1
|
Villarin JM, Kellendonk C. An ace in the hole? Opportunities and limits of using mice to understand schizophrenia neurobiology. Mol Psychiatry 2025:10.1038/s41380-025-03060-7. [PMID: 40405017 DOI: 10.1038/s41380-025-03060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/02/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025]
Abstract
In applying model organisms to study the neurobiology of mental disorders, rodents offer unique potential for probing, with high spatiotemporal resolution, the neural and molecular mechanisms underlying behavior in a mammalian system. Furthermore, investigators can wield exceptional power to manipulate genes, molecules, and circuits in mice to pin down causal relationships. While these advantages have allowed us to understand much more deeply than ever before the brain mechanisms regulating complex behaviors, the impact of rodent models on developing therapeutic strategies for psychiatric disorders has remained thus far limited. Herein, we will discuss the opportunities and limits of using mouse models in the context of schizophrenia, a complex psychiatric disorder with strong genetic basis that poses various unmet clinical needs calling out for basic science research. We review approaches for employing behavioral, genetic, and circuit-based methods in rodents to inform schizophrenia symptomatology, pathophysiology, and, ultimately, treatment.
Collapse
Affiliation(s)
- Joseph M Villarin
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
| | - Christoph Kellendonk
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
- Department of Molecular Pharmacology & Therapeutics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Liu J, Mosti F, Zhao HT, Lollis D, Sotelo-Fonseca JE, Escobar-Tomlienovich CF, Musso CM, Mao Y, Massri AJ, Doll HM, Moss ND, Sousa AMM, Wray GA, Schmidt ERE, Silver DL. A human-specific enhancer fine-tunes radial glia potency and corticogenesis. Nature 2025:10.1038/s41586-025-09002-1. [PMID: 40369080 DOI: 10.1038/s41586-025-09002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Humans have evolved an extraordinarily expanded and complex cerebral cortex associated with developmental and gene regulatory modifications1-3. Human accelerated regions (HARs) are highly conserved DNA sequences with human-specific nucleotide substitutions. Although there are thousands of annotated HARs, their functional contribution to species-specific cortical development remains largely unknown4,5. HARE5 is a HAR transcriptional enhancer of the WNT signalling receptor Frizzled8 that is active during brain development6. Here, using genome-edited mouse (Mus musculus, Mm) and primate models, we demonstrated that human (Homo sapiens, Hs) HARE5 fine-tunes cortical development and connectivity by controlling the proliferative and neurogenic capacities of neural progenitor cells. Hs-HARE5 knock-in mice have significantly enlarged neocortices, containing more excitatory neurons. By measuring neural dynamics in vivo, we showed that these anatomical features result in increased functional independence between cortical regions. We assessed underlying developmental mechanisms using fixed and live imaging, lineage analysis and single-cell RNA sequencing. We discovered that Hs-HARE5 modifies radial glial cell behaviour, with increased self-renewal at early developmental stages, followed by expanded neurogenic potential. Using genome-edited human and chimpanzee (Pan troglodytes, Pt) neural progenitor cells and cortical organoids, we showed that four human-specific variants of Hs-HARE5 drive increased enhancer activity that promotes progenitor proliferation. Finally, we showed that Hs-HARE5 increased progenitor proliferation by amplifying canonical WNT signalling. These findings illustrate how small changes in regulatory DNA can directly affect critical signalling pathways to modulate brain development. Our study uncovered new functions of HARs as key regulatory elements crucial for the expansion and complexity of the human cerebral cortex.
Collapse
Affiliation(s)
- Jing Liu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Federica Mosti
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Hanzhi T Zhao
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Davoneshia Lollis
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | | | | - Camila M Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Yiwei Mao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | - Hannah M Doll
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicole D Moss
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Andre M M Sousa
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Ewoud R E Schmidt
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
3
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
4
|
Bosworth ML, Isles AR, Wilkinson LS, Humby T. Sex-dependent effects of Setd1a haploinsufficiency on development and adult behaviour. PLoS One 2024; 19:e0298717. [PMID: 39141687 PMCID: PMC11324134 DOI: 10.1371/journal.pone.0298717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Loss of function (LoF) mutations affecting the histone methyl transferase SETD1A are implicated in the aetiology of a range of neurodevelopmental disorders including schizophrenia. We examined indices of development and adult behaviour in a mouse model of Setd1a haploinsufficiency, revealing a complex pattern of sex-related differences spanning the pre- and post-natal period. Specifically, male Setd1a+/- mice had smaller placentae at E11.5 and females at E18.5 without any apparent changes in foetal size. In contrast, young male Setd1a+/- mice had lower body weight and showed enhanced growth, leading to equivalent weights by adulthood. Embryonic whole brain RNA-seq analysis revealed expression changes that were significantly enriched for mitochondria-related genes in Setd1a+/ samples. In adulthood, we found enhanced acoustic startle responding in male Setd1a+/- mice which was insentitive to the effects of risperidone, but not haloperidol, both commonly used antipsychotic drugs. We also observed reduced pre-pulse inhibition of acoustic startle, a schizophrenia-relevant phenotype, in both male and female Setd1a+/- mice which could not be rescued by either drug. In the open field and elevated plus maze tests of anxiety, Setd1a haplosufficiency led to more anxiogenic behaviour in both sexes, whereas there were no differences in general motoric ability and memory. Thus, we find evidence for changes in a number of phenotypes which strengthen the support for the use of Setd1a haploinsufficient mice as a model for the biological basis of schizophrenia. Furthermore, our data point towards possible underpinning neural and developmental mechanisms that may be subtly different between the sexes.
Collapse
Affiliation(s)
- Matthew L. Bosworth
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anthony R. Isles
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Trevor Humby
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Colijn MA, Carrion P, Poirier-Morency G, Rogic S, Torres I, Menon M, Lisonek M, Cook C, DeGraaf A, Thammaiah SP, Neelakant H, Willaeys V, Leonova O, White RF, Yip S, Mungall AJ, MacLeod PM, Gibson WT, Sullivan PF, Honer WG, Pavlidis P, Stowe RM. SETD1A variant-associated psychosis: A systematic review of the clinical literature and description of two new cases. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110888. [PMID: 37918557 DOI: 10.1016/j.pnpbp.2023.110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE SETD1A encodes a histone methyltransferase involved in various cell cycle regulatory processes. Loss-of-function SETD1A variants have been associated with numerous neurodevelopmental phenotypes, including intellectual disability and schizophrenia. While the association between rare coding variants in SETD1A and schizophrenia has achieved genome-wide significance by rare variant burden testing, only a few studies have described the psychiatric phenomenology of such individuals in detail. This systematic review and case report aims to characterize the neurodevelopmental and psychiatric phenotypes of SETD1A variant-associated schizophrenia. METHODS A PubMed search was completed in July 2022 and updated in May 2023. Only studies that reported individuals with a SETD1A variant as well as a primary psychotic disorder were ultimately included. Additionally, another two previously unpublished cases of SETD1A variant-associated psychosis from our own sequencing cohort are described. RESULTS The search yielded 32 articles. While 15 articles met inclusion criteria, only five provided case descriptions. In total, phenotypic information was available for 11 individuals, in addition to our own two unpublished cases. Our findings suggest that although individuals with SETD1A variant-associated schizophrenia may share a number of common features, phenotypic variability nonetheless exists. Moreover, although such individuals may exhibit numerous other neurodevelopmental features suggestive of the syndrome, their psychiatric presentations appear to be similar to those of general schizophrenia populations. CONCLUSIONS Loss-of-function SETD1A variants may underlie the development of psychosis in a small percentage of individuals with schizophrenia. Identifying such individuals may become increasingly important, given the potential for advances in precision medicine treatment approaches.
Collapse
Affiliation(s)
- Mark A Colijn
- Department of Psychiatry, Hotchkiss Brain Institute, and Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.
| | - Prescilla Carrion
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | - Sanja Rogic
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Ivan Torres
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services, Vancouver, BC, Canada
| | - Mahesh Menon
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | - Courtney Cook
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ashley DeGraaf
- Heart Centre, St. Paul's Hospital and Providence Health, Vancouver, BC, Canada
| | | | - Harish Neelakant
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Veerle Willaeys
- BC Psychosis Program, British Columbia Mental Health & Substance Use Services, Vancouver, BC, Canada
| | - Olga Leonova
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Randall F White
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Patrick M MacLeod
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Patrick F Sullivan
- Psychiatry and Genetics, University of North Carolina at Chapel Hill, NC, USA; Karolinska Institut, Stockholm, Sweden
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Paul Pavlidis
- Department of Psychiatry, Michael Smith Laboratories, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Robert M Stowe
- Departments of Psychiatry and Neurology (Medicine), BC Neuropsychiatry Program, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Jin L, Mo W, Yan Y, Wang Y. Novel mutation in the SETD1A gene in a newborn patient associating with congenital airway and heart defeats: A case report. Medicine (Baltimore) 2023; 102:e33449. [PMID: 37000069 PMCID: PMC10063285 DOI: 10.1097/md.0000000000033449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
RATIONALE Congenital malformations are commonly associated with genetic disorders in infants and children. PATIENT CONCERNS A 13-day-old male infant was admitted to our hospital presenting with aggravated dyspnea and characteristic facial and body features. Examinations during hospitalization found congenital bronchomalacia and heart defects including atrial septal defect, patent ductus arteriosus, and pulmonary hypertension, congenital laryngeal stridor, and tracheal stenosis. DIAGNOSIS Considering complicated clinical manifestations, the Trio Whole Exon Sequencing test was run to screen for any hereditary diseases and found a heterozygous pathogenic mutation in SET domain containing 1A (SETD1A) gene (c.2096T > A; p. Leu699Ter, 1099), which was a de novo mutation. INTERVENTION The patient was given amoxicillin clavulanate potassium for antibiotic, fibro bronchoscope lavage and other symptomatic support therapy, and referred to the department of Cardiac Surgery for arterial catheter ligation. OUTCOMES The patient was discharged after postoperative recovery without shunt. In the following 2 years, he was admitted to hospital multiple times during to infectious pneumonia. LESSONS SETD1A gene mutation is commonly associated with neuropsychiatric disorders. This is the first reported case with a novel mutation of SETD1A gene along with new associated phenotypes. Our results broaden the genotypic and phenotypes spectrum of SETD1A gene mutation in infant patients.
Collapse
Affiliation(s)
- Long Jin
- Department of Respiratory Medicine, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Wendi Mo
- Department of Respiratory Medicine, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Yu Yan
- Department of Respiratory Medicine, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Ying Wang
- Department of Respiratory Medicine, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| |
Collapse
|
7
|
Park J, Lee K, Kim K, Yi SJ. The role of histone modifications: from neurodevelopment to neurodiseases. Signal Transduct Target Ther 2022; 7:217. [PMID: 35794091 PMCID: PMC9259618 DOI: 10.1038/s41392-022-01078-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulatory mechanisms, including DNA methylation, histone modification, chromatin remodeling, and microRNA expression, play critical roles in cell differentiation and organ development through spatial and temporal gene regulation. Neurogenesis is a sophisticated and complex process by which neural stem cells differentiate into specialized brain cell types at specific times and regions of the brain. A growing body of evidence suggests that epigenetic mechanisms, such as histone modifications, allow the fine-tuning and coordination of spatiotemporal gene expressions during neurogenesis. Aberrant histone modifications contribute to the development of neurodegenerative and neuropsychiatric diseases. Herein, recent progress in understanding histone modifications in regulating embryonic and adult neurogenesis is comprehensively reviewed. The histone modifications implicated in neurodegenerative and neuropsychiatric diseases are also covered, and future directions in this area are provided.
Collapse
Affiliation(s)
- Jisu Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|