization of microdomains and microdomain-associated signaling. Many pathogens, including viruses, bacteria and fungi, enter host cells by binding to GSL-enriched microdomains. Intracellular pathogens survive inside phagocytes by manipulating intracellular microdomain-driven signaling and/or sphingolipid metabolism pathways. This review describes the mechanisms by which GSL-enriched microdomains regulate immune signaling.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Eriko Oshima
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| |
Collapse
|
12
|
Olona A, Hateley C, Muralidharan S, Wenk MR, Torta F, Behmoaras J. Sphingolipid metabolism during Toll-like receptor 4 (TLR4)-mediated macrophage activation. Br J Pharmacol 2021; 178:4575-4587. [PMID: 34363204 DOI: 10.1111/bph.15642] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophage activation in response to stimulation of Toll-like receptor 4 (TLR4) provides a paradigm for investigating energy metabolism that regulates the inflammatory response. TLR4-mediated pro-inflammatory macrophage activation is characterized by increased glycolysis and altered mitochondrial metabolism, supported by selective amino acid uptake and/or usage. Fatty acid metabolism remains as a highly complex rewiring that accompanies classical macrophage activation. TLR4 activation leads to de novo synthesis of fatty acids, which flux into sphingolipids, complex lipids that form the building blocks of eukaryotic cell membranes and regulate cell function. Here, we review the importance of TLR4-mediated de novo synthesis of membrane sphingolipids in macrophages. We first highlight fatty acid metabolism during TLR4-driven macrophage immunometabolism. We then focus on the temporal dynamics of sphingolipid biosynthesis and emphasize the modulatory role of some sphingolipid species (i.e. sphingomyelins, ceramides and glycosphingolipids) on the pro-inflammatory and pro-resolution phases of LPS/TLR4 activation in macrophages.
Collapse
Affiliation(s)
- Antoni Olona
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Charlotte Hateley
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | | | - Markus R Wenk
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Federico Torta
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jacques Behmoaras
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Programme in Cardiovascular and Metabolic Disorders and Centre for Computational Biology, Duke-NUS Medical School Singapore, Republic of Singapore
| |
Collapse
|
13
|
Abstract
Many endogenous molecules, mostly proteins, purportedly activate the Toll-like receptor 4 (TLR4)-myeloid differentiation factor-2 (MD-2) complex, the innate immune receptor for lipopolysaccharide (LPS) derived from gram-negative bacteria. However, there is no structural evidence supporting direct TLR4-MD-2 activation by endogenous ligands. Sulfatides (3-O-sulfogalactosylceramides) are natural, abundant sulfated glycolipids that have variously been shown to initiate or suppress inflammatory responses. We show here that short fatty acid (FA) chain sulfatides directly activate mouse TLR4-MD-2 independent of CD14, trigger MyD88- and TRIF-dependent signaling, and stimulate tumor necrosis factor α (TNFα) and type I interferon (IFN) production in mouse macrophages. In contrast to the agonist activity toward the mouse receptor, the tested sulfatides antagonize TLR4-MD-2 activation by LPS in human macrophage-like cells. The agonistic and antagonistic activities of sulfatides require the presence of the sulfate group and are inversely related to the FA chain length. The crystal structure of mouse TLR4-MD-2 in complex with C16-sulfatide revealed that three C16-sulfatide molecules bound to the MD-2 hydrophobic pocket and induced an active dimer conformation of the receptor complex similar to that induced by LPS or lipid A. The three C16-sulfatide molecules partially mimicked the detailed interactions of lipid A to achieve receptor activation. Our results suggest that sulfatides may mediate sterile inflammation or suppress LPS-stimulated inflammation, and that additional endogenous negatively charged lipids with up to six lipid chains of limited length might also bind to TLR4-MD-2 and activate or inhibit this complex.
Collapse
|
14
|
Zeng JY, Wang Y, Miao M, Bao XR. The Effects of Rhubarb for the Treatment of Diabetic Nephropathy in Animals: A Systematic Review and Meta-analysis. Front Pharmacol 2021; 12:602816. [PMID: 34177560 PMCID: PMC8226322 DOI: 10.3389/fphar.2021.602816] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Rhubarb, also known as Da Huang, is a traditional Chinese medicine, and it was often used as a laxative in the past. Recently, multiple studies have applied rhubarb to treat diabetic nephropathy (DN). Anthraquinones, including emodin and rhein, have been extracted from rhubarb and used to explore the effective components and possible mechanisms of rhubarb for DN. Evaluating the efficacy of rhubarb may provide a scientific reference for the clinical application of rhubarb for the treatment of DN. Objective: 1) To evaluate the efficacy of rhubarb in the treatment of DN; 2) To identify the most effective ingredient of rhubarb for DN; 3) To explore the specific mechanism of rhubarb in treating DN. Methods: Data sources: related studies were identified by searching Cochrane Library, Ovid-EMBASE, PubMed, SinoMed, WanFang, VIP, CNKI, and other Chinese magazines. Assessment and analysis: SYRCLE’s risk of bias tool for animal studies was used to assess the quality of articles. The meta-analysis was performed in accordance with the Cochrane Handbook for Systematic Reviews of Interventions. Data analysis adopted RevMan 5.3 and STATA 12.0 software. This study was published in the register with PROSPERO, number CRD42020204701. Results: Aggregated data were collected from 27 eligible studies. The results illustrated an intense improvement in the following outcomes in rhubarb-treated animals with DN (p < 0.05): blood glucose, serum creatinine (Scr), blood urea nitrogen (BUN), albumin creatinine ratio (ACR), urine protein (UP), urinary albumin excretion (UAE), renal index (two kidneys weight/body weight, KW/BW), tubulointerstitial injury index (TII), transforming growth factor-beta1 (TGF-β1) mRNA and protein, alpha-smooth muscle actin (α-SMA) protein, and E-cadherin (E-cad) protein. Of these, DN animals with rhubarb exhibited a significantly higher level of E-cad protein. In addition, the level of the other outcomes mentioned above decreased significantly, while there was no significant association between the intervention and nephrin protein (p > 0.05). Conclusion: This systematic review and meta-analysis demonstrated that rhubarb has a positive therapeutic effect on animals with DN, which may provide confidence and some theoretical reference for clinical application to a certain extent.
Collapse
Affiliation(s)
- Jing-Yi Zeng
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Miao Miao
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Rong Bao
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Application of the Antibody-Inducing Activity of Glycosphingolipids to Human Diseases. Int J Mol Sci 2021; 22:ijms22073776. [PMID: 33917390 PMCID: PMC8038663 DOI: 10.3390/ijms22073776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022] Open
Abstract
Glycosphingolipids (GSLs) are composed of a mono-, di-, or oligosaccharide and a ceramide and function as constituents of cell membranes. Various molecular species of GSLs have been identified in mammalian cells due to differences in the structures of oligosaccharides. The oligosaccharide structure can vary depending on cell lineage, differentiation stage, and pathology; this property can be used as a cell identification marker. Furthermore, GSLs are involved in various aspects of the immune response, such as cytokine production, immune signaling, migration of immune cells, and antibody production. GSLs containing certain structures exhibit strong immunogenicity in immunized animals and promote the production of anti-GSL antibodies. By exploiting this property, it is possible to generate antibodies that recognize the fine oligosaccharide structure of specific GSLs or glycoproteins. In our study using artificially synthesized GSLs (artGSLs), we found that several structural features are correlated with the antibody-inducing activity of GSLs. Based on these findings, we designed artGSLs that efficiently induce the production of antibodies accompanied by class switching and developed several antibodies that recognize not only certain glycan structures of GSLs but also those of glycoproteins. This review comprehensively introduces the immune activities of GSLs and their application as pharmaceuticals.
Collapse
|
16
|
Sugimoto J, Satoyoshi H, Takahata K, Muraoka S. Fabry disease-associated globotriaosylceramide induces mechanical allodynia via activation of signaling through proNGF-p75 NTR but not mature NGF-TrkA. Eur J Pharmacol 2021; 895:173882. [PMID: 33482180 DOI: 10.1016/j.ejphar.2021.173882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/14/2023]
Abstract
Fabry disease (FD) is an X-linked metabolic storage disorder arising from the deficiency of lysosomal α-galactosidase A, which leads to the gradual accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3), throughout the body. Pain in the extremities is an early symptom of FD; however, the underlying pathophysiological mechanisms remain unknown. α-Galactosidase A knockout animals exhibit nociceptive behaviors, with enhanced expression levels of several ion channels. These characteristics are observed in animals treated with nerve growth factor (NGF). Here, we aimed to elucidate the potential of NGF signaling as a cause of FD-associated pain, using intraplantar Gb3-treated mice displaying mechanical allodynia. Treatment with a neutralizing antibody against a precursor of NGF (proNGF) or its receptor, p75 neurotrophin receptor (p75NTR), resulted in the recovery from Gb3-induced pain. Conversely, anti-NGF and anti-tropomyosin receptor kinase A antibodies failed to exert analgesic effects. Gb3 injection had no effects on the expression levels of proNGF and p75NTR in the plantar skin and dorsal root ganglia, suggesting that Gb3 activates the pain pathway, possibly mediated through functional up-regulation of proNGF-p75NTR signaling. Furthermore, by pharmacological approaches using a protein kinase A (PKA) inhibitor and a cholesterol-removing agent, we found that p75NTR-phosphorylating PKA and lipid rafts for phosphorylated p75NTR translocation were required for Gb3-induced pain. These results suggest that acute exposure to Gb3 induces mechanical allodynia via activation of the proNGF-p75NTR pathway, which involves lipid rafts and PKA. Our findings provide new pathological insights into FD-associated pain, and suggest the need to develop therapeutic interventions targeting proNGF-p75NTR signaling.
Collapse
Affiliation(s)
- Junya Sugimoto
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka, 580-8503, Japan
| | - Hiroshi Satoyoshi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka, 580-8503, Japan
| | - Kazue Takahata
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka, 580-8503, Japan.
| | - Shizuko Muraoka
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka, 580-8503, Japan
| |
Collapse
|
17
|
Sundararaj K, Rodgers J, Angel P, Wolf B, Nowling TK. The role of neuraminidase in TLR4-MAPK signalling and the release of cytokines by lupus serum-stimulated mesangial cells. Immunology 2021; 162:418-433. [PMID: 33314123 DOI: 10.1111/imm.13294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Previously, we demonstrated neuraminidase (NEU) activity or NEU1 expression, specifically, is increased in the kidneys of lupus mice and urine of human patients with nephritis. Additionally, NEU activity mediates IL-6 secretion from lupus-prone MRL/lpr primary mouse mesangial cells (MCs) in response to an IgG mimic. IL-6 mediates glomerular inflammation and promotes tissue damage in patients and mouse strains with lupus nephritis. This study further elucidates the mechanisms by which NEU activity and NEU1 specifically mediates the release of IL-6 and other cytokines from lupus-prone MCs. We demonstrate significantly increased release of multiple cytokines and NEU activity in MRL/lpr MCs in response to serum from MRL/lpr mice (lupus serum). Inhibiting NEU activity significantly reduced secretion of three of those cytokines: IL-6, GM-CSF and MIP1α. Message levels of Il-6 and Gm-csf were also increased in response to lupus serum and reduced when NEU activity was inhibited. Neutralizing antibodies to cell-surface receptors and MAPK inhibitors in lupus serum- or LPS-stimulated MCs indicate TLR4 and p38 or ERK MAP kinase signalling play key roles in the NEU-mediated secretion of IL-6. Significantly reduced IL-6 release was observed in C57BL/6 (B6) Neu1+/+ primary MCs compared with wild-type (Neu1+/+) B6 MCs in response to lupus serum. Additional results show inhibiting NEU activity significantly increases sialic acid-containing N-glycan levels. Together, our novel observations support a role for NEU activity, and specifically NEU1, in mediating release of IL-6 from lupus-prone MCs in response to lupus serum through a TLR4-p38/ERK MAPK signalling pathway that likely includes desialylation of glycoproteins.
Collapse
Affiliation(s)
- Kamala Sundararaj
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Jessalyn Rodgers
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Tamara K Nowling
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
18
|
Liu D, Chen C, Wang D, Chen Z, Song C. Effect of sericin on the p38MAPK signaling pathway and NLRP3 inflammasome in the kidney of type 2 diabetic rats. Exp Ther Med 2020; 20:267. [PMID: 33199992 PMCID: PMC7664612 DOI: 10.3892/etm.2020.9397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/31/2020] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to investigate the effects of sericin on the p38MAPK signaling pathway and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in the kidney of rats with type 2 diabetes mellitus (T2DM). A total of 36 male Sprague-Dawley rats were randomly divided into the normal group, T2DM model group and sericin group (n=12 rats/group). A T2DM model was developed through intraperitoneal injection of streptozotocin (35 mg·kg-1·d-1 for 2 consecutive days), and a high-fat and high-sugar diet. The T2DM rats in the sericin group were administered 2.4 g·kg-1·d-1 sericin for 35 days, and rats in the other groups were administered an equal volume of normal saline for 35 days. Fasting blood glucose was measured using the glucose oxidase method. Kidney tissue morphology was observed by H&E staining. Immunohistochemistry, western blotting, ELISA and reverse transcription-quantitative PCR were used to detect the levels of MKK6, p38MAPK, phosphorylated (p)-p38MAPK, NF-κB, IL-1β, IL-6, NLRP3 and caspase-1 in rat kidney tissues. The results revealed that blood glucose concentration, and the expression levels of MKK6, p-p38MAPK, NF-κB, IL-1β, IL-6, NLRP3 and caspase-1 were significantly increased in the T2DM group compared with those in the normal group (P<0.05). In addition, obvious pathological changes were observed in the T2DM group. Conversely, glucose concentration, and the expression levels of MKK6, p-p38MAPK, NF-κB, IL-1β, IL-6, NLRP3 and caspase-1 were significantly reduced in the sericin group compared with those in the T2DM group (P<0.05). The pathological changes were also obviously reduced. Notably, there was no significant difference in p38MAPK expression among the three groups (P>0.05). Collectively, the present study revealed that sericin may downregulate the expression levels of MKK6, p-p38MAPK, NF-κB, IL-1β, IL-6, NLRP3 and caspase-1, and inhibit activation of renal p38MAPK signaling and NLRP3-associated inflammation, which in turn may protect against kidney damage caused by T2DM.
Collapse
Affiliation(s)
- Donghui Liu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Cheng Chen
- Department of Physiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Dandan Wang
- Department of Anatomy, Shijiazhuang Medical College, Shijiazhuang, Hebei 050599, P.R. China
| | - Zhihong Chen
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Chengjun Song
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
19
|
Björck V, Andersson L, Påhlman LI, Bodelsson M. Commercial albumin solution enhances endotoxin-induced vasoplegia and inflammation. Acta Anaesthesiol Scand 2020; 64:982-991. [PMID: 32270487 DOI: 10.1111/aas.13598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The Gram-negative bacterium Escherichia coli, commonly involved in severe sepsis and septic shock, shed endotoxin that upon detection by the host triggers an inflammatory cascade. Efficiency of albumin solutions to restore hypovolemia during sepsis has been debated. To aid identification of subgroups of sepsis patients that may respond positively or negatively to treatment with albumin we investigated if preparations of albumin for medical use could affect endotoxin-induced inflammatory response. METHODS Isolated human omental arteries obtained during surgery were incubated with endotoxin in the presence or absence of albumin solution. Isolated human monocytes were incubated with endotoxin in the presence or absence of five different commercially available albumin solutions. Vascular contractile response to noradrenaline and release of interleukin (IL)-1β, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF)-α were measured. RESULTS Incubation with albumin together with endotoxin decreased median maximum contraction and increased release of IL-6 and IL-8 from the arteries compared to incubation with endotoxin alone. All albumin solutions except one significantly increased endotoxin-induced TNF-α release from monocytes. IL-6 and IL-10 were also increased and no concentration dependency of TNF-α release was observed above 2 mg mL-1 . Incubation with albumin alone did not affect contraction or release of cytokines while no potentially endotoxin-enhancing contaminant could be identified. CONCLUSION We have shown that albumin solution in combination with endotoxin cause vasoplegia in human omental arteries, paralleled by an inflammatory response. This finding could explain the variable efficiency of albumin solutions for sepsis treatment.
Collapse
Affiliation(s)
- Viveka Björck
- Department of Clinical Sciences Lund Anaesthesiology and Intensive Care Skane University Hospital Lund University Lund Sweden
| | - Linnea Andersson
- Department of Clinical Sciences Lund Anaesthesiology and Intensive Care Skane University Hospital Lund University Lund Sweden
| | - Lisa I. Påhlman
- Department of Clinical Sciences Lund Infection Medicine Skane University Hospital Lund University Lund Sweden
| | - Mikael Bodelsson
- Department of Clinical Sciences Lund Anaesthesiology and Intensive Care Skane University Hospital Lund University Lund Sweden
| |
Collapse
|
20
|
Loberto N, Mancini G, Bassi R, Carsana EV, Tamanini A, Pedemonte N, Dechecchi MC, Sonnino S, Aureli M. Sphingolipids and plasma membrane hydrolases in human primary bronchial cells during differentiation and their altered patterns in cystic fibrosis. Glycoconj J 2020; 37:623-633. [PMID: 32666337 PMCID: PMC7501107 DOI: 10.1007/s10719-020-09935-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 01/26/2023]
Abstract
Human primary bronchial epithelial cells differentiated in vitro represent a valuable tool to study lung diseases such as cystic fibrosis (CF), an inherited disorder caused by mutations in the gene coding for the Cystic Fibrosis Transmembrane Conductance Regulator. In CF, sphingolipids, a ubiquitous class of bioactive lipids mainly associated with the outer layer of the plasma membrane, seem to play a crucial role in the establishment of the severe lung complications. Nevertheless, no information on the involvement of sphingolipids and their metabolism in the differentiation of primary bronchial epithelial cells are available so far. Here we show that ceramide and globotriaosylceramide increased during cell differentiation, whereas glucosylceramide and gangliosides content decreased. In addition, we found that apical plasma membrane of differentiated bronchial cells is characterized by a higher content of sphingolipids in comparison to the other cell membranes and that activity of sphingolipids catabolic enzymes associated with this membrane results altered with respect to the total cell activities. In particular, the apical membrane of CF cells was characterized by high levels of ceramide and glucosylceramide, known to have proinflammatory activity. On this basis, our data further support the role of sphingolipids in the onset of CF lung pathology.
Collapse
Affiliation(s)
- Nicoletta Loberto
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Giulia Mancini
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Rosaria Bassi
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Emma Veronica Carsana
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Anna Tamanini
- Section of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, 37126, Verona, Italy
| | | | - Maria Cristina Dechecchi
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement, University of Verona, 37134, Verona, Italy
| | - Sandro Sonnino
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Massimo Aureli
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy.
| |
Collapse
|
21
|
Schömel N, Geisslinger G, Wegner MS. Influence of glycosphingolipids on cancer cell energy metabolism. Prog Lipid Res 2020; 79:101050. [PMID: 32592726 DOI: 10.1016/j.plipres.2020.101050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
A growing number of studies describe a connection between glycosphingolipids (GSLs) and glutamine metabolism, glucose metabolism and mitochondrial dysfunction in cancer cells. Since deregulated cell energy metabolism is one of cancer cells hallmarks, investigating this connection is an important step in the development of anti-cancer therapies. GSL species are often aberrantly regulated in human cancers. They cluster in signaling platforms in the plasma membrane and organelle membranes in so called glycosphingolipid enriched microdomains (GEMs), thereby regulating cell signaling pathways. The most important glutamine transporter for epithelial cells, alanine-serine-cysteine transporter 2 (ASCT2) locates in GEMs and is regulated by GEM composition. The accumulation of glucosylceramide and lactosylceramide in mitochondria associated ER membranes (MAMs) leads to increased oxidative phosphorylation. This increases mitochondrial reactive oxygen species (ROS) levels and influences mitochondrial dynamics. Here, we review current knowledge about deregulated GSL species in cancer, GSL influence on glutamine and glucose metabolism. In addition, the role of GSLs in MAMs, oxidative phosphorylation (OXPHOS) and mitochondrial dynamics with a special focus on mechanistic target of rapamycin (mTOR) signaling is discussed. mTOR seems to play a pivotal role in the connection between GSLs and glutamine metabolism as well as in mitochondrial signaling.
Collapse
Affiliation(s)
- Nina Schömel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
22
|
Kanoh H, Nitta T, Go S, Inamori KI, Veillon L, Nihei W, Fujii M, Kabayama K, Shimoyama A, Fukase K, Ohto U, Shimizu T, Watanabe T, Shindo H, Aoki S, Sato K, Nagasaki M, Yatomi Y, Komura N, Ando H, Ishida H, Kiso M, Natori Y, Yoshimura Y, Zonca A, Cattaneo A, Letizia M, Ciampa M, Mauri L, Prinetti A, Sonnino S, Suzuki A, Inokuchi JI. Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity. EMBO J 2020; 39:e101732. [PMID: 32378734 PMCID: PMC7298289 DOI: 10.15252/embj.2019101732] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 01/15/2023] Open
Abstract
Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long‐chain (LCFA) and very‐long‐chain (VLCFA). Analysis of circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation reveals that levels of VLCFA‐GM3 increase significantly in metabolic disorders, while LCFA‐GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA‐GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4‐mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA‐GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA‐GM3 and unsaturated VLCFA‐GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand‐molecular docking analysis supports that VLCFA‐GM3 and LCFA‐GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA‐GM3 is a risk factor for TLR4‐mediated disease progression.
Collapse
Affiliation(s)
- Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takahiro Nitta
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shinji Go
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kei-Ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Lucas Veillon
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Wataru Nihei
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Mayu Fujii
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Taku Watanabe
- Medical and Pharmaceutical Information Science, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hiroki Shindo
- Medical and Pharmaceutical Information Science, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Sorama Aoki
- Medical and Pharmaceutical Information Science, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kenichi Sato
- Medical and Pharmaceutical Information Science, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Mika Nagasaki
- Department of Cardiovascular Medicine and Computational Diagnostic Radiology & Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Hideharu Ishida
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan.,Department of Applied Bio-organic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Makoto Kiso
- Organization for Research and Community Development, Gifu University, Gifu, Japan
| | - Yoshihiro Natori
- Division of Organic and Pharmaceutical Chemistry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuichi Yoshimura
- Division of Organic and Pharmaceutical Chemistry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Asia Zonca
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Anna Cattaneo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Marilena Letizia
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Maria Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Akemi Suzuki
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
23
|
The Signaling of Cellular Senescence in Diabetic Nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7495629. [PMID: 31687085 PMCID: PMC6794967 DOI: 10.1155/2019/7495629] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/03/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy is the leading cause of chronic kidney disease (CKD) in western countries. Notably, it has a rapidly rising prevalence in China. The patients, commonly complicated with cardiovascular diseases and neurologic disorders, are at high risk to progress into end-stage renal disease (ESRD) and death. However, the pathogenic mechanisms of diabetic nephropathy have not been determined. Cellular senescence, which recently has gained broad attention, is thought to be an important player in the onset and development of diabetic nephropathy. In this issue, we generally review the mechanisms of cellular senescence in diabetic nephropathy, which involve telomere attrition, DNA damage, epigenetic alterations, mitochondrial dysfunction, loss of Klotho, Wnt/β-catenin signaling activation, persistent inflammation, and accumulation of uremic toxins. Moreover, we highlight the potential therapeutic targets of cellular senescence in diabetic nephropathy and provide important clues for clinical strategies.
Collapse
|